WO2010103605A1 - 酸化有機化合物の製造方法 - Google Patents

酸化有機化合物の製造方法 Download PDF

Info

Publication number
WO2010103605A1
WO2010103605A1 PCT/JP2009/054442 JP2009054442W WO2010103605A1 WO 2010103605 A1 WO2010103605 A1 WO 2010103605A1 JP 2009054442 W JP2009054442 W JP 2009054442W WO 2010103605 A1 WO2010103605 A1 WO 2010103605A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
reaction
organic compound
phase oxidation
molecular oxygen
Prior art date
Application number
PCT/JP2009/054442
Other languages
English (en)
French (fr)
Inventor
谷本道雄
箱崎伸幸
Original Assignee
株式会社日本触媒
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本触媒 filed Critical 株式会社日本触媒
Priority to JP2011503583A priority Critical patent/JP5450591B2/ja
Priority to US13/203,311 priority patent/US8962881B2/en
Priority to CN2009801579625A priority patent/CN102348669A/zh
Priority to PCT/JP2009/054442 priority patent/WO2010103605A1/ja
Priority to EP09841436.0A priority patent/EP2407445B1/en
Publication of WO2010103605A1 publication Critical patent/WO2010103605A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/23Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups
    • C07C51/235Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups of —CHO groups or primary alcohol groups

Definitions

  • production of ethylene oxide by catalytic vapor phase oxidation of ethylene production of (meth) acrylic acid by two-stage oxidation using propylene, isobutylene, tertiary butanol and / or methyl tertiary butyl ether as starting materials, o-xylene and / or
  • production of phthalic anhydride by catalytic gas phase oxidation of naphthalene production of maleic anhydride by catalytic gas phase oxidation of benzene or n-butane.
  • a first fixed bed reactor filled with a catalyst for converting propylene to acrolein hereinafter referred to as “pre-stage catalyst”
  • pre-stage catalyst a catalyst for converting propylene to acrolein
  • second-stage catalyst a catalyst for converting the resulting acrolein into acrylic acid
  • propane which is cheaper than propylene
  • propylene is obtained by dehydrogenation or oxidative dehydrogenation. Due to concerns such as the use of acrylic acid, future resource depletion, and increased carbon dioxide in the atmosphere, there is no concern about resource depletion, and the carbon source is carbon dioxide in the atmosphere.
  • Various studies have been made on a method for producing acrylic acid by catalytically vapor-phase oxidizing the obtained acrolein using a plant-derived glycerin that does not contribute to the increase of carbon dioxide as a starting material to obtain acrolein by a dehydration reaction of glycerin.
  • the operation is stopped only when the concentration value of each gas obtained by calculation based on the flow rate of each introduced gas at the reactor inlet and the analysis value by the gas analyzer are both out of the set range.
  • a method has been disclosed in which a useless emergency stop of driving is omitted and the stop is surely performed only when the stop is necessary (for example, see Patent Document 2).
  • this relates to a method capable of avoiding an emergency stop due to a malfunction of the analyzer and the like so that the emergency stop can be performed only when necessary, and there is no disclosure regarding the influence on the catalyst performance in the operation stop such as periodic inspection.
  • the present invention has been made in view of the above situation, and during the production of useful oxidized organic compounds by catalytic gas phase oxidation reaction on an industrial scale, the operation was temporarily interrupted by periodic inspection, emergency stop, etc. Even in this case, the risk of explosion due to the reaction raw material gas remaining in the reactor can be sufficiently avoided, and when the operation is restarted, the period until the reaction is returned to a stable steady state can be shortened.
  • it is intended to provide a production method that can significantly increase production efficiency by maintaining a high yield stably for a long period of time without a decrease in yield even after restarting operation. is there.
  • the reaction raw material gas containing the molecular oxygen-containing gas remaining in the reaction system (inside the apparatus) or the reaction product-containing gas is discharged out of the reaction system by supplying the inert gas.
  • the risk of explosion due to high oxygen concentration in the reaction system can be avoided.
  • simply supplying an inert gas will reduce the catalytic ability of the oxide catalyst as a result of the oxide catalyst being in a reduced state. It will take a long time.
  • the molecular oxygen-containing gas is supplied in the stop step.
  • the catalyst is excessively oxidized and the delicate balance of the oxidized state is lost, and the operation is resumed. Since a sufficiently stable reaction state cannot be obtained later, an operation of stopping the supply after supplying the molecular oxygen-containing gas is performed.
  • the supply of inert gas and molecular oxygen-containing gas in the stop process removes carbides such as reaction raw materials, products and by-products attached to or adsorbed to the oxide catalyst, and reacts from the gas phase. In addition, unnecessary organic substances are removed, which can suppress a decrease in the performance of the catalyst after restarting operation.
  • the oxidation state as the oxide catalyst changes while the oxide catalyst can efficiently exhibit the catalyst performance while sufficiently avoiding the risk of explosion.
  • the reaction can be stabilized at an early stage even after the reaction is resumed.
  • the catalytic gas phase oxidation reaction it is possible to produce a markedly excellent effect that it can be produced stably and safely for a long time in a yield.
  • the present invention uses a fixed bed reactor having a reaction tube filled with an oxide catalyst, supplies at least one organic compound as a reaction raw material gas, and performs a catalytic gas phase oxidation reaction with a molecular oxygen-containing gas.
  • a method for producing an oxidized organic compound comprising a step of generating an oxidized organic compound and a step of stopping the catalytic gas phase oxidation reaction, wherein the manufacturing method is performed when the catalytic gas phase oxidation reaction is stopped. After the supply of the raw material gas is stopped, an inert gas is supplied to the reactor, and then the molecular oxygen-containing gas is supplied, and then the supply of the molecular oxygen-containing gas to the reactor is stopped. This is a method for producing an oxidized organic compound.
  • the present invention is described in detail below.
  • the method for producing an oxidized organic compound of the present invention includes a step of producing an oxidized organic compound by performing a contact gas phase oxidation reaction, and a step of stopping the contact gas phase oxidation reaction. It is a production method that requires these two steps, and may include other steps accompanying the production of the oxidized organic compound. Normally, an oxidized organic compound generation process is performed, and then a reaction stop process is performed for periodic inspections, emergency stop, etc., and the operation is restarted to perform an oxidized organic compound generation process, which is repeated. It will be.
  • An oxidized organic compound is an oxygen-containing organic compound in which a raw material organic compound is oxidized in a catalytic gas phase oxidation reaction and has an oxygen atom due to the oxidation, and all such compounds can be applied.
  • a preferred embodiment will be described later.
  • the step of stopping the contact gas phase oxidation reaction since it has a feature in the step of stopping the contact gas phase oxidation reaction in the overall production method of the oxidized organic compound, first, the step of stopping the contact gas phase oxidation reaction will be described, and then the contact step A process related to generating an oxidized organic compound by performing a gas phase oxidation reaction will be described.
  • the step of stopping the catalytic gas phase oxidation reaction stops supplying the reaction raw material gas, then supplies an inert gas to the reactor, and then supplies a molecular oxygen-containing gas. After that, the supply of the molecular oxygen-containing gas to the reactor is stopped.
  • the stop process include stop by inspection of the apparatus, replacement of parts, etc., emergency stop due to apparatus trouble, and the like.
  • an explosion composition that may cause an explosion may be formed by an ignition source such as a high-temperature object or an electric spark. Therefore, it is necessary to stop the supply of the reaction raw material gas and subsequently introduce the inert gas into the production apparatus to release the raw material gas remaining in the system out of the system.
  • the amount of the inert gas introduced varies depending on the size of the apparatus and cannot be specified unconditionally. However, it is preferable to introduce an amount 10 to 70 times the reactor and piping capacity. The amount is more preferably 15 to 50 times, and still more preferably 20 to 40 times.
  • the inert gas any gas can be used as long as it is inert gas such as nitrogen gas, carbon oxide gas such as carbon dioxide, argon gas, and a mixed gas thereof, and the like. A mixture of water vapor can also be used.
  • the inert gas is a mixture of nitrogen gas, carbon oxide gas, argon gas, and the like and water vapor
  • the ratio of water vapor is 0.1 to 75 vol% (volume %). More preferably, it is 0.3 to 70 vol% (volume%).
  • an inert gas is first supplied, then a molecular oxygen-containing gas is supplied, and then the supply of the molecular oxygen-containing gas is stopped.
  • the supply of the molecular oxygen-containing gas subsequent to the supply of the inert gas means that the supply of the molecular oxygen-containing gas is started after the supply of the inert gas.
  • the supply of the inert gas may be completed at the time of starting, or the supply of the inert gas may be completed after the supply of the molecular oxygen-containing gas is started. From the viewpoint of effective use of the contained gas, it is preferable to start the supply of the molecular oxygen-containing gas after the supply of the inert gas is completed.
  • the supply gas may be completely stopped, or the molecular oxygen-containing gas may be switched to an inert gas.
  • the molecular oxygen-containing gas is not supplied, organic substances such as raw materials, reactants or by-products are attached or adsorbed on the surface of the catalyst, and the organic substances attached or adsorbed on these catalysts are not. Oxidation is caused by oxygen in the catalyst. At that time, the catalyst itself is extracted, so that the catalyst is reduced, so that a delicate oxidation state suitable for the reaction of the catalyst changes and performance may be deteriorated.
  • the present invention it is possible to remove not only a small amount of organic substances on the surface of the catalyst by the supply of the inert gas, but the supply of the molecular oxygen-containing gas after the supply of the inert gas This is more effective for suppressing the change in the state of the catalyst due to.
  • the supply of the molecular oxygen-containing gas is also effective for suppressing the change in the state of the catalyst accompanying the supply of the inert gas.
  • the molecular oxygen-containing gas is continuously supplied for a long time without stopping, the oxidation of the catalyst proceeds and the oxidation state suitable for the reaction of the catalyst changes, contrary to the reduction by the organic matter.
  • the molecular oxygen-containing gas may be a gas composed of molecular oxygen and other components, or may be a gas composed only of molecular oxygen.
  • the oxygen concentration is too high, it is safe in industrial processes. It is not preferable from the viewpoint of the property, and the oxidation effect of the oxide catalyst by molecular oxygen can be sufficiently exhibited at a certain oxygen concentration. Therefore, it is preferable to use a gas composed of molecular oxygen and other components.
  • components other than molecular oxygen include carbon oxides such as nitrogen and carbon dioxide, argon, and water vapor.
  • the molecular oxygen-containing gas contains other components than molecular oxygen
  • the molecular oxygen content is 3 vol% (volume%) or more.
  • it is 5 vol% (volume%) or more.
  • the molecular oxygen-containing gas is preferably supplied at a temperature of 240 ° C. or higher in order to sufficiently remove organic substances on the catalyst. More preferably, it may be performed at a temperature of 260 ° C. or higher. Moreover, it is preferable to carry out at 440 degrees C or less. By carrying out at 440 degrees C or less, it can also suppress that the catalyst itself heat-degrades by a high temperature process. More preferably, it is 420 degrees C or less, More preferably, it is 400 degrees C or less. Among them, it is most preferable to perform the treatment while maintaining the reaction temperature immediately before stopping the reaction.
  • the supply of the molecular oxygen-containing gas is stopped when it becomes 1000 ppm or less. More preferably, the supply of the molecular oxygen-containing gas is stopped when the amount of carbon oxide contained in the gas becomes 500 ppm or less excluding the amount of carbon oxide contained in the supplied molecular oxygen-containing gas. It is. In this way, the supply of the molecular oxygen-containing gas can be stopped when the removal of most of the organic substances attached or adsorbed on the catalyst is completed, and not only the organic substances on the catalyst can be sufficiently removed, By stopping the supply of the molecular oxygen-containing gas when the amount of carbon oxide is greater than 0 ppm, it is possible to suppress a decrease in catalyst performance due to the catalyst coming into contact with the excessive molecular oxygen-containing gas.
  • the amount of carbon oxide contained in the gas at the outlet of the reactor as an indicator of the amount of molecular oxygen-containing gas introduced, in other words, as an indicator of when to stop the supply of molecular oxygen-containing gas, Not only can organic substances unnecessary for the target reaction adhered to or adsorbed on the catalyst be sufficiently removed, but also the fine oxidation state of the oxide catalyst can be maintained. Also here, there is a technical significance in that the introduction amount of the molecular oxygen-containing gas is within the above range.
  • the carbon oxide detection method may be analyzed by a gas concentration analyzer such as a gas chromatograph method, and as an analysis method, gas is sampled even by online analysis incorporated in a series of manufacturing equipment, The sampling gas may be separately introduced into an analyzer for analysis.
  • a gas concentration analyzer such as a gas chromatograph, for example, TCD, FID, or the like can be used.
  • step of producing an oxidized organic compound by performing a catalytic gas phase oxidation reaction in the method for producing an oxidized organic compound of the present invention will be described.
  • a fixed bed reactor having a reaction tube filled with an oxide catalyst is used to supply the organic compound as a reaction raw material gas, and a molecular oxygen-containing gas
  • various oxidized organic compounds produced by the step of producing an oxidized organic compound by performing a catalytic gas phase oxidation reaction can be produced.
  • the following production methods (1) to (5) can be preferably mentioned as forms relating to the production of the oxidized organic compound. These are industrially important production methods.
  • the present invention it is possible to produce industrial products of oxidized organic compounds that are supplied in large quantities more efficiently than in the past. It has great technical significance in the technical field.
  • a molecular oxygen-containing gas containing at least one organic compound selected from the group consisting of propylene, isobutylene, tertiary butanol and methyl tertiary butyl ether as a reaction raw material gas
  • a production method of producing (meth) acrylic acid as an oxidized organic compound by catalytic gas phase oxidation reaction with molecular oxygen-containing gas using (meth) acrolein as a reaction raw material (2) a production method of producing (meth) acrylic acid as an oxidized organic compound by catalytic gas phase oxidation reaction with molecular oxygen-containing gas using (meth) acrolein as a reaction raw material, and (3) (meta In the production of acrylic acid, a method of producing acrylic acid as an oxidized organic compound by a catalytic gas phase oxidation reaction with a molecular oxygen-containing gas using acrolein obtained by a dehydration reaction of glycerin as a reaction raw material gas can also be mentioned.
  • the pre-stage catalyst used in the present invention is not particularly limited, but the following general formula (I): Mo a Bi b Fe c X1 d X2 e X3 f X4 g O x (I) (Where Mo is molybdenum, Bi is bismuth, Fe is iron, X1 represents at least one element selected from cobalt and nickel, and X2 is at least one selected from alkali metals, alkaline earth metals, boron and thallium.
  • X3 represents at least one element selected from tungsten, silicon, aluminum, zirconium and titanium X4 represents phosphorus, tellurium, antimony, tin, cerium, lead, niobium, manganese, arsenic and zinc Represents at least one element selected, O represents oxygen, and a, b, c, d, e, f, g, and x represent Mo, Bi, Fe, A, B, C, D, and O, respectively.
  • the latter catalyst used in the present invention is not particularly limited, but the following general formula (II): Mo h V i W j Y1 k Y2 l Y3 m Y4 n O y (II) (Where Mo is molybdenum, V is vanadium, W is tungsten, Y1 represents at least one element selected from antimony, bismuth, chromium, niobium, phosphorus, lead, zinc, cobalt, nickel and tin.
  • the catalyst charged in the reactor does not need to be a single catalyst.
  • a plurality of types of catalysts having different activities may be used in the preceding stage catalyst, and these may be charged in the order of different activities,
  • the part may be diluted with an inert carrier or the like.
  • a suitable reaction temperature for the pre-stage catalyst and the post-stage catalyst is appropriately selected depending on the reaction conditions and the like, but for the pre-stage catalyst, 300 to 380 ° C. is preferable. In the latter stage catalyst, 250 to 350 ° C. is preferable.
  • the difference between the reaction temperature of the former catalyst and the reaction temperature of the latter catalyst is preferably 10 to 110 ° C. More preferably, it is 30 to 80 ° C.
  • the reaction temperature of the front catalyst and the reaction temperature of the rear catalyst substantially correspond to the heat medium inlet temperature in each reactor or reaction zone, and the heat medium inlet temperature is set within the above range. It is determined according to each set temperature.
  • the reaction raw material gas supplied to the reactor in the step of producing the oxidized organic compound by performing the catalytic gas phase oxidation reaction includes propylene, which is an organic compound as a reaction raw material, molecular oxygen, nitrogen, water vapor, and the like. If the total reaction raw material gas is 100 vol% (volume%), the ratio of the organic compound (reaction raw material) constituting the target product is 1 to 15 vol% (volume%). Preferably there is. More preferably, it is 4 to 12 vol% (volume%). In addition, the reaction raw material gas is preferably supplied at a space velocity of 300 to 5000 h ⁇ 1 with respect to the preceding catalyst. By setting it as such a range, a reaction rate can be raised and reaction can be performed efficiently.
  • the method for producing an oxidized organic compound of the present invention has the above-described configuration, and in the production of an oxidized organic compound by a catalytic gas phase oxidation reaction on an industrial scale, the yield of the catalytic gas phase oxidation reaction is stopped and the operation is resumed. It is a production method that suppresses the decline and enables stable and safe production with a high yield for a long period of time.
  • the production method can be suitably applied to the production process of acrylic acid and acrolein.
  • the ⁇ -alumina spherical carrier having an average particle diameter of 4 mm is put into the centrifugal fluidized coating apparatus, and then the catalyst powder is put together with 15 wt% ammonium nitrate aqueous solution as a binder while passing hot air at 90 ° C. and supported on the carrier. Then, heat treatment was performed at 400 ° C. for 6 hours in an air atmosphere to obtain a rear catalyst 1.
  • the composition of metal elements other than oxygen excluding the catalyst support was as follows in terms of atomic ratio. Mo 12 V 3 W 1.2 Cu 1.2 Sb 0.5
  • a reactor made of a SUS reaction tube having a total length of 6000 mm and an inner diameter of 25 mm and a shell for flowing a heat medium covering the SUS reaction tube was prepared in the vertical direction.
  • a partition plate having a thickness of 50 mm that divides the shell vertically was provided at a position of 3000 mm from the bottom of the shell, and the heat medium was circulated from below to above in both the upper and lower shell spaces.
  • the first stage catalyst 1 In order from the upper part of the reaction tube, the first stage catalyst 1, the SUS Raschig ring having an outer diameter of 8 mm and the second stage catalyst 1 were dropped, and the respective lengths were filled so that the first stage catalyst: 2800 mm, the Raschig ring: 400 mm, and the second stage catalyst: 2800 mm.
  • Example 1 In the reference example, the operation was stopped after the gas phase oxidation reaction was continued for 2000 hours. At that time, in stopping the gas supply to the reactor, first, the reaction raw material gas was stopped, and then the inert gas composed of 70% by volume of nitrogen and 30% by volume of water vapor was maintained at 25 L / min. STP) was allowed to flow for about 5 minutes. Subsequently, an oxygen-containing gas consisting of 18% by volume of oxygen and 82% by volume of nitrogen was circulated at a flow rate of 25 L (STP) per minute until the carbon oxide content at the outlet of the reactor reached 2000 ppm, and then the gas was supplied. Stopped. After the gas supply was stopped for 48 hours, the reaction raw material gas was introduced again and the operation was started. The reaction results are shown in Table 2.
  • Example 1 In Example 1, it was carried out in the same manner as Example 1 except that the supply of gas was stopped without circulating the oxygen-containing gas after circulating the inert gas when the operation was stopped. The reaction results are shown in Table 2.
  • Example 3 In Example 1, it was carried out in the same manner as Example 1 except that the supply of gas was stopped after flowing through the reactor until the carbon oxide content at the outlet of the reactor reached 500 ppm. The reaction results are shown in Table 2.
  • Example 3 it was carried out in the same manner as in Example 1 except that the supply was continued until the re-operation was started (48 hours) after the reactor outlet portion carbon oxide content became 0 ppm at the time of operation stop.
  • the reaction results are shown in Table 2.
  • Example 5 [Preparation of latter stage catalysts 2 and 3] While heating and stirring 3000 parts of distilled water, 525 parts of ammonium paramolybdate, 116 parts of ammonium metavanadate, and 100 parts of ammonium paratungstate were dissolved therein. Separately, 162 parts of copper nitrate were dissolved while heating and stirring 300 parts of distilled water. The two aqueous solutions obtained were mixed, and 28.9 parts of antimony trioxide was further added to obtain a suspension. This suspension was evaporated to dryness to give a cake-like solid, and the obtained solid was calcined at 390 ° C. for about 5 hours. The fired solid was pulverized to 250 ⁇ m or less to obtain catalyst powder.
  • ⁇ -alumina spherical carrier having an average particle diameter of 4 mm is put into the centrifugal fluidized coating apparatus, and then the catalyst powder is put together with 15 wt% ammonium nitrate aqueous solution as a binder while passing hot air at 90 ° C. and supported on the carrier. Then, heat treatment was performed at 400 ° C. for 6 hours in an air atmosphere to obtain a post-stage catalyst 2. Similarly, a post-catalyst 3 was obtained using an ⁇ -alumina spherical carrier having an average particle diameter of 7 mm.
  • the composition of metal elements other than oxygen excluding the supports of the latter catalysts 2 and 3 was as follows in terms of atomic ratio. Mo 12 V 4 W 1.5 Cu 2.7 Sb 0.8
  • reaction tube diameter: 25 mm, length: 6000 mm About 9500 reaction tubes (reaction tube diameter: 25 mm, length: 6000 mm) and a fixed bed multi-tubular reactor comprising a shell for flowing a heat medium covering the reaction tube, the first catalyst 5 and the first catalyst 4 are arranged in order from the top of the reaction tube.
  • the SUS Raschig ring with an outer diameter of 8 mm, the rear stage catalyst 5 and the rear stage catalyst 4 are dropped, and the lengths thereof are the front stage catalyst 3: 800 mm, the front stage catalyst 2: 2000 mm, the Raschig ring: 400 mm, the rear stage catalyst 3: 800 mm, and the rear stage catalyst. 2: It filled so that it might become 2000 mm and layer length 800mm.
  • a partition plate having a thickness of 50 mm that divides the shell vertically was provided at a position of 3000 mm from the bottom of the shell, and the heat medium was circulated from below to above in both the upper and lower shell spaces.
  • the propylene conversion rate and the acrylic acid yield are not good values at an early stage.
  • Examples 1 to 3 show a state that can be said to be good.
  • the amount of carbon oxide contained in the gas at the outlet of the reactor is in the supplied molecular oxygen-containing gas. Except for the amount of carbon oxide contained, Examples 2 and 3 in which the supply of the molecular oxygen-containing gas was stopped when it became 1000 ppm or less show a state close to the steady state shown in the reference example.
  • a slight difference in the conversion rate of the raw material gas and the product yield causes a large difference in production efficiency, and the influence on the cost of the chemical product becomes extremely large.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

工業的な規模での接触気相酸化反応による有用な酸化有機化合物の製造に際して、定期点検や緊急停止等で運転を一時的に中断した場合でも、反応装置内に残留する反応原料ガス等による爆発の危険を充分に回避するとともに、運転を再開する場合に、反応を安定な定常状態に戻すまでの期間を従来よりも短縮することができ、しかも、運転再開後も収率の低下がなく、長期間安定して高収率を維持することによって、生産効率を格段に高めることができる製造方法を提供することを目的とする。 酸化物触媒を充填した反応管を有する固定床反応器を用い、少なくとも1種の有機化合物を反応原料ガスとして供給し、分子状酸素含有ガスにより接触気相酸化反応を行って酸化有機化合物を生成する工程と、該接触気相酸化反応を停止する工程とを含む酸化有機化合物の製造方法であって、該製造方法は、接触気相酸化反応を停止する際、反応原料ガスの供給を停止した後、反応器に不活性ガスを供給し、次いで分子状酸素含有ガスを供給した後、該分子状酸素含有ガスの反応器への供給を停止することを特徴とする酸化有機化合物の製造方法である。

Description

酸化有機化合物の製造方法
本発明は酸化有機化合物の製造方法に関する。より詳しくは、接触気相酸化反応によって酸化有機化合物を製造する方法であって、特に、(メタ)アクリル酸等の酸化有機化合物に好適に適用できる製造方法に関する。
石油化学工業の分野において、固定床反応器を用いた接触気相酸化反応が盛んに行われていて、有機化合物原料を酸化することによって反応原料等として有用な種々の含酸素有機化合物、言い換えれば、酸化有機化合物が化学製品として生産されている。例えば、エチレンの接触気相酸化による酸化エチレンの製造、プロピレン、イソブチレン、ターシャリーブタノール及び/又はメチルターシャリーブチルエーテルを出発原料とした二段酸化による(メタ)アクリル酸の製造、o-キシレン及び/又はナフタレンの接触気相酸化による無水フタル酸の製造、ベンゼンやn-ブタンの接触気相酸化による無水マレイン酸の製造など数多く実施されている。これら接触気相酸化により製造される化合物の中でも、(メタ)アクリル酸は、各種合成樹脂、塗料、可塑剤の原料として工業的に重要な物質である。特に、アクリル酸は、接触気相酸化によって生産、供給されている代表的な化合物であり、近年、吸水性樹脂の原料としての重要性が更に高まり、需要も増大する傾向にある。
従来の(メタ)アクリル酸の製法としては、プロピレン、イソブチレン、ターシャリーブタノール及び/又はメチルターシャリーブチルエーテルを出発原料とし、第一段目の接触気相酸化反応で(メタ)アクロレインとし、得られた(メタ)アクロレインを第二段目の接触気相酸化反応により(メタ)アクリル酸とする二段接触気相酸化法が最も一般的であり、広く工業的に行われている。この方法の形態としては、例えばアクリル酸の場合、プロピレンをアクロレインに変換するための触媒(以下、「前段触媒」という。)が充填された第一固定床反応器にて、プロピレン及び分子状酸素を含む原料ガスの接触気相酸化によりアクロレインとし、得られたアクロレインをアクリル酸に変換するための触媒(以下、「後段触媒」という。)が充填された第二固定床反応器にて、接触気相酸化してアクリル酸を製造する方法と、一つの反応器に前段触媒と後段触媒とが充填された固定床反応器にてプロピレン及び分子状酸素を含む原料ガスを接触気相酸化してアクリル酸を製造する方法と、大きく分けて2つの方法がある。
また近年、プロピレンに比べ安価なプロパンを原料として、脱水素あるいは酸化脱水素によりそれぞれプロピレンとし、得られたプロピレンを上記二段接触気相酸化する方法やプロパンを直接一段で接触気相酸化してアクリル酸とする方法、更には、将来的な資源枯渇や大気中の二酸化炭素増大等の懸念から、資源枯渇の心配がなくその炭素源は大気中の二酸化炭素であることから実質的に大気中の二酸化炭素増大に寄与しない植物由来のグリセリンを出発原料として、グリセリンの脱水反応によってアクロレインとし、得られたアクロレインを接触気相酸化してアクリル酸を製造する方法などが種々検討されている。
このような接触気相酸化反応を工業的規模で実施するに際しては、通常長期間連続して反応を行なっているが、製造装置の点検などのために定期的に反応を停止する、あるいは、異常反応が起こった場合など安全のために緊急停止する必要があり、目的生成物を高収率で長期間安定かつ安全に製造するための接触気相酸化反応の停止方法あるいはスタートアップ方法について様々な提案がなされている。例えば、定期点検等による運転停止後に反応を再開する際に、その停止期間中の触媒の保持状態等により触媒性能が低下あるいは性能が運転停止前の状態に回復するまでに長期間を要する場合があり、生産性に多大な影響を及ぼすことになる。そのため、運転停止から反応再開において生産ロスをできるだけ少なくすることが大きな課題となっており、これに関する提案が幾つかなされている。
(メタ)アクリル酸の製造に関しても幾つかの提案がなされており、例えば、接触気相酸化工程の運転停止中においても酸素を含有するガスを反応器に供給することで、触媒性能の劣化が防止できることが開示され、接触気相酸化工程の運転を停止して再度運転を再開するまで、触媒の温度を保ったまま酸素を連続的に供給しないと、触媒上に蓄積している一部重質の副生成物等の還元性物質が触媒を還元して、触媒の酸化状態が変化するため、触媒の性能が劣化すること、及び、そのため、運転停止時も分子状酸素を供給すれば触媒の酸化状態が維持され、触媒の性能が劣化しないことが開示されている(例えば、特許文献1参照。)。しかしながら、その実施例においては、反応に供していない新しい触媒を反応管に充填して、その運転前に酸素含有ガスを供給した際の効果しかなく、実際の製造において、一旦反応に供した後の触媒について、定期点検あるいは緊急停止などで反応を停止する際の評価は全くなされていない。このような、一旦反応に供した後の運転停止時においては触媒の温度を保った状態で酸素を連続的に供給しつづけた場合、触媒の酸化が進み、定常状態での高収率が得られていた触媒の微妙な酸化状態が崩れ、反応再開後定常状態に達するまで収率が低くなり、長期間にわたる安定製造において充分とは言えない。
また、反応器入口の各導入ガスの流量を基に計算して得られた各ガスの濃度の値と、ガス分析計による分析値とが共に設定範囲外になったときにのみ運転を停止させることで、運転の無駄な緊急停止を省き、停止が必要な場合のみに確実に停止するための方法が開示されている(例えば、特許文献2参照。)。しかしながら、これは分析計の誤作動などによる緊急停止を避け、必要時のみ緊急停止できる方法に関するものであり、定期点検等の運転停止における触媒性能への影響に関しては何ら開示されていない。
更に、反応器に供給する被酸化原料と分子状酸素含有ガスとの組成によって請ずる爆発範囲を回避し、かつ希釈ガスの供給量を低減することで、安全な反応器のスタートアップが達成できることが開示されている(例えば、特許文献3参照。)。しかしながら、これは運転停止状態から効率よく反応をスタートアップさせる方法にのみ関するものであり、特許文献2同様に連続運転後の運転停止における触媒性能への影響に関しては何ら開示されていない。
特開2005-314314号公報 特開2004-277339号公報 特開2002-53519号公報
通常、接触気相酸化反応を用いて各種の酸化有機化合物を製造する場合、その生産規模は非常に大きく、例えばアクリル酸は現在、全世界で年間数百万トン生産されている。このような規模で生産されているアクリル酸の製造においては、接触気相酸化反応工程で0.1%でも収率が向上すれば経済的に非常に大きな意味を持つことになる。更に、より長期間にわたり安定に製造できればなおのことである。
従来より知られている酸化有機化合物の代表的な化合物であるアクリル酸の製造方法あるいは停止方法では、上述のとおり、目的とするアクリル酸の収率や長期間の製造において改善は見られているものの、近年の需要の増大を鑑みればなお改善の余地を残すものである。
本発明は、上記現状に鑑みてなされたものであり、工業的な規模での接触気相酸化反応による有用な酸化有機化合物の製造に際して、定期点検や緊急停止等で運転を一時的に中断した場合でも、反応装置内に残留する反応原料ガス等による爆発の危険を充分に回避するとともに、運転を再開する場合に、反応を安定な定常状態に戻すまでの期間を従来よりも短縮することができ、しかも、運転再開後も収率の低下がなく、長期間安定して高収率を維持することによって、生産効率を格段に高めることができる製造方法を提供することを目的とするものである。
本発明者らは、上記課題を解決すべく鋭意検討を行った結果、有機化合物を反応原料ガスとして分子状酸素含有ガスにより固定床反応器内で酸化触媒を用いて接触気相酸化して酸化有機化合物を製造する方法において、接触気相酸化反応工程の運転を停止する際、反応原料ガスの供給が停止された後、当該反応器に不活性ガスを供給し、次いで分子状酸素含有ガスを反応器に供給し、その後、分子状酸素含有ガスの供給を停止するようにすればよいことを見出し、上記課題をみごとに解決することができることに想到し、本発明に到達したものである。
本発明の製造方法においては、通常連続運転される接触気相酸化反応を停止するための工程をどのように操作するのかが重要であり、これが該停止工程自体とその後の反応開始工程及び定常的で連続的な反応工程に関わってくることになる。先ず、反応を停止する際に、不活性ガスの供給によって反応系内(装置内)に残存する分子状酸素含有ガスを含む反応原料ガスや反応生成物含有ガスを反応系外へ排出することにより、反応系内の高酸素濃度等による爆発の危険を回避することができる。一方で、不活性ガスを供給するだけでは、酸化物触媒が還元状態となることによって酸化物触媒としての触媒能力を低減してしまうことになり、反応を再開しても定常状態に戻るまでに長期間を要することになる。そこで、本発明においては、不活性ガスの供給の後に、停止工程において分子状酸素含有ガスを供給するが、これを続けると、触媒が酸化され過ぎて酸化状態の微妙なバランスが崩れ、運転再開後に充分に安定的な反応状態が得られないため、分子状酸素含有ガスの供給後にその供給を停止するという操作を行うことになる。なお、停止工程における不活性ガスの供給や分子状酸素含有ガスの供給は、酸化物触媒に付着あるいは吸着している反応原料、生成物、副生成物等の炭化物を取り除き、気相中から反応に不要な有機物を除去することにもなり、これによって運転再開後の触媒の性能低下を抑制することができる。
このように、本発明の製造方法においては、爆発の危険を充分に回避しながら、酸化物触媒が触媒性能を効率的に発揮できるような状態としつつ、酸化物触媒としての酸化状態が変化して性能低下を来してしまうことを抑制し、反応停止中もその微妙なバランスを保って反応に好適な状態としておくことによって、反応再開の後も早期に反応を安定的な状態とし、高収率で長期間安定かつ安全に製造できるという、接触気相酸化反応の工業的実施において際立って優れた効果を奏することができるものである。
これに対して、上述した従来技術においては、接触気相酸化反応において通常の定常運転状態から停止工程を経て再運転開始をする場合の課題について充分に検討されたものはない。特に、酸化物触媒を用いる場合に、停止期間においても該触媒の酸化状態を適切なものに保つことが重要であることについての開示がまったくなく、したがって、どのようにしてその状態を保つのかについての開示もない。また、運転再開後の触媒性能の低下を抑制する有効な手段を開示するものでもない。本発明の製造方法は、このような課題自体を見出し、有効な解決手段を提供するものである。
すなわち本発明は、酸化物触媒を充填した反応管を有する固定床反応器を用い、少なくとも1種の有機化合物を反応原料ガスとして供給し、分子状酸素含有ガスにより接触気相酸化反応を行って酸化有機化合物を生成する工程と、上記接触気相酸化反応を停止する工程とによって構成される酸化有機化合物の製造方法であって、上記製造方法は、接触気相酸化反応を停止する際、反応原料ガスの供給を停止した後、反応器に不活性ガスを供給し、次いで分子状酸素含有ガスを供給した後、上記分子状酸素含有ガスの反応器への供給を停止することを特徴とする酸化有機化合物の製造方法である。
以下に本発明を詳述する。
本発明の酸化有機化合物の製造方法は、接触気相酸化反応を行って酸化有機化合物を生成する工程と、接触気相酸化反応を停止する工程とを含むものである。これら2つの工程を必須とする製法であり、酸化有機化合物の製造にともなうその他の工程を含んでいてもよい。通常では、酸化有機化合物生成工程を行い、その後に定期点検や緊急停止等のために反応停止工程を行い、更に運転を再開して酸化有機化合物生成工程を行うことになり、これを繰り返していくことになる。
なお、酸化有機化合物とは、原料有機化合物が接触気相酸化反応において酸化され、当該酸化による酸素原子を有することになった含酸素有機化合物であり、そのような化合物であればすべて適用できるものであるが、好ましい形態は後述する。
本発明においては、酸化有機化合物の製法全般の中で接触気相酸化反応を停止する工程に特徴を有するものであるから、まず接触気相酸化反応を停止する工程について説明し、次に、接触気相酸化反応を行って酸化有機化合物を生成することに関する工程について説明する。
本発明の酸化有機化合物の製造方法において、接触気相酸化反応を停止する工程は、反応原料ガスの供給を停止した後、反応器に不活性ガスを供給し、次いで分子状酸素含有ガスを供給した後、該分子状酸素含有ガスの反応器への供給を停止するものである。停止工程を行う場合としては、装置の点検や部品等の交換による停止や装置トラブル等による緊急停止などが挙げられる。製造装置の運転を停止する際には、当然ながらの反応原料ガスの供給も停止する必要がある。しかしながら、反応原料ガスの供給を停止しても、反応器内及び配管内には、反応原料ガスあるいはその反応生成物含有ガスが滞留した状態になるため、この状態で分子状酸素含有ガスを供給すると、高温物や電気スパークなどの着火源により爆発を起こしうる爆発組成を形成する場合がある。それ故、反応原料ガスの供給を停止し、続いて、不活性ガスを製造装置に導入することで、系内に滞留している原料ガスを系外へ放出させることが必要となる。
上記不活性ガスの導入量は、装置固有の大きさにより異なるため一概に特定できないが、反応器及び配管容量の10~70倍の量を導入することが好ましい。より好ましくは、15~50倍の量であり、更に好ましくは、20~40倍の量である。
上記不活性ガスとしては、窒素ガス、二酸化炭素等の酸化炭素ガス、アルゴンガス及びそれらの混合ガス等の反応に供しない不活性であるガスであればいずれも用いることができ、また、これらと水蒸気とを混合したものも用いることができる。不活性ガスが窒素ガス、酸化炭素ガス、アルゴンガス等と水蒸気との混合物である場合、不活性ガス全体を100vol%(容量%)とすると、水蒸気の割合は、0.1~75vol%(容量%)であることが好ましい。より好ましくは、0.3~70vol%(容量%)である。
上記接触気相酸化反応を停止する工程においては、まず不活性ガスが供給され、次いで分子状酸素含有ガスが供給され、その後、分子状酸素含有ガスの供給が停止される。不活性ガスの供給に次いで分子状酸素含有ガスが供給されるとは、分子状酸素含有ガスの供給が不活性ガスの供給よりも後に開始されることであり、分子状酸素含有ガスの供給を開始した時点で不活性ガスの供給が終了していてもよく、分子状酸素含有ガスの供給が開始された後で不活性ガスの供給が終了してもよいが、不活性ガスや分子状酸素含有ガスの有効利用の観点から、不活性ガスの供給を終了した後に分子状酸素含有ガスの供給を開始することが好ましい。また、分子状酸素含有ガスの供給を停止する際には、供給ガスを完全に停止してもよく、分子状酸素含有ガスを不活性ガスに切り替えることとしてもよい。
分子状酸素含有ガスの供給を行わない場合、触媒の表面上には原料あるいは反応物あるいは副生成物などの有機物が付着あるいは吸着しており、これらの触媒上に付着あるいは吸着している有機物が触媒中の酸素によって酸化され、その際に触媒自体は酸素が引き抜かれるため還元されて触媒の反応に好適な微妙な酸化状態が変化してしまい性能が低下する恐れがある。なお、本発明においては、上記不活性ガスの供給によってこれら触媒の表面上の有機物を少なからず取り除くことは可能であるが、不活性ガスの供給後の分子状酸素含有ガスの供給は、該有機物による触媒の状態変化を抑制するために更に有効なものとなる。また、分子状酸素含有ガスの供給は、不活性ガスの供給にともなう触媒の状態変化を抑制するためにも有効である。また、分子状酸素含有ガスを停止せずに、長時間供給し続けた場合、上記の有機物による還元とは逆に、触媒の酸化が進み、触媒の反応に好適な酸化状態が変化してしまい性能が低下すると推測されるが、分子状酸素含有ガスを供給した後に停止することで、酸化物触媒の微妙な酸化状態を反応停止中も保ち、早期の定常的で安定的な反応開始につなげることができる。
上記分子状酸素含有ガスとしては、分子状酸素と他の成分からなるガスであってもよく、分子状酸素のみからなるガスであってもよいが、酸素濃度があまりに高いと工業的工程における安全性の面から好ましくなく、また、ある程度の酸素濃度で分子状酸素による酸化物触媒の酸化効果を充分に発揮することができることから、分子状酸素と他の成分からなるガスを用いることが好ましい。分子状酸素以外の他の成分としては、窒素、二酸化炭素等の酸化炭素、アルゴン、水蒸気等が挙げられる。分子状酸素含有ガスが分子状酸素以外の他の成分を含むものである場合、分子状酸素含有ガス全体を100vol%(容量%)とすると、分子状酸素の含有割合は、3vol%(容量%)以上とすることが好ましく、より好ましくは5vol%(容量%)以上である。また、25vol%(容量%)以下が好ましい。
上記分子状酸素含有ガスの供給は、触媒上の有機物の除去を充分に行うために、240℃以上の温度で行うのが好ましい。より好ましくは、260℃以上の温度で行えばよい。また、440℃以下で行うのが好ましい。440℃以下で行うことで、触媒自体が高温の処理により熱劣化することも抑制することができる。より好ましくは420℃以下であり、更に好ましくは400℃以下である。中でも、反応を停止する直前の反応温度を維持した状態で処理するのが最も好ましい。
上記分子状酸素含有ガスの導入量については、装置固有の大きさによって異なるため一概に特定できないが、分子状酸素含有ガスを反応管に充填された触媒に対する空間速度で200~3000h-1の範囲で導入した際の、供給した分子状酸素含有ガス中に含まれる酸化炭素の量を除く反応器出口ガス中に含まれる酸化炭素の量(以下、「反応器出口部酸化炭素含有量」という。)が1000ppm以下になるまで供給すれば良い。
すなわち、本発明の製造方法の好ましい形態の1つは、反応器出口におけるガス中に含まれる酸化炭素の量が、供給した分子状酸素含有ガス中に含まれる酸化炭素の量を除いて0ppmより多く、1000ppm以下になったところで分子状酸素含有ガスの供給を停止することである。より好ましくは、ガス中に含まれる酸化炭素の量が、供給した分子状酸素含有ガス中に含まれる酸化炭素の量を除いて500ppm以下になったところで分子状酸素含有ガスの供給を停止することである。
このようにすると、触媒上に付着あるいは吸着した有機物の大部分の除去が終了したところで分子状酸素含有ガスの供給を停止することができ、触媒上の有機物の除去が充分に行えるだけでなく、酸化炭素の量が、0ppmより多い時点で分子状酸素含有ガスの供給を停止することで、触媒が過剰の分子状酸素含有ガスと接触することによる触媒性能の低下も抑制することができる。また、0ppmまで正確に測定することは技術的に困難な場合もあり、0ppmより多い時点で供給を停止するようにすることが作業性の上からも好ましい。
このように、反応器出口におけるガス中に含まれる酸化炭素の量を分子状酸素含有ガスの導入量の指標、言い換えれば、分子状酸素含有ガスの供給を停止する時期の指標とすることにより、触媒に付着あるいは吸着した目的とする反応には不要な有機物を充分に除去できるだけでなく、酸化物触媒の微妙な酸化状態も保つことができる。ここにも分子状酸素含有ガスの導入量を上記範囲内とすることの技術的意義がある。
上記酸化炭素の検出方法としては、例えば、ガスクロマトグラフ方式等のガス濃度分析計で分析すればよく、分析方法としては、製造の一連の装置に組みこまれたオンライン分析でも、ガスをサンプリングし、そのサンプリングガスを別途分析計に導入して分析してもよい。ガスクロマトグラフ方式等のガス濃度分析計としては、例えば、TCDやFID等を用いることができる。
次に、本発明の酸化有機化合物の製造方法における、接触気相酸化反応を行って酸化有機化合物を生成する工程について説明する。
接触気相酸化反応を行って酸化有機化合物を生成する工程では、酸化物触媒を充填した反応管を有する固定床反応器を用いて、有機化合物を反応原料ガスとして供給し、分子状酸素含有ガスにより接触気相酸化反応を行って酸化有機化合物を生成する工程により製造される各種酸化有機化合物の製造を行うことができる。このような酸化有機化合物の製造としては、(1)プロピレン、イソブチレン、ターシャリーブタノール及びメチルターシャリーブチルエーテルからなる群より選ばれる少なくとも1種の有機化合物からの(メタ)アクロレインや(メタ)アクリル酸の製造、(2)(メタ)アクロレインからの(メタ)アクリル酸の製造、(3)o-キシレン及び/又はナフタレンからの無水フタル酸の製造、(4)ベンゼンやn-ブタンからの無水マレイン酸の製造、(5)プロパンからのプロピレン、アクロレイン及び/又はアクリル酸の製造等が挙げられる。
本発明の製造方法においては、酸化有機化合物の製造に関する形態として下記(1)~(5)の製法を好ましく挙げることができる。これらは、工業的に重要な製法であり、本発明を適用することによって、多量に供給されている酸化有機化合物の工業製品を従来よりも効率的に生産することが可能となり、石油化学工業の技術分野において大きな技術的意義を有することになる。
すなわち、本発明の好適な実施形態としては、(1)プロピレン、イソブチレン、ターシャリーブタノール及びメチルターシャリーブチルエーテルからなる群より選ばれる少なくとも1種の有機化合物を反応原料ガスとし、分子状酸素含有ガスによる接触気相酸化反応により酸化有機化合物として(メタ)アクロレインを製造する方法が挙げられる。
また(2)(メタ)アクロレインを反応原料とし、分子状酸素含有ガスによる接触気相酸化反応により酸化有機化合物として(メタ)アクリル酸を製造する製造方法が挙げられ、更に、(3)(メタ)アクリル酸の製造において、グリセリンの脱水反応よって得られたアクロレインを反応原料ガスとして、分子状酸素含有ガスによる接触気相酸化反応により酸化有機化合物としてアクリル酸を製造する方法も挙げることができる。
そして、(4)プロピレン、イソブチレン、ターシャリーブタノール及びメチルターシャリーブチルエーテルからなる群より選ばれる少なくとも1種の有機化合物を反応原料ガスとし、分子状酸素含有ガスによる接触気相酸化反応により酸化有機化合物として(メタ)アクロレインを製造し、得られた(メタ)アクロレインを接触気相酸化反応により酸化有機化合物として(メタ)アクリル酸を製造する方法もまた、本発明の好適な実施形態の1つである。
更に、(5)プロパンを反応原料ガスとして、分子状酸素含有ガスによる接触気相酸化により酸化有機化合物としてアクリル酸を製造する方法も挙げることができる。
本発明の酸化有機物の製造方法における酸化有機化合物を生成する工程としては、上記のような各種反応を行う工程が考えられるが、以下においては、その一例として、アクロレイン及び/又はアクリル酸を製造する場合について説明する。なお、本発明の範囲はこれらの説明に拘束されることはなく、以下の例示以外についても本発明の趣旨を損なわない範囲で適宜変更し、実施することができる。
上記酸化有機化合物を生成する工程において、プロピレンやプロパン等の反応原料ガスからアクロレイン及び/又はアクリル酸を製造する場合、反応原料ガスをアクロレインに変換する反応のための前段触媒と、アクロレインをアクリル酸に変換する反応のための後段触媒とが用いられる。
本発明で用いられる前段触媒としては、特に制限はないが、下記一般式(I):
MoBiFeX1X2X3X4 (I)
(ここで、Moはモリブデン、Biはビスマス、Feは鉄、X1はコバルト及びニッケルから選ばれる少なくとも1種の元素を表す。X2はアルカリ金属、アルカリ土類金属、ホウ素及びタリウムから選ばれる少なくとも1種の元素を表す。X3はタングステン、ケイ素、アルミニウム、ジルコニウム及びチタンから選ばれる少なくとも1種の元素を表す。X4はリン、テルル、アンチモン、スズ、セリウム、鉛、ニオブ、マンガン、砒素及び亜鉛から選ばれる少なくとも1種の元素を表す。Oは酸素を表す。またa、b、c、d、e、f、g及びxはそれぞれMo、Bi、Fe、A、B、C、D及びOの原子比を表し、a=12のとき、b=0.1~10、c=0.1~20、d=2~20、e=0.001~10、f=0~30、g=0~4であり、xは各元素の酸化状態によって定まる数値である)で示される酸化物触媒が好適に使用できる。
本発明において用いられる後段触媒についても特に制限はないが、下記一般式(II):
MoY1Y2Y3Y4 (II)
(ここで、Moはモリブデン、Vはバナジウム、Wはタングステン、Y1はアンチモン、ビスマス、クロム、ニオブ、リン、鉛、亜鉛、コバルト、ニッケル及びスズから選ばれる少なくとも1種の元素を表す。Y2は銅及び鉄から選ばれる少なくとも1種の元素を表す。Y3はアルカリ金属、アルカリ土類金属及びタリウムから選ばれる少なくとも1種の元素を表す。Y4はケイ素、アルミニウム、チタン、ジルコニウム、イットリウム、ロジウム及びセリウムから選ばれる少なくとも1種の元素を表す。Oは酸素を表す。またh、i、j、k、l、m、n及びyはそれぞれMo、V、W、Y1、Y2、Y3、Y4及びOの原子比を表し、h=12のとき、i=2~14、j=0~12、k=0~5、l=0.01~6、m=0~5、n=0~10であり、yは各元素の酸化状態によって定まる数値である)で示される酸化物触媒が好適に使用できる。
触媒の成形方法としては、従来からよく知られている活性成分を一定の形状に成形する押し出し成形法や打錠成形法等、あるいは活性成分を一定の形状を有する任意の不活性担体に担持させる担持法によって製造することができ、その形状についても特に制限はなく、球状、円柱状、リング状、不定形などのいずれの形状でもよい。球状の場合、真球である必要はなく実質的に球状であればよい。円柱状及びリング状についても同様である。
なお、反応器に充填される触媒は、それぞれ単一な触媒である必要はなく、例えば前段触媒において、活性の異なる複数種の触媒を用い、これらを活性の異なる順に充填したり、触媒の一部を不活性担体などで希釈したりしてもよい。後段触媒についても同様である。
前段触媒及び後段触媒の好適な反応温度は、反応条件などによって適宜選択されるが、前段触媒では、300~380℃が好ましい。また、後段触媒では、250~350℃が好ましい。更に、前段触媒の反応温度と後段触媒の反応温度との差は10~110℃であることが好ましい。より好ましくは、30~80℃である。
なお、前段触媒の反応温度と後段触媒の反応温度とは、それぞれの反応器又は反応帯における熱媒体入口温度に実質的に相当するものであり、熱媒体入口温度は、上記の範囲内で設定されたそれぞれの設定温度に応じて決定される。
上記接触気相酸化反応を行って酸化有機化合物を生成する工程において反応器に供給される反応原料ガスは、反応原料となる有機化合物であるプロピレン等と分子状酸素、窒素、及び、水蒸気等を含んでなるものであるが、反応原料ガス全体を100vol%(容量%)とすると、目的生成物を構成することになる有機化合物(反応原料)の割合は、1~15vol%(容量%)であることが好ましい。より好ましくは、4~12vol%(容量%)である。また上記反応原料ガスの供給速度は、前段触媒に対する空間速度が300~5000h-1であることが好ましい。このような範囲とすることによって、反応率を高め、反応を効率的に行うことができる。
上記接触気相酸化反応を行う酸化物触媒を充填した反応管を有する固定床反応器は、適宜選択して使用すればよく、多管式反応器を用いることもできる。反応器の大きさは、接触気相酸化工程の製造規模等により適宜選択すれはよい。
本発明の酸化有機化合物の製造方法は、上述の構成よりなり、工業的な規模での接触気相酸化反応による酸化有機化合物の製造において、接触気相酸化反応の停止、運転再開による収率の低下を抑制し、高収率で長期間安定かつ安全な製造を可能とする製造方法であり、(メタ)アクリル酸、(メタ)アクロレイン等の接触気相酸化反応による工業的な製造に、特に、アクリル酸やアクロレインの製造工程に好適に適用することができる製造方法である。
以下に、実施例を挙げて本発明を具体的に説明するが、本発明はもとより下記実施例により制限を受けるものではなく、本発明の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。なお、以下では、便宜上、「質量部」を単に「部」、と記すことがある。
以下の実施例において、プロピレン、アクロレインの転化率、及び、アクロレイン、アクリル酸収率は次式によって求めた。
プロピレン転化率(モル%)
  =(反応したプロピレンのモル数/供給したプロピレンのモル数)×100
アクロレイン転化率(モル%)
   =(反応したアクロレインのモル数/供給したアクロレインのモル数)×100
アクロレイン収率(モル%)
   =(生成したアクロレインのモル数/供給した原料のモル数)×100
アクリル酸収率(モル%)
  =(生成したアクリル酸のモル数/供給したプロピレンのモル数)×100
<参考例>
[前段触媒1の調製]
蒸留水2000部を加熱攪拌しつつモリブデン酸アンモニウム500部を溶解した(A液)。別に500部の蒸留水に硝酸コバルト137部及び硝酸ニッケル206部を溶解させ(B液)、更に別途、350部の蒸留水に濃硝酸(65wt%)30部を加えて酸性とした溶液に硝酸第二鉄38.1部及び硝酸ビスマス572部を溶解させた(C液)。A液にこれらの硝酸塩溶液(B液、C液)を滴下した。引き続き、ホウ砂9.0部、20wt%シリカゾル1702部及び硝酸カリウム2.4部を加えた。このようにして得られた懸濁液を加熱、攪拌、蒸発せしめた。得られた乾燥物を200℃で乾燥後に粉砕し、外径5mm、長さ4mmのペレット状に打錠成型した。次いで、得られた成形物を空気雰囲気下470℃で6時間焼成し、前段触媒1を得た。その酸素以外の金属元素の組成は原子比で以下の通りであった。
Mo12BiCoNiFe0.4Na0.20.40.1Si24
[後段触媒1の調製]
蒸留水3000部を加熱攪拌しながら、そのなかにパラモリブデン酸アンモニウム525部、メタバナジン酸アンモニウム87部、パラタングステン酸アンモニウム80.3部を溶解した。別に蒸留水300部を加熱攪拌しながら、硝酸銅71.9部を溶解した。得られた2つの水溶液を混合し、更に三酸化アンチモン18.1部を添加し、懸濁液を得た。この懸濁液を、蒸発乾固にてケーキ状の固形物とし、得られた固形物を、390℃で約5時間焼成した。焼成後の固形物を250μm以下に粉砕し、触媒粉体を得た。遠心流動コーティング装置に平均粒径4mmのα-アルミナ球形担体を投入し、次いで結合剤として15重量%の硝酸アンモニウム水溶液と共に触媒粉体を90℃の熱風を通しながら投入して担体に担持させた後、空気雰囲気下400℃で6時間熱処理をして後段触媒1を得た。この触媒の担体を除いた酸素以外の金属元素の組成は原子比で以下の通りであった。
Mo121.2Cu1.2Sb0.5
[反応器]
全長6000mm、内径25mmのSUS製反応管及びこれを覆う熱媒体を流すためのシェルからなる反応器を鉛直方向に用意した。なお、シェルの下から3000mmの位置にシェルを上下に分割する厚さ50mmの仕切り板を設け、上方及び下方のシェル空間部のいずれにおいても熱媒体を下方から上方に循環した。反応管上部より順に前段触媒1、外径8mmのSUS製ラシヒリング及び後段触媒1を落下させて、それぞれの長さが前段触媒:2800mm、ラシヒリング:400mm及び後段触媒:2800mmとなるように充填した。
[酸化反応]
前段触媒層の温度(下方シェル空間部の熱媒体入口温度):330℃、後段触媒層の温度(上方シェル空間部の熱媒体入口温度):265℃とし、反応器の下部から、プロピレン5体積%、酸素10体積%、水蒸気20体積%及び窒素65体積%からなる混合ガスを反応原料ガスとして、前段触媒に対する空間速度1600h-1(STP)で導入し、気相接触酸化を2000時間継続して行った。その反応結果を表1に示す。
なお、STPとは、標準状態(Standard temperature and presure)のことであり、0℃1気圧を表す。すなわち、空間速度1600h-1(STP)とは、標準状態換算で1600h-1であることを表す。
Figure JPOXMLDOC01-appb-T000001
<実施例1>
参考例において、2000時間気相酸化反応を継続した後、運転を停止した。その際、反応器へのガス供給を停止するにあたり、まず反応原料ガスを停止した後、熱媒体温度は維持したまま、窒素70体積%及び水蒸気30体積%からなる不活性ガスを毎分25L(STP)の風量で約5分間流通させた。その後、続いて酸素18体積%、窒素82体積%からなる酸素含有ガスを毎分25L(STP)の風量で反応器出口部酸化炭素含有量が2000ppmになるまで流通させた後、ガスの供給を停止した。ガスの供給を48時間停止した後、再度反応原料ガスを導入し運転を開始した。その反応結果を表2に示す。
<比較例1>
実施例1において、運転停止時に不活性ガスを流通させた後、酸素含有ガスを流通させずにガスの供給を停止した以外は、実施例1と同様に行った。その反応結果を表2に示す。
<実施例2>
実施例1において、運転停止時に反応器出口部酸化炭素含有量が1000ppmになるまで流通させた後、ガスの供給を停止した以外は、実施例1と同様に行った。その反応結果を表2に示す。
<実施例3>
実施例1において、運転停止時に反応器出口部酸化炭素含有量が500ppmになるまで流通させた後、ガスの供給を停止した以外は、実施例1と同様に行った。その反応結果を表2に示す。
<比較例2>
実施例3において、運転停止時に反応器出口部酸化炭素含有量が0ppmになった後も再運転を開始するまで(48時間)供給し続けた以外は、実施例1と同様に行った。その反応結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
<実施例4>
[前段触媒2及び3の調製]
蒸留水2000部を加熱攪拌しつつモリブデン酸アンモニウム500部を溶解した(A液)。別に500部の蒸留水に硝酸コバルト275部及び硝酸ニッケル227部を溶解させ(B液)、更に別途、350部の蒸留水に濃硝酸(65wt%)30部を加えて酸性とした溶液に硝酸第二鉄57.2部及び硝酸ビスマス229部を溶解させた(C液)。A液にこれらの硝酸塩溶液(B液、C液)を滴下した。引き続き、20wt%シリカゾル1772部及び硝酸カリウム2.4部を加えた。このようにして得られた懸濁液を加熱、攪拌、蒸発せしめた。得られた乾燥物を200℃で乾燥後に粉砕し、外径6mm、内径3mm、長さ6mmのリング状に押出成型した。次いで、得られた成形物を空気雰囲気下470℃で6時間焼成して前段触媒2を得た。同様にして、外径8mm、内径3mm、長さ8mmのリング状の前段触媒3を得た。この前段触媒2及び3の担体を除いた酸素以外の金属元素の組成は次のとおりであった。
Mo12BiCoNi3.3Fe0.60.1Si25
[反応器]
全長3000mm、内径25mmのSUS製反応管及びこれを覆う熱媒体を流すためのシェルからなる反応器を鉛直方向に用意した。シェル空間部の熱媒体を下方から上方に循環した。反応管上部より順に前段触媒3、前段触媒2を落下させて、それぞれの長さが前段触媒3:700mm、前段触媒2:2000mmとなるように充填した。
[酸化反応]
触媒層の温度(シェル空間部の熱媒体入口温度):323℃とし、反応器の下部から、プロピレン6体積%、酸素12体積%、水蒸気8体積%及び窒素74体積%からなる混合ガスを反応原料ガスとして、空間速度1500h-1(STP)で導入し、気相接触酸化を2000時間継続して行った。2000時間気相酸化反応を継続した後、運転を停止した。その際、反応器へのガス供給を停止するにあたり、まず反応原料ガスを停止した後、熱媒体温度は維持したまま、窒素70体積%及び水蒸気30体積%からなる不活性ガスを毎分25L(STP)の風量で約5分間流通させた。その後、続いて酸素18体積%、窒素82体積%からなる酸素含有ガスを毎分25L(STP)の風量で反応器出口部酸化炭素含有量が300ppmになるまで流通させた後、ガスの供給を停止した。ガスの供給を48時間停止した後、再度反応原料ガスを導入し、運転を開始した。その反応結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
<実施例5>
[後段触媒2及び3の調製]
蒸留水3000部を加熱攪拌しながら、そのなかにパラモリブデン酸アンモニウム525部、メタバナジン酸アンモニウム116部、パラタングステン酸アンモニウム100部を溶解した。別に蒸留水300部を加熱攪拌しながら、硝酸銅162部を溶解した。得られた2つの水溶液を混合し、更に三酸化アンチモン28.9部を添加し、懸濁液を得た。この懸濁液を、蒸発乾固にてケーキ状の固形物とし、得られた固形物を、390℃で約5時間焼成した。焼成後の固形物を250μm以下に粉砕し、触媒粉体を得た。遠心流動コーティング装置に平均粒径4mmのα-アルミナ球形担体を投入し、次いで結合剤として15重量%の硝酸アンモニウム水溶液と共に触媒粉体を90℃の熱風を通しながら投入して担体に担持させた後、空気雰囲気下400℃で6時間熱処理をして後段触媒2を得た。同様にして、平均粒径7mmのα-アルミナ球状担体を用いて後段触媒3を得た。この後段触媒2及び3の担体を除いた酸素以外の金属元素の組成は原子比で以下の通りであった。
Mo121.5Cu2.7Sb0.8
[反応器]
全長3000mm、内径25mmのSUS製反応管及びこれを覆う熱媒体を流すためのシェルからなる反応器を鉛直方向に用意した。シェル空間部の熱媒体を下方から上方に循環した。反応管上部より順に後段触媒3、後段触媒2を落下させて、それぞれの長さが前段触媒3:700mm、前段触媒2:2000mmとなるように充填した。
[酸化反応]
触媒層の温度(シェル空間部の熱媒体入口温度):266℃とし、反応器の下部から、アクロレイン7体積%、酸素9体積%、水蒸気10体積%及び窒素74体積%からなる混合ガスを反応原料ガスとして、空間速度1700h-1(STP)で導入し、気相接触酸化を2000時間継続して行った。2000時間気相酸化反応を継続した後、運転を停止した。その際、反応器へのガス供給を停止するにあたり、まず反応原料ガスを停止した後、熱媒体温度は維持したまま、窒素70体積%及び水蒸気30体積%からなる不活性ガスを毎分25L(STP)の風量で約5分間流通させた。その後、続いて酸素18体積%、窒素82体積%からなる酸素含有ガスを毎分25L(STP)の風量で反応器出口部酸化炭素含有量が300ppmになるまで流通させた後、ガスの供給を停止した。ガスの供給を48時間停止した後、再度反応原料ガスを導入し運転を開始した。その反応結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
<実施例6>
[気相酸化触媒の調製]
プロピレン含有ガスを気相接触酸化してアクロレイン含有ガスを生成するための前段触媒4及び5を特開平4-217932号の実施例1記載の方法に準じて調製した。同様に、アクロレイン含有ガスを気相接触酸化してアクリル酸を製造するための後段触媒4及び5を特開平9-241209号の実施例2記載の方法に準じて調製した。これら触媒の担体を除いた酸素以外の金属元素の組成は原子比で以下の通りであった。
前段触媒4 Mo10BiFeCo0.06Si1.5 平均直径5mm
前段触媒5 Mo10BiFeCo0.06Si1.5 平均直径8mm
後段触媒4 Mo122.5CuSr0.2 平均直径5mm
後段触媒5 Mo122.5CuSr0.2 平均直径8mm
[反応器]
反応管数約9500本(反応管径25mm、長さ6000mm)及びこれを覆う熱媒体を流すためのシェルからなる固定床多管式反応器に、反応管上部より順に前段触媒5、前段触媒4、外径8mmのSUS製ラシヒリング、後段触媒5、後段触媒4を落下させてそれぞれの長さが、前段触媒3:800mm、前段触媒2:2000mm、ラシヒリング:400mm、後段触媒3:800mm、後段触媒2:2000mm、層長800mmとなるように充填した。なお、シェルの下から3000mmの位置にシェルを上下に分割する厚さ50mmの仕切り板を設け、上方及び下方のシェル空間部のいずれにおいても熱媒体を下方から上方に循環した。
[酸化反応]
前段触媒層の温度(下方シェル空間部の熱媒体入口温度):320℃、後段触媒層の温度(上方シェル空間部の熱媒体入口温度):260℃とし、反応器の下部から、プロピレン8体積%、酸素15体積%、水蒸気10体積%及び窒素67体積%からなる混合ガスを原料ガスとして、前段触媒に対する空間速度1600h-1(STP)で導入し、気相接触酸化を行った。
[運転停止及び再運転]
上記反応条件にて、4000時間気相酸化反応を継続した後、運転を停止した。その際、反応器へのガス供給を停止するにあたり、まず原料ガスを停止した後、熱媒体温度は維持したまま、窒素70体積%及び水蒸気30体積%からなる不活性ガスを毎分200m(STP)の風量で約15分間流通させた。その後、続いて酸素18体積%、窒素82体積%からなる酸素含有ガスを毎分200m(STP)の風量で反応器出口部酸化炭素含有量が500ppmになるまで流通させた後、ガスの供給を停止した。ガスの供給を48時間停止した後、再度原料ガスを導入し運転を開始した。その反応結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
実施例1~3及び比較例1~2は、プロピレンの接触気相酸化反応によるアクリル酸の製造方法を示したものであるが、停止工程の後の再運転開始24時間後の反応工程においてプロピレン転化率及びアクリル酸収率に大きな相違が生じていて、本発明が接触気相酸化反応を連続的に行う工業的製造方法に際立った効果を奏することが示されている。
すなわち、比較例1に示されるように、単に不活性ガスの供給のみによって運転を停止する工程を行った場合、再運転開始24時間後において、プロピレン転化率及びアクリル酸収率からみて充分に安定的な定常状態に至っているということはできない状態にある。
これは、参考例に示されるように、運転を連続して行ううちに触媒性能の低下等にともなって転化率や収率が低下する傾向にあるが、停止工程によって触媒性能の回復が充分ではなく、また、酸化物触媒における酸化状態の微妙なバランスが適切なものとなっていないため、再運転開始後に分子状酸素含有ガスを供給しても早期に充分な触媒性能を発揮することはできないことが示されているといえる。また、比較例2においても、不活性ガスの供給、分子状酸素含有ガスの供給の後、再運転開始までそのまま供給を続けたために、酸化物触媒における酸化状態の微妙なバランスが適切なものとなっていないため、同様にプロピレン転化率及びアクリル酸収率が早期に良好な値とはなっていない。これに対して、実施例1~3においては、良好であるといえる状態を示していて、特に、反応器出口におけるガス中に含まれる酸化炭素の量が、供給した分子状酸素含有ガス中に含まれる酸化炭素の量を除いて、1000ppm以下になったところで分子状酸素含有ガスの供給を停止させた実施例2、3については、参考例に示される定常状態に近い状態を示している。なお、接触気相酸化反応の技術分野においては、原料ガスの転化率、生成物収率のわずかな違いが大きな生産効率の違いを生じさせ、化学製品のコストに与える影響が極めて大きくなる。この実施例と比較例との差は、数値上はわずかであるが、その効果は際立っていると評価できるものである。
実施例4は、プロピレンの接触気相酸化反応によるアクロレインの製造方法、実施例5は、アクロレインの接触気相酸化反応によるアクリル酸の製造方法、実施例6は、プロピレンの接触気相酸化反応によるアクリル酸の製造方法を更に長期間連続的に行った後の停止工程、再運転開始後の結果であり、いずれも本発明における際立って優れた効果が示されている。
なお、上記実施例においては、アクリル酸やアクロレインの製造方法が示されているが、停止工程において、安全に停止するとともに、酸化物触媒上の有機物を除去して触媒性能を効率的に発揮できるような状態としつつ、酸化状態が変化して性能低下を来してしまうことを抑制し、反応停止中もその微妙なバランスを保って反応に好適な状態としておくことに関する作用機構は、酸化物触媒を用いて接触気相酸化反応を行って酸化有機化合物を製造する方法においてはすべて同様であることから、上記実施例、比較例の結果から、本明細書において開示した種々の形態において本発明が適用でき、有利な作用効果を発揮することができるといえる。

Claims (7)

  1. 酸化物触媒を充填した反応管を有する固定床反応器を用い、少なくとも1種の有機化合物を反応原料ガスとして供給し、分子状酸素含有ガスにより接触気相酸化反応を行って酸化有機化合物を生成する工程と、該接触気相酸化反応を停止する工程とを含む酸化有機化合物の製造方法であって、
    該製造方法は、接触気相酸化反応を停止する際、反応原料ガスの供給を停止した後、反応器に不活性ガスを供給し、次いで分子状酸素含有ガスを供給した後、該分子状酸素含有ガスの反応器への供給を停止することを特徴とする酸化有機化合物の製造方法。
  2. 前記製造方法は、反応器出口におけるガス中に含まれる酸化炭素の量が、供給した分子状酸素含有ガス中に含まれる酸化炭素の量を除いて、0ppmより多く、1000ppm以下になったところで分子状酸素含有ガスの供給を停止することを特徴とする請求項1に記載の酸化有機化合物の製造方法。
  3. 前記製造方法は、プロピレン、イソブチレン、ターシャリーブタノール及びメチルターシャリーブチルエーテルからなる群より選ばれる少なくとも1種の有機化合物を反応原料ガスとし、分子状酸素含有ガスによる接触気相酸化反応により酸化有機化合物として(メタ)アクロレインを製造する方法であることを特徴とする請求項1又は2に記載の酸化有機化合物の製造方法。
  4. 前記製造方法は、(メタ)アクロレインを反応原料とし、分子状酸素含有ガスによる接触気相酸化反応により酸化有機化合物として(メタ)アクリル酸を製造する方法である
    ことを特徴とする請求項1又は2に記載の含酸素有機化合物の製造方法。
  5. 前記製造方法は、プロピレン、イソブチレン、ターシャリーブタノール及びメチルターシャリーブチルエーテルからなる群より選ばれる少なくとも1種の有機化合物を反応原料ガスとし、分子状酸素含有ガスによる接触気相酸化反応により酸化有機化合物として(メタ)アクロレインを製造し、
    得られた(メタ)アクロレインを接触気相酸化反応により酸化有機化合物として(メタ)アクリル酸を製造する方法である
    ことを特徴とする請求項1又は2に記載の含酸素有機化合物の製造方法。
  6. 前記製造方法は、グリセリンの脱水反応よって得られたアクロレインを反応原料ガスとして、分子状酸素含有ガスによる接触気相酸化反応により酸化有機化合物としてアクリル酸を製造する方法である
    ことを特徴とする請求項4に記載の含酸素有機化合物の製造方法。
  7. 前記製造方法は、プロパンを反応原料ガスとして、分子状酸素含有ガスによる接触気相酸化により酸化有機化合物としてアクリル酸を製造する方法である
    ことを特徴とする請求項1又は2に記載の含酸素有機化合物の製造方法。
PCT/JP2009/054442 2009-03-09 2009-03-09 酸化有機化合物の製造方法 WO2010103605A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2011503583A JP5450591B2 (ja) 2009-03-09 2009-03-09 酸化有機化合物の製造方法
US13/203,311 US8962881B2 (en) 2009-03-09 2009-03-09 Oxidized organic compound manufacturing method
CN2009801579625A CN102348669A (zh) 2009-03-09 2009-03-09 氧化有机化合物的制造方法
PCT/JP2009/054442 WO2010103605A1 (ja) 2009-03-09 2009-03-09 酸化有機化合物の製造方法
EP09841436.0A EP2407445B1 (en) 2009-03-09 2009-03-09 Oxidized organic compound manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/054442 WO2010103605A1 (ja) 2009-03-09 2009-03-09 酸化有機化合物の製造方法

Publications (1)

Publication Number Publication Date
WO2010103605A1 true WO2010103605A1 (ja) 2010-09-16

Family

ID=42727914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/054442 WO2010103605A1 (ja) 2009-03-09 2009-03-09 酸化有機化合物の製造方法

Country Status (5)

Country Link
US (1) US8962881B2 (ja)
EP (1) EP2407445B1 (ja)
JP (1) JP5450591B2 (ja)
CN (1) CN102348669A (ja)
WO (1) WO2010103605A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014054408A1 (ja) * 2012-10-01 2014-04-10 旭化成ケミカルズ株式会社 アンモ酸化反応の停止方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2644264A1 (de) 2012-03-28 2013-10-02 Aurotec GmbH Druckreguliertes Mehrreaktorsystem
EP2644263A1 (de) 2012-03-28 2013-10-02 Aurotec GmbH Druckgeregelter Reaktor
US9115067B1 (en) 2014-12-22 2015-08-25 Novus International, Inc. Process for the manufacture of acrolein
KR102052708B1 (ko) 2015-12-22 2019-12-09 주식회사 엘지화학 글리세린 탈수 반응용 촉매, 이의 제조 방법 및 상기 촉매를 이용한 아크롤레인의 제조 방법
KR102044428B1 (ko) 2015-12-23 2019-12-02 주식회사 엘지화학 글리세린으로부터 아크릴산의 제조방법
JP6752035B2 (ja) * 2016-03-29 2020-09-09 日本化薬株式会社 再スタートアップ方法
DE102019127788A1 (de) * 2019-10-15 2021-04-15 Clariant International Ltd. Neues Reaktorsystem für die Herstellung von Maleinsäureanhydrid durch katalytische Oxidation von n-Butan

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04217932A (ja) 1990-04-03 1992-08-07 Nippon Shokubai Co Ltd 不飽和アルデヒドおよび不飽和酸の製造方法
JPH06263689A (ja) * 1993-03-12 1994-09-20 Nippon Shokubai Co Ltd 固体有機物の除去方法
JPH09241209A (ja) 1996-03-06 1997-09-16 Nippon Shokubai Co Ltd アクリル酸の製造方法
JP2002053519A (ja) 2000-08-07 2002-02-19 Nippon Shokubai Co Ltd 反応器のスタートアップ方法
JP2004277339A (ja) 2003-03-14 2004-10-07 Nippon Shokubai Co Ltd 気相反応装置の緊急停止方法
JP2005314314A (ja) 2004-04-30 2005-11-10 Mitsubishi Chemicals Corp (メタ)アクリル酸または(メタ)アクロレインの製造方法
WO2006134852A1 (ja) * 2005-06-13 2006-12-21 Mitsubishi Rayon Co., Ltd. α,β-不飽和カルボン酸の製造方法
JP2008280349A (ja) * 2008-06-02 2008-11-20 Nippon Shokubai Co Ltd アクリル酸の製造方法、アクリル酸製造用装置、およびアクリル酸製造用組成物

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004025445A1 (de) * 2004-05-19 2005-02-10 Basf Ag Verfahren zum Langzeitbetrieb einer heterogen katalysierten Gasphasenpartialoxidation wenigstens einer organischen Verbindung
JP2008115103A (ja) 2006-11-02 2008-05-22 Nippon Shokubai Co Ltd アクリル酸の製造方法、アクリル酸製造用装置、およびアクリル酸製造用組成物

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04217932A (ja) 1990-04-03 1992-08-07 Nippon Shokubai Co Ltd 不飽和アルデヒドおよび不飽和酸の製造方法
JPH06263689A (ja) * 1993-03-12 1994-09-20 Nippon Shokubai Co Ltd 固体有機物の除去方法
JPH09241209A (ja) 1996-03-06 1997-09-16 Nippon Shokubai Co Ltd アクリル酸の製造方法
JP2002053519A (ja) 2000-08-07 2002-02-19 Nippon Shokubai Co Ltd 反応器のスタートアップ方法
JP2004277339A (ja) 2003-03-14 2004-10-07 Nippon Shokubai Co Ltd 気相反応装置の緊急停止方法
JP2005314314A (ja) 2004-04-30 2005-11-10 Mitsubishi Chemicals Corp (メタ)アクリル酸または(メタ)アクロレインの製造方法
WO2006134852A1 (ja) * 2005-06-13 2006-12-21 Mitsubishi Rayon Co., Ltd. α,β-不飽和カルボン酸の製造方法
JP2008280349A (ja) * 2008-06-02 2008-11-20 Nippon Shokubai Co Ltd アクリル酸の製造方法、アクリル酸製造用装置、およびアクリル酸製造用組成物

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014054408A1 (ja) * 2012-10-01 2014-04-10 旭化成ケミカルズ株式会社 アンモ酸化反応の停止方法
US9346747B2 (en) 2012-10-01 2016-05-24 Asahi Kasei Chemicals Corporation Method for stopping ammoxidation reaction

Also Published As

Publication number Publication date
JP5450591B2 (ja) 2014-03-26
EP2407445B1 (en) 2019-08-07
CN102348669A (zh) 2012-02-08
US20110306788A1 (en) 2011-12-15
JPWO2010103605A1 (ja) 2012-09-10
EP2407445A4 (en) 2015-03-18
US8962881B2 (en) 2015-02-24
EP2407445A1 (en) 2012-01-18

Similar Documents

Publication Publication Date Title
JP6527499B2 (ja) 不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法
JP5450591B2 (ja) 酸化有機化合物の製造方法
JP5845337B2 (ja) 固定床多管式反応器を用いてのアクリル酸の製造方法
US7884238B2 (en) Process for the long-term operation of a heterogeneously catalyzed partial gas phase oxidation of an organic starting compound
US7132384B2 (en) Process for producing composite oxide catalyst
US7518015B2 (en) Process for heterogeneously catalyzed gas phase partial oxidation of at least one organic starting compound
WO2014014041A1 (ja) 不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法
TWI383971B (zh) 藉由非勻相催化氣相部份氧化反應以製備至少一種有機目標化合物之方法
WO2020203266A1 (ja) 不飽和アルデヒドの製造方法
US20140046093A1 (en) Process for charging a longitudinal section of a catalyst tube
US8394345B2 (en) Process for preparing at least one organic target compound by heterogeneously catalyzed gas phase partial oxidation
JP5130562B2 (ja) メタクロレイン及び/又はメタクリル酸の製造方法
JP2009084167A (ja) アクロレインおよび/またはアクリル酸の製造方法
JP4950986B2 (ja) メタクロレイン及び/又はメタクリル酸の製造法
JP2010241700A (ja) アクリル酸の製造方法
JP2019509292A (ja) 不飽和アルデヒド及び不飽和カルボン酸の製造方法
JP5902374B2 (ja) アクリル酸の製造方法
WO2017170721A1 (ja) 再スタートアップ方法
JP2005162744A (ja) 不飽和アルデヒド及び不飽和カルボン酸の製造方法
JP2011102247A (ja) アクロレインおよび/またはアクリル酸の製造方法
JP2011026284A (ja) (メタ)アクロレインまたは(メタ)アクリル酸の製造方法
WO2009116550A1 (ja) 接触気相酸化方法
JP2008222598A (ja) 固定床反応装置およびその使用方法
JP2016106082A (ja) 不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法
JP2011102249A (ja) アクリル酸の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980157962.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09841436

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011503583

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13203311

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009841436

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 7200/CHENP/2011

Country of ref document: IN