JP2016106082A - 不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法 - Google Patents

不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法 Download PDF

Info

Publication number
JP2016106082A
JP2016106082A JP2015229110A JP2015229110A JP2016106082A JP 2016106082 A JP2016106082 A JP 2016106082A JP 2015229110 A JP2015229110 A JP 2015229110A JP 2015229110 A JP2015229110 A JP 2015229110A JP 2016106082 A JP2016106082 A JP 2016106082A
Authority
JP
Japan
Prior art keywords
catalyst
raw material
reaction
cmax
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015229110A
Other languages
English (en)
Inventor
竜彦 倉上
Tatsuhiko Kuragami
竜彦 倉上
松本 進
Susumu Matsumoto
進 松本
渥 須藤
Atsushi Sudo
渥 須藤
白石 一男
Kazuo Shiraishi
一男 白石
正 橋場
Tadashi Hashiba
正 橋場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kayaku Co Ltd
Original Assignee
Nippon Kayaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Co Ltd filed Critical Nippon Kayaku Co Ltd
Priority to JP2015229110A priority Critical patent/JP2016106082A/ja
Publication of JP2016106082A publication Critical patent/JP2016106082A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

【課題】安全に安定して長期にわたり高い収率を維持できるアクロレイン,アクリル酸,メタクロレイン,メタクリル酸の製造方法を提供する。【解決手段】プロピレンまたはイソブチレン等を気相接触酸化するに際し、反応管の原料ガス流れ方向にN分割(Nは2以上の整数)して形成された複数の触媒層を設け、最も反応ガス出口側にある触媒層に充填する触媒の活性が最も反応ガス入口側にある触媒層に充填する触媒の活性より高くなるように充填する方法。【選択図】なし

Description

本発明は、プロピレンを分子状酸素または分子状酸素含有ガスにより気相接触酸化しアクロレインおよびアクリル酸を製造する方法、または、イソブチレン、ターシャリーブタノールを分子状酸素または分子状酸素含有ガスにより気相接触酸化してメタクロレインおよびメタクリル酸を製造する方法に関する。
プロピレン、イソブチレン、ターシャリーブタノールを原料にして対応する不飽和アルデヒド、不飽和カルボン酸を製造する方法は工業的に広く実施されているが、触媒層における局所的な高温部分(ホットスポット)の発生が大きな問題となっている。ホットスポットの発生は触媒寿命の短縮、過度の酸化反応による収率の低下、最悪の場合は暴走反応につながるため、ホットスポットを抑制する技術はいくつか提案されている。例えば特許文献1には担持量を変えて活性を調節した触媒を使用すること、触媒の焼成温度を変えて活性を調節した触媒を使用することでホットスポット温度を低下させる技術が開示されている。特許文献2には触媒の見かけ密度の比を変えることで活性を調節した触媒を使用する技術が開示されている。特許文献3には触媒成型体の不活性成分の含有量を変えるとともに、触媒成型体の占有容積、アルカリ金属の種類および/または量、触媒の焼成温度を変えることで活性を調節した触媒を使用する技術が開示されている。特許文献4には触媒成型体の占有容積を変えた反応帯を設け、すくなくとも一つの反応帯に不活性物質を混合する技術が開示されている。特許文献5には触媒の焼成温度を変えることで活性を調節した触媒を使用する技術が開示されている。特許文献6には触媒の占有容積と、焼成温度および/またはアルカリ金属の種類、量を変えることで活性を調節した触媒を使用する技術が開示されている。
日本国特許第3775872号 日本国特開20042209 日本国特開2001328951 日本国特開2005320315 日本国特開平8−3093 日本国特開2001226302
上記手段をもってホットスポットの抑制をはかっても、未だ十分ではなかった。さらには工業プラントにおいて期待した触媒性能、寿命が必ずしも得られないことがあるという問題点があり改善が望まれていた。たとえば、
1)触媒の占有容積を変化させることで、活性を調節した触媒を使用する方法は、ホットスポットの抑制方法として有用な方法であるが、工業プラントには数万本の反応管が存在し、反応管内径が20mmから30mmの内径の場合、誤差がプラスマイナス0.2mm程度生じてしまうことがある。占有容積の小さい触媒であれば、これらの影響は無視できる程度であるが、占有容積の大きい触媒すなわち、触媒粒径が大きい触媒ではその影響は無視できなくなる場合があることが分かった。具体的には充填の際に反応管内でブリッジを形成してしまい、その修正に多大な労力を要すること、充填量、充填密度の変化により圧力損失の差が反応管ごとにばらつきやすくなり、原料ガス流量の偏在を引き起こすこと、その修正にも多大な労力を要することが挙げられる。触媒形状が球状でない場合、この問題がより顕著になることは容易に想像できる。
2)更には、工業プラントでは前述のような反応管径のばらつきのみならず、反応器構造由来の除熱能力のばらつき、水平方向、垂直方向での熱媒温度分布、反応管ごとのガス流速分布が生じてしまうことがあり、全ての反応管内で同一の状態で触媒が使用されるということはほぼありえない。本発明者らが、工業プラントで使用された触媒を分析したところ、原料ガス入口部分の触媒が集中して劣化している反応管や、全体にわたって触媒が緩やかに劣化している反応管、さらに驚くべきことに原料ガス出口部分の触媒が入口部分の触媒よりも劣化している反応管が、見受けられた。これは、原料ガス出口側の触媒層のホットスポット温度が異常に高かった可能性を示唆しており、最悪の場合、暴走反応を引き起こす危険がある。これは、前述した工業プラントにおける反応管径のばらつき、反応器の構造由来の除熱能力のばらつき、水平方向、垂直方向での熱媒温度分布、反応管ごとのガス流速分布により、原料炭化水素の転化率が異なり、温度分布の形状が異なったことが原因と予想され、工業プラントにおいても安全に安定して長期にわたって高い収率を維持できる技術の開発が課題として挙げられた。
本発明者らは、工業プラントは触媒が最大収率を出す原料転化率で運転するのが好ましく、多くの反応管はその原料転化率で使用する触媒の使用上限温度を越えないように触媒が選定されるが、前述した工業プラントにおける反応条件の偏差が存在するため、全体の反応器の中にはプロピレン等の原料転化率が小さくなる反応管が存在し原料ガス出口側の触媒層温度Zoutが触媒の使用上限温度を越えることがあり、結果として反応収率の不足、触媒寿命の不足、暴走反応の危険があるという事実を発見し、この解決をはかる方法として、原料ガス流れ方向に複数に形成された触媒層を設けた反応管を用いる方法において、目的生成物の収率が最大になる原料転化率と、最も反応ガス入口側にある触媒層と最も反応ガス出口側にある触媒層の各最高温度の大小関係が逆転する際の原料転化率との関係が、特定の条件を満たすように触媒、触媒充填仕様を設計することで上記課題を解決できることを見いだし、本発明を完成させるに至った。
すなわち本発明は、
(1)固定床多管型反応器を用いてプロピレン、または、イソブチレンおよびターシャリーブタノールから選ばれる少なくとも1種を、分子状酸素を含有するガスにより気相接触酸化してアクロレインおよびアクリル酸、または、メタクロレインおよびメタクリル酸を製造するにあたり、
A)反応管の原料ガス流れ方向にN分割(Nは2以上の整数)して形成された複数の触媒層を設け、該触媒層のうち最も反応ガス入口側にある触媒層をZin、最も反応ガス出口側にある触媒層をZoutとし、
B)Zoutに充填する触媒の活性がZinに充填する触媒の活性より高くなるように触媒を充填し、以下の式(1)を満足させるようにするアクロレインおよびアクリル酸、または、メタクロレインおよびメタクリル酸の製造方法、
0.5≦Cmax−Ccrs 式(1)
Cmax:目的生成物の収率が最大になる原料転化率
Ccrs:触媒層Zinの最高温度をTin、触媒層Zoutの最高温度をToutとし、原料転化率を変化させたときにTinとToutの大小関係が逆転するときの原料転化率、
(2)0.5≦Cmax−Ccrs≦10 を満足する(1)記載のアクロレインおよびアクリル酸、または、メタクロレインおよびメタクリル酸の製造方法、
(3)0.5≦Cmax−Ccrs≦5 を満足する(1)記載のアクロレインおよびアクリル酸、または、メタクロレインおよびメタクリル酸の製造方法、
(4)Nが3以下で、かつZinに充填する触媒の焼成温度をZoutに充填する触媒の焼成温度よりも高温にし、さらにZinに触媒と不活性物質成型体の混合物を充填する上記(1)〜(3)記載のアクロレインおよびアクリル酸、または、メタクロレインおよびメタクリル酸の製造方法、
(5)触媒が不活性物質に活性粉末を担持してなる球状担持触媒である上記(1)〜(4)記載のアクロレインおよびアクリル酸、または、メタクロレインおよびメタクリル酸の製造方法、
(6)各触媒層に充填される触媒の粒径が全層にわたり同一である上記(1)〜(5)のいずれか記載のアクロレインおよびアクリル酸、または、メタクロレインおよびメタクリル酸の製造方法、
に関する。
本発明によれば、通常の工業プラントは特別な事情がない限り収率が最も高くなる原料転化率で運転され、多くの反応管に充填された触媒は所望の原料転化率で反応しており、結果として原料ガス入口部分の触媒層ホットスポット温度が原料ガス出口側の触媒のホットスポット温度よりも高い状態にあるものの、工業プラント特有の事象により、原料転化率が低くなる反応管が存在し、結果としてその反応管に充填された触媒の温度は原料ガス出口側のほうが原料ガス入口側よりも相当高くなることで異常反応が発生するという現象を回避することが可能で、安全安定的にアクロレインおよびアクリル酸、または、メタクロレインおよびメタクリル酸を高い収率で製造することが可能になる。
このような現象は、当然のことながら触媒の組成、形状、反応条件などによって生じやすさやその程度が異なる為一概には言えないが、使用する反応管の内径が25mm以上の場合や、原料ガスのプロピレンに対する水のモル比が3.0以下の場合により顕著な課題となる傾向にある。
次に本発明を実施するに当たり、好ましい形態を記載する。
本発明の触媒自体は、公知の方法で調製することが出来、例えば下記の一般式で表される。
MoBiNiCoFe
(式中、Mo、Bi、Ni、Co、Feはそれぞれモリブデン、ビスマス、ニッケル、コバルトおよび鉄を表しXはタングステン、アンチモン、錫、亜鉛、クロム、マンガン、マグネシウム、シリカ、アルミニウム、セリウムおよびチタンから選ばれる少なくとも一種の元素、Yはカリウム、ルビジウム、タリウムおよびセシウムから選ばれる少なくとも一種の元素を意味するものであり、a、b、c、d、f、g、h、xはモリブデン、ビスマス、ニッケル、コバルト、鉄、X、Yおよび酸素の原子数を表し、a=12、b=0.1〜7、好ましくはb=0.5〜4、c+d=0.5〜20、より好ましくはc+d=1〜12、f=0.5〜8、さらに好ましくはf=0.5〜5、g=0〜2、特に好ましくはg=0〜1、h=0.005〜2、最も好ましくはh=0.01〜0.5であり、x=各元素の酸化状態によって決まる値である。)
ここで、触媒活性成分を含有する粉末は共沈法、噴霧乾燥法など公知の方法で調製され、得られた粉末を好ましくは200〜600℃、より好ましくは300〜500℃で、好ましくは空気または窒素気流中にて焼成し触媒活性成分(以下、予備焼成粉末という)を得ることができる。
こうして得られた予備焼成粉末は、このままでも触媒として使用できるが、生産効率、作業性を考慮し成型して本発明の触媒とする。成型物の形状は球状、円柱状、リング状など特に限定されず、触媒の製造効率、機械的強度などを考慮して形状を選択すべきであるが、球状であることが好ましい。成型に際しては、単独の予備焼成粉末を使用し、成型するのが一般的であるが、別々に調製した鉄やコバルト、ニッケル、アルカリ金属などの成分組成が異なる顆粒の予備焼成粉末を任意の割合であらかじめ混合し成型してもよいし、不活性担体上に異種の予備焼成粉末の担持する操作を繰り返して、複層に予備焼成粉末が成型されるような手法を採用してもよい。尚、成型する際には結晶性セルロースなどの成型助剤および/またはセラミックウイスカーなどの強度向上剤を混合することが好ましい。成型助剤および/または強度向上剤の使用量は予備焼成粉末に対しそれぞれ30重量%以下であることが好ましい。また、成型助剤および/または強度向上剤は上記予備焼成粉末と成型前にあらかじめ混合してもよいし、成型機に予備焼成粉末を添加するのと同時または前後に添加してもよい。
成型方法に特に制限はないが円柱状、リング状に成型する際には打錠成型機、押し出し成型機などを用いた方法が好ましい。
さらに好ましくは、球状に成型する場合であり、成型機で予備焼成粉末を球形に成型しても良いが、予備焼成粉体(必要により成型助剤、強度向上剤を含む)を不活性なセラミック等の担体に担持させる方法が好ましい。ここで担持方法としては転動造粒法、遠心流動コーティング装置を用いる方法、ウォッシュコート等予備焼成粉末が担体に均一に担持できる方法で有れば特に限定されないが、触媒の製造効率等を考慮した場合、固定円筒容器の底部に、平らな、あるいは凹凸のある円盤を有する装置で、円盤を高速で回転させることにより、容器内に仕込まれた担体を、担体自体の自転運動と公転運動の繰り返しにより激しく撹拌させ、ここに予備焼成粉体並びに必要により、成型助剤及び強度向上剤を添加することにより粉体成分を担体に担持させる方法が好ましい。尚、担持に際して、バインダーを使用するのが好ましい。用いうるバインダーの具体例としては、水やエタノール、メタノール、プロパノール、多価アルコール、高分子系バインダーのポリビニールアルコール、無機系バインダーのシリカゾル水溶液等が挙げられるが、エタノール、メタノール、プロパノール、多価アルコールが好ましく、エチレングリコール等のジオールやグリセリン等のトリオール等が好ましく、グリセリンの濃度5重量%以上の水溶液が好ましい。グリセリン水溶液を適量使用することにより成型性が良好となり、機械的強度の高い、高活性な高性能な触媒が得られる。
これらバインダーの使用量は、予備焼成粉末100重量部に対して通常2〜60重量部であるが、グリセリン水溶液の場合は10〜30重量部が好ましい。担持に際してバインダーは予備焼成粉末と予め混合してあっても、予備焼成粉末を転動造粒機に供給しながら添加してもよい。
不活性担体は、通常2〜15mm程度の径のものを使用し、これに予備焼成粉末を担持させるが、その担持量は触媒使用条件、たとえば空間速度、原料炭化水素濃度を考慮して決定される。
成型した触媒は反応に使用する前に再度焼成する。再度焼成する際の焼成温度は通常450〜650℃、焼成時間は通常3〜30時間、好ましくは4〜15時間であり、使用する反応条件に応じて適宜設定される。このとき原料ガス入口側に設置する触媒の焼成温度は、その組成によらず、ガス出口側の触媒よりも高い温度で焼成することで活性を抑制するのが好ましい。焼成の雰囲気は空気雰囲気、窒素雰囲気などいずれでもかまわないが、工業的には空気雰囲気が好ましい。
こうして得られた触媒は、プロピレンを分子状酸素または分子状酸素含有ガスにより気相接触酸化しアクロレインおよびアクリル酸を製造する工程、または、イソブチレン、ターシャリーブタノールを分子状酸素または分子状酸素含有ガスにより気相接触酸化しメタクロレインおよびメタクリル酸を製造する工程に使用できる。本発明の製造方法において原料ガスの流通方法は、通常の単流通法でもあるいはリサイクル法でもよく、一般に用いられている条件下で実施することができ特に限定されない。たとえば、出発原料物質としてのプロピレン、イソブチレン、ターシャリーブタノールが常温で好ましくは1〜10容量%、より好ましくは4〜9容量%、分子状酸素が好ましくは3〜20容量%、より好ましくは4〜18容量%、水蒸気が好ましくは0〜60容量%、より好ましくは4〜50容量%、二酸化炭素、窒素等の不活性ガスが好ましくは20〜80容量%、より好ましくは30〜60容量%からなる混合ガスを反応管中に充填した本発明の触媒上に、250〜450℃で、常圧〜10気圧の圧力下で、空間速度300〜5000h−1で導入し反応を行う。上記反応は触媒層に単独の一種類の触媒を使用して実施することも可能であるが、本発明の方法では、N(Nは2以上の整数)の分割した触媒層を設置することでホットスポット温度を低下させられる。
そして、本発明の方法においては、
反応管の原料ガス流れ方向に複数に分割して形成された触媒層のうち、最も反応ガス入口側にある触媒層をZin、最も反応ガス出口側にある触媒層をZoutとし、
Zoutに充填する触媒の活性がZinに充填する触媒の活性より高くなるように触媒を充填し、以下の式(1)を満足させるようにする。
0.5≦Cmax−Ccrs 式(1)
Cmax:目的生成物の収率が最大になる原料転化率。
Ccrs:触媒層Zinの最高温度をTin、触媒層Zoutの最高温度をToutとし、原料転化率を変化させたときにTinとToutの大小関係が逆転するときの原料転化率。
式(1)は0.5≦Cmax−Ccrs≦10であることが好ましく、より好ましくは0.5≦Cmax−Ccrs≦5である。
より詳細には、原料ガス入口側の触媒の組成、焼成温度、不活性物質との混合割合、充填長、原料ガス出口側の触媒の組成、焼成温度、充填長を、0.5≦Cmax−Ccrsを満足するように決定する。なお、Cmax−Ccrsは運転の経時時間でも変化するが、本発明の効果を発揮するには少なくとも触媒使用開始から1年間、好ましくは触媒を交換するまでの間0.5≦Cmax−Ccrsを満たすことが好ましい。これは、使用開始直後の触媒は、原料転化率が小さくなることで特にZoutの値が大きくなる傾向にあるためである。また、一般にCmax−Ccrsは経過時間に伴うZinに充填された触媒の劣化により小さくなる傾向がある。そのため、使用する触媒にもよるが反応開始時には0.5よりも大きな値、好ましくは1以上となるように充填仕様を設計することで長期間にわたって本発明の効果を維持することが出来る。上記検討は工業プラントで使用する前にそれと同一条件で試験可能な実験装置にて触媒の充填条件を決定することが好ましく、コンピューターによるシミュレーションを併用することも可能である。
コンピューターによるシミュレーションには、CFD(Computational Fluid Dynamics)を使用するのが一般的である。市販のソフトウエアに使用する触媒の物性値、反応速度定数、反応熱などのデータを入れて計算することで所望の反応条件における原料転化率、アクロレインおよびアクリル酸などの収率、触媒層内の温度分布を計算することが出来る。
工業プラントや、実験装置においてCmaxやCcrsを求めるにあたっては、触媒層の温度分布を10cmより小さい測定幅で熱電対を用いて測定する。10cmよりも大きい測定幅で測定すると、ホットスポットの温度を正確にとらえることが出来なくなることがあり、好ましくない。また、原料ガスの転化率は反応浴温度を意図的に変化させて、各反応浴温度における原料転化率、各原料転化率における有効成分の収率、ホットスポット温度を測定し、グラフ化し、データを内挿することでCmaxやCcrsを求める。反応浴温度は5℃より小さい測定幅で変化させることで、より正確なデータを得ることが出来る。
本発明により、0.5≦Cmax−Ccrsとすることで工業プラントにおける反応器内部の反応温度の偏差、ガス流れ状態の偏差、反応管ごとの差圧偏差があっても、ほぼ全ての反応管において原料ガス出口側の触媒のホットスポット温度(すなわちTout)が異常に高くなることを回避でき、安定安全に運転することが可能になる。またCmax−Ccrs≦5とすることでTinを比較的低い温度に制御することが出来る傾向がある。
上述のように、運転条件によって触媒充填仕様の微妙な調整が求められるが、本発明のように原料ガス入り口側に使用する触媒の調製時の焼成温度をガス出口側に使用する触媒の調製時の焼成温度よりも高くし、不活性物質を用いて希釈することで、比較的容易に充填仕様を変更することが可能となる。
以下、実施例をあげて本発明をさらに具体的に説明するが、本発明は実施例に限定されるものではない。
なお、本発明における転化率、選択率および収率はそれぞれ次の通り定義される。
プロピレン転化率(モル%)
=反応したプロピレンのモル数/供給したプロピレンのモル数×100
アクロレイン収率(モル%)
=生成したアクロレインのモル数/供給したプロピレンのモル数×100
アクリル酸収率(モル%)
=生成したアクリル酸のモル数/供給したプロピレンのモル数×100
原料がプロピレンのかわりに、イソブチレンおよび/またはターシャリーブタノールの場合はアクロレインをメタクロレインに、アクリル酸をメタクリル酸に置き換えることができる。
実施例1
(触媒の調製)
蒸留水3000重量部を加熱攪拌しながらモリブデン酸アンモニウム423.8重量部と硝酸カリウム1.64重量部を溶解して水溶液(A1)を得た。別に、硝酸コバルト302.7重量部、硝酸ニッケル162.9重量部、硝酸第二鉄145.4重量部を蒸留水1000重量部に溶解して水溶液(B1)を、また濃硝酸42重量部を加えて酸性にした蒸留水200重量部に硝酸ビスマス164.9重量部を溶解して水溶液(C1)をそれぞれ調製した。上記水溶液(A1)に(B1)、(C1)を順次、激しく攪拌しながら混合し、生成した懸濁液をスプレードライヤーを用いて乾燥し440℃で6時間焼成し予備焼成粉末(D1)を得た。このときの触媒活性成分の酸素を除いた組成比は原子比でMo=12、Bi=1.7、Ni=2.8、Fe=1.8、Co=5.2、K=0.15であった。
その後予備焼成粉末100重量部に結晶セルロース5重量部を混合した粉末を不活性担体(アルミナ、シリカを主成分とする直径4.5mmの球状物質)に成型後の触媒に対して50重量%を占める割合になるよう20重量%グリセリン水溶液をバインダーとして直径5.2mmの球状に担持成型して担持触媒(E1)を得た。
担持触媒(E1)を、焼成温度530℃で4時間、空気雰囲気下で焼成することで触媒(F1)を得た。
次に、蒸留水3000重量部を加熱攪拌しながらモリブデン酸アンモニウム423.8重量部と硝酸カリウム1.08重量部を溶解して水溶液(A2)を得た。別に、硝酸コバルト302.7重量部、硝酸ニッケル162.9重量部、硝酸第二鉄145.4重量部を蒸留水1000重量部に溶解して水溶液(B2)を、また濃硝酸42重量部を加えて酸性にした蒸留水200重量部に硝酸ビスマス164.9重量部を溶解して水溶液(C2)をそれぞれ調製した。上記水溶液(A2)に(B2)、(C2)を順次、激しく攪拌しながら混合し、生成した懸濁液をスプレードライヤーを用いて乾燥し440℃で6時間焼成し予備焼成粉末(D2)を得た。このときの触媒活性成分の酸素を除いた組成比は原子比でMo=12、Bi=1.7、Ni=2.8、Fe=1.8、Co=5.2、K=0.10であった。
その後予備焼成粉末100重量部に結晶セルロース5重量部を混合した粉末を不活性担体(アルミナ、シリカを主成分とする直径4.5mmの球状物質)に成型後の触媒に対して50重量%を占める割合になるよう20重量%グリセリン水溶液をバインダーとして直径5.2mmの球状に担持成型して担持触媒(E2)を得た。
担持触媒(E2)を、530℃で4時間焼成して触媒(F2)を得た。担持触媒(E2)を510℃で4時間焼成して触媒(F3)を得た。
(酸化反応試験)
熱媒体として溶融塩を循環させるためのジャケット及び触媒層温度を測定するための熱電対を管軸に設置した、内径25.4mmのステンレス製反応器の原料ガス入口側から直径5.2mmのシリカ―アルミナ球を20cm、酸化触媒層第一層(原料ガス入口側)として酸化触媒(F1)と直径5.2mmのシリカ−アルミナ混合物不活性担体を重量比4:1で混合した希釈触媒100cm、酸化触媒第二層(ガス出口側)として酸化触媒(F3)を250cmの順で充填し、反応浴温度を330℃にした。ここに原料モル比がプロピレン:酸素:窒素:水=1:1.7:8.8:1となるようにプロピレン、空気、窒素、水の供給量を設定したガスを空間速度1500h−1で酸化反応器内へ導入し、反応器出口圧力を70kPaGとして反応開始後200時間経過したとき、反応浴温度2℃刻みで変化させて、原料転化率、アクロレイン、アクリル酸収率、ホットスポット温度を測定する試験(以降反応温度変化試験という)を実施したところ原料転化率97.8%、でアクロレインとアクリル酸の収率の合計が最大91.8%となった。このときの反応浴温度は330℃でガス入口側の触媒層のホットスポット温度は434℃で、ガス出口側の触媒層のホットスポット温度は378℃であった。また、これら二つのホットスポット温度の大小関係は原料転化率95.5%のときに逆転した。すなわち、Cmax−Ccrs=2.3であった。反応浴温度320℃ではプロピレン転化率93%となったが、ガス入口側の触媒層のホットスポット温度は352℃、ガス出口側の触媒層のホットスポット温度は401℃であった。このように、プロピレン転化率が大きく低下した場合でもガス出口側の触媒層のホットスポット温度が極端に高くなることが無く、長期にわたって安定した運転が可能であることが示唆された。
実施例2
実施例1の酸化反応条件において原料ガス入口部分に充填する触媒をF2と直径5.2mmのシリカ−アルミナ混合物不活性担体を重量比4:1で混合した希釈触媒120cmとし、原料ガス出口部分に充填する触媒をF3触媒230cmとしたこと以外は実施例1と同様の方法でプロピレンの酸化反応を実施した。
反応温度変化試験を実施したところ原料転化率97.2%、でアクロレインとアクリル酸の収率の合計が最大92.1%となった。このときの反応浴温度は332℃でガス入口側の触媒層のホットスポット温度は431℃で、ガス出口側の触媒層のホットスポット温度は372℃であった。また、これら二つのホットスポット温度の大小関係は原料転化率95.1%のときに逆転した。すなわち、Cmax−Ccrs=2.1であった。反応浴温度322℃ではプロピレン転化率93%となったが、ガス入口側の触媒層のホットスポット温度は353℃、ガス出口側の触媒層のホットスポット温度は398℃であった。このように、プロピレン転化率が大きく低下した場合でもガス出口側の触媒層のホットスポット温度が極端に高くなることが無く、長期にわたって安定した運転が可能であることが示唆された。
実施例3
実施例2において、原料モル比がプロピレン:酸素:窒素:水=1:1.8:10:1.5となるようにプロピレン、空気、窒素、水の供給量を設定したガスを空間速度1500h−1で酸化反応器内へ導入し、反応器出口圧力を55kPaGとしたこと以外は実施例2と同様に試験したところ原料転化率97.9%、でアクロレインとアクリル酸の収率の合計が最大92.3%となった。このときの反応浴温度は330℃でガス入口側の触媒層のホットスポット温度は424℃で、ガス出口側の触媒層のホットスポット温度は370℃であった。また、これら二つのホットスポット温度の大小関係は原料転化率96.2%のときに逆転した。すなわち、Cmax−Ccrs=1.7であった。反応浴温度318℃ではプロピレン転化率95%となったが、ガス入口側の触媒層のホットスポット温度は348℃、ガス出口側の触媒層のホットスポット温度は410℃であった。このように、プロピレン転化率が大きく低下した場合でもガス出口側の触媒層のホットスポット温度が極端に高くなることが無く、長期にわたって安定した運転が可能であることが示唆された。
実施例4
実施例3において、空間速度を1715h−1で酸化反応器内へ導入し、反応器出口圧力を70kPaGとしたこと以外は実施例3と同様に試験したところ原料転化率97.8%、でアクロレインとアクリル酸の収率の合計が最大91.6%となった。このときの反応浴温度は332℃でガス入口側の触媒層のホットスポット温度は429℃で、ガス出口側の触媒層のホットスポット温度は371℃であった。また、これら二つのホットスポット温度の大小関係は原料転化率96.1%のときに逆転した。すなわち、Cmax−Ccrs=1.7であった。反応浴温度319℃ではプロピレン転化率95%となったが、ガス入口側の触媒層のホットスポット温度は350℃、ガス出口側の触媒層のホットスポット温度は414℃であった。このように、プロピレン転化率が大きく低下した場合でもガス出口側の触媒層のホットスポット温度が極端に高くなることが無く、長期にわたって安定した運転が可能であることが示唆された。
実施例5
実施例2において、原料モル比がプロピレン:酸素:窒素:水=1:1.9:12:1となるようにプロピレン、空気、窒素、水の供給量を設定したガスを空間速度2000h−1で酸化反応器内へ導入し、反応器出口圧力を65kPaGとし、アクロレインを目的生成物としたこと以外は実施例2と同様に試験したところ原料転化率96.5%、でアクロレイン収率が最大85.2%となった。このときの反応浴温度は334℃でガス入口側の触媒層のホットスポット温度は420℃で、ガス出口側の触媒層のホットスポット温度は385℃であった。また、これら二つのホットスポット温度の大小関係は原料転化率95.5%のときに逆転した。すなわち、Cmax−Ccrs=1.0であった。反応浴温度326℃ではプロピレン転化率94%となったが、ガス入口側の触媒層のホットスポット温度は347℃、ガス出口側の触媒層のホットスポット温度は415℃であった。このように、プロピレン転化率が大きく低下した場合でもガス出口側の触媒層のホットスポット温度が極端に高くなることが無く、長期にわたって安定した運転が可能であることが示唆された。
実施例6
熱媒体として溶融塩を循環させるためのジャケット及び触媒層温度を測定するための熱電対を管軸に設置した、内径27.2mmのステンレス製反応器の原料ガス入口側から直径5.2mmのシリカ―アルミナ球を20cm、酸化触媒層第一層(原料ガス入口側)として酸化触媒(F1)と直径5.2mmのシリカ−アルミナ混合物不活性担体を重量比3:1で混合した希釈触媒100cm、酸化触媒第二層(ガス出口側)として酸化触媒(F3)を210cmの順で充填し、反応浴温度を325℃にした。ここに原料モル比がプロピレン:酸素:窒素:水=1:1.7:8.8:1となるようにプロピレン、空気、窒素、水の供給量を設定したガスを空間速度1250h−1で酸化反応器内へ導入し、反応器出口圧力を50kPaGとして反応開始後200時間経過したとき、反応浴温度を2℃刻みで変化させて反応温度変化試験を実施したところ原料転化率97.8%、でアクロレインとアクリル酸の収率の合計が最大91.5%となった。このときの反応浴温度は322℃でガス入口側の触媒層のホットスポット温度は424℃で、ガス出口側の触媒層のホットスポット温度は373℃であった。また、これら二つのホットスポット温度の大小関係は原料転化率96.6%のときに逆転した。すなわち、Cmax−Ccrs=1.2であった。反応浴温度310℃ではプロピレン転化率92%となったが、ガス入口側の触媒層のホットスポット温度は330℃、ガス出口側の触媒層のホットスポット温度は400℃であった。このように、プロピレン転化率が大きく低下した場合でもガス出口側の触媒層のホットスポット温度が極端に高くなることが無く、長期にわたって安定した運転が可能であることが示唆された。
比較例1
実施例1の酸化反応条件において、原料ガス入口部分に充填する触媒をF3と直径5.2mmのシリカ−アルミナ混合物不活性担体を重量比2:1で混合した希釈触媒100cmとし、原料ガス出口部分に充填する触媒をF3触媒250cmとしたこと以外は実施例1と同様の方法でプロピレンの酸化反応を実施した。反応温度変化試験を実施したところ原料転化率98.5%、でアクロレインとアクリル酸の収率の合計が最大91.9%となった。このときの反応浴温度は335℃でガス入口側の触媒層のホットスポット温度は418℃で、ガス出口側の触媒層のホットスポット温度は380℃であった。また、これら二つのホットスポット温度の大小関係は原料転化率98.2%のときに逆転した。すなわち、Cmax−Ccrs=0.3であった。反応浴温度326℃ではプロピレン転化率95.5%となり、ガス入口側の触媒層のホットスポット温度は358℃、ガス出口側の触媒層のホットスポット温度は445℃であった。比較例に比べ、プロピレン転化率が大きく低下した場合においてガス出口側の触媒層のホットスポット温度が極端に高くなった。
本発明によれば、安全安定的にアクロレインおよびアクリル酸、または、メタクロレインおよびメタクリル酸を高い収率で製造することが可能になる。
本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れることなく様々な変更および修正が可能であることは、当業者にとって明らかである。

Claims (6)

  1. 固定床多管型反応器を用いて、プロピレンを、分子状酸素を含有するガスにより気相接触酸化して、アクロレインおよびアクリル酸を製造するにあたり、
    A)反応管の原料ガス流れ方向に2分割または3分割して形成された複数の触媒層を設け、該触媒層のうち最も反応ガス入口側にある触媒層をZin、最も反応ガス出口側にある触媒層をZoutとし、
    B)Zoutに充填する触媒の活性がZinに充填する触媒の活性より高くなるように触媒を充填し、以下の式(1)を満足させるようにし、
    0.5≦Cmax−Ccrs 式(1)
    Cmax:目的生成物の収率が最大になる原料転化率。
    Ccrs:触媒層Zinの最高温度をTin、触媒層Zoutの最高温度をToutとし、原料転化率を変化させたときにTinとToutの大小関係が逆転するときの原料転化率。
    Cmaxの値が、96.5≦Cmax≦98.5であり、
    触媒として、活性成分が下記一般式で表されるものを使用する、アクロレインおよびアクリル酸の製造方法。
    MoBiNiCoFe
    (式中、Mo、Bi、Ni、Co、Feはそれぞれモリブデン、ビスマス、ニッケル、コバルトおよび鉄を表し、Xはタングステン、アンチモン、錫、亜鉛、クロム、マンガン、マグネシウム、シリカ、アルミニウム、セリウムおよびチタンから選ばれる少なくとも一種の元素、Yはカリウム、ルビジウム、タリウムおよびセシウムから選ばれる少なくとも一種の元素を意味するものであり、a、b、c、d、f、g、h、xはモリブデン、ビスマス、ニッケル、コバルト、鉄、X、Yおよび酸素の原子数を表し、a=12、b=0.1〜7、c+d=0.5〜20、f=0.5〜8、g=0〜2、h=0.005〜2、x=各元素の酸化状態によって決まる値である。)
  2. 0.5≦Cmax−Ccrs≦10 を満足する請求項1記載のアクロレインおよびアクリル酸の製造方法。
  3. 0.5≦Cmax−Ccrs≦5 を満足する請求項1記載のアクロレインおよびアクリル酸の製造方法。
  4. Zinに充填する触媒の焼成温度をZoutに充填する触媒の焼成温度よりも高温にし、さらにZinに触媒と不活性物質成型体の混合物を充填する上記請求項1から3いずれか記載のアクロレインおよびアクリル酸の製造方法。
  5. 触媒が不活性物質に活性粉末を担持してなる球状担持触媒である上記請求項1から4いずれか記載のアクロレインおよびアクリル酸の製造方法。
  6. 各触媒層に充填される触媒の粒径が全層にわたり同一である上記請求項1から5いずれか記載のアクロレインおよびアクリル酸の製造方法。
JP2015229110A 2015-11-24 2015-11-24 不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法 Pending JP2016106082A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015229110A JP2016106082A (ja) 2015-11-24 2015-11-24 不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015229110A JP2016106082A (ja) 2015-11-24 2015-11-24 不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012161353A Division JP2014019675A (ja) 2012-07-20 2012-07-20 不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法

Publications (1)

Publication Number Publication Date
JP2016106082A true JP2016106082A (ja) 2016-06-16

Family

ID=56120387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015229110A Pending JP2016106082A (ja) 2015-11-24 2015-11-24 不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法

Country Status (1)

Country Link
JP (1) JP2016106082A (ja)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH083093A (ja) * 1994-06-20 1996-01-09 Sumitomo Chem Co Ltd アクロレインおよびアクリル酸の製造方法
JPH10168003A (ja) * 1996-12-03 1998-06-23 Nippon Kayaku Co Ltd アクロレイン及びアクリル酸の製造方法
JP2001226302A (ja) * 2000-02-16 2001-08-21 Nippon Shokubai Co Ltd アクロレインおよびアクリル酸の製造方法
JP2001328951A (ja) * 2000-05-19 2001-11-27 Nippon Shokubai Co Ltd 不飽和アルデヒドおよび不飽和カルボン酸の製造方法
JP2003252820A (ja) * 2001-12-27 2003-09-10 Mitsubishi Chemicals Corp (メタ)アクロレイン又は(メタ)アクリル酸の製造方法
JP2005170909A (ja) * 2003-12-15 2005-06-30 Mitsubishi Chemicals Corp (メタ)アクリル酸または(メタ)アクロレインの製造方法
JP2005224660A (ja) * 2004-02-10 2005-08-25 Nippon Shokubai Co Ltd アクロレインの接触気相酸化反応用触媒、及び該触媒を用いた接触気相酸化方法によるアクリル酸の製造方法
JP2007326787A (ja) * 2006-06-06 2007-12-20 Sumitomo Chemical Co Ltd 不飽和アルデヒド及び不飽和カルボン酸の製造方法
JP2008535784A (ja) * 2005-02-25 2008-09-04 エルジー・ケム・リミテッド 不飽和アルデヒド及び/または不飽和酸の製造法
JP2011246384A (ja) * 2010-05-26 2011-12-08 Mitsubishi Rayon Co Ltd 不飽和アルデヒド及び不飽和カルボン酸の製造方法
WO2012105304A1 (ja) * 2011-02-02 2012-08-09 日本化薬株式会社 不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法
JP2014019675A (ja) * 2012-07-20 2014-02-03 Nippon Kayaku Co Ltd 不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH083093A (ja) * 1994-06-20 1996-01-09 Sumitomo Chem Co Ltd アクロレインおよびアクリル酸の製造方法
JPH10168003A (ja) * 1996-12-03 1998-06-23 Nippon Kayaku Co Ltd アクロレイン及びアクリル酸の製造方法
JP2001226302A (ja) * 2000-02-16 2001-08-21 Nippon Shokubai Co Ltd アクロレインおよびアクリル酸の製造方法
JP2001328951A (ja) * 2000-05-19 2001-11-27 Nippon Shokubai Co Ltd 不飽和アルデヒドおよび不飽和カルボン酸の製造方法
JP2003252820A (ja) * 2001-12-27 2003-09-10 Mitsubishi Chemicals Corp (メタ)アクロレイン又は(メタ)アクリル酸の製造方法
JP2005170909A (ja) * 2003-12-15 2005-06-30 Mitsubishi Chemicals Corp (メタ)アクリル酸または(メタ)アクロレインの製造方法
JP2005224660A (ja) * 2004-02-10 2005-08-25 Nippon Shokubai Co Ltd アクロレインの接触気相酸化反応用触媒、及び該触媒を用いた接触気相酸化方法によるアクリル酸の製造方法
JP2008535784A (ja) * 2005-02-25 2008-09-04 エルジー・ケム・リミテッド 不飽和アルデヒド及び/または不飽和酸の製造法
JP2007326787A (ja) * 2006-06-06 2007-12-20 Sumitomo Chemical Co Ltd 不飽和アルデヒド及び不飽和カルボン酸の製造方法
JP2011246384A (ja) * 2010-05-26 2011-12-08 Mitsubishi Rayon Co Ltd 不飽和アルデヒド及び不飽和カルボン酸の製造方法
WO2012105304A1 (ja) * 2011-02-02 2012-08-09 日本化薬株式会社 不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法
JP2014019675A (ja) * 2012-07-20 2014-02-03 Nippon Kayaku Co Ltd 不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法

Similar Documents

Publication Publication Date Title
JP6527499B2 (ja) 不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法
JP6294883B2 (ja) 不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法
WO2014014041A1 (ja) 不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法
JPH1028877A (ja) 触媒及び不飽和アルデヒドおよび不飽和酸の製造方法
JP6199972B2 (ja) 不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法
JP7506031B2 (ja) 不飽和アルデヒドの製造方法
JP6694884B2 (ja) 不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法
KR101558941B1 (ko) 메타크롤레인 및/또는 메타크릴산의 제조 방법
JP2020073581A (ja) 不飽和アルデヒド及び不飽和カルボン酸の少なくとも一方の製造方法並びに不飽和アルデヒド及び不飽和カルボン酸の少なくとも一方の製造用触媒
JP2016106082A (ja) 不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法
WO2024080208A1 (ja) 不飽和アルデヒドの製造方法および不飽和アルデヒドの製造装置
WO2024080203A1 (ja) 不飽和アルデヒドの製造方法および不飽和アルデヒドの製造装置
JP5479803B2 (ja) (メタ)アクロレインまたは(メタ)アクリル酸の製造方法
JP5902374B2 (ja) アクリル酸の製造方法
JP2009084167A (ja) アクロレインおよび/またはアクリル酸の製造方法
JP2005162744A (ja) 不飽和アルデヒド及び不飽和カルボン酸の製造方法
JP2010235504A (ja) アクロレインおよびアクリル酸の製造方法
JP2022124634A (ja) イソプレン製造用触媒及びその用途
JP2011102248A (ja) アクリル酸の製造方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161118

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170509