WO2010100727A1 - Laser machining apparatus, laser machining method, machining control apparatus and machining control method - Google Patents

Laser machining apparatus, laser machining method, machining control apparatus and machining control method Download PDF

Info

Publication number
WO2010100727A1
WO2010100727A1 PCT/JP2009/054066 JP2009054066W WO2010100727A1 WO 2010100727 A1 WO2010100727 A1 WO 2010100727A1 JP 2009054066 W JP2009054066 W JP 2009054066W WO 2010100727 A1 WO2010100727 A1 WO 2010100727A1
Authority
WO
WIPO (PCT)
Prior art keywords
hole
processing
machining
suction
work
Prior art date
Application number
PCT/JP2009/054066
Other languages
French (fr)
Japanese (ja)
Inventor
俊博 森
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2011502533A priority Critical patent/JP5230796B2/en
Priority to CN200980145692.6A priority patent/CN102216023B/en
Priority to KR1020117007145A priority patent/KR101251084B1/en
Priority to PCT/JP2009/054066 priority patent/WO2010100727A1/en
Priority to TW098135227A priority patent/TW201032937A/en
Publication of WO2010100727A1 publication Critical patent/WO2010100727A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • B23K26/382Removing material by boring or cutting by boring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0008Apparatus or processes for manufacturing printed circuits for aligning or positioning of tools relative to the circuit board
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0017Etching of the substrate by chemical or physical means
    • H05K3/0026Etching of the substrate by chemical or physical means by laser ablation

Definitions

  • the present invention relates to a laser processing apparatus, a laser processing method, a processing control apparatus, and a processing control method for performing laser processing while attracting and fixing a workpiece.
  • a laser processing apparatus that performs drilling by irradiating the workpiece with laser light.
  • a laser processing apparatus if the workpiece moves during drilling, the position of the machining hole is shifted, so the workpiece needs to be fixed on the machining table.
  • This invention is made in view of the above, Comprising: Obtaining the laser processing apparatus, the laser processing method, the processing control apparatus, and the processing control method which drill a processing hole of uniform processing quality in a workpiece
  • the present invention suctions and fixes the workpiece by a suction hole that sucks the bottom surface of the workpiece that is placed while the workpiece that is the workpiece is placed.
  • the laser processing unit that irradiates the work fixed to the processing table with a laser beam and irradiates the work with a processing hole, and controls the processing table and the laser processing unit.
  • a machining control device that moves a relative position between the workpiece on the machining table and the irradiation position of the laser beam, and the machining control device absorbs the workpiece when the workpiece is placed on the machining table.
  • An extraction unit that extracts the processed hole that is located above the suction region within a predetermined range from the hole, and the extraction from the processed hole to be processed
  • a first setting unit that sets the remaining processed hole excluding the processed hole extracted by the unit as the first processed hole to be processed for the first time, and the laser processed unit performs the first drilling
  • the first drilling hole set by the first setting unit is drilled as the machining.
  • the laser processing apparatus drills the remaining processing holes excluding the processing holes that are positioned above the suction holes when a workpiece is placed on the processing table as the first drilling target. Therefore, there is an effect that it is possible to machine a machining hole with uniform machining quality into a workpiece in a short time.
  • FIG. 1 is a diagram illustrating a part of a laser processing apparatus according to an embodiment.
  • FIG. 2 is a block diagram showing the configuration of the laser processing apparatus according to the embodiment.
  • FIG. 3 is a diagram for explaining a workpiece and a machining table.
  • FIG. 4 is a diagram for explaining the positional relationship between the machining hole and the suction hole.
  • FIG. 5 is a cross-sectional view taken along the line AA in FIG.
  • FIG. 6 is a diagram for explaining the positional relationship between the processing hole and the suction hole when performing the first drilling process.
  • FIG. 7 is a diagram for explaining the positional relationship between the processing hole and the suction hole when performing the second drilling process.
  • FIG. 8 is a diagram for explaining a workpiece moving process performed before the second machining hole is drilled.
  • FIG. 9 is a diagram for explaining the processing procedure of the first processing hole.
  • FIG. 10 is a diagram for explaining the workpiece movement process.
  • FIG. 11 is a diagram illustrating a workpiece movement processing procedure.
  • FIG. 12 is a diagram for explaining an adsorption area and a non-adsorption area on the processing table.
  • FIG. 13 is a diagram for explaining drilling using the processing table shown in FIG.
  • FIG. 14 is a diagram showing the configuration of the suction area limiting jig.
  • FIG. 15 is a view for explaining drilling using the suction area limiting jig shown in FIG. 14.
  • FIG. 16 is a diagram illustrating a configuration example of a laser processing mechanism in which laser beams are multi-axial.
  • FIG. 1 is a diagram illustrating a part of a laser processing apparatus according to an embodiment.
  • FIG. 1 shows a configuration of a laser processing mechanism (laser processing unit) 101A that performs a drilling process of a workpiece (processing object) 31 as a part of a laser processing apparatus (laser drilling machine).
  • laser processing mechanism laser processing unit 101A that performs a drilling process of a workpiece (processing object) 31 as a part of a laser processing apparatus (laser drilling machine).
  • the laser processing mechanism 101A includes galvano scan mirrors 2a and 2b, galvano scanners 3a and 3b, an f ⁇ lens 4, and a processing table 21 on which the work 31 is placed.
  • the laser processing mechanism 101A sucks and fixes the workpiece 31 through suction holes 22H provided on the entire surface of the processing table 21, and irradiates the workpiece 31 with laser light to perform drilling of the workpiece 31.
  • the suction hole 22 ⁇ / b> H is a hole for sucking the bottom surface of the work 31 and fixing it to the processing table 21. After the workpiece 31 is placed on the machining table 21, the suction hole 22 ⁇ / b> H is depressurized so that the bottom surface of the workpiece 31 is attracted to the upper surface of the machining table 21.
  • the galvano scan mirror 2a is a first galvano scan mirror that receives the laser beam 1 output from a laser oscillator (not shown).
  • the galvano scan mirror 2a is connected to the drive shaft of the galvano scanner 3a, and the drive shaft of the galvano scanner 3a faces the Z-axis direction.
  • the mirror surface of the galvano scan mirror 2a is displaced as the drive shaft of the galvano scanner 3a rotates, and the optical axis of the incident laser beam 1 is deflected and scanned in a first direction (for example, the X-axis direction). Send to mirror 2b.
  • the galvano scan mirror 2b is a second galvano scan mirror that receives the laser beam 1 from the galvano scan mirror 2a.
  • the galvano scan mirror 2b is connected to the drive shaft of the galvano scanner 3b, and the drive shaft of the galvano scanner 3b faces the Y-axis direction.
  • the mirror surface of the galvano scan mirror 2b is displaced in accordance with the rotation of the drive shaft of the galvano scanner 3b, and the second direction (for example, the Y-axis direction) is substantially perpendicular to the optical axis of the incident laser beam 1 in the first direction.
  • the second direction for example, the Y-axis direction
  • the f ⁇ lens 4 condenses and irradiates the workpiece 31 with the laser beam 1 that is two-dimensionally scanned in the XY plane.
  • a work 31 such as a printed circuit board material or a ceramic green sheet has a planar shape, and the processing table 21 places the work 31 in the XY plane.
  • the processing table 21 is moved in the XY plane, and the laser beam 1 is two-dimensionally scanned by the galvano scanners 3a and 3b.
  • the laser beam 1 is two-dimensionally scanned by the galvano scanners 3a and 3b.
  • one to a plurality of machining holes 32h are formed (drilling) in the work 31 in the scan area 7 that is within the range in which the laser light 1 can be two-dimensionally scanned by the galvano scanners 3a and 3b.
  • FIG. 2 is a block diagram showing the configuration of the laser processing apparatus according to the embodiment.
  • the laser processing apparatus 100 includes a processing control apparatus 103, a laser processing mechanism 101A, and a transport apparatus 102.
  • the processing control device 103 is connected to the laser processing mechanism 101A and the transport device 102, and is a device such as a computer that controls the laser processing mechanism 101A and the transport device 102.
  • the processing control device 103 includes an input unit 11, a data conversion unit 12, a suction hole coordinate storage unit 13, a first processing hole setting unit 14, a second processing hole setting unit 15, an extraction unit 16, and a control unit 19.
  • the input unit 11 inputs the coordinate data of the hole to be drilled in the workpiece 31, various instruction information regarding the drilling of the workpiece 31, and the like.
  • the data conversion unit 12 converts the coordinate data input to the input unit 11 into laser processing data.
  • the laser processing data is coordinate data used by the processing control device 103 when drilling, and is expressed by processing table data and galvano data. Since a plurality of holes are formed in the work 31, the position of each hole is represented by processing table data and galvano data for each hole position.
  • the processing table data is a relative coordinate between the processing table 21 and the processing head, and is, for example, data (coordinates) at a position where the processing table 21 is moved.
  • the galvano data is the irradiation position (coordinates) of the laser beam adjusted by the galvano scan mirrors 2a and 2b and the galvano scanners 3a and 3b.
  • the galvano data represents coordinates in the scan area 7.
  • the suction hole coordinate storage unit 13 is a memory or the like that stores the position of the suction hole 22H provided on the processing table 21 (hereinafter referred to as suction hole coordinates).
  • the suction hole coordinates are the center coordinates and diameter of the suction hole 22H, and are stored in advance in the suction hole coordinate storage unit 13 as numerical values unique to the laser processing apparatus 100.
  • the extraction unit 16 Based on the suction hole coordinates stored in the suction hole coordinate storage unit 13 and the laser processing data converted by the data conversion unit 12, the extraction unit 16 places the suction hole 22 ⁇ / b> H on the suction hole 22 ⁇ / b> H. The processing hole 32h located is extracted.
  • the first machining hole setting unit 14 excludes the machining hole 32h extracted by the extraction unit 16 from the laser machining data, and uses the laser machining data after removing the machining hole 32h to define the machining hole 32h to be opened in the workpiece 31.
  • a hole to be opened in the first (first round) drilling process from the inside (first-processed hole 32a described later) is set.
  • the first machining hole setting unit 14 generates laser machining data for opening the first machining hole 32a.
  • the second machining hole setting unit 15 uses the machining hole 32h extracted by the extraction unit 16 to open a hole (2 described later) from the machining hole 32h opened in the work 31 by the second (second round) drilling process.
  • the second machining hole 32b) is set.
  • the second machining hole setting unit 15 generates laser machining data for opening the second machining hole 32b.
  • the second machining hole setting unit 15 sets the machining hole 32h positioned on the suction hole 22H from the machining holes 32h opened in the workpiece 31 as the second machining hole 32b.
  • the control unit 19 controls the input unit 11, the data conversion unit 12, the suction hole coordinate storage unit 13, the first machining hole setting unit 14, the second machining hole setting unit 15, and the extraction unit 16.
  • the processing hole 32h that does not become on the suction hole 22H is set as the first processing hole 32a and the first processing hole 32a is drilled. Do. Thereafter, the relative position between the workpiece 31 and the machining table 21 is moved by moving the workpiece 31 on the machining table 21. At this time, the work 31 is moved on the processing table 21 so that the second processing hole 32b that was on the suction hole 22H when the work 31 is first placed on the processing table 21 is not on the suction hole 22H. And the drilling process of the 2nd process hole 32b is performed. As a result, the laser processing apparatus 100 drills both the first processed hole 32a and the second processed hole 32b at positions that do not become above the suction holes 22H.
  • the laser processing apparatus 100 detects an alignment mark (positioning mark) provided in advance on the work 31 by using a CCD (Charge Coupled Device) camera or the like, and based on the position of the alignment mark, the work 31 and the processing table 21 are detected. Correct the relative position of. Then, the laser processing apparatus 100 performs a drilling process on the workpiece 31 based on the corrected coordinates of the workpiece 31.
  • CCD Charge Coupled Device
  • the transfer device 102 is a device (loader / unloader) that loads and unloads the workpiece 31 onto and from the processing table 21. After carrying out the drilling process of the first process hole 32a, the transfer apparatus 102 of the present embodiment moves the work 31 on the process table 21 so that the second process hole 32b does not become on the suction hole 22H.
  • the machining control device 103 moves the relative position between the workpiece 31 and the machining table 21 by a predetermined coordinate based on the suction hole coordinates and the laser machining data. Further, the processing control device 103 controls the laser processing mechanism 101A so as to perform drilling processing at a predetermined coordinate position based on the suction hole coordinates and the laser processing data.
  • the machining control device 103 includes a CPU (Central Processing Unit), a ROM (Read Only Memory), and a RAM (Random Access Memory).
  • the CPU reads various control programs and application programs stored in the ROM in response to an input from the input unit by the user, develops them in a program storage area in the RAM, and executes various processes.
  • Various data generated during processing is temporarily stored in a data storage area formed in the RAM, and the laser processing apparatus 100 is controlled.
  • the program executed by the CPU is a program for setting the first machining hole 32a and the second machining hole 32b, a program for calculating the machining order of the first machining hole 32a, a program for calculating the machining order of the second machining hole 32b, a workpiece A program for calculating the amount of movement of the machining table 21 when the relative position between the machining table 21 and the machining table 21 is moved.
  • the placement of the workpiece 31 on the machining table 21 and the movement of the workpiece 31 on the machining table 21 may be performed manually.
  • the laser processing apparatus 100 does not have to include the transport apparatus 102.
  • the laser processing apparatus 100 performs a drilling process on a portion having the suction hole 22H. First, drilling is performed at a position other than the suction holes 22H. Specifically, the machining control device 103 skips the drilling process without performing the drilling process on the hole of the laser machining data corresponding to the suction hole 22H.
  • FIG. 3 is a diagram for explaining the workpiece and the machining table.
  • work 31 and the process table 21 is shown.
  • One to a plurality of suction holes 22H are provided on the processing table 21, and when the work 31 is placed on the processing table 21, the work 31 is fixed on the processing table 21 by the suction holes 22H.
  • the laser processing apparatus 100 performs the drilling of the process hole 32h in the state which fixed the workpiece
  • the work 31 has a rectangular shape, for example, and positioning marks 33 are provided at four corners on the upper surface side.
  • the accurate position of the workpiece 31 is determined using the positioning mark 33.
  • the CCD camera included in the laser processing apparatus 100 identifies the position to be drilled as a position unique to the laser processing apparatus 100 by recognizing an image of the positioning mark 33 of the workpiece 31.
  • the data conversion unit 12 of the machining control device 103 has an algorithm unique to the laser machining device 100 according to the arrangement (rotation, expansion / contraction, etc.) of the work 31.
  • the CCD camera images the positioning marks 33 arranged at the four corners of the work 31 after the work 31 is fixed to the processing table 21. Thereafter, the laser beam 1 is emitted from the processing head of the laser processing apparatus 100, and drilling is performed at a predetermined position.
  • the holes are drilled in the order according to the laser processing data.
  • the machining control device 103 specifies the target position of the drilling while executing the correction calculation of the position of the workpiece 31.
  • FIG. 4 is a diagram for explaining the positional relationship between the machining hole and the suction hole.
  • FIG. 4 the case where the workpiece
  • FIG. 5 is a cross-sectional view taken along the line AA in FIG.
  • the work 31 has, for example, a two-layer structure, and the upper layer side is made of, for example, a resin material, and the lower layer side is made of, for example, copper.
  • the machining hole 32h is formed only on the upper layer side of the workpiece 31 so as not to penetrate the lower layer side of the workpiece 31.
  • the processing hole 32h to be processed is above the suction hole 22H, the lower layer side of the workpiece 31 may be torn due to the heat of laser processing.
  • the extraction unit 16 calculates the target position of the processing hole 32h after the data conversion unit 12 calculates the target position of the processing hole 32h. Is a position on the suction hole 22H, the processed hole 32h on the suction hole 22H is extracted.
  • the extraction unit 16 determines that the target position of the processing hole 32h is on the suction hole 22H, the first processing hole setting unit 14 of the processing control device 103 does not issue a laser irradiation command to the processing hole 32h.
  • the extraction unit 16 determines whether or not the position of the processing hole 32h is a position on the suction hole 22H, using a predetermined range from the center of each suction hole 22H as an adsorption region, and an upper portion in the suction region. Based on whether or not there is a position of the machining hole 32h, it is determined whether or not the position of each machining hole 32h is a position on the suction hole 22H. For example, the extraction unit 16 determines whether or not the position of each processing hole 32h is a position on the suction hole 22H, and whether or not the entire area of the processing hole 32h is on the suction hole 22H for each processing hole 32h.
  • the extraction unit 16 provides an area larger than each suction hole 22H by a predetermined size, and for each processing hole 32h based on whether the position of the processing hole 32h is on an area larger than the suction hole 22H. It may be determined whether or not the position of the processing hole 32h is a position on the suction hole 22H.
  • FIG. 6 is a diagram for explaining the positional relationship between the processing hole and the suction hole when performing the first drilling process
  • FIG. 7 is the position of the processing hole and the suction hole when performing the second drilling process. It is a figure for demonstrating a relationship. 6 and 7 show perspective views of the work 31 and the processing table 21. FIG.
  • the machining hole 32h set for the first drilling by the first machining hole setting unit 14 is a machining hole 32h in which the machining hole 32h does not overlap the suction hole 22H when the work 31 is placed on the machining table 21.
  • a first processed hole 32a the arrangement position of the work 31 (the outer peripheral part of the work 31) on the machining table 21 when the first machining hole 32a is drilled is indicated by the arrangement position P1.
  • the position below the first machining hole 32 a among the positions on the machining table 21 is indicated by a position 22 a
  • the position below the second machining hole 32 b among the positions on the machining table 21 is positioned. This is indicated by 22b.
  • the machining hole 32h set in the second drilling process by the second machining hole setting unit 15 places the workpiece 31 on the machining table 21.
  • the processing hole 32h is a processing hole 32h that overlaps the suction hole 22H, and is hereinafter referred to as a second processing hole 32b.
  • the relative position between the second machining hole 32b and the suction hole 22H is changed by moving the workpiece 31 on the XY plane.
  • the position of the workpiece 31 on the machining table 21 when the first machining hole 32a is drilled is indicated by an end P1
  • the position of the workpiece 31 on the machining table 21 when the second machining hole 32b is drilled is indicated by an arrangement position P2.
  • the position used as the lower part of the 2nd process hole 32b among the positions on the process table 21 is shown by the position 22c.
  • the movement direction of the work 31 may be movement only in the X-axis direction or movement only in the Y-axis direction. Further, the moving direction of the workpiece 31 may be an oblique direction (X-axis direction and Y-axis direction).
  • FIG. 8 is a diagram for explaining a workpiece movement process performed before the second machining hole is drilled.
  • FIG. 8 illustrates a case where the workpiece 31 is viewed from above, and the left drawing in FIG. 8 shows the position of the workpiece 31 when the first machining hole 32a is drilled, and the right drawing in FIG. The position of the workpiece
  • the workpiece After the first machining hole 32a has been drilled (s1), when changing the relative position between the second machining hole 32b and the suction hole 22H, the workpiece should be placed so that all the second machining holes 32b are not on the suction hole 22H. 31 is moved (s2). At this time, the processed first hole 32a may be on the suction hole 22H.
  • the first machining hole setting unit 14 sets the first machining hole 32a, the first machining hole 32a is drilled. At this time, the first machining hole setting unit 14 drills only the first machining hole 32a, and causes the laser machining mechanism 101A to drill the second machining hole 32b.
  • FIG. 9 is a diagram for explaining the processing procedure of the first processing hole.
  • the diagram on the left side of FIG. 9 shows the processing procedure of the first processing hole when all the processing holes 32h are the first processing hole 32a, and the diagram on the right side of FIG. 9 shows the second processing in the processing hole 32h.
  • the processing procedure of the 1st processing hole in case the hole 32b is included is shown.
  • the first processing holes 32a are sequentially drilled according to the original processing program.
  • the processing order of the first processing holes 32a is the first processing holes 32a (1), 32a (2), 32a (3), 32a (4), 32a (5), 32a (6), 32a (7). , 32a (8), 32a (9), the laser processing apparatus 100 moves the irradiation position of the laser beam 1 to each first processing hole 32a in this order.
  • the laser processing apparatus 100 excludes the first processed hole 32a (6) and performs each first processed hole 32a.
  • the processing order of the first processing holes 32a is changed to the first processing holes 32a (1), 32a (2), 32a (3), 32a (4), 32a (5), 32a (7), 32a.
  • the irradiation position of the laser beam 1 is moved to each first processing hole 32a in this order.
  • the position of the first processed hole 32a (7) is moved without moving the irradiation position of the laser beam 1 to the position of the first processed hole 32a (6).
  • the irradiation position of the laser beam 1 is moved.
  • FIG. 10 is a diagram for explaining the workpiece movement process
  • FIG. 11 is a diagram illustrating the procedure of the workpiece movement process.
  • the transfer device 102 includes an arm 41 that carries the workpiece 31 onto the machining table 21 and carries the workpiece 31 out of the machining table 21.
  • the arm 41 has a pad at the lower part, and the pad 31 is bonded to the upper surface of the work 31 so that the work 31 can be lifted.
  • the arm 41 lifts the workpiece 31 after the first machining hole 32a is drilled, and the second machining hole from the position (end portion P1) where the workpiece 31 is placed when the first machining hole 32a is drilled.
  • the workpiece 31 is moved to a position (end portion P2) where the workpiece 31 is placed during the drilling of 32b.
  • the transfer device 102 moves the arm 41 onto the workpiece 31 (ST1). Thereafter, the arm 41 is lowered and the pad of the arm 41 is adhered to the upper surface of the work 31, so that the arm 41 fixes the work 31. And the fixation of the workpiece
  • the transport apparatus 102 lifts the work 31 by raising the arm 41 (ST3). Then, the machining control device 103 moves the machining table 21 by a predetermined coordinate based on the suction hole coordinates and the laser machining data (ST4). At this time, the laser processing apparatus 100 may move the processing table 21 or the workpiece 31. After moving the relative position between the processing table 21 and the work 31, the transfer device 102 lowers the arm 41 and places the work 31 on the processing table 21. Note that the machining control device 103 may move the machining table 21 by a predetermined distance (specified shift amount) set in advance. For example, a specified shift amount is set in the machining control device 103 in a predetermined direction such as how many mm (X ⁇ ⁇ . ⁇ mm, Y ⁇ ⁇ . ⁇ mm).
  • the laser processing apparatus 100 places the workpiece 31 on the processing table 21, then depressurizes the suction hole 22 ⁇ / b> H, and fixes the workpiece 31 on the processing table 21. And the fixation of the workpiece
  • the transfer device 102 raises the arm 41 to a predetermined height, and then retracts the arm 41 from the work 31 (ST6).
  • the laser processing apparatus 100 irradiates the second processing hole 32b with the laser beam 1 to perform the second processing hole 32b (ST7).
  • the laser processing apparatus 100 detects the position of the work 31 by moving the CCD camera by a distance corresponding to the movement distance of the work 31, and 2 based on the detection result. Drilling is performed on the second processed hole 32b.
  • the processing hole 32h sets the first processing hole 32a and the second processing hole 32b by real-time processing.
  • the first processing hole 32a and the second processing hole 32b are set in advance. You may set it. For example, when there is no deviation in the work 31 placement position on the processing table 21 and the placement position of the work 31 is known in advance, the laser processing apparatus 100 before the work 31 is placed on the processing table 21. The position where the processing hole 32h and the suction hole 22H overlap may be calculated. Thereby, even before the work 31 is placed on the processing table 21, the first processing hole 32a and the second processing hole 32b can be set.
  • the area on the processing table 21 is divided into a plurality of areas, and each area is divided into an area where suction holes 22H are arranged (a suction hole arrangement area 25B described later) or an area where suction holes 22H are not arranged (a non-arrangement area described later). 25A).
  • the processing hole 32h is first drilled on the non-arrangement area 25A, and then the processing hole 32h on the suction hole arrangement area 25B is moved onto the non-arrangement area 25A to perform drilling.
  • FIG. 12 is a diagram for explaining an adsorption area and a non-adsorption area on the processing table.
  • work 31 is shown.
  • the area on the processing table 21X is divided into, for example, a stripe shape parallel to the X-axis direction and a stripe shape parallel to the Y-axis direction.
  • FIG. 12 shows a case where the area on the processing table 21X is divided into stripes parallel to the Y-axis direction.
  • the suction holes 22H are arranged in the suction hole arrangement area 25B, and the suction holes 22H are not arranged in the non-arrangement area 25A.
  • the suction holes 22H formed in the suction hole arrangement area 25B are not limited to the case where the suction holes 22H are arranged in one row, and may be any arrangement (for example, two rows).
  • FIG. 12 shows a case where the suction hole arrangement area 25B and the non-arrangement area 25A are continuously arranged in the X-axis direction at intervals of the width L1.
  • the extraction unit 16 previously divides the area on the work 31 into stripes parallel to the Y-axis direction. At this time, the extraction unit 16 divides the area on the work 31 into stripes based on the arrangement of the suction hole arrangement area 25B and the non-arrangement area 25A on the processing table 21X. Specifically, the extraction unit 16 divides the area on the workpiece 31 so that the boundary line between the suction hole arrangement area 25 ⁇ / b> B and the non-placement area 25 ⁇ / b> A becomes a stripe boundary on the workpiece 31.
  • the extraction unit 16 sets the area of the work 31 on the non-arrangement area 25A as the area 35A for the first machining hole 32a, and sets the area of the work 31 on the suction hole arrangement area 25B as the second machining hole 32b. Is set in the area 35B. Thereby, the area 35A and the area 35B are continuously arranged in the X-axis direction at intervals of the width L1, similarly to the arrangement of the suction hole arrangement area 25B and the non-arrangement area 25A.
  • FIG. 13 is a diagram for explaining drilling using the processing table shown in FIG. FIG. 13 shows a cross-sectional view when the machining table 21X and the workpiece 31 are cut in the X-axis direction.
  • the upper diagram in FIG. 13 shows the laser irradiation position when the first machining hole 32a is drilled, and the lower diagram in FIG. 13 shows the laser irradiation position when the second machining hole 32b is drilled. Yes.
  • the laser processing apparatus 100 first drills the first processed hole 32a on the area 35A and skips the drilling of the second processed hole 32b on the area 35B. Then, after the drilling of the first processed hole 32a on the area 35A is completed, the area 35B (the second processed hole 32b on the area 35B) is moved onto the non-arranged area 25A, and the second on the area 35B is moved. The processing hole 32b is drilled.
  • the area 35B is moved on the non-arranged area 25A by moving the area 35B in the X-axis direction by the width L1 of the suction area 25B. Thereby, the area 35B can be moved efficiently.
  • FIG. 12 by shifting the machining table 21X by L1 in the + X direction, it is possible to drill all the second machining holes 32b by the second drilling.
  • the laser machining data for the first machining hole 32a and 2 Drilling is performed using the laser processing data for the second processed hole 32b.
  • the machining table 21X and the work 31 are illustrated as having the same size, but the work 31 may have any size.
  • the processing table 21X is divided into stripes. However, the processing table 21X is divided into a grid and the suction hole placement area 25B is adjacent to the suction hole placement area 25B and the non-placement area 25A.
  • the non-arrangement area 25A may be arranged in a checkered pattern.
  • the first machining hole 32a in the area 35A is drilled, and then the machining table 21 is shifted by the distance L1 to drill the second machining hole 32b in the area 35B.
  • the moving distance of the processing table 21 is not limited to L1.
  • the laser processing apparatus 100 sets the processing table 21 by a distance that can drill all the processing holes 32h of the first processing hole 32a and the second processing hole 32b by the first drilling process and the second drilling process. Move it.
  • the extraction unit 16 divides the area on the work 31 into the area 35A and the area 35B has been described, but the first machining hole setting unit 14 and the second machining hole setting unit 15 are used as the work 31.
  • the upper area may be divided into an area 35A and an area 35B.
  • the suction hole arrangement area 25B and the non-arrangement area 25A have the same width L1, but the suction hole arrangement area 25B and the non-arrangement area 25A may have different widths. .
  • the width of the suction hole arrangement area 25B narrower than the width of the non-arrangement area 25A, it becomes possible to perform drilling efficiently.
  • the width L1 of the suction hole arrangement area 25B and the non-arrangement area 25A may be any size.
  • the width L1 of the suction hole placement area 25B and the non-placement area 25A is set to the same size as the width in the X-axis direction of the scan area by the galvano scanners 3a and 3b.
  • the width of the scan area in the X-axis direction may be a size corresponding to the width L1 of the suction hole arrangement area 25B and the non-arrangement area 25A. Also in this case, the number of movements of the machining table 21 is reduced, and it is possible to perform drilling efficiently.
  • FIG. 12 the case where the suction hole placement area 25B and the non-placement area 25A are provided in the processing table 21X has been described. However, a predetermined jig (a suction area described later) corresponding to the suction hole placement area 25B and the non-placement area 25A is described.
  • the limiting jig 40 may be attached to the processing table 21 described with reference to FIG.
  • FIG. 14 is a diagram showing the configuration of the suction area limiting jig.
  • FIG. 14 shows a perspective view of the suction area limiting jig 40.
  • the suction area limiting jig 40 is a plate (such as a copper plate) having a heat dissipation property having a main surface substantially the same size as the main surface of the processing table 21 and has a substantially flat plate shape.
  • the suction area limiting jig 40 is provided with suction holes 41h at the same position as the suction hole arrangement area 25B only in the suction hole arrangement area 45B corresponding to the suction hole arrangement area 25B.
  • the placement area 45A is not provided with the suction hole 41h.
  • the suction area limiting jig 40 is sucked and fixed onto the processing table 21 by being placed on the processing table 21. Then, by placing the work 31 on the suction area limiting jig 40, the work 31 is suction fixed to the suction area limiting jig 40.
  • the non-arrangement area 45A is the same area as the area where the non-arrangement area 25A was set, and the suction hole 41h is not disposed below the non-arrangement area 45A.
  • the suction hole arrangement area 45B is the same area as the area where the suction hole arrangement area 25B was set, and the suction hole 41h is arranged in the lower part thereof.
  • FIG. 15 is a diagram for explaining drilling using the suction area limiting jig shown in FIG.
  • the laser processing apparatus 100 first drills the first processed hole 32a in the area 35A on the non-arranged area 45A, and skips the drilling of the second processed hole 32b in the area 35B on the suction hole arranged area 45B.
  • the laser processing apparatus 100 moves the area 35B onto the non-arrangement area 45A after the drilling of the first process hole 32a on the non-arrangement area 45A, and drills the first processing hole 32a on the area 35B.
  • the area 35B is moved onto the non-arranged area 45A by moving the area 35B in the X-axis direction by the width L1 of the suction hole arrangement area 45B. Thereby, the area 35B can be moved efficiently.
  • FIG. 14 by shifting the machining table 21X by L1 in the + X direction, it is possible to drill all the second machining holes 32b by the second drilling.
  • the suction area limiting jig 40 is not limited to the configuration shown in FIG.
  • the diameter of the suction area limiting jig 40 is larger than that of the suction holes 22H so that the suction holes 41h overlap all the suction holes 22H.
  • a small suction hole 41h may be provided.
  • An operator may input to the laser processing apparatus 100 or may be registered in the laser processing apparatus 100 in advance.
  • the extraction unit 16 extracts the machining hole 32h located on the suction hole 22H among the machining holes 32h opened in the workpiece 31 has been described.
  • the operator extracts the machining hole 32h located on the suction hole 22H.
  • the operator uses the first machining program used when machining the first machining hole 32a and the second machining hole 32b based on the position of the machining hole 32h not located on the suction hole 22H.
  • a second machining program may be created.
  • the operator causes the first machining hole 32a to be machined by the first machining program, and then moves the workpiece 7 to machine the second machining hole 32b by the second machining program. Accordingly, the laser processing mechanism 101A can drill all the processing holes 32h on the workpiece 7 at a position other than the suction hole 22H even without the extraction unit 16.
  • first machining program and the second machining program may be created by a device other than the machining control device 103.
  • the laser machining apparatus externally inputs a first machining program or a second machining program created by another apparatus from the input unit 11, and uses the inputted first machining program or second machining program for the workpiece 31. Drill holes.
  • the laser processing mechanism 101A drills the workpiece 31 using one laser beam 1 .
  • a laser capable of processing the workpiece 31 using a plurality of laser beams 1 is used.
  • the laser processing method of the present embodiment may be applied to the processing mechanism.
  • FIG. 16 is a diagram showing a configuration example of a laser processing mechanism in which laser beams are multi-axial.
  • the laser processing mechanism 101B includes a spectroscope 8 and two sets of laser heads 9a and 9b.
  • the laser heads 9a and 9b have galvano scan mirrors 2a and 2b, galvano scanners 3a and 3b, and an f ⁇ lens 4, respectively.
  • the laser beam 1 output from the laser oscillator is split by the spectroscope 8, and the split laser beam 1 is simultaneously supplied to the laser heads 9a and 9b. Then, the laser beam 1 irradiated from the laser heads 9a and 9b simultaneously drills each workpiece 31.
  • the two-head laser processing mechanism 101B has been described, but the laser processing mechanism 101B may have four or more heads.
  • the machining hole 32h positioned on the suction hole 22H between the one workpiece 7 and the other workpiece 7 is used. May be different. In other words, even in the same processed hole 32h, one workpiece 7 may be positioned on the suction hole 22H and the other workpiece 7 may not be positioned on the suction hole 22H. For this reason, the laser processing mechanism 101B extracts the processing holes 32h positioned on the suction holes 22H on the laser head 9a side and the laser head 9b, respectively.
  • the laser processing mechanism 101B cannot perform the same operation on the laser head 9a side and the laser head 9b. For this reason, when one workpiece 7 has the machining hole 32h at a position other than on the suction hole 22H and the other workpiece 7 has the machining hole 32h at a position on the suction hole 22H, the other workpiece 7 is subjected to laser. Light 1 is not irradiated.
  • an openable / closable shutter (not shown) that blocks the laser beam 1 is provided on the laser heads 9a and 9b.
  • the laser beam 1 is blocked by closing this shutter.
  • the machining hole 32h (any axis) to one of the workpieces 7 is a skip target, the laser beam irradiation to both the workpieces 7 is skipped, and thereby both the left and right drilling machining are skipped. Also good.
  • the laser processing mechanism 101B splits the laser beam 1 with the spectroscope 8 and supplies the split laser beam 1 to the laser heads 9a and 9b at the same time, but to the laser heads 9a and 9b.
  • the supplied laser beams 1 need not be supplied simultaneously.
  • the laser processing mechanism 101B may alternately distribute the laser beam 1 to the laser heads 9a and 9b. Specifically, the laser beam 1 is divided into two optical paths in order by dividing the laser beam 1 into laser heads 9a and 9b. Then, the laser head 9a and the laser head 9b alternately irradiate laser light to one processing table 21 (left work 7) and the other processing table 21 (right work 7).
  • the laser processing apparatus 100 has a function (for example, display means such as a liquid crystal monitor) for notifying the operator whether or not the processing holes 32h corresponding to all the laser processing data have been finally drilled. Also good.
  • the laser processing apparatus 100 may perform the third and subsequent drilling when all the drilling is not completed by the first and second drilling. For example, the laser processing apparatus 100 moves the position of the workpiece 31 so that the processing hole 32h that has been on the suction hole 22H in both the first and second drilling processes does not become on the suction hole 22H in the third drilling process.
  • the second machining hole 32b on the suction hole 22H is not machined by the first drilling process, and only the first machining hole 32a is drilled.
  • a processing hole can be drilled in the work 31 in a short time.
  • the second processing hole 32b on the suction hole 22H is not processed by the first drilling process, and after the first drilling hole 32a is completed, the relative position between the processing table 21 and the work 31 is shifted. Therefore, the second processed hole 32b on the suction hole 22H can be moved to a position that does not overlap with the suction hole 22H. Accordingly, since the second machining hole 32b on the suction hole 22H can be displaced to perform the drilling into the machining hole 32h, a hole with uniform machining quality can be drilled into the workpiece 31 in a short time. Is possible.
  • the machining table 21 has a suction hole arrangement area 25B and a non-placement area 25A, and an area 35A for the first machining hole 32a and an area 35B for the second machining hole 32a are set in the area on the work 31. Therefore, efficient drilling can be easily performed.
  • the suction area limiting jig 40 has suction hole arrangement areas 45B and non-placement areas 45A, and an area 35A for the first processing hole 32a and an area 35B for the second processing hole 32a are provided on the work 31. Since it is set, efficient drilling can be easily performed.
  • the width L1 of the suction hole arrangement area 25B and the non-arrangement area 25A is the same size as the width in the X-axis direction of the scan area 7 by the galvano scanners 3a and 3b, the number of movements of the processing table 21 is reduced and the efficiency It becomes possible to perform drilling well.
  • the laser processing apparatus, laser processing method, processing control apparatus, and processing control method according to the present invention are suitable for laser processing while adsorbing and fixing a workpiece.

Abstract

A machining control apparatus (103) controls a machining table, which fixes the bottom surface of a work by suction by means of a suction hole, and a laser machining mechanism (101A) for making a hole on the work by irradiating the work with a laser beam. The machining control apparatus is provided with an extracting section (16) which extracts a machining hole which is to be positioned on an upper side of a suction area of the machining table; and a first time machining hole setting section (14), which sets, as holes to be machined for a first time, the machining holes other than the machining hole extracted by the extracting section (16) from among the machining holes to be machined. The machining controls apparatus controls the laser machining mechanism (101A) to perform the first time hole making machining.

Description

レーザ加工装置、レーザ加工方法、加工制御装置および加工制御方法Laser processing apparatus, laser processing method, processing control apparatus, and processing control method
 本発明は、ワークを吸着固定しながらレーザ加工を行うレーザ加工装置、レーザ加工方法、加工制御装置および加工制御方法に関するものである。 The present invention relates to a laser processing apparatus, a laser processing method, a processing control apparatus, and a processing control method for performing laser processing while attracting and fixing a workpiece.
 プリント基板などのワーク(加工対象物)を加工する装置の1つとして、ワークにレーザ光を照射して穴あけ加工を行うレーザ加工装置がある。このような、レーザ加工装置では、穴あけ加工の際にワークが動くと加工穴の位置がずれるので、ワークを加工テーブル上に固定しておく必要がある。 As one of apparatuses that process a workpiece (processing object) such as a printed circuit board, there is a laser processing apparatus that performs drilling by irradiating the workpiece with laser light. In such a laser processing apparatus, if the workpiece moves during drilling, the position of the machining hole is shifted, so the workpiece needs to be fixed on the machining table.
 ワークを加工テーブル上に固定するための方法として、加工テーブル上に設けられた吸着穴上にワークを載置し、吸着穴を減圧する方法がある。この方法では、加工テーブル上に複数の吸着穴を設けておくことにより、ワークの反りなどを防止しながらワークのレーザ加工を行うことができる(例えば、特許文献1参照)。 As a method for fixing the work on the processing table, there is a method of placing the work on a suction hole provided on the processing table and decompressing the suction hole. In this method, by providing a plurality of suction holes on the processing table, it is possible to perform laser processing on the workpiece while preventing warping of the workpiece (see, for example, Patent Document 1).
特開2000-334593号公報JP 2000-334593 A
 しかしながら、上記従来の技術では、ワークの加工穴が加工テーブル上の吸着穴と重なった場合の加工穴と、ワークの加工穴が加工テーブル上の吸着穴と重なっていない場合の加工穴と、で加工品質が異なるという問題があった。吸着穴のある箇所と吸着穴の無い箇所とで加工品質が相違する原因の1つとしてワーク裏面への熱の伝わり方がある。ワーク裏面への熱の伝わり方が異なるのは、吸着穴のある箇所と吸着穴の無い箇所とで、レーザ加工の熱が加工テーブルを伝わって逃げる現象が相違するからである。このため、吸着穴の無い加工テーブル上でワークを加工する場合にはワーク下面の材質が破れない加工条件(エネルギー量、パルス数)であったとしても、吸着穴上のワークを加工する場合にはワーク下面の材質が簡単に破れてしまう場合がある。 However, in the above conventional technique, the processing hole when the workpiece processing hole overlaps the suction hole on the processing table, and the processing hole when the workpiece processing hole does not overlap with the suction hole on the processing table, There was a problem that processing quality was different. One of the causes of the difference in processing quality between a portion with a suction hole and a portion without a suction hole is the way heat is transmitted to the back surface of the workpiece. The reason why heat is transferred to the back surface of the workpiece is different because the phenomenon that the heat of laser processing escapes through the processing table is different between the portion having the suction hole and the portion having no suction hole. For this reason, when machining a workpiece on a machining table without suction holes, even when machining the workpiece on the suction holes, even if the machining conditions (energy amount, number of pulses) do not break the material on the lower surface of the workpiece. In some cases, the material on the lower surface of the workpiece can be easily broken.
 このため、吸着穴のある箇所と吸着穴の無い箇所とで加工品質を同一にするための加工条件の決定に多大な時間を要する場合があるという問題があった。また、吸着穴のある箇所と吸着穴の無い箇所とで加工品質を同じにするため、吸着穴のある箇所ではレーザパワーを弱くして複数回照射する方法があるが、この方法ではレーザ加工に長時間を要するといった問題があった。 For this reason, there has been a problem that it takes a lot of time to determine the processing conditions for making the processing quality the same in the portion with the suction hole and the portion without the suction hole. In addition, in order to make the processing quality the same between the part with the suction hole and the part without the suction hole, there is a method of irradiating multiple times with weak laser power at the part with the suction hole. There was a problem that it took a long time.
 本発明は、上記に鑑みてなされたものであって、均一な加工品質の加工穴を短時間でワークに穴あけ加工するレーザ加工装置、レーザ加工方法、加工制御装置および加工制御方法を得ることを目的とする。 This invention is made in view of the above, Comprising: Obtaining the laser processing apparatus, the laser processing method, the processing control apparatus, and the processing control method which drill a processing hole of uniform processing quality in a workpiece | work in a short time. Objective.
 上述した課題を解決し、目的を達成するために、本発明は、加工対象物であるワークが載置されるとともに載置された前記ワークの底面を吸着する吸着穴によって前記ワークを吸着固定する加工テーブルと、前記加工テーブル上に吸着固定された前記ワークにレーザ光を照射して前記ワークに加工穴の穴あけ加工を行うレーザ加工部と、前記加工テーブルおよび前記レーザ加工部を制御することによって、前記加工テーブル上のワークと前記レーザ光の照射位置との相対位置を移動させる加工制御装置と、を備え、前記加工制御装置は、前記加工テーブル上に前記ワークを載置した場合に前記吸着穴から所定の範囲内である吸着領域の上側に位置することとなる前記加工穴を抽出する抽出部と、加工対象となっている加工穴の中から前記抽出部が抽出した加工穴を除外した残りの加工穴を1回目の穴あけ加工対象である1回目加工穴に設定する第1の設定部と、を有し、前記レーザ加工部は、1回目の穴あけ加工として前記第1の設定部が設定した1回目加工穴の穴あけ加工を行うことを特徴とする。 In order to solve the above-described problems and achieve the object, the present invention suctions and fixes the workpiece by a suction hole that sucks the bottom surface of the workpiece that is placed while the workpiece that is the workpiece is placed. By controlling the processing table, the laser processing unit that irradiates the work fixed to the processing table with a laser beam and irradiates the work with a processing hole, and controls the processing table and the laser processing unit. A machining control device that moves a relative position between the workpiece on the machining table and the irradiation position of the laser beam, and the machining control device absorbs the workpiece when the workpiece is placed on the machining table. An extraction unit that extracts the processed hole that is located above the suction region within a predetermined range from the hole, and the extraction from the processed hole to be processed A first setting unit that sets the remaining processed hole excluding the processed hole extracted by the unit as the first processed hole to be processed for the first time, and the laser processed unit performs the first drilling The first drilling hole set by the first setting unit is drilled as the machining.
 本発明にかかるレーザ加工装置は、加工テーブル上にワークを載置した場合に吸着穴の上側に位置することとなる加工穴を除外した残りの加工穴を1回目の穴あけ加工対象として穴あけ加工するので、均一な加工品質の加工穴を短時間でワークに加工することが可能になるという効果を奏する。 The laser processing apparatus according to the present invention drills the remaining processing holes excluding the processing holes that are positioned above the suction holes when a workpiece is placed on the processing table as the first drilling target. Therefore, there is an effect that it is possible to machine a machining hole with uniform machining quality into a workpiece in a short time.
図1は、実施の形態に係るレーザ加工装置の一部を示す図である。FIG. 1 is a diagram illustrating a part of a laser processing apparatus according to an embodiment. 図2は、実施の形態に係るレーザ加工装置の構成を示すブロック図である。FIG. 2 is a block diagram showing the configuration of the laser processing apparatus according to the embodiment. 図3は、ワークと加工テーブルを説明するための図である。FIG. 3 is a diagram for explaining a workpiece and a machining table. 図4は、加工穴と吸着穴の位置関係を説明するための図である。FIG. 4 is a diagram for explaining the positional relationship between the machining hole and the suction hole. 図5は、図4のA-A断面図である。FIG. 5 is a cross-sectional view taken along the line AA in FIG. 図6は、1回目の穴あけ加工を行う際の加工穴と吸着穴の位置関係を説明するための図である。FIG. 6 is a diagram for explaining the positional relationship between the processing hole and the suction hole when performing the first drilling process. 図7は、2回目の穴あけ加工を行う際の加工穴と吸着穴の位置関係を説明するための図である。FIG. 7 is a diagram for explaining the positional relationship between the processing hole and the suction hole when performing the second drilling process. 図8は、2回目加工穴を穴あけ加工する前に行うワークの移動処理を説明するための図である。FIG. 8 is a diagram for explaining a workpiece moving process performed before the second machining hole is drilled. 図9は、1回目加工穴の加工処理手順を説明するための図である。FIG. 9 is a diagram for explaining the processing procedure of the first processing hole. 図10は、ワークの移動処理を説明するための図である。FIG. 10 is a diagram for explaining the workpiece movement process. 図11は、ワークの移動処理手順を示す図である。FIG. 11 is a diagram illustrating a workpiece movement processing procedure. 図12は、加工テーブル上の吸着エリアと非吸着エリアを説明するための図である。FIG. 12 is a diagram for explaining an adsorption area and a non-adsorption area on the processing table. 図13は、図12に示した加工テーブルを用いた穴あけ加工を説明するための図である。FIG. 13 is a diagram for explaining drilling using the processing table shown in FIG. 図14は、吸着エリア限定治具の構成を示す図である。FIG. 14 is a diagram showing the configuration of the suction area limiting jig. 図15は、図14に示した吸着エリア限定治具を用いた穴あけ加工を説明するための図である。FIG. 15 is a view for explaining drilling using the suction area limiting jig shown in FIG. 14. 図16は、レーザ光を多軸化したレーザ加工機構の構成例を示す図である。FIG. 16 is a diagram illustrating a configuration example of a laser processing mechanism in which laser beams are multi-axial.
符号の説明Explanation of symbols
 1 レーザ光
 2a,2b ガルバノスキャンミラー
 3a,3b ガルバノスキャナ
 4 fθレンズ
 7 スキャンエリア
 8 分光器
 9a,9b レーザヘッド
 11 入力部
 12 データ変換部
 13 吸着穴座標記憶部
 14 1回目加工穴設定部
 15 2回目加工穴設定部
 16 抽出部
 19 制御部
 21,21X 加工テーブル
 22H,41h 吸着穴
 25A,45A 非配置エリア
 25B,45B 吸着穴配置エリア
 31 ワーク
 32a 1回目加工穴
 32b 2回目加工穴
 33 位置決めマーク
 35A,35B エリア
 40 吸着エリア限定治具
 41 アーム
 100 レーザ加工装置
 101A,101B レーザ加工機構
 102 搬送装置
 103 加工制御装置
DESCRIPTION OF SYMBOLS 1 Laser beam 2a, 2b Galvano scan mirror 3a, 3b Galvano scanner 4 f (theta) lens 7 Scan area 8 Spectrometer 9a, 9b Laser head 11 Input part 12 Data conversion part 13 Suction hole coordinate memory | storage part 14 1st process hole setting part 15 2 Second processing hole setting unit 16 Extraction unit 19 Control unit 21, 21X Processing table 22H, 41h Suction hole 25A, 45A Non-arrangement area 25B, 45B Suction hole arrangement area 31 Work 32a First processing hole 32b Second processing hole 33 Positioning mark 35A , 35B area 40 Suction area limiting jig 41 Arm 100 Laser processing device 101A, 101B Laser processing mechanism 102 Conveying device 103 Processing control device
 以下に、本発明の実施の形態に係るレーザ加工装置、レーザ加工方法、加工制御装置および加工制御方法を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 Hereinafter, a laser processing apparatus, a laser processing method, a processing control apparatus, and a processing control method according to an embodiment of the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.
実施の形態.
 図1は、実施の形態に係るレーザ加工装置の一部を示す図である。図1では、レーザ加工装置(レーザ穴あけ加工機)の一部として、ワーク(加工対象物)31の穴あけ加工処理を行うレーザ加工機構(レーザ加工部)101Aの構成を示している。
Embodiment.
FIG. 1 is a diagram illustrating a part of a laser processing apparatus according to an embodiment. FIG. 1 shows a configuration of a laser processing mechanism (laser processing unit) 101A that performs a drilling process of a workpiece (processing object) 31 as a part of a laser processing apparatus (laser drilling machine).
 レーザ加工機構101Aは、ガルバノスキャンミラー2a,2bと、ガルバノスキャナ3a,3bと、fθレンズ4と、ワーク31を載置する加工テーブル21とを備えている。レーザ加工機構101Aは、加工テーブル21の全面に設けられた吸着穴22Hによってワーク31を吸着固定し、このワーク31にレーザ光を照射してワーク31の穴あけ加工を行う。吸着穴22Hは、ワーク31の底面を吸着して加工テーブル21に固定するための穴である。加工テーブル21は、ワーク31を載置した後、吸着穴22Hを減圧することによって、ワーク31の底面を加工テーブル21の上面に吸着させる。 The laser processing mechanism 101A includes galvano scan mirrors 2a and 2b, galvano scanners 3a and 3b, an fθ lens 4, and a processing table 21 on which the work 31 is placed. The laser processing mechanism 101A sucks and fixes the workpiece 31 through suction holes 22H provided on the entire surface of the processing table 21, and irradiates the workpiece 31 with laser light to perform drilling of the workpiece 31. The suction hole 22 </ b> H is a hole for sucking the bottom surface of the work 31 and fixing it to the processing table 21. After the workpiece 31 is placed on the machining table 21, the suction hole 22 </ b> H is depressurized so that the bottom surface of the workpiece 31 is attracted to the upper surface of the machining table 21.
 ガルバノスキャンミラー2aは、図示省略したレーザ発振器が出力するレーザ光1を受ける第1のガルバノスキャンミラーである。ガルバノスキャンミラー2aは、ガルバノスキャナ3aの駆動軸に接続されており、ガルバノスキャナ3aの駆動軸は、Z軸方向を向いている。ガルバノスキャンミラー2aのミラー面は、ガルバノスキャナ3aの駆動軸の回転に伴って変位し、入射するレーザ光1の光軸を第1の方向(例えばX軸方向)に偏向走査して、ガルバノスキャンミラー2bに送出する。 The galvano scan mirror 2a is a first galvano scan mirror that receives the laser beam 1 output from a laser oscillator (not shown). The galvano scan mirror 2a is connected to the drive shaft of the galvano scanner 3a, and the drive shaft of the galvano scanner 3a faces the Z-axis direction. The mirror surface of the galvano scan mirror 2a is displaced as the drive shaft of the galvano scanner 3a rotates, and the optical axis of the incident laser beam 1 is deflected and scanned in a first direction (for example, the X-axis direction). Send to mirror 2b.
 ガルバノスキャンミラー2bは、ガルバノスキャンミラー2aからのレーザ光1を受ける第2のガルバノスキャンミラーである。ガルバノスキャンミラー2bは、ガルバノスキャナ3bの駆動軸に接続されており、ガルバノスキャナ3bの駆動軸は、Y軸方向を向いている。ガルバノスキャンミラー2bのミラー面は、ガルバノスキャナ3bの駆動軸の回転に伴って変位し、入射するレーザ光1の光軸を第1の方向にほぼ直交する第2の方向(例えばY軸方向)に偏向走査してfθレンズ4に送出する。 The galvano scan mirror 2b is a second galvano scan mirror that receives the laser beam 1 from the galvano scan mirror 2a. The galvano scan mirror 2b is connected to the drive shaft of the galvano scanner 3b, and the drive shaft of the galvano scanner 3b faces the Y-axis direction. The mirror surface of the galvano scan mirror 2b is displaced in accordance with the rotation of the drive shaft of the galvano scanner 3b, and the second direction (for example, the Y-axis direction) is substantially perpendicular to the optical axis of the incident laser beam 1 in the first direction. Are deflected and scanned and sent to the fθ lens 4.
 fθレンズ4は、XY面内で2次元走査されたレーザ光1をワーク31上に集光照射する。プリント基板材料やセラミックグリーンシートなどのワーク31は平面形状を有しており、加工テーブル21は、ワーク31をXY平面内に載置する。 The fθ lens 4 condenses and irradiates the workpiece 31 with the laser beam 1 that is two-dimensionally scanned in the XY plane. A work 31 such as a printed circuit board material or a ceramic green sheet has a planar shape, and the processing table 21 places the work 31 in the XY plane.
 レーザ加工機構101Aでは、加工テーブル21をXY平面内で移動させるとともに、ガルバノスキャナ3a,3bによってレーザ光1を2次元走査する。これにより、ガルバノスキャナ3a,3bによってレーザ光1を2次元走査できる範囲内であるスキャンエリア7内のワーク31に1~複数の加工穴32hが形成(穴あけ加工)される。 In the laser processing mechanism 101A, the processing table 21 is moved in the XY plane, and the laser beam 1 is two-dimensionally scanned by the galvano scanners 3a and 3b. As a result, one to a plurality of machining holes 32h are formed (drilling) in the work 31 in the scan area 7 that is within the range in which the laser light 1 can be two-dimensionally scanned by the galvano scanners 3a and 3b.
 図2は、実施の形態に係るレーザ加工装置の構成を示すブロック図である。レーザ加工装置100は、加工制御装置103と、レーザ加工機構101Aと、搬送装置102とを有している。 FIG. 2 is a block diagram showing the configuration of the laser processing apparatus according to the embodiment. The laser processing apparatus 100 includes a processing control apparatus 103, a laser processing mechanism 101A, and a transport apparatus 102.
 加工制御装置103は、レーザ加工機構101Aおよび搬送装置102に接続されており、レーザ加工機構101Aおよび搬送装置102を制御するコンピュータなどの装置である。加工制御装置103は、入力部11、データ変換部12、吸着穴座標記憶部13、1回目加工穴設定部14、2回目加工穴設定部15、抽出部16、制御部19を備えている。 The processing control device 103 is connected to the laser processing mechanism 101A and the transport device 102, and is a device such as a computer that controls the laser processing mechanism 101A and the transport device 102. The processing control device 103 includes an input unit 11, a data conversion unit 12, a suction hole coordinate storage unit 13, a first processing hole setting unit 14, a second processing hole setting unit 15, an extraction unit 16, and a control unit 19.
 入力部11は、ワーク31に穴あけ加工する穴の座標データ、ワーク31への穴あけ加工に関する種々の指示情報などを入力する。データ変換部12は、入力部11に入力された座標データをレーザ加工データにデータ変換する。レーザ加工データは、穴あけ加工する際に加工制御装置103が用いる座標データであり、加工テーブルデータとガルバノデータとで表される。ワーク31には、複数の穴が開けられるので、各穴の位置は穴の位置毎に加工テーブルデータとガルバノデータとで表される。加工テーブルデータは、加工テーブル21と加工ヘッドとの相対座標であり、例えば加工テーブル21を移動させる位置のデータ(座標)である。ガルバノデータは、ガルバノスキャンミラー2a,2b、ガルバノスキャナ3a,3bによって調整されるレーザ光の照射位置(座標)である。ガルバノデータは、スキャンエリア7内での座標を表している。 The input unit 11 inputs the coordinate data of the hole to be drilled in the workpiece 31, various instruction information regarding the drilling of the workpiece 31, and the like. The data conversion unit 12 converts the coordinate data input to the input unit 11 into laser processing data. The laser processing data is coordinate data used by the processing control device 103 when drilling, and is expressed by processing table data and galvano data. Since a plurality of holes are formed in the work 31, the position of each hole is represented by processing table data and galvano data for each hole position. The processing table data is a relative coordinate between the processing table 21 and the processing head, and is, for example, data (coordinates) at a position where the processing table 21 is moved. The galvano data is the irradiation position (coordinates) of the laser beam adjusted by the galvano scan mirrors 2a and 2b and the galvano scanners 3a and 3b. The galvano data represents coordinates in the scan area 7.
 吸着穴座標記憶部13は、加工テーブル21上に設けられた吸着穴22Hの位置(以下、吸着穴座標という)を記憶するメモリなどである。吸着穴座標は、吸着穴22Hの中心座標および径であり、レーザ加工装置100に固有の数値として予め吸着穴座標記憶部13に格納しておく。 The suction hole coordinate storage unit 13 is a memory or the like that stores the position of the suction hole 22H provided on the processing table 21 (hereinafter referred to as suction hole coordinates). The suction hole coordinates are the center coordinates and diameter of the suction hole 22H, and are stored in advance in the suction hole coordinate storage unit 13 as numerical values unique to the laser processing apparatus 100.
 抽出部16は、吸着穴座標記憶部13が記憶する吸着穴座標と、データ変換部12が変換したレーザ加工データと、に基づいて、ワーク31に開ける加工穴32hのうち、吸着穴22H上に位置する加工穴32hを抽出する。 Based on the suction hole coordinates stored in the suction hole coordinate storage unit 13 and the laser processing data converted by the data conversion unit 12, the extraction unit 16 places the suction hole 22 </ b> H on the suction hole 22 </ b> H. The processing hole 32h located is extracted.
 1回目加工穴設定部14は、レーザ加工データから抽出部16が抽出した加工穴32hを除外するとともに、加工穴32hを除外した後のレーザ加工データを用いて、ワーク31に開ける加工穴32hの中から1回目(一巡目)の穴あけ加工で開口させる穴(後述の1回目加工穴32a)を設定する。換言すると、1回目加工穴設定部14は、1回目加工穴32aを開口させるためのレーザ加工データを生成する。 The first machining hole setting unit 14 excludes the machining hole 32h extracted by the extraction unit 16 from the laser machining data, and uses the laser machining data after removing the machining hole 32h to define the machining hole 32h to be opened in the workpiece 31. A hole to be opened in the first (first round) drilling process from the inside (first-processed hole 32a described later) is set. In other words, the first machining hole setting unit 14 generates laser machining data for opening the first machining hole 32a.
 2回目加工穴設定部15は、抽出部16が抽出した加工穴32hを用いて、ワーク31に開ける加工穴32hの中から2回目(二巡目)の穴あけ加工で開口させる穴(後述の2回目加工穴32b)を設定する。換言すると、2回目加工穴設定部15は、2回目加工穴32bを開口させるためのレーザ加工データを生成する。これにより、2回目加工穴設定部15は、ワーク31に開ける加工穴32hの中から吸着穴22H上に位置している加工穴32hを2回目加工穴32bに設定する。制御部19は、入力部11、データ変換部12、吸着穴座標記憶部13、1回目加工穴設定部14、2回目加工穴設定部15、抽出部16を制御する。 The second machining hole setting unit 15 uses the machining hole 32h extracted by the extraction unit 16 to open a hole (2 described later) from the machining hole 32h opened in the work 31 by the second (second round) drilling process. The second machining hole 32b) is set. In other words, the second machining hole setting unit 15 generates laser machining data for opening the second machining hole 32b. Thereby, the second machining hole setting unit 15 sets the machining hole 32h positioned on the suction hole 22H from the machining holes 32h opened in the workpiece 31 as the second machining hole 32b. The control unit 19 controls the input unit 11, the data conversion unit 12, the suction hole coordinate storage unit 13, the first machining hole setting unit 14, the second machining hole setting unit 15, and the extraction unit 16.
 本実施の形態では、最初にワーク31を加工テーブル21上に載置した際に吸着穴22H上とならない加工穴32hを、1回目加工穴32aに設定して1回目加工穴32aの穴あけ加工を行う。この後、ワーク31を加工テーブル21上で移動させることにより、ワーク31と加工テーブル21との相対位置を移動させる。このとき、最初にワーク31を加工テーブル21上に載置した際に吸着穴22H上にあった2回目加工穴32bが、吸着穴22H上とならないようワーク31を加工テーブル21上で移動させる。そして、2回目加工穴32bの穴あけ加工を行う。これにより、レーザ加工装置100は、1回目加工穴32aと2回目加工穴32bの両方を、吸着穴22H上とならない位置で穴あけ加工する。 In the present embodiment, when the work 31 is first placed on the processing table 21, the processing hole 32h that does not become on the suction hole 22H is set as the first processing hole 32a and the first processing hole 32a is drilled. Do. Thereafter, the relative position between the workpiece 31 and the machining table 21 is moved by moving the workpiece 31 on the machining table 21. At this time, the work 31 is moved on the processing table 21 so that the second processing hole 32b that was on the suction hole 22H when the work 31 is first placed on the processing table 21 is not on the suction hole 22H. And the drilling process of the 2nd process hole 32b is performed. As a result, the laser processing apparatus 100 drills both the first processed hole 32a and the second processed hole 32b at positions that do not become above the suction holes 22H.
 レーザ加工装置100は、ワーク31に予め設けておいたアライメントマーク(位置決めマーク)を、CCD(Charge Coupled Device)カメラなどを用いて検出し、アライメントマークの位置に基づいてワーク31と加工テーブル21との相対位置を補正する。そして、レーザ加工装置100は、補正後のワーク31の座標に基づいて、ワーク31への穴あけ加工を行う。 The laser processing apparatus 100 detects an alignment mark (positioning mark) provided in advance on the work 31 by using a CCD (Charge Coupled Device) camera or the like, and based on the position of the alignment mark, the work 31 and the processing table 21 are detected. Correct the relative position of. Then, the laser processing apparatus 100 performs a drilling process on the workpiece 31 based on the corrected coordinates of the workpiece 31.
 搬送装置102は、ワーク31の加工テーブル21上への搬入、搬出を行う装置(ローダー/アンローダー)である。本実施の形態の搬送装置102は、1回目加工穴32aの穴あけ加工を行なった後、2回目加工穴32bが吸着穴22H上とならないようワーク31を加工テーブル21上で移動させる。 The transfer device 102 is a device (loader / unloader) that loads and unloads the workpiece 31 onto and from the processing table 21. After carrying out the drilling process of the first process hole 32a, the transfer apparatus 102 of the present embodiment moves the work 31 on the process table 21 so that the second process hole 32b does not become on the suction hole 22H.
 加工制御装置103は、搬送装置102に、吸着穴座標とレーザ加工データとに基づいた所定の座標だけワーク31と加工テーブル21との相対位置を移動させる。また、加工制御装置103は、吸着穴座標とレーザ加工データとに基づいた所定の座標位置に穴あけ加工を行うようレーザ加工機構101Aを制御する。 The machining control device 103 moves the relative position between the workpiece 31 and the machining table 21 by a predetermined coordinate based on the suction hole coordinates and the laser machining data. Further, the processing control device 103 controls the laser processing mechanism 101A so as to perform drilling processing at a predetermined coordinate position based on the suction hole coordinates and the laser processing data.
 加工制御装置103は、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)を含んで構成されている。加工制御装置103では、CPUがユーザによる入力部からの入力によって、ROMに格納されている各種制御プログラムやアプリケーションプログラムなどを読み出してRAM内のプログラム格納領域に展開して各種処理を実行し、この処理に際して生じる各種データをRAM内に形成されるデータ格納領域に一時的に記憶して、レーザ加工装置100を制御する。CPUが実行するプログラムは、1回目加工穴32aや2回目加工穴32bを設定するプログラム、1回目加工穴32aの加工順序を算出するプログラム、2回目加工穴32bの加工順序を算出するプログラム、ワーク31と加工テーブル21との相対位置を移動させる際の加工テーブル21の移動量を算出するプログラムなどである。 The machining control device 103 includes a CPU (Central Processing Unit), a ROM (Read Only Memory), and a RAM (Random Access Memory). In the processing control device 103, the CPU reads various control programs and application programs stored in the ROM in response to an input from the input unit by the user, develops them in a program storage area in the RAM, and executes various processes. Various data generated during processing is temporarily stored in a data storage area formed in the RAM, and the laser processing apparatus 100 is controlled. The program executed by the CPU is a program for setting the first machining hole 32a and the second machining hole 32b, a program for calculating the machining order of the first machining hole 32a, a program for calculating the machining order of the second machining hole 32b, a workpiece A program for calculating the amount of movement of the machining table 21 when the relative position between the machining table 21 and the machining table 21 is moved.
 なお、加工テーブル21上へのワーク31の載置や、加工テーブル21上でのワーク31の移動は手動で行ってもよい。この場合、レーザ加工装置100は、搬送装置102を有していなくてもよい。 It should be noted that the placement of the workpiece 31 on the machining table 21 and the movement of the workpiece 31 on the machining table 21 may be performed manually. In this case, the laser processing apparatus 100 does not have to include the transport apparatus 102.
 つぎに、本実施の形態に係るレーザ加工装置100のレーザ加工方法について説明する。レーザ加工装置100は、吸着穴22H上の加工穴32hと、吸着穴22H以外の位置にある加工穴32hとの間の加工品質差をなくすため、吸着穴22Hのある部分には穴あけ加工を施さず、吸着穴22H以外の位置で穴あけ加工を行う。具体的には、加工制御装置103は、吸着穴22Hの上に相当するレーザ加工データの穴には穴あけ加工を行わず、この穴あけ加工をスキップさせる。 Next, a laser processing method of the laser processing apparatus 100 according to the present embodiment will be described. In order to eliminate the difference in processing quality between the processing hole 32h on the suction hole 22H and the processing hole 32h located at a position other than the suction hole 22H, the laser processing apparatus 100 performs a drilling process on a portion having the suction hole 22H. First, drilling is performed at a position other than the suction holes 22H. Specifically, the machining control device 103 skips the drilling process without performing the drilling process on the hole of the laser machining data corresponding to the suction hole 22H.
 図3は、ワークと加工テーブルを説明するための図である。図3では、ワーク31と加工テーブル21の斜視図を示している。加工テーブル21上には、1~複数の吸着穴22Hが設けられており、加工テーブル21上にワーク31が載置されると、吸着穴22Hによってワーク31が加工テーブル21上に固定される。そして、レーザ加工装置100は、ワーク31を加工テーブル21上に固定した状態で加工穴32hの穴あけ加工を行う。また、ワーク31は、例えば矩形状をなしており、上面側の四隅などに位置決めマーク33が設けられている。 FIG. 3 is a diagram for explaining the workpiece and the machining table. In FIG. 3, the perspective view of the workpiece | work 31 and the process table 21 is shown. One to a plurality of suction holes 22H are provided on the processing table 21, and when the work 31 is placed on the processing table 21, the work 31 is fixed on the processing table 21 by the suction holes 22H. And the laser processing apparatus 100 performs the drilling of the process hole 32h in the state which fixed the workpiece | work 31 on the process table 21. FIG. The work 31 has a rectangular shape, for example, and positioning marks 33 are provided at four corners on the upper surface side.
 レーザ加工装置100が加工穴32hの穴あけ加工を行う際には、位置決めマーク33を用いてワーク31の正確な位置を判断する。具体的には、レーザ加工装置100が有するCCDカメラが、ワーク31の位置決めマーク33を画像認識することによって、穴あけ加工すべき位置をレーザ加工装置100に固有の位置として特定する。換言すると、加工制御装置103のデータ変換部12は、ワーク31の配置(回転、伸縮など)に応じたレーザ加工装置100に固有のアルゴリズムを有している。 When the laser processing apparatus 100 performs the drilling of the processing hole 32h, the accurate position of the workpiece 31 is determined using the positioning mark 33. Specifically, the CCD camera included in the laser processing apparatus 100 identifies the position to be drilled as a position unique to the laser processing apparatus 100 by recognizing an image of the positioning mark 33 of the workpiece 31. In other words, the data conversion unit 12 of the machining control device 103 has an algorithm unique to the laser machining device 100 according to the arrangement (rotation, expansion / contraction, etc.) of the work 31.
 CCDカメラは、ワーク31が加工テーブル21に固定された後、ワーク31の四隅に配置された位置決めマーク33を撮像する。その後、レーザ加工装置100の加工ヘッドからレーザ光1が発射されて所定の位置に穴あけ加工がなされる。ワーク31の穴あけ加工を行う場合には、レーザ加工データに従った順序で穴あけ加工される。その際、ワーク31の回転や伸縮などに応じた穴あけ加工を行うために、加工制御装置103は、ワーク31の位置の補正計算を実行しながら穴あけ加工の狙い位置を特定する。 The CCD camera images the positioning marks 33 arranged at the four corners of the work 31 after the work 31 is fixed to the processing table 21. Thereafter, the laser beam 1 is emitted from the processing head of the laser processing apparatus 100, and drilling is performed at a predetermined position. When drilling the workpiece 31, the holes are drilled in the order according to the laser processing data. At that time, in order to perform drilling according to the rotation or expansion / contraction of the workpiece 31, the machining control device 103 specifies the target position of the drilling while executing the correction calculation of the position of the workpiece 31.
 ワーク31を加工テーブル21上に固定すると、加工穴32hと吸着穴22Hとが重なる場合がある。図4は、加工穴と吸着穴の位置関係を説明するための図である。図4では、ワーク31と加工テーブル21とを上面から見た場合を図示している。ワーク31には複数の加工穴32hを形成する必要があり、また加工テーブル21上には複数の吸着穴22Hが設けられている。このため、ワーク31の底面を加工テーブル21の上面に固定すると、吸着穴22H上に位置する加工穴32hや、吸着穴22H上以外に位置する加工穴32hが存在することとなる。 When the work 31 is fixed on the processing table 21, the processing hole 32h and the suction hole 22H may overlap each other. FIG. 4 is a diagram for explaining the positional relationship between the machining hole and the suction hole. In FIG. 4, the case where the workpiece | work 31 and the process table 21 are seen from the upper surface is shown in figure. It is necessary to form a plurality of processing holes 32h in the work 31, and a plurality of suction holes 22H are provided on the processing table 21. For this reason, when the bottom surface of the work 31 is fixed to the upper surface of the processing table 21, there are a processing hole 32h positioned on the suction hole 22H and a processing hole 32h positioned on the suction hole 22H.
 図5は、図4のA-A断面図である。ワーク31は、例えば2層構造を有しており、上層側が例えば樹脂材料で形成され、下層側が例えば銅などによって形成されている。そして、レーザ加工装置100が、ワーク31の穴あけ加工を行う際には、ワーク31の下層側を貫通させないよう、ワーク31の上層側にのみ加工穴32hを形成する。ところが、加工予定の加工穴32hが吸着穴22Hの上部にある場合には、レーザ加工の熱が原因でワーク31の下層側が破れてしまう場合があった。 FIG. 5 is a cross-sectional view taken along the line AA in FIG. The work 31 has, for example, a two-layer structure, and the upper layer side is made of, for example, a resin material, and the lower layer side is made of, for example, copper. And when the laser processing apparatus 100 drills the workpiece 31, the machining hole 32h is formed only on the upper layer side of the workpiece 31 so as not to penetrate the lower layer side of the workpiece 31. However, when the processing hole 32h to be processed is above the suction hole 22H, the lower layer side of the workpiece 31 may be torn due to the heat of laser processing.
 本実施の形態では、吸着穴22H上で穴あけ加工しないために、データ変換部12が加工穴32hの狙い位置を算出した後に、抽出部16は、レーザ加工装置100に固有の加工穴32hの位置が吸着穴22H上の位置であるか否かの判定を行なって、吸着穴22H上の加工穴32hを抽出する。加工制御装置103の1回目加工穴設定部14は、抽出部16が加工穴32hの狙い位置が吸着穴22H上であると判断した場合、この加工穴32hへはレーザ照射の指令を出さない。 In the present embodiment, in order not to perform the drilling process on the suction hole 22H, the extraction unit 16 calculates the target position of the processing hole 32h after the data conversion unit 12 calculates the target position of the processing hole 32h. Is a position on the suction hole 22H, the processed hole 32h on the suction hole 22H is extracted. When the extraction unit 16 determines that the target position of the processing hole 32h is on the suction hole 22H, the first processing hole setting unit 14 of the processing control device 103 does not issue a laser irradiation command to the processing hole 32h.
 なお、抽出部16は、加工穴32hの位置が吸着穴22H上の位置であるか否かの判定を、各吸着穴22Hの中心から所定の範囲内を吸着領域とし、この吸着領域内の上部に加工穴32hの位置があるか否かに基づいて、各加工穴32hの位置が吸着穴22H上の位置であるか否かを判定する。例えば、抽出部16は、各加工穴32hの位置が吸着穴22H上の位置であるか否かの判定を、加工穴32h毎に加工穴32hの全面積が吸着穴22H上にあるか否かに基づいて判定してもよいし、加工穴32h毎に加工穴32hの一部が吸着穴22H上にあるか否かに基づいて判定してもよい。また、抽出部16は、各吸着穴22Hよりも所定サイズだけ大きな領域を設け、この吸着穴22Hよりも大きなエリア上に加工穴32hの位置があるか否かに基づいて、加工穴32h毎に加工穴32hの位置が吸着穴22H上の位置であるか否かを判定してもよい。 The extraction unit 16 determines whether or not the position of the processing hole 32h is a position on the suction hole 22H, using a predetermined range from the center of each suction hole 22H as an adsorption region, and an upper portion in the suction region. Based on whether or not there is a position of the machining hole 32h, it is determined whether or not the position of each machining hole 32h is a position on the suction hole 22H. For example, the extraction unit 16 determines whether or not the position of each processing hole 32h is a position on the suction hole 22H, and whether or not the entire area of the processing hole 32h is on the suction hole 22H for each processing hole 32h. It may be determined on the basis of whether or not a part of the processing hole 32h is on the suction hole 22H for each processing hole 32h. Further, the extraction unit 16 provides an area larger than each suction hole 22H by a predetermined size, and for each processing hole 32h based on whether the position of the processing hole 32h is on an area larger than the suction hole 22H. It may be determined whether or not the position of the processing hole 32h is a position on the suction hole 22H.
 図6は、1回目の穴あけ加工を行う際の加工穴と吸着穴の位置関係を説明するための図であり、図7は、2回目の穴あけ加工を行う際の加工穴と吸着穴の位置関係を説明するための図である。図6および図7では、ワーク31と加工テーブル21の斜視図を示している。 FIG. 6 is a diagram for explaining the positional relationship between the processing hole and the suction hole when performing the first drilling process, and FIG. 7 is the position of the processing hole and the suction hole when performing the second drilling process. It is a figure for demonstrating a relationship. 6 and 7 show perspective views of the work 31 and the processing table 21. FIG.
 1回目加工穴設定部14によって、1回目の穴あけ加工に設定される加工穴32hは、ワーク31を加工テーブル21上に載置した場合に加工穴32hが吸着穴22Hに重ならない加工穴32hであり、以下では1回目加工穴32aという。図6では、1回目加工穴32aを穴あけ加工する際の加工テーブル21上のワーク31の配置位置(ワーク31の外周部)を配置位置P1で示している。また、図6では、加工テーブル21上の位置のうち1回目加工穴32aの下部となる位置を位置22aで示し、加工テーブル21上の位置のうち2回目加工穴32bの下部となる位置を位置22bで示している。 The machining hole 32h set for the first drilling by the first machining hole setting unit 14 is a machining hole 32h in which the machining hole 32h does not overlap the suction hole 22H when the work 31 is placed on the machining table 21. In the following, it will be referred to as a first processed hole 32a. In FIG. 6, the arrangement position of the work 31 (the outer peripheral part of the work 31) on the machining table 21 when the first machining hole 32a is drilled is indicated by the arrangement position P1. Further, in FIG. 6, the position below the first machining hole 32 a among the positions on the machining table 21 is indicated by a position 22 a, and the position below the second machining hole 32 b among the positions on the machining table 21 is positioned. This is indicated by 22b.
 また、2回目加工穴設定部15によって、2回目の穴あけ加工に設定される加工穴32h(1回目の穴あけ加工に設定されなかった加工穴32h)は、ワーク31を加工テーブル21上に載置した場合に加工穴32hが吸着穴22Hに重なる加工穴32hであり、以下では2回目加工穴32bという。 Further, the machining hole 32h set in the second drilling process by the second machining hole setting unit 15 (the machining hole 32h not set in the first drilling process) places the workpiece 31 on the machining table 21. In this case, the processing hole 32h is a processing hole 32h that overlaps the suction hole 22H, and is hereinafter referred to as a second processing hole 32b.
 本実施の形態では、1回目加工穴32aを穴あけ加工した後、ワーク31をXY平面上で移動させることにより、2回目加工穴32bと吸着穴22Hとの相対位置を変える。図7では、1回目加工穴32aを穴あけ加工する際の加工テーブル21上のワーク31の位置を端部P1で示し、2回目加工穴32bを穴あけ加工する際の加工テーブル21上のワーク31の配置位置を配置位置P2で示している。また、図7では、加工テーブル21上の位置のうち2回目加工穴32bの下部となる位置を位置22cで示している。なお、ワーク31の移動方向は、X軸方向のみの移動であってもよいし、Y軸方向のみの移動であってもよい。また、ワーク31の移動方向は、斜め方向(X軸方向およびY軸方向)であってもよい。 In the present embodiment, after the first machining hole 32a is drilled, the relative position between the second machining hole 32b and the suction hole 22H is changed by moving the workpiece 31 on the XY plane. In FIG. 7, the position of the workpiece 31 on the machining table 21 when the first machining hole 32a is drilled is indicated by an end P1, and the position of the workpiece 31 on the machining table 21 when the second machining hole 32b is drilled. The arrangement position is indicated by an arrangement position P2. Moreover, in FIG. 7, the position used as the lower part of the 2nd process hole 32b among the positions on the process table 21 is shown by the position 22c. Note that the movement direction of the work 31 may be movement only in the X-axis direction or movement only in the Y-axis direction. Further, the moving direction of the workpiece 31 may be an oblique direction (X-axis direction and Y-axis direction).
 図8は、2回目加工穴を穴あけ加工する前に行うワークの移動処理を説明するための図である。図8では、ワーク31を上面から見た場合を図示しており、図8の左側の図が1回目加工穴32aを穴あけ加工する際のワーク31の位置を示し、図8の右側の図が2回目加工穴32bを穴あけ加工する際のワーク31の位置を示している。 FIG. 8 is a diagram for explaining a workpiece movement process performed before the second machining hole is drilled. FIG. 8 illustrates a case where the workpiece 31 is viewed from above, and the left drawing in FIG. 8 shows the position of the workpiece 31 when the first machining hole 32a is drilled, and the right drawing in FIG. The position of the workpiece | work 31 at the time of drilling the 2nd process hole 32b is shown.
 1回目加工穴32aを穴あけ加工した後(s1)、2回目加工穴32bと吸着穴22Hとの相対位置を変える際には、全ての2回目加工穴32bが吸着穴22H上とならないよう、ワーク31を移動させる(s2)。このとき、加工済みとなっている1回目加工穴32aが吸着穴22H上となってもよい。 After the first machining hole 32a has been drilled (s1), when changing the relative position between the second machining hole 32b and the suction hole 22H, the workpiece should be placed so that all the second machining holes 32b are not on the suction hole 22H. 31 is moved (s2). At this time, the processed first hole 32a may be on the suction hole 22H.
 1回目加工穴設定部14が、1回目加工穴32aを設定すると、1回目加工穴32aの穴あけ加工処理が行われる。このとき、1回目加工穴設定部14は、1回目加工穴32aのみを穴あけ加工し、2回目加工穴32bをスキップするようレーザ加工機構101Aに穴あけ加工させる。 When the first machining hole setting unit 14 sets the first machining hole 32a, the first machining hole 32a is drilled. At this time, the first machining hole setting unit 14 drills only the first machining hole 32a, and causes the laser machining mechanism 101A to drill the second machining hole 32b.
 図9は、1回目加工穴の加工処理手順を説明するための図である。図9の左側の図は、加工穴32hが全て1回目加工穴32aである場合の1回目加工穴の加工処理手順を示し、図9の右側の図は、加工穴32hの中に2回目加工穴32bが含まれている場合の1回目加工穴の加工処理手順を示している。 FIG. 9 is a diagram for explaining the processing procedure of the first processing hole. The diagram on the left side of FIG. 9 shows the processing procedure of the first processing hole when all the processing holes 32h are the first processing hole 32a, and the diagram on the right side of FIG. 9 shows the second processing in the processing hole 32h. The processing procedure of the 1st processing hole in case the hole 32b is included is shown.
 レーザ加工装置100が穴あけ加工する加工穴32hが全て1回目加工穴32aであれば、元々の加工プログラムに従って順番に1回目加工穴32a(加工穴32h)を穴あけ加工する。例えば、1回目加工穴32aの加工順序が、1回目加工穴32a(1)、32a(2)、32a(3)、32a(4)、32a(5)、32a(6)、32a(7)、32a(8)、32a(9)の順番である場合、レーザ加工装置100は、この順番で各1回目加工穴32aへレーザ光1の照射位置を移動させていく。 If all the processing holes 32h to be drilled by the laser processing apparatus 100 are the first processing holes 32a, the first processing holes 32a (processing holes 32h) are sequentially drilled according to the original processing program. For example, the processing order of the first processing holes 32a is the first processing holes 32a (1), 32a (2), 32a (3), 32a (4), 32a (5), 32a (6), 32a (7). , 32a (8), 32a (9), the laser processing apparatus 100 moves the irradiation position of the laser beam 1 to each first processing hole 32a in this order.
 このような場合において、例えば加工穴32hに2回目加工穴32bが含まれていれば、2回目加工穴32bを除外して、1回目加工穴32aのみを順番に穴あけ加工する。例えば、1回目加工穴32a(6)が2回目加工穴32bであれば、レーザ加工装置100は、1回目加工穴32a(6)を除外して各1回目加工穴32a穴あけ加工していく。具体的には、1回目加工穴32aの加工順序を、1回目加工穴32a(1)、32a(2)、32a(3)、32a(4)、32a(5)、32a(7)、32a(8)、32a(9)の順番で穴あけ加工するために、この順番で各1回目加工穴32aへレーザ光1の照射位置を移動させていく。換言すると、1回目加工穴32a(5)を穴あけ加工した後、1回目加工穴32a(6)の位置にレーザ光1の照射位置を移動させることなく、1回目加工穴32a(7)の位置にレーザ光1の照射位置を移動させる。 In such a case, for example, if the second processed hole 32b is included in the processed hole 32h, the second processed hole 32b is excluded and only the first processed hole 32a is sequentially drilled. For example, if the first processed hole 32a (6) is the second processed hole 32b, the laser processing apparatus 100 excludes the first processed hole 32a (6) and performs each first processed hole 32a. Specifically, the processing order of the first processing holes 32a is changed to the first processing holes 32a (1), 32a (2), 32a (3), 32a (4), 32a (5), 32a (7), 32a. (8) In order to perform drilling in the order of 32a (9), the irradiation position of the laser beam 1 is moved to each first processing hole 32a in this order. In other words, after the first processed hole 32a (5) is drilled, the position of the first processed hole 32a (7) is moved without moving the irradiation position of the laser beam 1 to the position of the first processed hole 32a (6). The irradiation position of the laser beam 1 is moved.
 つぎに、ワーク31の加工テーブル21上での移動処理について説明する。図10は、ワークの移動処理を説明するための図であり、図11は、ワークの移動処理手順を示す図である。 Next, the movement process of the workpiece 31 on the machining table 21 will be described. FIG. 10 is a diagram for explaining the workpiece movement process, and FIG. 11 is a diagram illustrating the procedure of the workpiece movement process.
 搬送装置102は、ワーク31を加工テーブル21上へ搬入するとともに、ワーク31を加工テーブル21上から搬出するアーム41を備えている。アーム41は、下部にパッドを有しており、このパッドがワーク31の上面に接着することによって、ワーク31を持ち上げることができる構成となっている。アーム41は、1回目加工穴32aが穴あけ加工された後のワーク31を持ち上げて、1回目加工穴32aの穴あけ加工時にワーク31が載置されていた位置(端部P1)から2回目加工穴32bの穴あけ加工時にワーク31を載置する位置(端部P2)までワーク31を移動させる。 The transfer device 102 includes an arm 41 that carries the workpiece 31 onto the machining table 21 and carries the workpiece 31 out of the machining table 21. The arm 41 has a pad at the lower part, and the pad 31 is bonded to the upper surface of the work 31 so that the work 31 can be lifted. The arm 41 lifts the workpiece 31 after the first machining hole 32a is drilled, and the second machining hole from the position (end portion P1) where the workpiece 31 is placed when the first machining hole 32a is drilled. The workpiece 31 is moved to a position (end portion P2) where the workpiece 31 is placed during the drilling of 32b.
 具体的には、図11に示すように、1回目加工穴32aが穴あけ加工された後、搬送装置102は、アーム41をワーク31上に移動させる(ST1)。この後、アーム41を下降させアーム41のパッドをワーク31の上面に接着させることによって、アーム41がワーク31を固定する。そして、吸着穴22Hの減圧を停止することによって、加工テーブル21によるワーク31の固定を解除する(ST2)。 Specifically, as shown in FIG. 11, after the first machining hole 32a has been drilled, the transfer device 102 moves the arm 41 onto the workpiece 31 (ST1). Thereafter, the arm 41 is lowered and the pad of the arm 41 is adhered to the upper surface of the work 31, so that the arm 41 fixes the work 31. And the fixation of the workpiece | work 31 by the process table 21 is cancelled | released by stopping pressure reduction of the suction hole 22H (ST2).
 搬送装置102は、アーム41を上昇させることによってワーク31を持ち上げる(ST3)。そして、加工制御装置103は、吸着穴座標とレーザ加工データとに基づいた所定の座標だけ加工テーブル21を移動させる(ST4)。このとき、レーザ加工装置100は、加工テーブル21を移動させてもよいし、ワーク31を移動させてもよい。加工テーブル21とワーク31との相対位置を移動させた後、搬送装置102は、アーム41を下降させてワーク31を加工テーブル21上に載置する。なお、加工制御装置103は、予め設定しておいた所定距離(指定ずらし量)だけ加工テーブル21を移動させてもよい。例えば、加工制御装置103へは、所定の方向に何mm(X±○.○○○mm、Y±○.○○○mm)等のように指定ずらし量を設定しておく。 The transport apparatus 102 lifts the work 31 by raising the arm 41 (ST3). Then, the machining control device 103 moves the machining table 21 by a predetermined coordinate based on the suction hole coordinates and the laser machining data (ST4). At this time, the laser processing apparatus 100 may move the processing table 21 or the workpiece 31. After moving the relative position between the processing table 21 and the work 31, the transfer device 102 lowers the arm 41 and places the work 31 on the processing table 21. Note that the machining control device 103 may move the machining table 21 by a predetermined distance (specified shift amount) set in advance. For example, a specified shift amount is set in the machining control device 103 in a predetermined direction such as how many mm (X ± ○. ○○○ mm, Y ± ○. ○○○ mm).
 レーザ加工装置100は、ワーク31を加工テーブル21上に載置した後、吸着穴22Hを減圧し、加工テーブル21上にワーク31を固定する。そして、アーム41のパッドをワーク31の上面から外すことによって、アーム41によるワーク31の固定を解除する(ST5)。 The laser processing apparatus 100 places the workpiece 31 on the processing table 21, then depressurizes the suction hole 22 </ b> H, and fixes the workpiece 31 on the processing table 21. And the fixation of the workpiece | work 31 by the arm 41 is cancelled | released by removing the pad of the arm 41 from the upper surface of the workpiece | work 31 (ST5).
 この後、搬送装置102は、アーム41を所定の高さまで上昇させ、その後アーム41をワーク31上から退避させる(ST6)。アーム41がワーク31上から退避した後、レーザ加工装置100は、2回目加工穴32bにレーザ光1を照射して2回目加工穴32bへの穴あけ加工を行う(ST7)。レーザ加工装置100は、この2回目加工穴32bを穴あけ加工する際には、ワーク31の移動距離に応じた距離だけCCDカメラを移動させてワーク31の位置を検出し、検出結果に基づいて2回目加工穴32bへの穴あけ加工を行う。 Thereafter, the transfer device 102 raises the arm 41 to a predetermined height, and then retracts the arm 41 from the work 31 (ST6). After the arm 41 is retracted from the workpiece 31, the laser processing apparatus 100 irradiates the second processing hole 32b with the laser beam 1 to perform the second processing hole 32b (ST7). When drilling the second machining hole 32b, the laser processing apparatus 100 detects the position of the work 31 by moving the CCD camera by a distance corresponding to the movement distance of the work 31, and 2 based on the detection result. Drilling is performed on the second processed hole 32b.
 なお、本実施の形態では、加工穴32hがリアルタイム処理で1回目加工穴32aと2回目加工穴32bとを設定する場合について説明したが、予め1回目加工穴32aと2回目加工穴32bとを設定しておいてもよい。例えば、加工テーブル21上へのワーク31載置位置にずれがなく、ワーク31の載置位置が予め分かっている場合、レーザ加工装置100は、ワーク31を加工テーブル21上に載置する前に加工穴32hと吸着穴22Hとが重なる位置を算出してもよい。これにより、ワーク31を加工テーブル21上に載置する前であっても、1回目加工穴32aと2回目加工穴32bとを設定することが可能となる。 In this embodiment, the case has been described in which the processing hole 32h sets the first processing hole 32a and the second processing hole 32b by real-time processing. However, the first processing hole 32a and the second processing hole 32b are set in advance. You may set it. For example, when there is no deviation in the work 31 placement position on the processing table 21 and the placement position of the work 31 is known in advance, the laser processing apparatus 100 before the work 31 is placed on the processing table 21. The position where the processing hole 32h and the suction hole 22H overlap may be calculated. Thereby, even before the work 31 is placed on the processing table 21, the first processing hole 32a and the second processing hole 32b can be set.
 また、加工テーブル21上のエリアを複数のエリアに分割し、各エリアを、吸着穴22Hを配置するエリア(後述の吸着穴配置エリア25B)または吸着穴22Hを配置しないエリア(後述の非配置エリア25A)としてもよい。この場合、まず非配置エリア25A上で加工穴32hを穴あけ加工し、その後、吸着穴配置エリア25B上にあった加工穴32hを、非配置エリア25A上に移動させて穴あけ加工を行う。 In addition, the area on the processing table 21 is divided into a plurality of areas, and each area is divided into an area where suction holes 22H are arranged (a suction hole arrangement area 25B described later) or an area where suction holes 22H are not arranged (a non-arrangement area described later). 25A). In this case, the processing hole 32h is first drilled on the non-arrangement area 25A, and then the processing hole 32h on the suction hole arrangement area 25B is moved onto the non-arrangement area 25A to perform drilling.
 図12は、加工テーブル上の吸着エリアと非吸着エリアを説明するための図である。図12では、加工テーブル21Xとワーク31の斜視図を示している。加工テーブル21X上のエリアは、例えばX軸方向に平行なストライプ状やY軸方向に平行なストライプ状に分割される。図12では、加工テーブル21X上のエリアを、Y軸方向に平行なストライプ状に分割した場合を示している。 FIG. 12 is a diagram for explaining an adsorption area and a non-adsorption area on the processing table. In FIG. 12, the perspective view of the process table 21X and the workpiece | work 31 is shown. The area on the processing table 21X is divided into, for example, a stripe shape parallel to the X-axis direction and a stripe shape parallel to the Y-axis direction. FIG. 12 shows a case where the area on the processing table 21X is divided into stripes parallel to the Y-axis direction.
 ストライプ状に分割された加工テーブル21X上のエリアのうち、吸着穴配置エリア25Bに吸着穴22Hを配置しておき、非配置エリア25Aへは吸着穴22Hを配置しない。なお、吸着穴配置エリア25Bへ形成しておく吸着穴22Hは、吸着穴22Hを1列に配置する場合に限らず何れの配置(例えば2列配置)であってもよい。図12では、吸着穴配置エリア25Bと非配置エリア25Aとがそれぞれ幅L1の間隔でX軸方向に連続して並べられた場合を示している。 Of the areas on the processing table 21X divided into stripes, the suction holes 22H are arranged in the suction hole arrangement area 25B, and the suction holes 22H are not arranged in the non-arrangement area 25A. The suction holes 22H formed in the suction hole arrangement area 25B are not limited to the case where the suction holes 22H are arranged in one row, and may be any arrangement (for example, two rows). FIG. 12 shows a case where the suction hole arrangement area 25B and the non-arrangement area 25A are continuously arranged in the X-axis direction at intervals of the width L1.
 抽出部16は、予めワーク31上のエリアをY軸方向に平行なストライプ状に分割しておく。このとき、抽出部16は、加工テーブル21X上の吸着穴配置エリア25Bと非配置エリア25Aとの配置に基づいて、ワーク31上のエリアをストライプ状に分割する。具体的には、抽出部16は、吸着穴配置エリア25Bと非配置エリア25Aとの境界線が、ワーク31上のストライプ境界となるよう、ワーク31上のエリアを分割する。そして、抽出部16は、非配置エリア25A上のワーク31のエリアを、1回目加工穴32a用のエリア35Aに設定し、吸着穴配置エリア25B上のワーク31のエリアを、2回目加工穴32b用のエリア35Bに設定する。これにより、エリア35Aとエリア35Bは、吸着穴配置エリア25Bと非配置エリア25Aの配置と同様に、それぞれ幅L1の間隔でX軸方向に連続して並べられる。 The extraction unit 16 previously divides the area on the work 31 into stripes parallel to the Y-axis direction. At this time, the extraction unit 16 divides the area on the work 31 into stripes based on the arrangement of the suction hole arrangement area 25B and the non-arrangement area 25A on the processing table 21X. Specifically, the extraction unit 16 divides the area on the workpiece 31 so that the boundary line between the suction hole arrangement area 25 </ b> B and the non-placement area 25 </ b> A becomes a stripe boundary on the workpiece 31. Then, the extraction unit 16 sets the area of the work 31 on the non-arrangement area 25A as the area 35A for the first machining hole 32a, and sets the area of the work 31 on the suction hole arrangement area 25B as the second machining hole 32b. Is set in the area 35B. Thereby, the area 35A and the area 35B are continuously arranged in the X-axis direction at intervals of the width L1, similarly to the arrangement of the suction hole arrangement area 25B and the non-arrangement area 25A.
 図13は、図12に示した加工テーブルを用いた穴あけ加工を説明するための図である。図13は、加工テーブル21Xとワーク31をX軸方向に切断した場合の断面図を示している。図13の上側の図は、1回目加工穴32aを穴あけ加工する際のレーザ照射位置を示し、図13の下側の図は2回目加工穴32bを穴あけ加工する際のレーザ照射位置を示している。 FIG. 13 is a diagram for explaining drilling using the processing table shown in FIG. FIG. 13 shows a cross-sectional view when the machining table 21X and the workpiece 31 are cut in the X-axis direction. The upper diagram in FIG. 13 shows the laser irradiation position when the first machining hole 32a is drilled, and the lower diagram in FIG. 13 shows the laser irradiation position when the second machining hole 32b is drilled. Yes.
 レーザ加工装置100は、まずエリア35A上にある1回目加工穴32aを穴あけ加工し、エリア35B上にある2回目加工穴32bの穴あけ加工をスキップする。そして、エリア35A上にある1回目加工穴32aの穴あけ加工が終了した後、エリア35B(エリア35B上の2回目加工穴32b)を非配置エリア25A上に移動させて、エリア35B上の2回目加工穴32bを穴あけ加工する。エリア35Bを移動させる場合には、吸着エリア25Bの幅L1だけX軸方向にエリア35Bを移動させることにより、エリア35Bを非配置エリア25A上に移動させる。これにより、エリア35Bを効率良く移動させることが可能となる。図12の場合、加工テーブル21Xを+X方向にL1だけずらすことにより、2回目の穴あけ加工で2回目加工穴32bを全て穴あけすることが可能となる。 The laser processing apparatus 100 first drills the first processed hole 32a on the area 35A and skips the drilling of the second processed hole 32b on the area 35B. Then, after the drilling of the first processed hole 32a on the area 35A is completed, the area 35B (the second processed hole 32b on the area 35B) is moved onto the non-arranged area 25A, and the second on the area 35B is moved. The processing hole 32b is drilled. When moving the area 35B, the area 35B is moved on the non-arranged area 25A by moving the area 35B in the X-axis direction by the width L1 of the suction area 25B. Thereby, the area 35B can be moved efficiently. In the case of FIG. 12, by shifting the machining table 21X by L1 in the + X direction, it is possible to drill all the second machining holes 32b by the second drilling.
 このように、ワーク31上のエリアをエリア35Aとエリア35Bに分割して1回目加工穴32aと2回目加工穴32bの穴あけ加工を行う場合、1回目加工穴32a用のレーザ加工データと、2回目加工穴32b用のレーザ加工データと、を用いて穴あけ加工が行われる。 Thus, when the area on the work 31 is divided into the area 35A and the area 35B and the first machining hole 32a and the second machining hole 32b are drilled, the laser machining data for the first machining hole 32a and 2 Drilling is performed using the laser processing data for the second processed hole 32b.
 なお、図12では、加工テーブル21Xとワーク31を同じサイズとして図示したが、ワーク31はどのようなサイズであってもよい。また、図12では、加工テーブル21Xをストライプ状に分割する場合について説明したが、加工テーブル21Xを格子状に分割し、吸着穴配置エリア25Bと非配置エリア25Aが隣り合うよう吸着穴配置エリア25Bと非配置エリア25Aを格子縞状に配置してもよい。 In FIG. 12, the machining table 21X and the work 31 are illustrated as having the same size, but the work 31 may have any size. In FIG. 12, the processing table 21X is divided into stripes. However, the processing table 21X is divided into a grid and the suction hole placement area 25B is adjacent to the suction hole placement area 25B and the non-placement area 25A. The non-arrangement area 25A may be arranged in a checkered pattern.
 また、図13では、エリア35A内の1回目加工穴32aを穴あけ加工した後、加工テーブル21をL1の距離だけずらしてエリア35B内の2回目加工穴32bを穴あけ加工する場合について説目したが、加工テーブル21の移動距離はL1に限らない。レーザ加工装置100は、1回目の穴あけ加工と2回目の穴あけ加工とで、1回目加工穴32aと2回目加工穴32bの全ての加工穴32hを穴あけ加工することができる距離だけ加工テーブル21を移動させればよい。 In FIG. 13, the first machining hole 32a in the area 35A is drilled, and then the machining table 21 is shifted by the distance L1 to drill the second machining hole 32b in the area 35B. The moving distance of the processing table 21 is not limited to L1. The laser processing apparatus 100 sets the processing table 21 by a distance that can drill all the processing holes 32h of the first processing hole 32a and the second processing hole 32b by the first drilling process and the second drilling process. Move it.
 また、本実施の形態では、抽出部16がワーク31上のエリアをエリア35Aとエリア35Bに分割する場合について説明したが、1回目加工穴設定部14や2回目加工穴設定部15がワーク31上のエリアをエリア35Aとエリア35Bに分割してもよい。 Further, in the present embodiment, the case where the extraction unit 16 divides the area on the work 31 into the area 35A and the area 35B has been described, but the first machining hole setting unit 14 and the second machining hole setting unit 15 are used as the work 31. The upper area may be divided into an area 35A and an area 35B.
 また、図12では、吸着穴配置エリア25Bと非配置エリア25Aの幅が同じ幅L1である場合について説明したが、吸着穴配置エリア25Bと非配置エリア25Aの幅は異なる幅であってもよい。例えば、吸着穴配置エリア25Bの幅を非配置エリア25Aの幅よりも狭くしておくことにより、効率良く穴あけ加工を行うことが可能となる。 In FIG. 12, the suction hole arrangement area 25B and the non-arrangement area 25A have the same width L1, but the suction hole arrangement area 25B and the non-arrangement area 25A may have different widths. . For example, by making the width of the suction hole arrangement area 25B narrower than the width of the non-arrangement area 25A, it becomes possible to perform drilling efficiently.
 また、吸着穴配置エリア25Bや非配置エリア25Aの幅L1は、何れのサイズであってもよい。例えば、吸着穴配置エリア25Bや非配置エリア25Aの幅L1を、ガルバノスキャナ3a,3bによるスキャンエリアのX軸方向の幅と同じサイズとする。これにより、加工テーブル21の移動回数が少なくなり、効率良く穴あけ加工を行うことが可能となる。また、スキャンエリアのX軸方向の幅を、吸着穴配置エリア25Bや非配置エリア25Aの幅L1に応じたサイズとしてもよい。この場合も、加工テーブル21の移動回数が少なくなり、効率良く穴あけ加工を行うことが可能となる。 Further, the width L1 of the suction hole arrangement area 25B and the non-arrangement area 25A may be any size. For example, the width L1 of the suction hole placement area 25B and the non-placement area 25A is set to the same size as the width in the X-axis direction of the scan area by the galvano scanners 3a and 3b. As a result, the number of movements of the machining table 21 is reduced, and it is possible to perform drilling efficiently. Further, the width of the scan area in the X-axis direction may be a size corresponding to the width L1 of the suction hole arrangement area 25B and the non-arrangement area 25A. Also in this case, the number of movements of the machining table 21 is reduced, and it is possible to perform drilling efficiently.
 図12では、加工テーブル21Xに吸着穴配置エリア25Bと非配置エリア25Aを設けておく場合について説明したが、吸着穴配置エリア25Bと非配置エリア25Aに対応する所定の治具(後述の吸着エリア限定治具40)を図3で説明した加工テーブル21に取り付けてもよい。 In FIG. 12, the case where the suction hole placement area 25B and the non-placement area 25A are provided in the processing table 21X has been described. However, a predetermined jig (a suction area described later) corresponding to the suction hole placement area 25B and the non-placement area 25A is described. The limiting jig 40) may be attached to the processing table 21 described with reference to FIG.
 図14は、吸着エリア限定治具の構成を示す図である。図14では、吸着エリア限定治具40の斜視図を示している。吸着エリア限定治具40は、加工テーブル21の主面と略同じ大きさの主面を有した放熱性の良い板(銅板など)であり、概略平板状をなしている。吸着エリア限定治具40は、吸着穴配置エリア25Bに対応する吸着穴配置エリア45Bにのみ、吸着穴配置エリア25Bと同じ位置に吸着穴41hが設けられており、非配置エリア25Aに対応する非配置エリア45Aには吸着穴41hが設けられていない。この吸着エリア限定治具40は、加工テーブル21上に載置されることによって、加工テーブル21上に吸着固定される。そして、吸着エリア限定治具40上にワーク31を載置することにより、ワーク31は吸着エリア限定治具40に吸着固定される。非配置エリア45Aは、非配置エリア25Aが設定されていたエリアと同じエリアであり、その下部には吸着穴41hが配置されていない。また、吸着穴配置エリア45Bは、吸着穴配置エリア25Bが設定されていたエリアと同じエリアであり、その下部には吸着穴41hが配置されている。 FIG. 14 is a diagram showing the configuration of the suction area limiting jig. FIG. 14 shows a perspective view of the suction area limiting jig 40. The suction area limiting jig 40 is a plate (such as a copper plate) having a heat dissipation property having a main surface substantially the same size as the main surface of the processing table 21 and has a substantially flat plate shape. The suction area limiting jig 40 is provided with suction holes 41h at the same position as the suction hole arrangement area 25B only in the suction hole arrangement area 45B corresponding to the suction hole arrangement area 25B. The placement area 45A is not provided with the suction hole 41h. The suction area limiting jig 40 is sucked and fixed onto the processing table 21 by being placed on the processing table 21. Then, by placing the work 31 on the suction area limiting jig 40, the work 31 is suction fixed to the suction area limiting jig 40. The non-arrangement area 45A is the same area as the area where the non-arrangement area 25A was set, and the suction hole 41h is not disposed below the non-arrangement area 45A. Further, the suction hole arrangement area 45B is the same area as the area where the suction hole arrangement area 25B was set, and the suction hole 41h is arranged in the lower part thereof.
 図15は、図14に示した吸着エリア限定治具を用いた穴あけ加工を説明するための図である。レーザ加工装置100は、まず非配置エリア45A上にあるエリア35Aの1回目加工穴32aを穴あけ加工し、吸着穴配置エリア45B上にあるエリア35Bの2回目加工穴32bの穴あけ加工をスキップする。 FIG. 15 is a diagram for explaining drilling using the suction area limiting jig shown in FIG. The laser processing apparatus 100 first drills the first processed hole 32a in the area 35A on the non-arranged area 45A, and skips the drilling of the second processed hole 32b in the area 35B on the suction hole arranged area 45B.
 レーザ加工装置100は、非配置エリア45A上にある1回目加工穴32aの穴あけ加工が終了した後、エリア35Bを非配置エリア45A上に移動させて、エリア35B上の1回目加工穴32aを穴あけ加工する。エリア35Bを移動させる場合には、吸着穴配置エリア45Bの幅L1だけX軸方向にエリア35Bを移動させることにより、エリア35Bを非配置エリア45A上に移動させる。これにより、エリア35Bを効率良く移動させることが可能となる。図14の場合、加工テーブル21Xを+X方向にL1だけずらすことにより、2回目の穴あけ加工で2回目加工穴32bを全て穴あけすることが可能となる。 The laser processing apparatus 100 moves the area 35B onto the non-arrangement area 45A after the drilling of the first process hole 32a on the non-arrangement area 45A, and drills the first processing hole 32a on the area 35B. Process. When moving the area 35B, the area 35B is moved onto the non-arranged area 45A by moving the area 35B in the X-axis direction by the width L1 of the suction hole arrangement area 45B. Thereby, the area 35B can be moved efficiently. In the case of FIG. 14, by shifting the machining table 21X by L1 in the + X direction, it is possible to drill all the second machining holes 32b by the second drilling.
 なお、吸着エリア限定治具40は、図14に示した構成に限らず、他の構成であってもよい。例えば、吸着エリア限定治具40を加工テーブル21上に載置した際に、全ての吸着穴22Hの上で吸着穴41hが重なるよう吸着エリア限定治具40の全面に吸着穴22Hよりも穴径の小さな吸着穴41hを設けてもよい。 The suction area limiting jig 40 is not limited to the configuration shown in FIG. For example, when the suction area limiting jig 40 is placed on the processing table 21, the diameter of the suction area limiting jig 40 is larger than that of the suction holes 22H so that the suction holes 41h overlap all the suction holes 22H. A small suction hole 41h may be provided.
 なお、図12や図14で説明した加工テーブル21Xや吸着エリア限定治具40を用いてワーク31の穴あけ加工を行う場合に用いる吸着穴22Hの位置やサイズ、吸着穴41hの位置やサイズは、作業者(加工オペレータ)がレーザ加工装置100に入力してもよいし、予めレーザ加工装置100に登録しておいてもよい。 The position and size of the suction hole 22H and the position and size of the suction hole 41h used when drilling the workpiece 31 using the processing table 21X and the suction area limiting jig 40 described in FIGS. An operator (processing operator) may input to the laser processing apparatus 100 or may be registered in the laser processing apparatus 100 in advance.
 抽出部16がワーク31に開ける加工穴32hのうち、吸着穴22H上に位置する加工穴32hを抽出する場合について説明したが、作業者が吸着穴22H上に位置する加工穴32hを抽出してもよい。例えば、図12で説明した加工テーブル21Xや図14で説明した吸着エリア限定治具40を用いる場合、ワーク31の載置位置が分かれば、何れの加工穴32hが吸着穴22H上に位置するかが分かる。したがって、作業者は、吸着穴22H上に位置しない加工穴32hの位置に基づいて、1回目加工穴32aを加工する場合に用いる1回目加工プログラムと、2回目加工穴32bを加工する場合に用いる2回目加工プログラムを作成すればよい。作業者は、1回目加工プログラムによって1回目加工穴32aを加工させ、その後、ワーク7を移動させ、2回目加工プログラムによって2回目加工穴32bを加工させる。これにより、レーザ加工機構101Aは、抽出部16を有していなくても、吸着穴22H上以外の位置でワーク7上の全ての加工穴32hを穴あけ加工することが可能となる。 The case where the extraction unit 16 extracts the machining hole 32h located on the suction hole 22H among the machining holes 32h opened in the workpiece 31 has been described. However, the operator extracts the machining hole 32h located on the suction hole 22H. Also good. For example, when the processing table 21X described in FIG. 12 or the suction area limiting jig 40 described in FIG. 14 is used, which processing hole 32h is positioned on the suction hole 22H if the placement position of the work 31 is known. I understand. Therefore, the operator uses the first machining program used when machining the first machining hole 32a and the second machining hole 32b based on the position of the machining hole 32h not located on the suction hole 22H. A second machining program may be created. The operator causes the first machining hole 32a to be machined by the first machining program, and then moves the workpiece 7 to machine the second machining hole 32b by the second machining program. Accordingly, the laser processing mechanism 101A can drill all the processing holes 32h on the workpiece 7 at a position other than the suction hole 22H even without the extraction unit 16.
 なお、1回目加工プログラムや2回目加工プログラムは、加工制御装置103以外の装置が作成してもよい。この場合、レーザ加工装置は、他の装置によって作成された1回目加工プログラムや2回目加工プログラムを入力部11から外部入力し、入力した1回目加工プログラムや2回目加工プログラムを用いてワーク31の穴あけ加工を行う。 Note that the first machining program and the second machining program may be created by a device other than the machining control device 103. In this case, the laser machining apparatus externally inputs a first machining program or a second machining program created by another apparatus from the input unit 11, and uses the inputted first machining program or second machining program for the workpiece 31. Drill holes.
 なお、本実施の形態では、レーザ加工機構101Aが1本のレーザ光1を用いてワーク31を穴あけ加工する場合について説明したが、複数本のレーザ光1を用いてワーク31を加工可能なレーザ加工機構に本実施の形態のレーザ加工方法を適用してもよい。 In the present embodiment, the case where the laser processing mechanism 101A drills the workpiece 31 using one laser beam 1 has been described. However, a laser capable of processing the workpiece 31 using a plurality of laser beams 1 is used. The laser processing method of the present embodiment may be applied to the processing mechanism.
 図16は、レーザ光を多軸化したレーザ加工機構の構成例を示す図である。レーザ加工機構101Bは、分光器8と2組のレーザヘッド9a,9bを備えて構成されている。レーザヘッド9a,9bは、それぞれ、ガルバノスキャンミラー2a,2bと、ガルバノスキャナ3a,3bと、fθレンズ4と、有している。レーザ発振器が出力するレーザ光1は、分光器8によって分光され、分光されたレーザ光1がレーザヘッド9a,9bに同時に供給される。そして、レーザヘッド9a,9bから照射されるレーザ光1が、それぞれのワーク31に穴あけ加工を同時に施す。なお、図16では、2ヘッドのレーザ加工機構101Bについて説明したが、レーザ加工機構101Bは、4ヘッド以上であってもよい。 FIG. 16 is a diagram showing a configuration example of a laser processing mechanism in which laser beams are multi-axial. The laser processing mechanism 101B includes a spectroscope 8 and two sets of laser heads 9a and 9b. The laser heads 9a and 9b have galvano scan mirrors 2a and 2b, galvano scanners 3a and 3b, and an fθ lens 4, respectively. The laser beam 1 output from the laser oscillator is split by the spectroscope 8, and the split laser beam 1 is simultaneously supplied to the laser heads 9a and 9b. Then, the laser beam 1 irradiated from the laser heads 9a and 9b simultaneously drills each workpiece 31. In FIG. 16, the two-head laser processing mechanism 101B has been described, but the laser processing mechanism 101B may have four or more heads.
 例えば、2ヘッドのレーザ加工機構101Bによって2ワークの穴あけ加工を行う場合、ワーク7の載置位置によっては、一方のワーク7と他方のワーク7とで、吸着穴22H上に位置する加工穴32hが異なる場合がある。換言すると、同じ加工穴32hであっても一方のワーク7では吸着穴22H上に位置し、他方のワーク7では吸着穴22H上に位置しない場合がある。このため、レーザ加工機構101Bは、レーザヘッド9a側とレーザヘッド9bとでそれぞれ吸着穴22H上に位置する加工穴32hを抽出しておく。 For example, when two workpieces are drilled by the two-head laser processing mechanism 101B, depending on the mounting position of the workpiece 7, the machining hole 32h positioned on the suction hole 22H between the one workpiece 7 and the other workpiece 7 is used. May be different. In other words, even in the same processed hole 32h, one workpiece 7 may be positioned on the suction hole 22H and the other workpiece 7 may not be positioned on the suction hole 22H. For this reason, the laser processing mechanism 101B extracts the processing holes 32h positioned on the suction holes 22H on the laser head 9a side and the laser head 9b, respectively.
 レーザヘッド9a側とレーザヘッド9bとで吸着穴22H上に位置する加工穴32hが異なる場合、レーザ加工機構101Bは、レーザヘッド9a側とレーザヘッド9bとで同じ動作を行うことができない。このため、一方のワーク7では吸着穴22H上以外の位置に加工穴32hがあり、かつ他方のワーク7上では吸着穴22H上の位置に加工穴32hがある場合、他方のワーク7へはレーザ光1を照射しない。他方のワーク7の加工穴32hへレーザ光1を照射させない場合(加工をスキップする場合)、例えばレーザヘッド9a,9bにレーザ光1を遮る開閉自在なシャッタ(図示せず)などを設けておき、このシャッタを閉めることによってレーザ光1を遮る。また、何れか一方のワーク7への加工穴32h(何れかの軸)がスキップ対象である場合、両方のワーク7へのレーザ光照射をスキップさせ、これにより左右両方の穴あけ加工をスキップさせてもよい。 When the processing hole 32h positioned on the suction hole 22H is different between the laser head 9a side and the laser head 9b, the laser processing mechanism 101B cannot perform the same operation on the laser head 9a side and the laser head 9b. For this reason, when one workpiece 7 has the machining hole 32h at a position other than on the suction hole 22H and the other workpiece 7 has the machining hole 32h at a position on the suction hole 22H, the other workpiece 7 is subjected to laser. Light 1 is not irradiated. When the laser beam 1 is not irradiated to the machining hole 32h of the other workpiece 7 (when machining is skipped), for example, an openable / closable shutter (not shown) that blocks the laser beam 1 is provided on the laser heads 9a and 9b. The laser beam 1 is blocked by closing this shutter. Further, when the machining hole 32h (any axis) to one of the workpieces 7 is a skip target, the laser beam irradiation to both the workpieces 7 is skipped, and thereby both the left and right drilling machining are skipped. Also good.
 なお、図16では、レーザ加工機構101Bが、レーザ光1を分光器8によって分光し、分光したレーザ光1をレーザヘッド9a,9bに同時に供給する場合について説明したが、レーザヘッド9a,9bへ供給するレーザ光1は同時に供給する必要はない。レーザ加工機構101Bは、例えばレーザ光1をレーザヘッド9a,9bに交互に振り分けてもよい。具体的には、レーザ光1をレーザヘッド9a,9bに時間分割することによって、レーザ光1を2つの光路に順番に分岐させる。そして、レーザヘッド9aとレーザヘッド9bとによって、一方の加工テーブル21(左側のワーク7)と他方の加工テーブル21(右側のワーク7)とに交互にレーザ光を照射する。 In FIG. 16, a case has been described in which the laser processing mechanism 101B splits the laser beam 1 with the spectroscope 8 and supplies the split laser beam 1 to the laser heads 9a and 9b at the same time, but to the laser heads 9a and 9b. The supplied laser beams 1 need not be supplied simultaneously. For example, the laser processing mechanism 101B may alternately distribute the laser beam 1 to the laser heads 9a and 9b. Specifically, the laser beam 1 is divided into two optical paths in order by dividing the laser beam 1 into laser heads 9a and 9b. Then, the laser head 9a and the laser head 9b alternately irradiate laser light to one processing table 21 (left work 7) and the other processing table 21 (right work 7).
 ところで、2回目の穴あけ加工する際の加工テーブル21とワーク31との相対位置が不適切な場合、2回目の穴あけ加工の際にも2回目加工穴32bへのレーザ光照射が行われないこととなる。このため、レーザ加工装置100は、最終的に全てのレーザ加工データに対応する加工穴32hを穴あけ加工できたか否かを作業者に通知する機能(例えば液晶モニタなどの表示手段)を備えていてもよい。なお、レーザ加工装置100は、1回目および2回目の穴あけ加工によって全ての穴あけ加工が完了しない場合、3回目以降の穴あけ加工を行ってもよい。例えば、レーザ加工装置100は、1回目および2回目の穴あけ加工の両方で吸着穴22H上となっていた加工穴32hが3回目の穴あけ加工で吸着穴22H上とならないようワーク31の位置を移動させる。 By the way, when the relative position between the machining table 21 and the workpiece 31 in the second drilling process is inappropriate, the second drilling hole 32b is not irradiated with the laser beam even in the second drilling process. It becomes. Therefore, the laser processing apparatus 100 has a function (for example, display means such as a liquid crystal monitor) for notifying the operator whether or not the processing holes 32h corresponding to all the laser processing data have been finally drilled. Also good. Note that the laser processing apparatus 100 may perform the third and subsequent drilling when all the drilling is not completed by the first and second drilling. For example, the laser processing apparatus 100 moves the position of the workpiece 31 so that the processing hole 32h that has been on the suction hole 22H in both the first and second drilling processes does not become on the suction hole 22H in the third drilling process. Let
 このように実施の形態によれば、吸着穴22H上にある2回目加工穴32bを1回目の穴あけ加工で加工せず、1回目加工穴32aの穴あけ加工のみを行うので、均一な加工品質の加工穴を短時間でワーク31に穴あけ加工できる。また、吸着穴22H上にある2回目加工穴32bを1回目の穴あけ加工で加工せず、1回目加工穴32aの穴あけ加工が完了した後、加工テーブル21とワーク31との相対位置をずらしているので、吸着穴22H上にあった2回目加工穴32bを吸着穴22Hとは重ならない位置に移動させることができる。したがって、吸着穴22H上にあった2回目加工穴32bの位置をずらして加工穴32hへの穴あけ加工を行うことができるので、均一な加工品質の穴を短時間でワーク31に穴あけ加工することが可能となる。 As described above, according to the embodiment, the second machining hole 32b on the suction hole 22H is not machined by the first drilling process, and only the first machining hole 32a is drilled. A processing hole can be drilled in the work 31 in a short time. In addition, the second processing hole 32b on the suction hole 22H is not processed by the first drilling process, and after the first drilling hole 32a is completed, the relative position between the processing table 21 and the work 31 is shifted. Therefore, the second processed hole 32b on the suction hole 22H can be moved to a position that does not overlap with the suction hole 22H. Accordingly, since the second machining hole 32b on the suction hole 22H can be displaced to perform the drilling into the machining hole 32h, a hole with uniform machining quality can be drilled into the workpiece 31 in a short time. Is possible.
 また、搬送装置102によってワーク31の位置を移動させているので、容易にワーク31の移動を行うことが可能となる。また、加工テーブル21が吸着穴配置エリア25Bおよび非配置エリア25Aを有するとともに、ワーク31上のエリアに1回目加工穴32a用のエリア35Aと2回目加工穴32a用のエリア35Bを設定しているので、容易に効率の良い穴あけ加工を行うことが可能となる。また、吸着エリア限定治具40上が吸着穴配置エリア45Bおよび非配置エリア45Aを有するとともに、ワーク31上のエリアに1回目加工穴32a用のエリア35Aと2回目加工穴32a用のエリア35Bを設定しているので、容易に効率の良い穴あけ加工を行うことが可能となる。また、吸着穴配置エリア25Bや非配置エリア25Aの幅L1を、ガルバノスキャナ3a,3bによるスキャンエリア7のX軸方向の幅と同じサイズとしているので、加工テーブル21の移動回数が少なくなり、効率良く穴あけ加工を行うことが可能となる。 In addition, since the position of the work 31 is moved by the transfer device 102, the work 31 can be easily moved. In addition, the machining table 21 has a suction hole arrangement area 25B and a non-placement area 25A, and an area 35A for the first machining hole 32a and an area 35B for the second machining hole 32a are set in the area on the work 31. Therefore, efficient drilling can be easily performed. Further, the suction area limiting jig 40 has suction hole arrangement areas 45B and non-placement areas 45A, and an area 35A for the first processing hole 32a and an area 35B for the second processing hole 32a are provided on the work 31. Since it is set, efficient drilling can be easily performed. Further, since the width L1 of the suction hole arrangement area 25B and the non-arrangement area 25A is the same size as the width in the X-axis direction of the scan area 7 by the galvano scanners 3a and 3b, the number of movements of the processing table 21 is reduced and the efficiency It becomes possible to perform drilling well.
 以上のように、本発明に係るレーザ加工装置、レーザ加工方法、加工制御装置および加工制御方法は、ワークを吸着固定しながらのレーザ加工に適している。 As described above, the laser processing apparatus, laser processing method, processing control apparatus, and processing control method according to the present invention are suitable for laser processing while adsorbing and fixing a workpiece.

Claims (13)

  1.  加工対象物であるワークが載置されるとともに載置された前記ワークの底面を吸着する吸着穴によって前記ワークを吸着固定する加工テーブルと、
     前記加工テーブル上に吸着固定された前記ワークにレーザ光を照射して前記ワークに加工穴の穴あけ加工を行うレーザ加工部と、
     前記加工テーブルおよび前記レーザ加工部を制御することによって、前記加工テーブル上のワークと前記レーザ光の照射位置との相対位置を移動させる加工制御装置と、
     を備え、
     前記加工制御装置は、
     前記加工テーブル上に前記ワークを載置した場合に前記吸着穴から所定の範囲内である吸着領域の上側に位置することとなる前記加工穴を抽出する抽出部と、
     加工対象となっている加工穴の中から前記抽出部が抽出した加工穴を除外した残りの加工穴を1回目の穴あけ加工対象である1回目加工穴に設定する第1の設定部と、
     を有し、
     前記レーザ加工部は、
     1回目の穴あけ加工として前記第1の設定部が設定した1回目加工穴の穴あけ加工を行うことを特徴とするレーザ加工装置。
    A work table on which a work that is a work object is placed, and the work is sucked and fixed by a suction hole that sucks the bottom surface of the work placed;
    A laser processing unit that irradiates a laser beam to the work that is suction-fixed on the processing table and performs a hole processing on the work; and
    A machining control device that moves the relative position between the workpiece on the machining table and the irradiation position of the laser beam by controlling the machining table and the laser machining unit;
    With
    The processing control device includes:
    An extraction unit that extracts the processing hole that is positioned above the suction region within a predetermined range from the suction hole when the workpiece is placed on the processing table;
    A first setting unit that sets the remaining machining hole, excluding the machining hole extracted by the extraction unit from the machining holes to be machined, as a first machining hole that is a first machining target;
    Have
    The laser processing unit is
    A laser processing apparatus for performing drilling processing of a first processing hole set by the first setting unit as the first drilling processing.
  2.  前記加工制御装置は、
     前記抽出部が抽出した加工穴を1回目の穴あけ加工の後の2回目の穴あけ加工対象である2回目加工穴に設定する第2の設定部をさらに有し、
     前記レーザ加工部は、
     前記1回目加工穴の穴あけ加工後に前記2回目加工穴が前記吸着領域の上側に位置しないよう移動させられた後、2回目の穴あけ加工として前記第2の設定部が設定した2回目加工穴の穴あけ加工を行うことを特徴とする請求項1に記載のレーザ加工装置。
    The processing control device includes:
    A second setting unit for setting the processing hole extracted by the extraction unit as a second drilling hole to be drilled for the second time after the first drilling;
    The laser processing unit is
    After the first drilled hole is drilled, the second drilled hole is moved so that the second drilled hole is not positioned above the suction region, and then the second drilled hole set by the second setting unit is set as the second drilled hole. The laser processing apparatus according to claim 1, wherein drilling is performed.
  3.  前記ワークを前記加工テーブル上に搬入するとともに、前記加工テーブル上の前記ワークを搬出する搬送装置をさらに備え、
     前記搬送装置は、
     前記1回目加工穴の穴あけ加工後に、前記2回目加工穴が前記吸着領域の上側に位置しないよう前記ワークと前記加工テーブルとの相対位置を移動させることを特徴とする請求項2に記載のレーザ加工装置。
    The apparatus further includes a transfer device that carries the workpiece onto the machining table and unloads the workpiece on the machining table,
    The transfer device
    3. The laser according to claim 2, wherein a relative position between the workpiece and the processing table is moved so that the second processing hole is not positioned above the suction region after the first processing hole is drilled. Processing equipment.
  4.  前記加工テーブルは、所定の矩形状領域内に前記ワークを載置するとともに、前記矩形状領域の1辺と平行なストライプ状に、前記吸着穴が配置される領域である吸着穴配置領域と前記吸着穴が配置されない領域である非配置領域とが配置され、
     前記抽出部は、前記吸着穴配置領域の上側に位置する前記加工穴を前記吸着領域の上側に位置する加工穴として抽出することを特徴とする請求項1に記載のレーザ加工装置。
    The working table places the work in a predetermined rectangular area, and has a suction hole arrangement area, which is an area in which the suction holes are arranged in a stripe shape parallel to one side of the rectangular area. A non-arrangement area that is an area where suction holes are not arranged is arranged,
    The laser processing apparatus according to claim 1, wherein the extraction unit extracts the processing hole positioned above the suction hole arrangement region as a processing hole positioned above the suction region.
  5.  前記加工テーブルの上面と前記ワークの底面との間に配置されて前記吸着穴の一部を塞ぐ治具をさらに備えるとともに、前記加工テーブルは前記治具を介して前記ワークの底面を吸着固定し、
     前記治具は、所定の矩形状領域内に前記ワークを載置するとともに、前記矩形状領域の1辺と平行なストライプ状に、前記吸着穴が配置される領域である吸着穴配置領域と前記吸着穴が配置されない領域である非配置領域とが配置され、
     前記抽出部は、前記吸着穴配置領域の上側に位置する前記加工穴を前記吸着領域の上側に位置する加工穴として抽出することを特徴とする請求項1に記載のレーザ加工装置。
    The jig further includes a jig disposed between the upper surface of the processing table and the bottom surface of the work and closes a part of the suction hole, and the work table sucks and fixes the bottom face of the work through the jig. ,
    The jig places the work in a predetermined rectangular area, and the suction hole arrangement area is an area where the suction holes are arranged in a stripe shape parallel to one side of the rectangular area. A non-arrangement area that is an area where suction holes are not arranged is arranged,
    The laser processing apparatus according to claim 1, wherein the extraction unit extracts the processing hole positioned above the suction hole arrangement region as a processing hole positioned above the suction region.
  6.  前記レーザ加工部は、前記ワークへ照射するレーザ光を前記ワークの加工面内で走査するガルバノスキャナを有し、
     前記吸着穴配置領域および前記非配置領域のストライプ幅は、前記ガルバノスキャナで走査される領域の幅と同じ幅であることを特徴とする請求項4または5に記載のレーザ加工装置。
    The laser processing unit has a galvano scanner that scans the processing surface of the workpiece with laser light applied to the workpiece,
    6. The laser processing apparatus according to claim 4, wherein a stripe width of the suction hole arrangement region and the non-arrangement region is the same as a width of a region scanned by the galvano scanner.
  7.  前記加工テーブルは、複数からなるとともに、それぞれの加工テーブル上に前記ワークが載置され、
     前記レーザ加工部は、レーザ光を前記それぞれの加工テーブル上の各ワークに照射して前記各ワークへ同じ配置の穴あけ加工を行ない、
     前記加工制御装置は、前記ワーク毎に前記1回目加工穴を設定するとともに、前記各ワーク上で同じ位置に加工される加工穴に対し、前記ワークのうちの第1のワークでは前記1回目加工穴に設定するとともに前記ワークのうちの第2のワークでは前記1回目加工穴に設定しない場合、前記1回目加工穴に設定しない加工穴へは前記レーザ光の照射を遮断して穴加工をスキップするよう前記レーザ加工部を制御することを特徴とする請求項1に記載のレーザ加工装置。
    The processing table is composed of a plurality, and the workpiece is placed on each processing table,
    The laser processing unit irradiates each workpiece on the respective processing table with a laser beam to perform drilling processing of the same arrangement on each workpiece,
    The machining control device sets the first machining hole for each workpiece, and for the machining hole machined at the same position on each workpiece, the first machining of the first workpiece among the workpieces. If the second workpiece of the workpiece is not set as the first machining hole, the laser beam irradiation is cut off to the machining hole that is not set as the first machining hole and the hole machining is skipped. The laser processing apparatus according to claim 1, wherein the laser processing unit is controlled to do so.
  8.  前記加工制御装置は、前記各ワーク上で同じ位置に加工される加工穴に対し、前記ワークのうちの第1のワークでは前記1回目加工穴に設定するとともに前記ワークのうちの第2のワークでは前記1回目加工穴に設定しない場合、前記1回目加工穴に設定しない加工穴および前記1回目加工穴に設定する加工穴の両方に対して前記レーザ光の照射を遮断して穴加工をスキップするよう前記レーザ加工部を制御することを特徴とする請求項7に記載のレーザ加工装置。 The machining control device sets the first machining hole in the first workpiece of the workpieces to the machining hole to be machined at the same position on each workpiece, and sets the second workpiece of the workpieces. In the case where the first hole is not set, the laser beam irradiation is cut off for both the hole not set as the first hole and the hole set as the first hole. The laser processing apparatus according to claim 7, wherein the laser processing unit is controlled to do so.
  9.  加工対象物であるワークが載置されるとともに載置された前記ワークの底面を吸着する吸着穴によって前記ワークを吸着固定する加工テーブルおよび前記加工テーブル上に吸着固定された前記ワークにレーザ光を照射して前記ワークに加工穴の穴あけ加工を行うレーザ加工部を制御することによって、前記加工テーブル上のワークと前記レーザ光の照射位置との相対位置を移動させるレーザ加工方法において、
     前記加工穴のうち、前記加工テーブル上に前記ワークを載置した場合に前記吸着穴から所定の範囲内である吸着領域の上側に位置することとなる吸着領域上加工穴を指定した吸着領域上加工穴情報を外部入力する穴情報入力ステップと、
     加工対象となっている加工穴の中から前記吸着領域上加工穴を除外した残りの加工穴を1回目の穴あけ加工対象である1回目加工穴に設定する設定ステップと、
     前記レーザ加工部に1回目の穴あけ加工として前記設定部が設定した1回目加工穴の穴あけ加工を行なわせる加工ステップと、
     を含むことを特徴とするレーザ加工方法。
    A laser beam is applied to a work table on which a work to be processed is placed and the work is sucked and fixed by a suction hole for sucking the bottom surface of the work placed thereon, and the work that is sucked and fixed on the work table. In the laser processing method of moving the relative position between the workpiece on the processing table and the irradiation position of the laser beam by controlling a laser processing unit that performs irradiation and drilling a processing hole in the workpiece,
    Among the processing holes, when the workpiece is placed on the processing table, on the suction area that designates the suction hole on the suction area that is located above the suction area that is within a predetermined range from the suction hole. Hole information input step for externally inputting machining hole information;
    A setting step of setting a remaining processing hole excluding the processing hole on the suction region from the processing hole to be processed as a first processing hole to be processed for the first time;
    A processing step of causing the laser processing unit to perform a first processing hole drilling set by the setting unit as a first drilling processing;
    A laser processing method comprising:
  10.  前記吸着領域上加工穴情報は、
     前記加工テーブルが所定の矩形状領域内に前記ワークを載置するとともに、前記矩形状領域の1辺と平行なストライプ状となるよう前記加工テーブルに、前記吸着穴が配置される領域である吸着穴配置領域と前記吸着穴が配置されない領域である非配置領域とが配置されている場合に、
     前記吸着穴配置領域の上側に位置する前記加工穴を前記吸着領域上加工穴として抽出された情報であることを特徴とする請求項9に記載のレーザ加工方法。
    The suction area upper processing hole information,
    The work table places the work in a predetermined rectangular area and is a suction area in which the suction holes are arranged in the work table so that the work table has a stripe shape parallel to one side of the rectangular area. When the hole arrangement area and the non-arrangement area, which is an area where the suction holes are not arranged, are arranged,
    The laser processing method according to claim 9, wherein the processing hole located above the suction hole arrangement region is information extracted as the processing hole on the suction region.
  11.  前記吸着領域上加工穴情報は、
     前記加工テーブルが前記加工テーブルの上面と前記ワークの底面との間に配置されて前記吸着穴の一部を塞ぐ治具を介して前記ワークの底面を吸着固定し、かつ前記治具が所定の矩形状領域内に前記ワークを載置するとともに、前記矩形状領域の1辺と平行なストライプ状となるよう前記治具に、前記吸着穴が配置される領域である吸着穴配置領域と前記吸着穴が配置されない領域である非配置領域とが配置されている場合に、
     前記吸着穴配置領域の上側に位置する前記加工穴を前記吸着領域上加工穴として抽出された情報であることを特徴とする請求項9に記載のレーザ加工方法。
    The suction area upper processing hole information,
    The processing table is disposed between the upper surface of the processing table and the bottom surface of the work, and sucks and fixes the bottom surface of the work through a jig that closes a part of the suction hole. The workpiece is placed in a rectangular area, and the suction hole arrangement area and the suction area are areas where the suction holes are arranged in the jig so as to have a stripe shape parallel to one side of the rectangular area. When a non-placed area, which is an area where holes are not placed, is placed,
    The laser processing method according to claim 9, wherein the processing hole located above the suction hole arrangement region is information extracted as the processing hole on the suction region.
  12.  加工対象物であるワークが載置されるとともに載置された前記ワークの底面を吸着する吸着穴によって前記ワークを吸着固定する加工テーブルおよび前記加工テーブル上に吸着固定された前記ワークにレーザ光を照射して前記ワークに加工穴の穴あけ加工を行うレーザ加工部を制御することによって、前記加工テーブル上のワークと前記レーザ光の照射位置との相対位置を移動させる加工制御装置において、
     前記加工テーブル上に前記ワークを載置した場合に前記吸着穴から所定の範囲内である吸着領域の上側に位置することとなる前記加工穴を抽出する抽出部と、
     加工対象となっている加工穴の中から前記抽出部が抽出した加工穴を除外した残りの加工穴を1回目の穴あけ加工対象である1回目加工穴に設定する設定部と、
     を備え、
     前記レーザ加工部に1回目の穴あけ加工として前記設定部が設定した1回目加工穴の穴あけ加工を行なわせることを特徴とする加工制御装置。
    A laser beam is applied to a work table on which a work to be processed is placed and the work is sucked and fixed by a suction hole for sucking the bottom surface of the work placed thereon, and the work that is sucked and fixed on the work table. In the processing control device that moves the relative position between the workpiece on the processing table and the irradiation position of the laser beam by controlling a laser processing unit that performs irradiation and drilling a processing hole in the workpiece,
    An extraction unit that extracts the processing hole that is positioned above the suction region within a predetermined range from the suction hole when the workpiece is placed on the processing table;
    A setting unit for setting the remaining machining hole excluding the machining hole extracted by the extraction unit from the machining holes to be machined as the first machining hole to be drilled for the first time;
    With
    A machining control device that causes the laser machining unit to drill a first machining hole set by the setting unit as a first drilling process.
  13.  加工対象物であるワークが載置されるとともに載置された前記ワークの底面を吸着する吸着穴によって前記ワークを吸着固定する加工テーブルおよび前記加工テーブル上に吸着固定された前記ワークにレーザ光を照射して前記ワークに加工穴の穴あけ加工を行うレーザ加工部を制御することによって、前記加工テーブル上のワークと前記レーザ光の照射位置との相対位置を移動させる加工制御方法において、
     前記加工テーブル上に前記ワークを載置した場合に前記吸着穴から所定の範囲内である吸着領域の上側に位置することとなる前記加工穴を抽出する抽出ステップと、
     加工対象となっている加工穴の中から前記抽出部が抽出した加工穴を除外した残りの加工穴を1回目の穴あけ加工対象である1回目加工穴に設定する設定ステップと、
     前記レーザ加工部に1回目の穴あけ加工として前記設定部が設定した1回目加工穴の穴あけ加工を行なわせる加工ステップと、
     を含むことを特徴とする加工制御方法。
    A laser beam is applied to a work table on which a work to be processed is placed and the work is sucked and fixed by a suction hole for sucking the bottom surface of the work placed thereon, and the work that is sucked and fixed on the work table. In the processing control method of moving the relative position between the workpiece on the processing table and the irradiation position of the laser beam by controlling a laser processing unit that performs irradiation and drilling a processing hole in the workpiece,
    An extraction step of extracting the processing hole that will be located above the suction area within a predetermined range from the suction hole when the work is placed on the processing table;
    A setting step of setting the remaining machining hole excluding the machining hole extracted by the extraction unit from the machining holes to be machined as the first machining hole to be drilled for the first time;
    A processing step of causing the laser processing unit to perform a first processing hole drilling set by the setting unit as a first drilling processing;
    The processing control method characterized by including.
PCT/JP2009/054066 2009-03-04 2009-03-04 Laser machining apparatus, laser machining method, machining control apparatus and machining control method WO2010100727A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2011502533A JP5230796B2 (en) 2009-03-04 2009-03-04 Laser processing apparatus, laser processing method, processing control apparatus, and processing control method
CN200980145692.6A CN102216023B (en) 2009-03-04 2009-03-04 Laser machining apparatus, laser machining method, machining control apparatus and machining control method
KR1020117007145A KR101251084B1 (en) 2009-03-04 2009-03-04 Laser machining apparatus, laser machining method, machining control apparatus and machining control method
PCT/JP2009/054066 WO2010100727A1 (en) 2009-03-04 2009-03-04 Laser machining apparatus, laser machining method, machining control apparatus and machining control method
TW098135227A TW201032937A (en) 2009-03-04 2009-10-19 Laser processing device, laser processing method, processing control device and processing control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/054066 WO2010100727A1 (en) 2009-03-04 2009-03-04 Laser machining apparatus, laser machining method, machining control apparatus and machining control method

Publications (1)

Publication Number Publication Date
WO2010100727A1 true WO2010100727A1 (en) 2010-09-10

Family

ID=42709305

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/054066 WO2010100727A1 (en) 2009-03-04 2009-03-04 Laser machining apparatus, laser machining method, machining control apparatus and machining control method

Country Status (5)

Country Link
JP (1) JP5230796B2 (en)
KR (1) KR101251084B1 (en)
CN (1) CN102216023B (en)
TW (1) TW201032937A (en)
WO (1) WO2010100727A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013136695A1 (en) * 2012-03-16 2013-09-19 パナソニック株式会社 Laser processing device and laser processing method
JP2013246885A (en) * 2012-05-23 2013-12-09 Shin Etsu Polymer Co Ltd Device for manufacturing conductive pattern formation sheet and method for manufacturing conductive pattern formation sheet
CN107127463A (en) * 2017-05-27 2017-09-05 东莞市盛雄激光设备有限公司 A kind of HDI circuit borings machine

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106404786A (en) * 2016-11-04 2017-02-15 中国科学院长春光学精密机械与物理研究所 Circuit board image scanning device
CN107734844A (en) * 2017-09-29 2018-02-23 奥士康科技股份有限公司 A kind of printed circuit board (PCB) and its fixing means
CN113500313A (en) * 2021-06-23 2021-10-15 济南森峰科技有限公司 Laser high-speed dislocation punching method with dynamic Z-axis movement

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11254166A (en) * 1997-12-25 1999-09-21 Matsushita Electric Ind Co Ltd Machining device and its method
JP2001138095A (en) * 1999-11-09 2001-05-22 Matsushita Electric Ind Co Ltd Machining table and laser beam machine
JP2007290039A (en) * 2006-03-31 2007-11-08 Hitachi Chem Co Ltd Laser beam machining method and laser beam machining device
JP2007326129A (en) * 2006-06-08 2007-12-20 Matsushita Electric Ind Co Ltd Laser-beam machining apparatus and method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4458134A (en) * 1982-06-30 1984-07-03 Burroughs Corporation Method and apparatus for drilling holes with a laser

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11254166A (en) * 1997-12-25 1999-09-21 Matsushita Electric Ind Co Ltd Machining device and its method
JP2001138095A (en) * 1999-11-09 2001-05-22 Matsushita Electric Ind Co Ltd Machining table and laser beam machine
JP2007290039A (en) * 2006-03-31 2007-11-08 Hitachi Chem Co Ltd Laser beam machining method and laser beam machining device
JP2007326129A (en) * 2006-06-08 2007-12-20 Matsushita Electric Ind Co Ltd Laser-beam machining apparatus and method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013136695A1 (en) * 2012-03-16 2013-09-19 パナソニック株式会社 Laser processing device and laser processing method
JP5370622B1 (en) * 2012-03-16 2013-12-18 パナソニック株式会社 Laser processing apparatus and laser processing method
CN103492118A (en) * 2012-03-16 2014-01-01 松下电器产业株式会社 Laser processing device and laser processing method
JP2013246885A (en) * 2012-05-23 2013-12-09 Shin Etsu Polymer Co Ltd Device for manufacturing conductive pattern formation sheet and method for manufacturing conductive pattern formation sheet
CN107127463A (en) * 2017-05-27 2017-09-05 东莞市盛雄激光设备有限公司 A kind of HDI circuit borings machine

Also Published As

Publication number Publication date
JPWO2010100727A1 (en) 2012-09-06
KR101251084B1 (en) 2013-04-05
CN102216023A (en) 2011-10-12
TW201032937A (en) 2010-09-16
CN102216023B (en) 2014-05-07
TWI378840B (en) 2012-12-11
JP5230796B2 (en) 2013-07-10
KR20110059736A (en) 2011-06-03

Similar Documents

Publication Publication Date Title
JP5230796B2 (en) Laser processing apparatus, laser processing method, processing control apparatus, and processing control method
JP6064519B2 (en) Laser processing apparatus and processing condition setting method for patterned substrate
CN100587914C (en) Laser beam processing apparatus and method for processing semiconductor wafer and semiconductor wafer
JP5913472B2 (en) Laser processing equipment
JP6223091B2 (en) Position measuring apparatus, alignment apparatus, pattern drawing apparatus, and position measuring method
TWI388390B (en) Laser processing device
KR20100107019A (en) Alignment device for planar element, manufacturing equipment for the same, alignment method for the same, and manufacturing method for the same
JP2007090632A (en) Mark recognizing method and printing equipment
JP6241174B2 (en) Laser processing apparatus and processing condition setting method for patterned substrate
JP5798026B2 (en) Alignment mark detection method and laser processing apparatus
JP6036173B2 (en) Laser processing equipment
JP6003496B2 (en) Patterned substrate processing method
JPH04363047A (en) Cutting and dicing system
JP6884203B2 (en) Working machine and calculation method
JP2009241095A (en) Energy beam machining apparatus and manufacturing method of article machined by energy beam
KR101665764B1 (en) Drawing apparatus, substrate processing system and drawing method
TW201330734A (en) Substrate manufacturing device
JP6710234B2 (en) Conveyor and manufacturing system
JP2005302833A (en) Backup pin recognition method, backup pin recognition device, screen printing device equipped therewith, and surface mounting device
WO2019239573A1 (en) Work machine
JP7128362B2 (en) work machine
JP4417704B2 (en) Component mounting equipment
JP2021184436A (en) Processing device
KR20170096416A (en) Laser marking apparatus and laser marking method
JP2006167791A (en) Laser beam machining apparatus and method for correcting deviation of laser beam irradiation position

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980145692.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09841092

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011502533

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20117007145

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09841092

Country of ref document: EP

Kind code of ref document: A1