WO2010099708A1 - 反射型光学引擎 - Google Patents

反射型光学引擎 Download PDF

Info

Publication number
WO2010099708A1
WO2010099708A1 PCT/CN2010/070167 CN2010070167W WO2010099708A1 WO 2010099708 A1 WO2010099708 A1 WO 2010099708A1 CN 2010070167 W CN2010070167 W CN 2010070167W WO 2010099708 A1 WO2010099708 A1 WO 2010099708A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
lens
beam splitter
optical engine
polarization beam
Prior art date
Application number
PCT/CN2010/070167
Other languages
English (en)
French (fr)
Inventor
林伦辰
李东珍
金城守
Original Assignee
上海三鑫科技发展有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海三鑫科技发展有限公司 filed Critical 上海三鑫科技发展有限公司
Priority to JP2011600070U priority Critical patent/JP3174811U/ja
Publication of WO2010099708A1 publication Critical patent/WO2010099708A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2073Polarisers in the lamp house

Definitions

  • the present invention relates to portable pico projectors, and more particularly to miniaturization techniques for portable pico projectors.
  • the structure of the traditional reflective optical engine is shown in Figure 1, where 10R is red light source, 10G is green light source, 10B is blue light source, 20 is diffuser, 30 is beam shaper, 40 is objective lens, 50R, 50G and 50B is a red, green and blue dichroic mirror, 60 is a light modulator, 70 is a projection lens, and 80 is a polarization beam splitter (Polarizing) Beam Splitter ("PBS" for short).
  • PBS Polarizing Beam Splitter
  • Beam beam shaper
  • Shaper In order to adjust the size of the surface light source passing through the effective image of the beam shaper to an area slightly larger than the effective area, two objective lenses are required. The area of the surface light source that reaches the light modulator is determined by the distance between the beam shaper and the two objective lenses.
  • an embodiment of the present invention provides a reflective optical engine, including:
  • At least one light source At least one light source
  • a light modulator that generates an image using light emitted by a light source
  • a polarization beam splitter between the light modulator and the projection mirror
  • An objective lens comprising at least two lenses for bundling light entering the light modulator, at least one lens of the objective lens being mounted on the light source side of the polarization beam splitter, and at least one lens being mounted on the polarization beam splitter for light modulation Side of the device.
  • the polarization beam splitter is placed in the separation distance that the two objective lenses must maintain to share the space, which not only maintains the required separation distance between the two objective lenses, but also saves space, thereby reducing the volume of the optical engine.
  • the lens mounted on the side of the light modulator of the polarization beam splitter can simultaneously function as the first lens of the projection lens, so that one lens can be omitted from the projection lens which must be composed of a plurality of lenses, and the lens can be reduced.
  • the effect of the projection lens volume further reduces the volume of the optical engine.
  • the accuracy of assembly of the optical engine can be improved.
  • the liquid crystal light valve can be arranged closer to the polarization beam splitter, thereby further reducing the volume of the optical engine.
  • the alignment when assembling the optical engine is made simple, as it is easier to align the polarizing beam splitter with the light modulator.
  • the light beam emitted from the light source can be shaped to adapt to the shape of the incident surface of the light modulator, thereby improving light efficiency.
  • both sides of the beam shaper constitute a fly-eye lens, thereby improving the beam shaping effect with a limited volume.
  • FIG. 1 is a schematic diagram of a conventional reflective optical engine
  • FIG. 2 is a schematic view of a reflective optical engine according to a first embodiment of the present invention
  • Figure 3 is a schematic view of a reflective optical engine in a second embodiment of the present invention.
  • Figure 4 is a schematic view of a reflective optical engine in a third embodiment of the present invention.
  • Fig. 5 is a schematic view showing a reflection type optical engine in a fourth embodiment of the present invention.
  • a first embodiment of the invention relates to a reflective optical engine, the structure of which is shown in FIG.
  • the reflective optical engine comprises: an R light source (10R), a G light source (10G), a B light source (10B), a dichroic mirror 50R, 40G, 50B, a diffuser (20), a beam shaper (30), an objective lens ( 40-1, 40-2), light modulator (60), projection lens (70), polarization beam splitter (80), where R represents red, G represents green, and B represents blue.
  • the R/G/B light source sequentially illuminates the R/G/B light. Specifically, the time for irradiating one frame is set to T, the time of T/3 is irradiated to the R light source, and the time of the next T/3 is irradiated with the G light source, and then The next T/3 time illuminates the B source. It can be understood that the light source can also be sequentially irradiated in other orders, such as B/G/R.
  • the present invention is not limited to the laser light source, and the number of light sources is not limited to three.
  • a light emitting diode can be used Emitting Diode (“LED”) light source, or a hybrid light source of laser and LED.
  • the light source can also be one, or other number.
  • the three light sources (10R, 10G, 10B) are reflected by the respective dichroic mirrors 50R, 50G, 50B or transmitted to the diffuser (20).
  • the dichroic mirror 50G functions to reflect the G light source (green laser light emitted from 10G) and transmit the remaining light.
  • the dichroic mirror 50G can also use a general mirror that can reflect all of the ordinary visible light.
  • the dichroic mirror 50R functions to reflect the R light source (red laser light emitted from 10R) and pass the light of the remaining wavelength range
  • the dichroic mirror 50B functions to reflect the R light source (the blue laser light emitted from 10B) through the remaining wavelength. The effect of the range of light.
  • the diffuser (20) vibrates perpendicular to the optical axis, so the randomness of the light increases as it passes through the diffuser (20).
  • This diffuser is a device designed to eliminate laser-specific laser speckles (Speckle) to reduce the coherence of laser light to reduce laser speckle.
  • Light passing through the diffuser (20) passes through a Beam Shaper to transform the beam shape.
  • the beam shaper (30) is a fly-eye lens, and the surface of the fly-eye lens has a plurality of small lens bodies arranged in a matrix form, and the beam shaper (30) functions to shape the light beam emitted from the light source to adapt to light modulation.
  • the beam shaper is composed of a plurality of small lens bodies having a diameter of 80 to 500 um, thereby making the light beam easier to shape. This is because the diameter of the small lens is less than 80 um, and the lattice pattern is generated in the light beam due to the continuity of the laser, and it is difficult to make a lens configuration having a smooth surface smaller than 80 um in the prior art. When the diameter is increased, the effect of the beam shaper is weakened, and the uniform light source required for the ultra-small optical engine is not obtained, so it is preferable to use 500 um or less.
  • Each lenslet body is composed of a mixture of lens lenses of various sizes, thereby reducing laser speckle.
  • the shape of the lenslet is identical to the shape of the active area of the light modulator, thereby minimizing light loss.
  • the beam shaper may also be constructed not from a fly-eye lens, but only from one or two lenslets.
  • the beam shaper (30) constitutes a fly-eye lens on both sides, and the plurality of small lens bodies formed on both sides are in one-to-one correspondence, thereby improving the effect of beam shaping with a limited volume.
  • two single-sided fly-eye lenses may also be used.
  • the objective lens (40-1, 40-2) is a lens that bundles the light shaped by the beam shaper, and is generally composed of two lenses, and more precise focusing can be achieved by adjusting the distance between the two lenses.
  • the light modulator (60) refers to an element that selectively passes incident light, blocks or changes the optical path to form an image.
  • a typical example of a light modulator (60) is a digital micromirror device (Digital Micromirror Device (“DMD”), Liquid Crystal Display (“LCD”) components, liquid crystal on silicon (Liquid) Crystal On Silicon, referred to as "LCOS” and so on.
  • DMD Digital Micromirror Device
  • LCD Liquid Crystal Display
  • LCOS liquid crystal on silicon
  • DMD is used in digital light processing (Digital Light Processing, referred to as "DLP"), which uses the field timing (field) Sequential), using a digital mirror arranged in the same number of pixels as the number of pixels (DIGITAL MIRROR).
  • DLP refers to a projector that uses light from a light source to adjust the optical path with a digital mirror and reflects it with a spacer to achieve Gradation or image formation.
  • a liquid crystal display element refers to an element that selectively turns on/off a liquid crystal to form an image.
  • the direct-view projection is a method in which the background light behind the liquid crystal display element forms an image through the LCD panel and can be directly observed;
  • the projection type projection is to enlarge an image formed by the liquid crystal display element by using a projection lens and project it onto the screen, and observe the slave screen.
  • the way of reflecting the image; the reflective type is basically the same as the projected type, except that the reflective type is provided with a reflective film on the substrate under the LCD, and the reflected light is amplified and projected onto the screen.
  • LCOS is a reflective liquid crystal display, which converts the lower substrate of the two-sided substrate of the conventional liquid crystal display end from a transparent glass to a silicon substrate, thereby operating in a reflective manner.
  • the polarization beam splitter (80) is an optical element that functions to transmit incident light to the light modulator (60).
  • the hexahedron of the glass material and the polarization separation film are distributed diagonally, which is necessary for the reflective optical engine.
  • the incident light reaches the polarizing separation film of the polarization beam splitter (80), the S polarized light passes through and is discarded, and the P polarized light is reflected to the direction of the light modulator. Therefore, the light coming out of the light source (10) needs to be converted into a linearly polarized light at a certain position on the optical path to maintain the light efficiency.
  • the light from the laser source itself has a polarization ratio of up to several hundred to one, so that it is not necessary to additionally add an optical element for forming linearly polarized light.
  • the P-polarized light thus entering the light modulator forms S-polarized light when the light is emitted from the modulator, and the image light converted into the S-polarized light is once again incident on the polarization beam splitter (80) to be in contact with the polarization separation film. At this time, all of the image light is S-polarized light, and thus all of the polarized light separation film is transmitted and incident on the projection lens (70).
  • the projection lens (70) is composed of a plurality of lenses, and an image formed by the light modulator (60) is enlarged and projected onto a screen (not shown).
  • the polarization beam splitter (80) is placed between the first objective lens (40-1) and the second objective lens (40-2) in the present embodiment.
  • the first objective lens (40-1) is mounted on the light source side of the polarization beam splitter (80)
  • the second objective lens (40-2) is mounted on the light modulator (60) side of the polarization beam splitter (80).
  • the polarization beam splitter is placed in the separation distance between the two objective lenses to share the space, which maintains the required separation distance between the two objective lenses, and also saves space, thereby reducing the space.
  • the volume of the optical engine is placed in the separation distance between the two objective lenses to share the space, which maintains the required separation distance between the two objective lenses, and also saves space, thereby reducing the space.
  • this solution has another advantage. Because it is a reflective light modulator, it passes through the second objective lens (40-2) twice from the path of the light. When it passes for the first time, it will adjust the area of the incident light to the effective area of the light modulator. The second pass will act as the first lens of the projection lens. Therefore, it is possible to omit one lens from a projection lens which must be composed of a plurality of lenses, thereby achieving the effect of reducing the volume of the projection lens, thereby further reducing the volume of the optical engine.
  • a second embodiment of the present invention relates to a reflective optical engine, and the second embodiment is improved on the basis of the first embodiment.
  • the problem with the first embodiment is that the objective lens must be fixed by the frame, which results in an increase in the volume of the optical engine, and in addition, as the path length of the light reaching the light modulator increases, the loss of light also increases.
  • the tolerance of the lens position is very high, and it is very difficult to align the assembly.
  • the light modulator (60) must be as close as possible to the polarization beam splitter (80), and the volume of the optical engine needs to be further reduced.
  • an optical element between a liquid crystal light valve as a reflective optical modulator and a polarization beam splitter (80) is integrally molded with a polarization beam splitter (80).
  • a lens (corresponding to 40-2 in Fig. 2) mounted on the light modulator side of the polarization beam splitter is integrally formed with the polarization beam splitter (80), and its structure is as shown in Fig. 3.
  • a third embodiment of the invention relates to a reflective optical engine.
  • the third embodiment is based on the first embodiment, and the main improvement is that a lens (corresponding to 40-1 in Fig. 2) and polarization mounted on the side of the light source of the polarization beam splitter
  • the beam splitter (80) is integrally formed, as shown in Figure 4. This integration also reduces the difficulty of alignment when assembling the optical engine.
  • a fourth embodiment of the invention relates to a reflective optical engine.
  • the fourth embodiment is also improved on the basis of the first embodiment, and the main improvements are:
  • the objective lens includes at least three lenses (40-4, 40-5, and 40-6) in which a lens (40-6) mounted on one side of the light modulator of the polarization beam splitter and a light source side mounted on the polarization beam splitter
  • a lens (40-6) mounted on one side of the light modulator of the polarization beam splitter and a light source side mounted on the polarization beam splitter
  • One lens (40-5) is integrally formed with the polarization beam splitter (80) as shown in FIG.
  • This solution can arrange the liquid crystal light valve closer to the polarization beam splitter, thereby further reducing the volume of the optical engine.
  • the alignment when assembling the optical engine becomes simple because only the light modulator is required to perform the polarization beam splitter. Alignment makes operation easier.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Liquid Crystal (AREA)
  • Projection Apparatus (AREA)

Description

反射型光学引擎 技术领域
本发明涉及便携式微型投影机,特别涉及便携式微型投影机的微型化技术。
背景技术
为了将相对于手掌还要小的便携式微型投影机或者对笔记本等设备进行嵌入式设计的投影仪进行实用化,就需要开发出体积小的投影机用光学引擎。
传统的反射型光学引擎的结构如图1所示,其中10R为红光源,10G为绿光源,10B为蓝光源,20为漫射体,30为光束整形器,40为物镜,50R、50G和50B为红、绿和蓝的分色镜,60为光调制器,70为投射透镜,80为偏振分光镜(Polarizing Beam Splitter,简称“PBS”)。为了减少反射型光学引擎的体积,就要将光学引擎系统的结构进行简化。
但是将光源射出的光入射到形成图象的光调制器之前,必须要将光束的形状进行转换,以适应光调制器有效区域的形状。起到这种作用的元件,就叫做光束整形器(Beam shaper)。为了将通过光束整形器的有效图象的面光源大小调整到比有效区域略微大一点的面积,就需要两张物镜。到达光调制器的面光源面积,是由光束整形器和这两张物镜之间的距离来决定的。
技术问题
如何将到达光调制器的面光源面积有效地调整到所需的面积,是影响光学引擎效率高低的重要因素。但是,为了达到以上效果,需要三种光学元件(光束整形器和两张物镜)按照一定的间隔距离排位,这就造成了光学引擎体积的增加。
技术解决方案
本发明的目的在于提供一种反射型光学引擎,能够减少光学引擎的体积。
为解决上述技术问题,本发明的实施方式提供了一种反射型光学引擎,包括:
至少一个光源;
光调制器,利用光源发出的光生成图象;
投射透镜,对光调制器所生成的图象进行放大投射;
偏振分光镜,位于光调制器和投射投镜之间;
物镜,包括至少两个透镜,用于对要进入光调制器的光线进行集束,物镜中至少有一个透镜安装在偏振分光镜的光源一侧,并且至少有一个透镜安装在偏振分光镜的光调制器一侧。
有益效果
本发明实施方式与现有技术相比,主要区别及其效果在于:
在两个物镜所必须保持的间隔距离中放置偏振分光镜,以共用空间,既维持了两个物镜之间所需的间隔距离,同时也节约了空间,从而减少了光学引擎的体积。此外,安装在偏振分光镜的光调制器一侧的透镜同时可以起到投射透镜的第一块透镜的作用,这样可以从必须由多个透镜组成的投射透镜中省掉一个透镜,达到了缩小投射透镜体积的作用,从而进一步减少了光学引擎的体积。
进一步地,通过将物镜中的一个或多个透镜与偏振分光镜进行一体化成型,可以提高光学引擎组装的精度。
进一步地,通过将偏振分光镜与光调制器之间的光学元件与偏振分光镜进行一体化成型,能够将液晶光阀更加接近偏振分光镜来布置,从而进一步减少了光学引擎的体积,此外,组装光学引擎时的对准会变得简单,因为只需将光调制器对偏振分光镜进行对准,操作更容易。
进一步地,通过在光源和光调制器之间引入光束整形器,可以将光源射出的光束整形成适应光调制器的入射面形状,从而提高光效率。
进一步地,光束整形器的两面都构成了复眼透镜,从而以有限的体积提高了光束整形的效果。
附图说明
图1是传统的反射型光学引擎的简略示意图;
图2是本发明第一实施方式中反射型光学引擎的概略图;
图3是本发明第二实施方式中反射型光学引擎的概略图;
图4是本发明第三实施方式中反射型光学引擎的概略图;
图5是本发明第四实施方式中反射型光学引擎的概略图。
本发明的最佳实施方式
在以下的叙述中,为了使读者更好地理解本申请而提出了许多技术细节。但是,本领域的普通技术人员可以理解,即使没有这些技术细节和基于以下各实施方式的种种变化和修改,也可以实现本申请各权利要求所要求保护的技术方案。
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明的实施方式作进一步地详细描述。
本发明第一实施方式涉及一种反射型光学引擎,其结构如图2所示。
该反射型光学引擎包括:R光源(10R),G光源(10G),B光源(10B),分色镜50R、40G、50B,漫射体(20),光束整形器(30),物镜(40-1,40-2),光调制器(60),投射透镜(70),偏振分光镜(80),其中R代表红色,G代表绿色,B代表蓝色。
R/G/B光源依次照射R/G/B光,具体地说,把照射一个帧的时间设为T,T/3的时间照射R光源,接着的T/3的时间照射G光源,再接着的T/3时间照射B光源。可以理解,光源也可以按照其它顺序依次照射,如B/G/R等。
虽然本实施方式中使用了三个激光光源,但本发明并不限于激光光源,光源的数目也不限于三个。例如,在本发明的其它一些实施方式中,可以使用发光二级管(Light Emitting Diode,简称“LED”)光源,或者激光与LED的混合光源。光源也可以是一个,或者其它的数目。
三个光源(10R,10G,10B)被各自的分色镜50R,50G,50B反射或是透射到漫射体(20)。
分色镜50G起到反射G光源(从10G照射出的绿色激光)并让剩余光线透过的作用,分色镜50G也可以使用能够将普通可视光线全部予以反射的一般镜子。分色镜50R起到反射R光源(从10R照射出的红色激光)、通过剩余波长范围的光线的作用,分色镜50B起到反射R光源(从10B照射出的蓝色激光)通过剩余波长范围光线的作用。
漫射体(20)垂直于光轴振动,因此通过漫射体(20)的时候,光的随机性(Randomness)会得到增加。这种漫射体,是为了消除激光特有的激光散斑(Speckle)而设置的装置,用以减少激光光线的连贯性(Coherence)特征来达到减少激光散斑的目的。
通过漫射体(20)的光会通过光束整形器(Beam Shaper)以转变光束形状。
本实施方式中,光束整形器(30)是复眼透镜,该复眼透镜的表面有多个小型透镜体以矩阵形式排列,光束整形器(30)的作用是将光源射出的光束整形成适应光调制器的入射面形状,从而提高光效率。
在使用激光光源的本实施方式中,光束整形器由多个小透镜体组成,直径80-500um,从而使光束更容易整形。这是因为小型透镜的直径小于80um的话会因为激光的连贯性在光束里产生格子纹路,并且在现有技术下很难制做出比80um还小的光滑面的透镜构造。直径变大的话光束整形器的效果会减弱,得不到超小型光学引擎所需的均匀光源,所以用500um以下为好。
各小透镜体由多种不同大小的小透镜混合组成,从而使激光散斑得以减少。
小透镜体形状与光调制器有效区域的形状一致,从而使光损失降到最低。
在本发明的其它实施方式中,光束整形器也可以不由复眼透镜构成,而是只由一个或两个小透镜构成。
本实施方式中,光束整形器(30)在两面都构成了复眼透镜,在两面成型的多个小型透镜体分别一一对应,从而以有限的体积提高了光束整形的效果。在本发明的其它实施方式中,也可以使用2枚单面复眼透镜。
物镜(40-1,40-2)是将经过光束整形器整形的光线进行集束的透镜,一般由两个透镜组成,通过调节两个透镜之间的距离可以达到更加准确的聚焦。
光调制器(60)是指将入射的光线进行选择性通过、阻断或改变光径来形成影像图片的元件。光调制器(60)的典型实例有数字微镜器件(Digital Micromirror Device,简称“DMD”)、液晶显示(Liquid Crystal Display,简称“LCD”)元件、硅基液晶(Liquid Crystal On Silicon,简称“LCOS”)等等。
DMD是用在数字光处理(Digital Light Processing,简称“DLP”)投影机的元件,它利用场时序(field sequential)的驱动方式,使用与像素数量一样多的矩阵形态排列的数码镜(DIGITAL MIRROR)。DLP是指从光源照射出的光用数码镜来调节光径,并用隔板反射来达到渐变(Gradation)或形成图象的投影仪。
液晶显示元件(LCD)是指选择性地开/关液晶来形成图象的元件。使用LCD元件的投影机中,有直视型(direct-view)、投射型以及反射型。直视型投影是液晶显示元件后面的背景光通过LCD面板形成图象并可以直接观察的方式;投射型投影是将通过液晶显示元件形成的图象利用投射透镜放大后投射到屏幕,观察从屏幕反射的图象的方式;反射型与投射型的结构基本相同,区别之处在于,反射型在LCD下面基板上设有反射膜,反射的光线被放大投射到屏幕上。
LCOS属于反射型液晶显示,它将以往液晶显示端的两面基板中的下方基板由透明的玻璃改为硅基板,从而用反射型方式运作。
偏振分光镜(80)是起到将入射光传递到光调制器(60)的作用的光学元件,其玻璃材质的六面体内,偏光分离膜以对角线分布,是反射型光学引擎所必须的一个光学元件。
入射光到达偏振分光镜(80)的偏光分离膜上,S偏光会通过而丢弃,而P偏光则会被反射到光调制器的方向。因此,从光源(10)出来的光线,需要在光路上的某一位置转换(Conversion)成线偏振光的形态才能维持光效率。但是,出自激光光源的光线自身的偏振比高达数百比一,所以并不需要额外添加用来形成线偏振光的光学元件。
如此进入光调制器的P偏光,会在出光调制器时形成S偏光,转换成S偏光的图象光则再一次地入射到偏振分光镜(80)中,与偏振分离膜相接触。这时图象光全部是S偏光,因此会被偏光分离膜全部透射,入射到投射透镜(70)中。
投射透镜(70)由多个透镜构成,将由光调制器(60)形成的图象向屏幕(图中未标识)上放大投射。
因为第一、第二物镜要保持规定的间隔距离,因此本实施方式中将偏振分光镜(80)放在第一物镜(40-1)和第二物镜(40-2)之间。其中,第一物镜(40-1)安装在偏振分光镜(80)的光源一侧,而第二物镜(40-2)安装在偏振分光镜(80)的光调制器(60)一侧。
利用这种布置,在两个物镜之间所必须保持的间隔距离中放置偏振分光镜,以共用空间,既维持了两个物镜之间所需的间隔距离,同时也节约了空间,从而减少了光学引擎的体积。
此外,这种方案还有另一个优点。因为是反射型光调制器,因此从光的路径上会两次通过第二物镜(40-2),第一次通过的时候会起到入射光的面积大小调整到光调制器有效区域的作用,第二次通过的时候则会起到投射透镜的第一个透镜的作用。因此这样可以从必须由多个透镜组成的投射透镜中省掉一个透镜,达到了缩小投射透镜体积的作用,从而进一步减少了光学引擎的体积。
本发明第二实施方式涉及一种反射型光学引擎,第二实施方式在第一实施方式的基础上进行了改进。
第一实施方式的问题在于物镜必须由框架来固定,这样会导致光学引擎体积的增加,此外,随着到达光调制器的光的路径长度增加,光的损耗也会增加。
同时对于微型投影机的超小型光学引擎来说,对于透镜位置的容差要求很高,在组装的时候对准(Alignment)存在很大困难。
因此,考虑到光效率,光调制器(60)须尽可能地靠近偏振分光镜(80),并且需要进一步缩小光学引擎的体积。
第二实施方式中,将作为反射型光调制器的液晶光阀和偏振分光镜(80)之间的光学元件,与偏振分光镜(80)进行了一体化成型。具体地说,安装在偏振分光镜的光调制器一侧的一个透镜(相当于图2中的40-2)与偏振分光镜(80)是一体化成型的,其结构如图3所示。
图3中,偏振分光镜与光调制器之间不存在独立的光学元件。通过将偏振分光镜与光调制器之间的光学元件与偏振分光镜进行一体化成型,能够将液晶光阀更加接近偏振分光镜来布置,从而进一步减少了光学引擎的体积,此外,组装光学引擎时的对准会变得简单,因为只需将光调制器对偏振分光镜进行对准,操作更容易。
本发明第三实施方式涉及一种反射型光学引擎。第三实施方式在第一实施方式的基础上进行了另一种改进,主要改进之处在于:安装在偏振分光镜的光源一侧的一个透镜(相当于图2中的40-1)与偏振分光镜(80)是一体化成型的,如图4所示,这种一体化也会降低组装光学引擎时对准的难度。
本发明第四实施方式涉及一种反射型光学引擎。第四实施方式也在第一实施方式的基础上进行了改进,主要改进之处在于:
物镜包括至少三块透镜(40-4、40-5和40-6),其中安装在偏振分光镜的光调制器一侧的一个透镜(40-6)和安装在偏振分光镜的光源一侧的一个透镜(40-5)共同与偏振分光镜(80)进行一体化成型,如图5所示。这种方案能够将液晶光阀更加接近偏振分光镜来布置,从而进一步减少光学引擎的体积,此外,组装光学引擎时的对准会变得简单,因为只需将光调制器对偏振分光镜进行对准,操作更容易。
虽然通过参照本发明的某些优选实施方式,已经对本发明进行了图示和描述,但本领域的普通技术人员应该明白,可以在形式上和细节上对其作各种改变,而不偏离本发明的精神和范围。
本发明的实施方式
工业实用性
序列表自由内容

Claims (10)

1.一种反射型光学引擎,包括:
至少一个光源;
光调制器,利用所述光源发出的光生成图象;
投射透镜,对所述光调制器所生成的图象进行放大投射;
偏振分光镜,位于所述光调制器和投射投镜之间;
物镜,包括至少两个透镜,用于对要进入所述光调制器的光线进行集束;
其特征在于,所述物镜中至少有一个透镜安装在所述偏振分光镜的光源一侧,并且至少有一个透镜安装在所述偏振分光镜的光调制器一侧。
2.根据权利要求1所述的反射型光学引擎,其特征在于,所述物镜的至少一个透镜与所述偏振分光镜是一体化成型的。
3.根据权利要求2所述的反射型光学引擎,其特征在于,安装在所述偏振分光镜的光调制器一侧的一个透镜与所述偏振分光镜是一体化成型的。
4.根据权利要求2所述的反射型光学引擎,其特征在于,安装在所述偏振分光镜的光源一侧的一个透镜与所述偏振分光镜是一体化成型的。
5.根据权利要求2所述的反射型光学引擎,其特征在于,所述物镜包括至少三块透镜,其中安装在所述偏振分光镜的光调制器一侧的一个透镜和安装在所述偏振分光镜的光源一侧的一个透镜共同与所述偏振分光镜一体化成型。
6.根据权利要求3或5所述的反射型光学引擎,其特征在于,所述偏振分光镜与所述光调制器之间不存在独立的光学元件。
7.根据权利要求1至5中任一项所述的反射型光学引擎,其特征在于,还包括:
光束整形器,位于所述光源和物镜之间,用于将所述光源射出的光束转换成光调制器的有效区域形状;
所述光束整形器是复眼透镜,该复眼透镜的表面有以矩阵形式排列的多个小型透镜体。
8.根据权利要求7所述的反射型光学引擎,其特征在于,所述光束整形器在两面都构成了复眼透镜,在两面成型的多个小型透镜体分别一一对应。
9.根据权利要求1至5中任一项所述的反射型光学引擎,其特征在于,所述光源有多个,各光源中包括至少一个激光光源,或者各光源中包括至少一个发光二级管光源。
10.根据权利要求9所述的反射型光学引擎,其特征在于,所述光调制器是以下之一:
液晶显示元件、数字微镜器件、硅基液晶;
所述光调制器以场时序方式对多个光源进行调制。
PCT/CN2010/070167 2009-03-06 2010-01-13 反射型光学引擎 WO2010099708A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011600070U JP3174811U (ja) 2009-03-06 2010-01-13 反射式光学エンジン

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2009100569295A CN101825830B (zh) 2009-03-06 2009-03-06 反射型光学引擎
CN200910056929.5 2009-03-06

Publications (1)

Publication Number Publication Date
WO2010099708A1 true WO2010099708A1 (zh) 2010-09-10

Family

ID=42689806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/070167 WO2010099708A1 (zh) 2009-03-06 2010-01-13 反射型光学引擎

Country Status (3)

Country Link
JP (1) JP3174811U (zh)
CN (1) CN101825830B (zh)
WO (1) WO2010099708A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10386707B2 (en) 2014-09-17 2019-08-20 Sony Corporation Illuminating unit and projection display apparatus

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102012622A (zh) * 2010-11-02 2011-04-13 上海理工大学 采用sata接口的外挂型投影装置
CN102012623A (zh) * 2010-11-02 2011-04-13 上海理工大学 采用无线信号连接的微型投影机系统
CN102063001A (zh) * 2010-11-19 2011-05-18 封燕鸣 固体光源单系统分时彩色投影机及投影方法
CN102692717A (zh) * 2011-03-23 2012-09-26 上海三鑫科技发展有限公司 采用偏振反射镜的光学引擎
CN102736381A (zh) * 2011-04-09 2012-10-17 上海三鑫科技发展有限公司 反射型微型投影机用光学引擎
CN105867060A (zh) * 2016-05-31 2016-08-17 深圳市华星光电技术有限公司 投影装置及投影系统
CN113311587A (zh) * 2021-05-07 2021-08-27 广景视睿科技(深圳)有限公司 一种复眼镜片模组、照明装置及dlp光机模组
CN117590679B (zh) * 2024-01-19 2024-04-19 宜宾市极米光电有限公司 光源装置和投影设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003149416A (ja) * 2001-11-16 2003-05-21 Hitachi Ltd マルチ偏光ビームスプリッタ装置及びそれを用いた投射型プロジェクタ装置
JP2003215529A (ja) * 2002-01-18 2003-07-30 Seiko Epson Corp プロジェクタ
JP2005221761A (ja) * 2004-02-05 2005-08-18 Nikon Corp 投射型表示装置
CN101231452A (zh) * 2008-01-31 2008-07-30 浙江金成科技发展有限公司 一种反射式光阀微型投影仪

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6839181B1 (en) * 2003-06-25 2005-01-04 Eastman Kodak Company Display apparatus
JP3757221B2 (ja) * 2003-08-14 2006-03-22 Necビューテクノロジー株式会社 投写型表示装置
CN101025447A (zh) * 2006-02-17 2007-08-29 上海信诚至典网络技术有限公司 双面复眼透镜
JP4450090B2 (ja) * 2008-04-21 2010-04-14 セイコーエプソン株式会社 投写型表示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003149416A (ja) * 2001-11-16 2003-05-21 Hitachi Ltd マルチ偏光ビームスプリッタ装置及びそれを用いた投射型プロジェクタ装置
JP2003215529A (ja) * 2002-01-18 2003-07-30 Seiko Epson Corp プロジェクタ
JP2005221761A (ja) * 2004-02-05 2005-08-18 Nikon Corp 投射型表示装置
CN101231452A (zh) * 2008-01-31 2008-07-30 浙江金成科技发展有限公司 一种反射式光阀微型投影仪

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10386707B2 (en) 2014-09-17 2019-08-20 Sony Corporation Illuminating unit and projection display apparatus

Also Published As

Publication number Publication date
JP3174811U (ja) 2012-04-12
CN101825830A (zh) 2010-09-08
CN101825830B (zh) 2013-02-20

Similar Documents

Publication Publication Date Title
WO2010099708A1 (zh) 反射型光学引擎
WO2010099709A1 (zh) 微型投影机用光学引擎
WO2016129969A1 (ko) 레이저다이오드 액정 프로젝터
WO2015149700A1 (zh) 一种光源系统及投影系统
WO2016095619A1 (zh) 直线型dlp微型投影机
WO2017206259A1 (zh) 投影装置及投影系统
TWI255349B (en) Optical system of a projector display and a projector device equipped with this optical system
TW200907550A (en) Illumination device and projection system using the same
TW200841114A (en) Color-mixing laser module and projectors using the same
JP2010091927A (ja) 単板投写型表示装置
CN101349818A (zh) 色彩管理系统
WO2018201627A1 (zh) 激发光源系统及投影设备
WO2018086349A1 (zh) 一种3d投影镜头及投影设备
JP5311519B2 (ja) 照明装置とそれを用いた投射型表示装置
CN101976011B (zh) Md短焦距投影显示装置
WO2011068337A2 (ko) 디엠디 입체프로젝터
WO2021164441A1 (zh) 投影系统
WO2019024213A1 (zh) 光源系统及投影装置
KR101019478B1 (ko) 투사 표시 장치
JP2008009118A (ja) 偏光変換ユニット、及びそれを用いた照明装置及びそれを用いた投写型映像表示装置
CN215954054U (zh) 一种采用空间斜角棱镜组的dlp照明系统
JP2010091973A (ja) 投影装置用照明光学系
TW594368B (en) Transmissive LCD projector
JP5601097B2 (ja) 照射用装置およびプロジェクタ装置
JP4193385B2 (ja) プロジェクタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10748298

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011600070

Country of ref document: JP

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC.

122 Ep: pct application non-entry in european phase

Ref document number: 10748298

Country of ref document: EP

Kind code of ref document: A1