WO2021164441A1 - 投影系统 - Google Patents

投影系统 Download PDF

Info

Publication number
WO2021164441A1
WO2021164441A1 PCT/CN2020/142118 CN2020142118W WO2021164441A1 WO 2021164441 A1 WO2021164441 A1 WO 2021164441A1 CN 2020142118 W CN2020142118 W CN 2020142118W WO 2021164441 A1 WO2021164441 A1 WO 2021164441A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light beam
time
waveband
time period
Prior art date
Application number
PCT/CN2020/142118
Other languages
English (en)
French (fr)
Inventor
吴超
吴文浩
余新
胡飞
Original Assignee
深圳光峰科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光峰科技股份有限公司 filed Critical 深圳光峰科技股份有限公司
Publication of WO2021164441A1 publication Critical patent/WO2021164441A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3167Modulator illumination systems for polarizing the light beam

Definitions

  • This application relates to the field of lighting and display technology, and in particular to a projection system.
  • the image acquisition resolution of input devices such as digital cameras and mobile phones has gradually increased, and can output very high-resolution images.
  • image display technology has also been promoted.
  • the projection display industry has increasingly higher requirements for high resolution and fine display quality of display pictures.
  • the pixel shift technology is one of the lower cost and better practical solutions. This solution uses two sub-pictures with lower resolution to be superimposed after being offset, and the superimposed picture is displayed as a pattern with higher resolution.
  • the current pixel shift technology usually uses two sets of projection systems to achieve, thereby increasing the complexity of its overall structure, not only the high cost of manufacturing and assembly, but also takes up a large space, so the practicality is low. Conducive to productization.
  • the purpose of the present application is to provide a projection system that can improve the resolution of the picture and the stability of the picture quality.
  • An embodiment of the present application provides a projection system, including: a light emitting device, a first spatial light modulator, a second spatial light modulator, and a light combining device.
  • the light-emitting device is used to emit a first time-sequence light beam that is transmitted along the first optical channel and a second time-sequence light beam that is transmitted along the second optical channel.
  • a light beam of three wavelength bands, the first time-series light beam and the second time-series light beam have different wavelength bands at the same time;
  • the first spatial light modulator is arranged on the first optical channel and is used to modulate the first time-series light beam into the first projection image Light;
  • a second spatial light modulator arranged on the second light channel, used to adjust the second sequential light beam to the second projected image light;
  • light combining device used to combine the first projected image light and the second projected image light Light combining is performed, wherein the combined light of the first projected image light and the second projected image light are relatively offset by a predetermined distance.
  • the projection system provided by the present application emits a first time-sequence light beam and a second time-sequence light beam with different wavelength bands at the same time through a light-emitting device, and both the first time-sequence light beam and the second time-sequence light beam include multiple wavelength bands arranged periodically, thereby utilizing
  • One light-emitting device replaces the light-emitting light sources of two sets of projection systems, which reduces the complexity of the overall structure of the projection system, and reduces the cost of manufacturing and assembly.
  • the first time-series light beam is modulated into the first projection image light by the first spatial light modulator
  • the second time-series light beam is modulated into the second projection image light by the second spatial light modulator
  • the first projection image light is modulated by the light combining device
  • the image light and the second projected image light are relatively offset by a preset distance and then combined, so that the dual spatial light modulator and spatial pixel shift technology are used to improve the resolution of the image obtained by combining the light.
  • the first sequential light beam and the second sequential light beam are emitted by the light-emitting device at the same time, the display brightness of the picture obtained by combining the light can be effectively improved.
  • Fig. 1 is a schematic structural diagram of a projection system provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of the waveband ratio and arrangement of a sequential light beam provided by an embodiment of the present application
  • FIG. 3 is a schematic diagram of superimposing projection images provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of the effect of superimposed projection images provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a color separation wheel provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of the relationship between the structure of the color separation wheel provided by the embodiment of the present application and the light source beam waveband and the light output waveband of the color separation wheel respectively;
  • FIG. 7 is a schematic diagram of the arrangement of the transmitted time-series light beams and the reflected time-series light beams of the dichroic wheel according to an embodiment of the present application;
  • FIG. 8 is a schematic diagram of the relationship between the time-series light beam and the wavelength band of the light beam generated by the light source according to an embodiment of the present application;
  • FIG. 9 is a schematic structural diagram of another projection system provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of another projection system provided by an embodiment of the present application.
  • the inventor also found in actual research that the current method of using pixel offset often requires the picture disassembly algorithm to disassemble the picture to convert the high-resolution video stream into two lower-resolution video streams.
  • the timing control module of the spatial light modulator And then respectively input to the timing control module of the spatial light modulator, display two sub-pictures in time intervals, and then there is a slight displacement between the sub-pictures in the two time periods, and superimpose the display to form a high-resolution image display.
  • the timing control module performs timing adjustment, so the modulation process is more complicated.
  • dual projection systems to achieve pixel shifting.
  • the structure of the projection system is complex, the number of spatial light modulators used is large, the cost of manufacturing and assembly is high, and the practicability is low. From this, it can be seen that most of the current projection systems using pixel shift technology are often complicated in structure, cumbersome to use, and occupy a large space, making it difficult to apply to actual projection products.
  • the inventor proposes the projection system and display method in the embodiments of the present application.
  • the color separation wheel is used to generate two time-delayed light beams, and the light combining device combines the time-series light beams.
  • the display picture after the pixel shift can simplify the structure of the projection system and improve the resolution of the display picture.
  • the projection system 100 may include a light emitting device 110, a first spatial light modulator 121, a second spatial light modulator 122 and a light combining device 123.
  • the light emitting device 110 is used to emit the first time-sequence beam 102 transmitted along the first optical channel and the second time-sequence beam 103 transmitted along the second optical channel.
  • Both the first time-series beam 102 and the second time-series beam 103 include periodicity.
  • the first time-series light beam 102 and the second time-series light beam 103 have different wavelength bands at the same time.
  • the wavelength band refers to the wavelength range of the light beam. Because different colors of light beams have different wavelengths, one type of wavelength band can correspond to one color light beam.
  • first optical channel and the second optical channel may or may not be perpendicular to each other in space, which is not limited here.
  • the first sequential light beam 102 and the second sequential light beam 103 both include light beams of three wavelength bands, which can be respectively a green wavelength beam, a red wavelength beam, and a blue wavelength beam.
  • the green waveband light beam, the red waveband light beam and the blue waveband light beam alternate periodically in sequence, thereby forming the first sequential light beam 102 and the second sequential light beam 103.
  • the wavelength bands of the first time-series light beam 102 and the second time-series light beam 103 may be different by a certain time interval, so that the first time-series light beam 102 and the second time-series light beam 103 have different wavelength bands at the same time.
  • the first spatial light modulator 121 is disposed on the first light channel, and is used to modulate the first time-series light beam 102 into the first projection image light.
  • the second spatial light modulator 122 is disposed on the second light channel, and is used to adjust the second sequential light beam 103 to the second projection image light.
  • first projection image light and the second projection image light modulated by the first spatial light modulator 121 and the second spatial light modulator 122 can form a projection image on the screen 201.
  • the light combining device 123 is used for combining the first projected image light and the second projected image light, wherein the combined first projected image light and the second projected image light are relatively offset by a predetermined distance.
  • the light-emitting device 110 can emit the first time-series light beam 102 along the first light channel and the second time-series light beam 103 along the second light channel. Subsequently, the first time-series light beam 102 enters the first spatial light modulator 121, and is modulated by the first spatial light modulator 121 into the first projection image light, and the second time-series light beam 103 enters the second spatial light modulator 122, and the second spatial light modulator The modulator 122 modulates the second projection image light.
  • the modulated first projected image light and second projected image light enter the light combining device 123, and the light combining device 123 combines the first projected image light and the second projected image light, and adjusts the first spatial light modulator
  • the first projected image light after the light combining 123 is combined with the light combining device
  • the second projection image light is relatively offset by a distance of half a pixel in the first direction and the second direction that are perpendicular to each other.
  • the first spatial light modulator 121 and the second spatial light modulator 122 are relatively offset by half a pixel in the first direction and the second direction that are perpendicular to each other.
  • a projection image light and a second projection image light are projected on the screen 201 at a distance of half a pixel in the first direction and the second direction which are perpendicular to each other, they can be projected on the screen 201 to form a first projection image and
  • the second projection picture, and the first projection picture and the second projection picture are also relatively offset by half a pixel (1/2 pixel) in the first direction and the second direction, and the two projection pictures are superimposed to form the final projection picture.
  • the superposition of the two projection images forms a pixel shift, the resolution of the finally obtained projection image has been greatly improved.
  • the light-emitting device 110 emits the first time-series light beam 102 and the second time-series light beam 103 with different wavelength bands at the same time, and both the first time-series light beam 102 and the second time-series light beam 103 include a plurality of periodically arranged Wave band, so that one light-emitting device 110 is used to replace the light-emitting light sources of two sets of projection systems, which reduces the complexity of the overall structure of the projection system, and reduces the cost of manufacturing and assembly.
  • the first time series light beam 102 is modulated into the first projection image light by the first spatial light modulator 121
  • the second time series light beam 103 is modulated into the second projection image light by the second spatial light modulator 122, and finally by the light combining device 123
  • the first projected image light and the second projected image light are relatively offset by a preset distance and then combined, so that the dual spatial light modulator and spatial pixel shift technology are used to improve the resolution of the combined light .
  • the first sequential light beam 102 and the second sequential light beam 103 are simultaneously emitted by the light-emitting device 110, the display brightness of the screen obtained by combining the light can be effectively improved.
  • the light beams of multiple wavelength bands in the first sequential light beam 102 and the light beams of multiple wavelength bands in the second sequential light beam 103 emitted by the light-emitting device 110 may have the same time ratio in the time sequence period, so that the first spatial light modulator 121 and the second spatial light modulator 122 can modulate light beams of various wavelength bands with the same time ratio.
  • the duration of any one of the multiple wavebands of light beams does not exceed half of the time sequence period, so that the first time sequence light beam 102 and the second time sequence light beam 103
  • the time ratio within is the same, it is ensured that the wavelength bands of the first sequential light beam 102 and the second sequential light beam 103 at the same time are different.
  • the beams of the same wavelength band in the first time-sequence beam 102 and the second time-sequence beam 103 are different by a preset time interval, because the beams of the same wavelength in the first time-sequence beam 102 and the second time-sequence beam 103 are different by a preset time interval.
  • the interval may be such that the wavelength bands of the first sequential light beam 102 and the second sequential light beam 103 at the same time are exactly different.
  • both the first sequential light beam 102 and the second sequential light beam 103 may include a light beam in the red light waveband, a light beam in the green light waveband, and a light beam in the blue light waveband that are periodically arranged.
  • the arrangement sequence of the light beams in the red light waveband, the light beams in the green light waveband, and the light beams in the blue light waveband can be combined arbitrarily, which is not limited herein.
  • the light-emitting device 110 includes a light source unit 111 and a color separation unit 112.
  • the light source unit 111 is used to emit an illuminating light beam 101, and the illuminating light beam 101 includes at least two light beams of different wavelength bands in each periodical period.
  • the light source unit 111 may emit light beams including two or more wavelength bands.
  • the light source may be a light source such as a laser, a light emitting diode (Light Emitting Diode, LED), and laser fluorescence.
  • the color separation unit 112 is used to guide the light beam of one wavelength band in the illumination beam 101 to the first light channel to form the first time-series light beam 102, and guide the light beam of the other wavelength band to the second light channel to form the second light channel. Timing beam 103.
  • the color separation unit 112 includes a plurality of partitions, and the plurality of partitions are periodically arranged on the light path of the illuminating beam 101 in sequence, and the plurality of partitions respectively correspond to the periodic time periods, and each partition transmits one One waveband beam reflects another waveband beam.
  • the multiple partitions may be partitions in a long strip of color separation band that can refract and reflect light beams, or may be partitions in a color separation wheel 112.
  • the illumination light beam 101 includes a periodic first time period light beam, a second time period light beam, a third time period light beam, a fourth time period light beam, and a fifth time period light beam;
  • the first time period light beam includes a green light waveband
  • the light beam of the second time period includes the light beam of the green light waveband and the light beam of the blue light waveband
  • the light beam of the third time period includes the light beam of the red light waveband and the light beam of the blue light waveband
  • the light beam of the fourth time period Including the red light wave band and the green light wave band
  • the five-time period light beam includes the blue light wave band and the green light wave band.
  • the color separation unit 112 includes a color separation wheel, which includes a first color separation plate a, a second color separation plate b, a third color separation plate c, a fourth color separation plate d, and a fifth color separation plate.
  • Dichroic sheet e the first dichroic sheet a includes a transparent green mirror reflecting red
  • the second dichroic sheet b includes a transparent green reflecting blue mirror
  • the third dichroic sheet c includes a transparent red reflecting blue mirror
  • the fourth dichroic sheet d Including the translucent red and reflecting green mirror
  • the fifth dichroic sheet e includes the translucent blue and reflecting green mirror.
  • the relationship between the light beams emitted by the light source unit 111 in different time periods, the light beams in the transmission direction of the dichroic wheel (the first time sequence light beam) and the light beams in the reflection direction (the second time sequence light beam), and the mirrors corresponding to the dichroic plate It can be as shown in Table 1:
  • the light beam of the first time period corresponds to the first dichroic plate a
  • the first dichroic plate a is used to transmit the light beam of the green light waveband in the light beam of the first time period to the first optical channel, and the first time period The light beam in the red light waveband in the light beam is reflected to the second light channel.
  • the light beam in the second time period corresponds to the second dichroic plate b, and the second dichroic plate b is used to transmit the light beam of the green light waveband in the light beam of the second time period to the first optical channel, and transfer the light beam in the second time period to the first light channel.
  • the light beam in the blue light band is reflected to the second light channel.
  • the light beam in the third time period corresponds to the third dichroic plate c, and the third dichroic plate c is used to transmit the light beam of the red light waveband in the light beam of the third time period to the first optical channel, and transfer the light beam in the third time period The light beam in the blue light band is reflected to the second light channel.
  • the fourth time period light beam corresponds to the fourth dichroic plate d.
  • the fourth time period light beam d is used to transmit the red light waveband light beam in the fourth time period light beam to the first light channel and transfer the fourth time period light beam to the first light channel.
  • the light beam in the green light band is reflected to the second light channel.
  • the light beam in the fifth time period corresponds to the fifth dichroic plate e, and the fifth dichroic plate e is used to transmit the light beam of the blue light waveband in the light beam of the fifth time period to the first optical channel, and transfer the light beam in the fifth time period The light beam in the green light band is reflected to the second light channel.
  • the second figure in Figure 5 can be expressed as the ratio of the three wavebands transmitted in the color separation wheel
  • the third figure in Figure 5 can be expressed as the three wavebands reflected in the color separation wheel.
  • the ratio of the light beams where A represents the green waveband light beam, B represents the red waveband light beam, and C represents the blue waveband light beam.
  • the beams of the same waveband in the transmission direction and the reflection direction are staggered at every moment.
  • the color separation wheel 112 may be arranged on the optical path of the illumination beam 101 generated by the light source unit 111.
  • the light beam generated by the light source unit 111 includes a plurality of wavelength bands.
  • the illumination light beam 101 can be separated into a first time-series light beam 102 in the transmission direction and a second time-series light beam 103 in the reflection direction.
  • the first time-series light beam 102 and the second time-series light beam 103 both include a plurality of wavelength bands that change periodically, and the first time-series light beam 102 and the second time-series light beam 103 have different wavelength bands at the same time.
  • the first time-series light beam 103 The waveband period in the light beam 102 and the waveband period in the second sequential light beam 103 have a certain time delay.
  • the first sequential light beam 102 and the second sequential light beam 103 enter the first spatial light modulator 121 and the second spatial light modulator 122 respectively, the first sequential light beam 102 is modulated into a first projection by the first spatial light modulator 121
  • the image light is modulated by the second spatial light modulator 122 to the second time-series light beam 103 into the second projection image light.
  • the first projection image light and the second projection image light are combined by the light combining device 123 at a relatively preset distance. Projected onto the screen 201 to obtain the final display image.
  • only the dichroic wheel 112 can be used to generate two sequential light beams on the optical path, that is, the first sequential light beam and the second sequential light beam, thereby avoiding the need to pass two projection devices to generate two sequential light beams.
  • the complex structure simplifies the structure of the projection system and reduces the space occupied by the projection system.
  • two light beams are generated by the color separation wheel 112 to form a display image. Compared with a display image formed by a single light beam, the brightness of the display image is effectively improved. It also improves the resolution of the display screen and the stability of the image quality, thereby enhancing the user experience.
  • the color separation wheel 112 may include a plurality of color separation plates, and the plurality of color separation plates are connected to form a circle.
  • the color separation plates are fan-shaped.
  • each dichroic plate can reflect light of one color and transmit light of another color, and may specifically be a dichroic plate.
  • the color separation wheel 112 may be a ring formed by connecting a plurality of color separation plates. When the color separation wheel 112 is a ring shape, each color separation plate has a fan shape. It is understandable that since multiple bands in a certain timing beam separated by the color separation wheel 112 are periodic, a timing beam will have multiple band periods.
  • the first spatial light modulator 121 and the second spatial modulator 122 cannot meet the requirements of modulating the light beams of the two wavelength bands respectively. Since one rotation of the color separation wheel 112 corresponds to one waveband period of a time sequence beam, that is, one time sequence period, the area of any one of the color separation plates in the color separation wheel 112 does not exceed two times the area of the color separation wheel 112. One part.
  • the light source unit 111 emits an illuminating beam 101, which contains a first waveband beam and a second waveband beam, where two The beam bands are not the same.
  • the wavelength band of the light beam emitted by the light source changes synchronously with the rotation of the color separation wheel 112. Specifically, the light beam passes through the corresponding dichroic plate in the dichroic wheel 112, and then separates the light emitted in the first direction (the transmission direction of the dichroic wheel), that is, the first sequential light beam 102 and the light emitted in the second direction (the reflection direction of the dichroic wheel) ), that is, the second sequential light beam 103.
  • the two separated light beams have different wavelength bands at the same time.
  • the light beams of the two wavelength bands emitted by the light source and the color separation plate of the color separation wheel 112 are correspondingly rotated.
  • the color separation wheel 112 includes a first color separation unit 71, a second color separation unit 72 and a third color separation unit 73.
  • the first dichroic unit 71 may include a green-transmitting red mirror and a green-reflecting blue mirror, and the green-transmitting red mirror and the green-reflecting blue mirror are connected in a fan shape;
  • the second dichroic unit 72 may include a red-transmitting mirror and a blue-transmitting mirror. A red and green mirror, the red and blue mirror and the red and green mirror are connected to form a fan;
  • the third dichroic unit 73 may include a blue and green mirror, and the blue and green mirror is fan-shaped.
  • the green-transmitting area and the anti-green area of the dichroic wheel 112 are equal, the red-transmitting area and the anti-red area of the dichroic wheel 112 are equal, and the blue-transmitting area and the anti-blue area of the dichroic wheel 112 are equal, so that the first sequential light beam The light of each wavelength band of 102 and the second sequential light beam 103 occupy the same proportion.
  • the dichroic mirror in the dichroic wheel 112 and the wavelength band of the first wavelength light of the light source, the wavelength band of the second wavelength light of the light source, and the transmission direction of the dichroic wheel 112 emit light (the first sequential light beam).
  • the corresponding relationship between the wavelength band of 102) and the wavelength band of the light emitted in the reflection direction of the dichroic wheel 112 (the second sequential light beam 103) is shown in FIG. 6.
  • a in FIG. 6 represents green waveband light
  • B represents red waveband light
  • C represents blue waveband light.
  • the two wavelength bands of the light beam emitted by the light source and the corresponding color separation plate in the color separation wheel 112 are converted and converted, and so on.
  • two time-series light beams can be generated, which are the first time-series light beam 102 and the second time-series light beam 103, respectively.
  • the two time series light beams passing through the dichroic wheel 112 have the same proportion of light in each band, so that the two time series light beams after passing through the color separation wheel 112 are combined by the light combining device 123 to obtain a complete color.
  • the time proportions occupied by the light of each band in a cycle period can be T1: T2:...TN, where TN represents the proportion of the light of the Nth band in a single cycle period in the sequential light beam.
  • the color separation wheel 112 can be designed accordingly in practical applications.
  • the transmission part of the color separation wheel 112 can be set in the order of green, red, and blue, and a ratio of green transmission area, red transmission area, and blue transmission area of 157:97:106.
  • the light beam generated by the light source exits through the dichroic wheel 112 to obtain the first time-series light beam 102 in the transmission direction and the second time-series light beam 103 in the refraction direction, as shown in FIG. 7, where,
  • the first time-series light beam 102 and the second time-series light beam 103 have the same proportion of light in each wavelength band, and the two light beams differ by a time delay, so that the first time-series light beam 102 and the second time-series light beam 103 have different wavelength bands at the same time.
  • the two time-series light beams emitted (transmitted and reflected) from the dichroic wheel 112 are obtained.
  • the ratio and order of the dichroic plates of the light splitting wheel can be designed arbitrarily.
  • a in FIG. 7 represents green waveband light
  • B represents red waveband light
  • C represents blue waveband light.
  • any one of the dichroic plates in the color separation wheel 112 is set to not exceed one half of the area of the color separation wheel 112, it is possible to ensure that the two sequential light beams generated when the color separation wheel 112 rotates The waveband at each moment is different, so that the light combining device 123 can modulate and combine the two time-series light beams.
  • a in FIG. 8 represents green waveband light
  • B represents red waveband light
  • C represents blue waveband light.
  • the color separation wheel 112 is formed by connecting the green-transmitting red mirror, the green-transmitting blue mirror, the red-transmitting blue mirror, the red-transmitting green mirror, and the blue-reflecting green mirror to form the color separation wheel 112.
  • the part and the reflection part have a certain phase difference, so that the wavelength period of the first time series beam 102 and the second time series beam 103 separated by the color separation wheel have a time delay, so that at the same moment, the first time series beam 102 corresponds to The wavelength band is different from the wavelength band corresponding to the second sequential light beam 103.
  • the first projection image light received by the light combining device 123 is the second polarization state light
  • the second projection image light received by the light combining device 123 is the first polarization state light
  • the polarization state of the first polarization state light is The polarization states of the two-polarization light are different.
  • the light combining device 123 is a polarization combining device for reflecting one of the received first projection image light and the second projection image light, and the other transmitting the light.
  • the first projected image light and the second projected image are combined with light.
  • the polarization combining device may be a light combining prism.
  • the first projected image light and the second projected image light can be relatively offset by a predetermined distance, and the first projected image light can be formed when projected onto the screen 201.
  • the second projection image can be formed.
  • the first projection image light and the second projection image light are relatively offset by a preset distance
  • the first projection image and the second projection image The two projection images are superimposed in space, which can eliminate the noise, vibration and display error caused by the vibration of the traditional time pixel shift technology and the vibration of the refractive lens, and improve the resolution of the display image, the stability of the image quality and the user experience
  • the first projection image light and the second projection image light are polarized and combined by the polarization combining device, which enhances the light combining effect.
  • the second polarization state light may be P polarization state light.
  • the first polarization state light is P polarization state light
  • the second polarization state light may be S polarization state light.
  • a polarization conversion device is provided between the first spatial light modulator 121 or/and the second spatial light modulator 122 and the light combining device 123, so that the first projection image light incident on the light combining device 123 The second polarization state light, and the second projection image light is the first polarization state light.
  • the first spatial light modulator 121 and the first spatial light modulator 121 may adopt a liquid crystal display (LCD) modulator, a liquid crystal on silicon (Liquid Crystal on Silicon, LCOS) modulator, and a digital micromirror. (Digital Micromirror Device, DMD) modulator and so on.
  • LCD liquid crystal display
  • LCOS liquid crystal on silicon
  • DMD Digital Micromirror Device
  • the first time-series light beam 102 and the second time-series light beam 103 are both light in the first polarization state;
  • the first spatial light modulator 121 includes a first LCOS device 1211;
  • the light modulator 122 includes a second LCOS device 1221;
  • the polarization conversion device includes a first half-wave plate 1222, and the first half-wave plate 1222 is disposed between the second LCOS device 1221 and the light combining device 123, and is used to transform the second projection image light The light is converted from the second polarization state into the first polarization state light.
  • the light source unit 111 may be a laser light source, the light source may have only three light emission bands (red, blue, and green), and the light emitted by the light source may be in blue and green states.
  • the dual-band laser light emitted by the light source unit is all polarized S light, and the band light processed by the dichroic wheel 112 may include the first time-sequence beam 102 that is currently green-band light and the second time-sequence beam 103 that is currently blue-band light. , Where the first time series light beam 102 and the second time series light beam 103 are both in the S polarization state.
  • the first LCOS device 1211 and the second LCOS device 1221 After being modulated by the first LCOS device 1211 and the second LCOS device 1221, they are both converted into P-polarized light beams.
  • the first sequential light beam passes through a first half-wave plate 1222 and is converted into S light. Therefore, the green wave band can be obtained.
  • the P light and the blue wavelength S light that is, the first projection image light and the second projection image light, and finally the first projection image light and the second projection image light enter the polarization splitting light combining prism for light combination.
  • the positions of the first LCOS device 1211, the second LCOS device 1221, or the light combining device can be adjusted to make the projection images of the two spatial light modulators differ by half a pixel.
  • the LCOS device as the spatial light modulator, not only the cost is lower, the power consumption is lower, but also higher brightness can be generated.
  • FIG. 9 shows a schematic structural diagram of another projection system.
  • the first sequential light beam 102 and the second sequential light beam 103 emitted by the light-emitting device 110 are both Is the first polarization state light;
  • the first spatial light modulator 221 includes the first DMD device 2211;
  • the second spatial light modulator 222 includes the second DMD device 2221;
  • the polarization conversion device includes the second half-wave plate 2212, the second half-wave
  • the sheet 2212 is arranged between the first DMD device 2211 and the light combining device, and is used to convert the first projected image light from the first polarization state light into the second polarization state light.
  • the first and second DMD devices may include a DMD and a total internal reflection (TIR) prism.
  • the DMD is used to modulate the light beam
  • the TIR prism is arranged between the LCOS and the light combining prism to adjust the direction of the light beam.
  • the function of the second half-wave plate is to convert the polarization state of the light beam, so that the two-way projected image light can be polarized and combined by the light combining device.
  • the half-wave plate and mirror can be placed in various ways, and they can be placed in a suitable position.
  • using the DMD device as a spatial light modulator has the advantages of high native contrast, miniaturization of the machine, etc., and a closed optical path can be used, which reduces the probability of dust entering.
  • FIG. 10 shows a schematic structural diagram of another projection system.
  • the first sequential light beam 102 and the second sequential light beam 103 emitted by the light-emitting device 110 are both Is the first polarization state light;
  • the polarization conversion device includes a first analyzer 3212 and a second analyzer 3222;
  • the first spatial light modulator 321 includes a first LCD device 3211, and the light exit side of the first LCD device 3211 is provided with a first An analyzer 3212, the first analyzer 3212 is used to convert the first projected image light into a second polarization state;
  • the second spatial light modulator 322 includes a second LCD device 3221, and the light emitting side of the second LCD device 3221 A second analyzer 3222 is provided, and the second analyzer 3222 is used to convert the second projected image light into the first polarization state light.
  • the first and second LCD devices may include an LCD and a total reflection mirror.
  • the LCD is used to modulate the light beam, and the total reflection mirror is arranged between the color separation wheel and the LCD to adjust the direction of the light beam.
  • one analyzer only emits the beam of the P polarization state
  • the analyzer of the other LCD only emits the beam of the S polarization state, and emits the beam of the S polarization state.
  • the LCD modulation of the beam needs to be reversed. For example, if the image content is set to 255, the LCD needs to be controlled to 0. Then the polarization combination of the two projected image beams is performed through the light combining prism.
  • the LCD device is used as a spatial light modulator, which not only has a lower cost, but also has a better projection effect, and a high-fidelity color and high-brightness display screen can be obtained.
  • the projection system provided by the embodiment of the present application emits the first time-sequence beam and the second time-sequence beam with different wavebands at the same time through the light-emitting device, and both the first time-sequence beam and the second time-sequence beam include a periodic arrangement Therefore, one light-emitting device is used to replace the light-emitting light sources of two sets of projection systems, which reduces the complexity of the overall structure of the projection system and reduces the cost of manufacturing and assembly.
  • the first time-series light beam is modulated into the first projection image light by the first spatial light modulator
  • the second time-series light beam is modulated into the second projection image light by the second spatial light modulator
  • the first projection image light is modulated by the light combining device
  • the image light and the second projected image light are relatively offset by a preset distance and then combined, so that the dual spatial light modulator and spatial pixel shift technology are used to improve the resolution of the image obtained by combining the light.
  • the first sequential light beam and the second sequential light beam are emitted by the light-emitting device at the same time, the display brightness of the picture obtained by combining the light can be effectively improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Projection Apparatus (AREA)

Abstract

本申请实施例提供了一种投影系统,涉及照明及显示技术领域,该投影系统包括发光装置,用于出射沿第一光通道传输的第一时序光束和沿第二光通道传输的第二时序光束,第一时序光束和第二时序光束均包括呈周期性排布的多个波段的光束,第一时序光束和第二时序光束在同一个时刻的波段不同;第一空间光调制器,设置于第一光通道上,用于将第一时序光束调制为第一投影图像光;第二空间光调制器,设置于第二光通道上,用于将第二时序光束调整为第二投影图像光;合光装置,用于将第一投影图像光和第二投影图像光进行合光,其中,合光后的第一投影图像光和第二投影图像光相对偏移预设距离。能够提高画面的分辨率以及画面质量稳定性。

Description

投影系统 技术领域
本申请涉及照明及显示技术领域,具体涉及一种投影系统。
背景技术
随着科技的发展,数码相机、手机等输入设备的图像采集分辨率逐渐提高,可以输出很高分辨率的图像。相应地,也推动了图像显示技术的发展,如投影显示行业对显示画面的高分辨率、显示精细的画质的要求也越来越高。而对于如何提高投影显示的分辨率这个问题,像素偏移技术就是其中成本较低的、实用较好的一种解决方案。该方案采用两幅分辨率较低的子画面偏移偏移后进行叠加,叠加后的画面展示为一幅分辨率较高的图案。
然而,目前的像素偏移技术通常会采用两套投影系统来实现,从而增加了其整体结构的复杂性,不仅制造和装配的成本较高,而且占用空间较大,所以实用性较低,不利于产品化。
发明内容
本申请的目的在于提供一种投影系统,能够提高画面的分辨率以及画面质量稳定性。
本申请实施例提供了一种投影系统,包括:发光装置、第一空间光调制器、第二空间光调制器以及合光装置。其中,发光装置,用于出射沿第一光通道传 输的第一时序光束和沿第二光通道传输的第二时序光束,第一时序光束和第二时序光束均包括呈周期性排布的多个波段的光束,第一时序光束和第二时序光束在同一个时刻的波段不同;第一空间光调制器,设置于第一光通道上,用于将第一时序光束调制为第一投影图像光;第二空间光调制器,设置于第二光通道上,用于将第二时序光束调整为第二投影图像光;合光装置,用于将第一投影图像光和第二投影图像光进行合光,其中,合光后的第一投影图像光和第二投影图像光相对偏移预设距离。
本申请提供的投影系统,通过发光装置出射同一时刻波段不同的第一时序光束和第二时序光束,且第一时序光束和第二时序光束均包括呈周期性排布的多个波段,从而利用一个发光装置代替了两套投影系统的发光光源,降低了其投影系统的整体结构的复杂性,降低了制造和装配的成本。再经第一空间光调制器将第一时序光束调制为第一投影图像光,经第二空间光调制器将第二时序光束调制为第二投影图像光,最后由合光装置将第一投影图像光和第二投影图像光相对偏移预设距离后进行合光,从而采用双空间光调制器和空间上的像素偏移技术,提高了合光得到的画面的分辨率。另外,由于第一时序光束和第二时序光束是由发光装置同时出射,因此可以有效提高合光得到的画面的显示亮度。
本申请的这些方面或其他方面在以下实施例的描述中会更加简明易懂。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还 可以根据这些附图获得其他的附图。
图1是本申请实施例提供的一种投影系统的结构示意图;
图2是本申请实施例提供的一种时序光束的波段比例以及排布示意图;
图3是本申请实施例提供的一种投影画面的叠加示意图;
图4是本申请实施例提供的一种投影画面叠加后的效果示意图;
图5是本申请实施例提供的分色轮的结构示意图;
图6是本申请实施例提供的分色轮的结构分别与光源光束波段和分色轮出光波段的关系示意图;
图7是本申请实施例提供的分色轮透射时序光束和反射时序光束的排布示意图;
图8是本申请实施例提供的时序光束与光源产生光束的波段关系示意图;
图9是本申请实施例提供的另一种投影系统的结构示意图;
图10是本申请实施例提供的又一种投影系统的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
随着图像采集技术的发展,投影显示行业对于显示画面的高分辨率、显示精细的画质的要求也越来越高,但是目前的投影技术往往无法保证画面的较高分辨率,无法满足用户的画质的较高要求。
发明人发现,采用两幅分辨率较低的子画面偏移半个像素进行叠加,叠加 后的画面展示为一幅分辨率较高的图案,因此可以采用两幅分辨率较低的子画面偏移半个像素进行叠加来提升显示画面的分辨率。
但是,发明人在实际研究中还发现,目前的采用像素偏移的方式往往需要通过画面拆解算法对画面进行拆解,以将高分辨率的视频流转化为两个较低分辨率视频流,再分别输入到空间光调制器的时序控制模组,分时段显示两个子画面,然后两个时段的子画面间有微小的位移,叠加显示形成高分辨率图像显示,在该方式中需要利用时序控制模组进行时序调整,因此调制过程较为复杂。另外还有采用双投影系统实现像素偏移。在该方式中其投影系统结构复杂,所使用的空间光调制器个数较多,制造和装配的成本很高,实用性低下。由此可知,目前大多采用像素偏移技术的投影系统往往结构复杂、使用麻烦、占用空间大,很难运用到实际投影产品中。
因此,针对于上述问题,发明人提出了本申请实施例中的投影系统以及显示方法,通过采用分色轮产生具有时间延迟的两路时序光束,再由合光装置对时序光束进行合光得到像素偏移后的显示画面,可以简化投影系统的结构,并提升显示画面的分辨率。下面将结合附图具体描述本申请的各实施例。
参阅图1,本申请实施例提供一种投影系统,该投影系统100可以包括发光装置110、第一空间光调制器121、第二空间光调制器122以及合光装置123。
其中,发光装置110用于出射沿第一光通道传输的第一时序光束102和沿第二光通道传输的第二时序光束103,第一时序光束102和第二时序光束103均包括呈周期性排布的多个波段的光束,第一时序光束102和第二时序光束103在同一个时刻的波段不同。
可以理解的是,波段指的是光束的波长范围,由于不同颜色的光束波长不同,因此一种波段可以对应一种颜色的光束。
其中,第一光通道和第二光通道在空间上可以是相互垂直,也可以不是相互垂直,在此不做限定。
如图2所示,作为一种示例,如第一时序光束102和第二时序光束103均包括3种波段的光束,这3种波段可以分别为绿色波段光束、红色波段光束以及蓝色波段光束,其中,绿色波段光束、红色波段光束以及蓝色波段光束依次呈周期性地交替,从而形成第一时序光束102和第二时序光束103。其中,第一时序光束102和第二时序光束103中的波段可以相差一定时间间隔,使得第一时序光束102和第二时序光束103在同一个时刻的波段不同。其中,可以理解的是,当绿色波段光束、红色波段光束以及蓝色波段光束依次完成一遍交替则为一个时序周期。
第一空间光调制器121设置于第一光通道上,用于将第一时序光束102调制为第一投影图像光。
第二空间光调制器122设置于第二光通道上,用于将第二时序光束103调整为第二投影图像光。
可以理解的是,经过第一空间光调制器121和第二空间光调制器122调制成的第一投影图像光和第二投影图像光可以在屏幕201上形成投影画面。
合光装置123用于将第一投影图像光和第二投影图像光进行合光,其中,合光后的第一投影图像光和第二投影图像光相对偏移预设距离。
在实际应用中,发光装置110可以沿第一光通道出射第一时序光束102,沿第二光通道出射第二时序光束103。随后第一时序光束102进入第一空间光调制器121,由第一空间光调制器121调制为第一投影图像光,第二时序光束103进入第二空间光调制器122,由第二空间光调制器122调制为第二投影图像光。然后调制得到的第一投影图像光和第二投影图像光进入合光装置123,由合光装置 123对第一投影图像光和第二投影图像光进行合光,通过调整第一空间光调制器121和第二空间光调制器122的位置,或者合光棱镜123的位置,使得合光后的第一投影图像光和第二投影图像光相互平行,且相对偏移预设距离。
在一些实施方式中,通过调整第一空间光调制器121和第二空间光调制器122的位置,或者合光棱镜123的位置,使得经合光装置合123光后的第一投影图像光和第二投影图像光在相互垂直的第一方向和第二方向上均相对偏移半个像素的距离。如图3和图4所示,使第一空间光调制器121和第二空间光调制器122在相互垂直的第一方向和第二方向上均相对偏移半个像素,合光后的第一投影图像光和第二投影图像光在相互垂直的第一方向和第二方向上均相对偏移半个像素的距离投影到屏幕201上时,可以在屏幕201上投影形成第一投影画面和第二投影画面,且第一投影画面和第二投影画面也在第一方向和第二方向上均相对偏移半个像素(1/2像素),两个投影画面叠加形成最终的投影画面。如图4所示,由于这两个投影画面的叠加形成了像素偏移,最终得到的投影画面的分辨率得到了大幅度提升。
在本实施例中,通过发光装置110出射同一时刻波段不同的第一时序光束102和第二时序光束103,且第一时序光束102和第二时序光束103均包括呈周期性排布的多个波段,从而利用一个发光装置110代替了两套投影系统的发光光源,降低了其投影系统的整体结构的复杂性,降低了制造和装配的成本。再经第一空间光调制器121将第一时序光束102调制为第一投影图像光,经第二空间光调制器122将第二时序光束103调制为第二投影图像光,最后由合光装置123将第一投影图像光和第二投影图像光相对偏移预设距离后进行合光,从而采用双空间光调制器和空间上的像素偏移技术,提高了合光得到的画面的分辨率。另外,由于第一时序光束102和第二时序光束103是由发光装置110同 时出射,因此可以有效提高合光得到的画面的显示亮度。
其中,经发光装置110出射的第一时序光束102中的多个波段的光束和第二时序光束103中的多个波段的光束在时序周期内的时间比例可以相同,使得第一空间光调制器121和第二空间光调制器122能够调制时间比例相同的各波段的光束。
可选地,多个波段的光束中任意一波段的光束对应的时长不超过的时序周期的一半,从而可以在第一时序光束102和第二时序光束103中的多个波段的光束在时序周期内的时间比例相同时,确保第一时序光束102和第二时序光束103在同一个时刻的波段不同。
可选地,第一时序光束102和第二时序光束103中相同波段的光束相差预设的时间间隔,正因为第一时序光束102和第二时序光束103中相同波段的光束相差预设的时间间隔,可以使得第一时序光束102和第二时序光束103在同一个时刻的波段刚好不相同。
可选地,第一时序光束102和第二时序光束103均可以包括呈周期性排布的红色光波段的光束、绿色光波段的光束和蓝色光波段的光束。在一些实施方式中,红色光波段的光束、绿色光波段的光束和蓝色光波段的光束的排布顺序可以任意组合,在此不做限定。
其中,发光装置110包括:光源单元111和分色单元112。
其中,光源单元111,用于出射照明光束101,照明光束101在周期性的各时间段内分别包括至少两种不同波段的光束。
在一些实施方式中,光源单元111可以射出包括两种或两种以上波段的光束。可选地,光源可以是激光、发光二极管(Light Emitting Diode,LED)和激光荧光等的光源。
分色单元112,用于将照明光束101中的其中一波段的光束引导至第一光通道,以形成第一时序光束102,将另一波段的光束引导至第二光通道,以形成第二时序光束103。在一些实施方式中,分色单元112包括多个分区,多个分区周期性地依次设置于照明光束101的光路上,多个分区分别与周期性的各时间段相对应,每个分区透射一种波段光束,反射另一种波段的光束。可选地,多个分区可以是一个长条形的可以对光束进行折射和反射的分色带中的分区,也可以是一个分色轮112中的分区。
可选地,照明光束101包括周期性的第一时间段光束、第二时间段光束、第三时间段光束、第四时间段光束以及第五时间段光束;第一时间段光束包括绿色光波段的光束和红色光波段的光束,第二时间段光束包括绿色光波段的光束和蓝色光波段的光束,第三时间段光束包括红色光波段的光束和蓝色光波段的光束,第四时间段光束包括红色光波段的光束和绿色光波段的光束,五时间段光束包括蓝色光波段的光束和绿色光波段的光束。
如图5所示,分色单元112包括分色轮,该分色轮包括第一分色片a、第二分色片b、第三分色片c、第四分色片d以及第五分色片e,第一分色片a包括透绿反红镜,第二分色片b包括透绿反蓝镜,第三分色片c包括透红反蓝镜,第四分色片d包括透红反绿镜,第五分色片e包括透蓝反绿镜。
其中,光源单元111在不同时间段发出的光束、分色轮的透射方向上的光束(第一时序光束)和反射方向上的光束(第二时序光束)、以及分色片对应的镜片的关系可以如表1所示:
表1
光源出光 分色轮透射方向 分色轮反射方向 分色片
绿光和红光 绿光 红光 透绿反红镜
绿光和蓝光 绿光 蓝光 透绿反蓝镜
红光和蓝光 红光 蓝光 透红反蓝镜
红光和绿光 红光 绿光 透红反绿镜
蓝光和绿光 蓝光 绿光 透蓝反绿镜
其中,第一时间段光束与第一分色片a对应,第一分色片a用于将第一时间段光束中的绿色光波段的光束透射至第一光通道,并将第一时间段光束中的红色光波段的光束反射至第二光通道。
第二时间段光束与第二分色片b对应,第二分色片b用于将第二时间段光束中的绿色光波段的光束透射至第一光通道,并将第二时间段光束中的蓝色光波段的光束反射至第二光通道。
第三时间段光束与第三分色片c对应,第三分色片c用于将第三时间段光束中的红色光波段的光束透射至第一光通道,并将第三时间段光束中的蓝色光波段的光束反射至第二光通道。
第四时间段光束与第四分色片d对应,第四分色片d用于将第四时间段光束中的红色光波段的光束透射至第一光通道,并将第四时间段光束中的绿色光波段的光束反射至第二光通道。
第五时间段光束与第五分色片e对应,第五分色片e用于将第五时间段光束中的蓝色光波段的光束透射至第一光通道,并将第五时间段光束中的绿色光波段的光束反射至第二光通道。
请再次参阅图5,图5中的第二个图可以表示为分色轮中透射的三种波段光束的比例,图5中的第三个图可以表示为分色轮中反射的三种波段光束的比例, 其中,A表示绿色波段光束,B表示红色波段光束,C表示蓝色波段光束,其中,透射方向和反射方向上的相同波段的光束正好在每一个时刻都错开。
在实际应用中,作为一种示例,分色轮112可以设置在光源单元111产生的照明光束101的光路上。光源单元111产生的光束包括多个波段。当分色轮112转动时,可以该照明光束101分离为透射方向上的第一时序光束102和反射方向上的第二时序光束103。其中,第一时序光束102和第二时序光束103均包括呈周期性变化的多个波段,且第一时序光束102和第二时序光束103在同一个时刻的波段不同,具体地,第一时序光束102中的波段周期与第二时序光束103中的波段周期具有一定的时间延迟。
当第一时序光束102和第二时序光束103分别进入到第一空间光调制器121和第二空间光调制器122,由第一空间光调制器121将第一时序光束102调制为第一投影图像光,由第二空间光调制器122将第二时序光束103调制为第二投影图像光,第一投影图像光和第二投影图像光经合光装置123以相对预设距离进行合光后投影到屏幕201上得到最后的显示画面。
在本实施方式中,仅利用分色轮112就能产生两个光路上的时序光束,即第一时序光束和第二时序光束,从而避免了目前需要通过两个投影装置才能产生两个时序光束的复杂结构,简化了投影系统的结构以及减少了投影系统的占用空间。同时通过分色轮112产生两路光束来形成显示画面,相比于单一光束形成的显示画面,有效提高了显示画面的亮度。也提高了显示画面的分辨率和画面质量稳定性,进而提升了用户体验。
在一些实施例中,分色轮112可以包括多个分色片,该多个分色片连接成圆形,当分色轮112为圆形时,分色片为扇形。其中,每一个分色片均能够反射一种颜色的光,透射另一种颜色的光,具体可以为二向色片。可选地,分色 轮112可以为多个分色片连接成的环形,当分色轮112为环形时,每个分色片为一扇形。可以理解的是,由于分色轮112分离出的某一个时序光束中多个波段呈周期性,因此一个时序光束会具有多个波段周期,若一个波段周期中任意一个波段的时间超过该波段周期的一半,则可能导致两个时序光束在某些时间段的波段会相同,则无法满足第一空间光调制器121和第二空间调制器122需要分别调制两种波段的光束的要求。由于分色轮112转动一圈对应了一个时序光束的一个波段周期,即一个时序周期,所以分色轮112中任意一个所述分色片的面积不超过所述分色轮112的面积的二分之一。
在实际应用中,作为一种示例,当分色轮112以一个恒定的速度转动时,光源单元111出射一个照明光束101,该光束中包含了第一波段的光束和第二波段光束,其中,两个光束波段不相同。光源出射的光束的波段随着分色轮112的转动同步发生变化。具体地,该光束经过分色轮112中对应的分色片,然后分离出第一方向出射光(分色轮透射方向),即第一时序光束102和第二方向出光(分色轮反射方向),即第二时序光束103,这两个分离后的光束的在同一时刻波段不同。光源出射的两个波段的光束和分色轮112的分色片进行对应轮换。
请再次参阅图5,在一些实施方式中,分色轮112包括第一分色单元71、第二分色单元72以及第三分色片单元73。
第一分色单元71可以包括透绿反红镜和透绿反蓝镜,该透绿反红镜和透绿反蓝镜连接成扇形;第二分色单元72可以包括透红反蓝镜和透红反绿镜,该透红反蓝镜与透红反绿镜和连接成扇形;第三分色片单元73可以包括透蓝反绿镜,该透蓝反绿镜为扇形。其中,分色轮112的透绿面积与反绿面积相等,分色轮112的透红面积与反红面积相等,分色轮112的透蓝面积与反蓝面积相等,以使第一时序光束102和第二时序光束103的各波段光占比相同。
当该分色轮112转动时,分色轮112中的分色镜分别与光源的第一波段光的波段、光源的第二波段光的波段、分色轮112透射方向出光(第一时序光束102)的波段以及分色轮112反射方向出光(第二时序光束103)的波段的对应关系如图6所示。其中,图6中的A表示绿色波段光,B表示红色波段光,C表示蓝色波段光。
随着分色轮112的转动,光源发出光束的两个波段和分色轮112中对应分色片的转换而转换,如此循环。光源出射的光束经过分色轮112后可以产生两个时序光束,分别为第一时序光束102和第二时序光束103。
其中,经过分色轮112的两个时序光束的各波段光占比是相同的,从而实现经过分色轮112后的两个时序光束经过合光装置123合光后,得到的是色彩完整的画面。其中,各个波段的光在一个循环周期中占据的时间比例可以为T1:T2:…TN,其中,TN表示第N波段光在时序光束中的单个循环周期所占比例。
由此可知,当经过分色轮112的时序光束的波段和顺序确定后,可以得出光源出射两种波段光束的转换顺序和持续时间以及分色轮112的分色片个数、材质和转换顺序,因此在实际应用中可以据此来设计分色轮112。
作为一种示例,假设要得到经过分色轮112后时序光束的出光波段有三种,分别为红色、蓝色以及绿色,其透射方向的时序光束的波段周期中波段的顺序依次为绿色、红色、蓝色,且绿色:红色:蓝色的比例为157:97:106。对应地,则可以将分色轮112的透射部分按照绿色、红色、蓝色的顺序以及绿色透射面积、红色透射面积、蓝色透射面积为157:97:106的比例进行设置。
在该分色轮112使用时,光源产生的光束经该分色轮112出射可以得到透射方向上的第一时序光束102和折射方向上的第二时序光束103,如图7所示,其中,第一时序光束102和第二时序光束103的各波段光占比相同,且两个光 束相差了一个时间延迟,以使第一时序光束102与第二时序光束103在同一时刻的波段不相同。由此得出分色轮112出射(透射和反射)的两个时序光束。可选地,在满足在每一时刻,两个时序光束的波段都不同前提下,分光轮的各个分色片的比例及顺序可以任意设计。其中,图7中的A表示绿色波段光,B表示红色波段光,C表示蓝色波段光。
其中,如图8所示,经过分色轮112透射方向的第一时序光束102和反射方向的第二时序光束103与光源的第一波段光和第二波段光之间存在一一对应关系。
在本实施例中,通过将分色轮112中任意一个分色片的面积设置为不超过分色轮112的面积的二分之一,能够保证分色轮112转动时产生的两个时序光束在每一时刻的波段不同,从而方便合光装置123对两个时序光束进行调制以及合成。其中,图8中的A表示绿色波段光,B表示红色波段光,C表示蓝色波段光。
在本实施方式中,通过透绿反红镜、透绿反蓝镜、透红反蓝镜、透红反绿镜、透蓝反绿镜连接组成分色轮112,使分色轮112的透射部分和反射部分相差一定相位,从而使得分色轮分离出的第一时序光束102的波段周期和第二时序光束103的波段周期具有时间延迟,进而使得同一时刻下,第一时序光束102对应的波段与第二时序光束103对应的波段不相同。进而方便第一空间光调制器121、第二空间光调制器122以及对两个时序光束进行调制。
其中,合光装置123接收到的第一投影图像光为第二偏振态光,合光装置123接收到的第二投影图像光为第一偏振态光,第一偏振态光的偏振态和第二偏振态光的偏振态不同,其中,合光装置123为偏振合光器件,用于将接收的第一投影图像光和第二投影图像光中的其中一个进行反射,另一个进行透射,以 使第一投影图像光和第二投影图像光合光。
可选的,偏振合光器件可是合光棱镜。
在本实施方式中,通过合光装置123在合成显示画面时,可使第一投影图像光与第二投影图像光相对偏移预设距离,第一投影图像光投影到屏幕201上时可以形成第一投影画面,第二投影图像光投影到屏幕201上时可以形成第二投影画面,由于第一投影图像光与第二投影图像光相对偏移预设距离,从而让第一投影画面和第二投影画面在空间上进行叠加,以此可以消除传统时间上像素偏移技术的噪声、震动以及折射透镜震动导致的显示误差,提升了显示画面的分辨率、画面质量稳定性和用户体验,并且通过偏振合光器件将第一投影图像光和第二投影图像光进行偏振合光,增强了合光的效果。
可选的,当第一偏振态光为S偏振态光时,第二偏振态光可以为P偏振态光。当第一偏振态光为P偏振态光时,第二偏振态光可以为S偏振态光。
在一些实施方式中,第一空间光调制器121或/和第二空间光调制器122与合光装置123之间设有偏振转换器件,以使入射至合光装置123的第一投影图像光为第二偏振态光,第二投影图像光为第一偏振态光。
可选地,第一空间光调制器121和第一空间光调制器121可以采用液晶显示(Liquid Crystal Display,LCD)调制器、硅基液晶(Liquid Crystal on Silicon,LCOS)调制器、数字微镜(Digital Micromirror Device,DMD)调制器等等。
具体地,如图1所示,作为一种方式,第一时序光束102和第二时序光束103均为第一偏振态光;第一空间光调制器121包括第一LCOS装置1211;第二空间光调制器122包括第二LCOS装置1221;偏振转换器件包括第一半波片1222,第一半波片1222设置于第二LCOS装置1221和合光装置123之间,用于将第二投影图像光从第二偏振态光转换成第一偏振态光。
在实际应用中,作为一种示例,光源单元111可以为激光光源,光源的出光波段可以只有三个(红色、蓝色、绿色),光源出光可以为蓝光和绿光的状态。光源单元出射双波段的激光均为偏振S光,首先通过分色轮112的处理的波段光可以包括当前为绿色波段光的第一时序光束102和当前为蓝色波段光的第二时序光束103,其中,第一时序光束102和第二时序光束103均为S偏振态。经过第一LCOS装置1211和第二LCOS装置1221的调制后,都转换为P偏振态的光束,其中第一时序光束经过一个第一半波片1222,转换为S光,因此可以得到绿色波段的P光和蓝色波段S光,即第一投影图像光和第二投影图像光,最后让第一投影图像光和第二投影图像光进入偏振分光合光棱镜进行合光。其中,可以通过调整第一LCOS装置1211、第二LCOS装置1221或合光装置的位置,使两个空间光调制器的投影图像相差半个像素。
在本实施方式中,通过采用LCOS装置作为空间光调制器,不仅成本较低,功耗较低,而且可以产生较高的亮度。
如图9所示,作为一种方式,图9示出了另一种投影系统的结构示意图,在该投影系统200中,经发光装置110发出的第一时序光束102和第二时序光束103均为第一偏振态光;第一空间光调制器221包括第一DMD装置2211;第二空间光调制器222包括第二DMD装置2221;偏振转换器件包括第二半波片2212,第二半波片2212设置于第一DMD装置2211和合光装置之间,用于将第一投影图像光从第一偏振态光转换成第二偏振态光。
具体地,第一、第二DMD装置可以包括DMD和全反射(total internal reflection,TIR)棱镜,DMD用于调制光束,TIR棱镜设置于LCOS与合光棱镜之间,用于调整光束方向。需要说明的是,上述实施例中,第二半波片的作用是转换光束的偏振态,实现两路投影图像光能够经合光装置进行偏振合光。其中,半波 片和反射镜的放置方式多样,放置在合适的位置皆可。
在本实施方式中,通过DMD装置作为空间光调制器具有原生对比度高、机器小型化等优点,并且可以用封闭式光路,降低了灰尘进入的概率。
如图10所示,作为另一种方式,图10示出了又一种投影系统的结构示意图,在该投影系统300中,发光装置110发出的第一时序光束102和第二时序光束103均为第一偏振态光;偏振转换器件包括第一检偏器3212和第二检偏器3222;第一空间光调制器321包括第一LCD装置3211,第一LCD装置3211的出光侧设置有第一检偏器3212,第一检偏器3212用于将第一投影图像光转换成第二偏振态光;第二空间光调制器322包括第二LCD装置3221,第二LCD装置3221的出光侧设置有第二检偏器3222,第二检偏器3222用于将第二投影图像光转换成第一偏振态光。
其中,第一、第二LCD装置可以包括LCD和全反射镜,LCD用于调制光束,全反射镜设置于分色轮与LCD之间,用于调整光束方向。
具体地,第一检偏器3212和第二检偏器3222中,一个检偏器只出P偏振态的光束,另一个LCD的检偏器只出S偏振态的光束,射出S偏振态的光束的LCD的调制需要进行反处理,例如图片内容设置为255,LCD需要控制为0。然后通过合光棱镜进行两个投影图像光束的偏振合光。
在本实施方式中,通过LCD装置作为空间光调制器,不仅成本较低,而且投影效果较好,能得到高度保真的色彩以及高亮度的显示画面。
综上所述,本申请实施例提供的投影系统,通过发光装置出射同一时刻波段不同的第一时序光束和第二时序光束,且第一时序光束和第二时序光束均包括呈周期性排布的多个波段,从而利用一个发光装置代替了两套投影系统的发光光源,降低了其投影系统的整体结构的复杂性,降低了制造和装配的成本。 再经第一空间光调制器将第一时序光束调制为第一投影图像光,经第二空间光调制器将第二时序光束调制为第二投影图像光,最后由合光装置将第一投影图像光和第二投影图像光相对偏移预设距离后进行合光,从而采用双空间光调制器和空间上的像素偏移技术,提高了合光得到的画面的分辨率。另外,由于第一时序光束和第二时序光束是由发光装置同时出射,因此可以有效提高合光得到的画面的显示亮度。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (15)

  1. 一种投影系统,其特征在于,包括:
    发光装置,用于出射沿第一光通道传输的第一时序光束和沿第二光通道传输的第二时序光束,所述第一时序光束和所述第二时序光束均包括呈周期性排布的多个波段的光束,所述第一时序光束和所述第二时序光束在同一个时刻的波段不同;
    第一空间光调制器,设置于所述第一光通道上,用于将所述第一时序光束调制为第一投影图像光;
    第二空间光调制器,设置于所述第二光通道上,用于将所述第二时序光束调整为第二投影图像光;
    合光装置,用于将所述第一投影图像光和所述第二投影图像光进行合光,其中,合光后的所述第一投影图像光和所述第二投影图像光相对偏移预设距离。
  2. 根据权利要求1所述的投影系统,其特征在于,所述第一时序光束和所述第二时序光束中多个波段的光束在时序周期内的时间比例相同。
  3. 根据权利要求2所述的投影系统,其特征在于,所述多个波段的光束中任意一波段的光束对应的时长不超过的所述时序周期的一半。
  4. 根据权利要求1所述的投影系统,其特征在于,所述第一时序光束和所述第二时序光束中相同波段的光束相差预设的时间间隔。
  5. 根据权利要求1所述的投影系统,其特征在于,所述第一时序光束和所述第二时序光束均包括呈周期性排布的红色光波段的光束、绿色光波段的光束和蓝色光波段的光束。
  6. 根据权利要求1所述的投影系统,其特征在于,所述合光装置接收到的 所述第一投影图像光为第二偏振态光,所述合光装置接收到的所述第二投影图像光为第一偏振态光,所述第一偏振态光的偏振态和所述第二偏振态光的偏振态不同,其中,所述合光装置为偏振合光器件,用于将接收的所述第一投影图像光和所述第二投影图像光中的其中一个进行反射,另一个进行透射,以使所述第一投影图像光和所述第二投影图像光合光。
  7. 根据权利要求6所述的投影系统,其特征在于,所述第一空间光调制器或/和所述第二空间光调制器与所述合光装置之间设有偏振转换器件,以使入射至合光装置的所述第一投影图像光为第二偏振态光,所述第二投影图像光为第一偏振态光。
  8. 根据权利要求7所述的投影系统,其特征在于,所述第一时序光束和所述第二时序光束均为第一偏振态光;
    所述第一空间光调制器包括第一LCOS装置;
    所述第二空间光调制器包括第二LCOS装置;
    所述偏振转换器件包括第一半波片,所述第一半波片设置于所述第二LCOS装置和合光装置之间,用于将所述第二投影图像光从所述第二偏振态光转换成所述第一偏振态光。
  9. 根据权利要求7所述的投影系统,其特征在于,所述第一时序光束和所述第二时序光束均为第一偏振态光;
    所述第一空间光调制器包括第一DMD装置;
    所述第二空间光调制器包括第二DMD装置;
    所述偏振转换器件包括第二半波片,所述第二半波片设置于所述第一DMD装置和合光装置之间,用于将所述第一投影图像光从所述第一偏振态光转换成所述第二偏振态光。
  10. 根据权利要求7所述的投影系统,其特征在于,所述第一时序光束和所述第二时序光束均为第一偏振态光;
    所述偏振转换器件包括第一检偏器和第二检偏器;
    所述第一空间光调制器包括第一LCD装置,所述第一LCD装置的出光侧设置有所述第一检偏器,所述第一检偏器用于将所述第一投影图像光转换成所述第二偏振态光;
    所述第二空间光调制器包括第二LCD装置,所述第二LCD装置的出光侧设置有所述第二检偏器,所述第二检偏器用于将所述第二投影图像光转换成所述第一偏振态光。
  11. 根据权利要求1-10任一项所述的投影系统,其特征在于,经所述合光装置合光后的所述第一投影图像光和所述第二投影图像光在相互垂直的第一方向和第二方向上均相对偏移半个像素的距离。
  12. 根据权利要求1-10任一项所述的投影系统,其特征在于,所述发光装置包括:
    光源单元,用于出射照明光束,所述照明光束在周期性的各时间段内分别包括至少两种不同波段的光束;
    分色单元,用于将所述照明光束中的其中一波段的光束引导至第一光通道,以形成第一时序光束,将另一波段的光束引导至第二光通道,以形成第二时序光束。
  13. 根据权利要求12所述的投影系统,其特征在于,所述分色单元包括多个分区,所述多个分区周期性地依次设置于所述照明光束的光路上,所述多个分区分别与所述周期性的各时间段相对应。
  14. 根据权利要求13所述的投影系统,其特征在于,所述照明光束包括周期 性的第一时间段光束、第二时间段光束、第三时间段光束、第四时间段光束以及第五时间段光束;所述第一时间段光束包括绿色光波段的光束和红色光波段的光束,所述第二时间段光束包括绿色光波段的光束和蓝色光波段的光束,所述第三时间段光束包括红色光波段的光束和蓝色光波段的光束,所述第四时间段光束包括红色光波段的光束和绿色光波段的光束,所述五时间段光束包括蓝色光波段的光束和绿色光波段的光束。
  15. 根据权利要求14所述的投影系统,其特征在于,所述分色单元包括分色轮,所述分色轮包括第一分色片、第二分色片、第三分色片、第四分色片以及第五分色片,所述第一分色片包括透绿反红镜,所述第二分色片包括透绿反蓝镜,所述第三分色片包括透红反蓝镜,所述第四分色片包括透红反绿镜,所述第五分色片包括透蓝反绿镜;
    所述第一时间段光束与所述第一分色片对应,所述第一分色片用于将所述第一时间段光束中的绿色光波段的光束透射至所述第一光通道,并将所述第一时间段光束中的红色光波段的光束反射至所述第二光通道;
    所述第二时间段光束与第二分色片对应,所述第二分色片用于将所述第二时间段光束中的绿色光波段的光束透射至所述第一光通道,并将所述第二时间段光束中的蓝色光波段的光束反射至所述第二光通道;
    所述第三时间段光束与所述第三分色片对应,所述第三分色片用于将所述第三时间段光束中的红色光波段的光束透射至所述第一光通道,并将所述第三时间段光束中的蓝色光波段的光束反射至所述第二光通道;
    所述第四时间段光束与所述第四分色片对应,所述第四分色片用于将所述第四时间段光束中的红色光波段的光束透射至所述第一光通道,并将所述第四时间段光束中的绿色光波段的光束反射至所述第二光通道;
    所述第五时间段光束与所述第五分色片对应,所述第五分色片用于将所述第五时间段光束中的蓝色光波段的光束透射至所述第一光通道,并将所述第五时间段光束中的绿色光波段的光束反射至所述第二光通道。
PCT/CN2020/142118 2020-02-20 2020-12-31 投影系统 WO2021164441A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010105260.0A CN113286131A (zh) 2020-02-20 2020-02-20 投影系统
CN202010105260.0 2020-02-20

Publications (1)

Publication Number Publication Date
WO2021164441A1 true WO2021164441A1 (zh) 2021-08-26

Family

ID=77275123

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/142118 WO2021164441A1 (zh) 2020-02-20 2020-12-31 投影系统

Country Status (2)

Country Link
CN (1) CN113286131A (zh)
WO (1) WO2021164441A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113721415A (zh) * 2021-08-30 2021-11-30 歌尔光学科技有限公司 投影光机

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140063358A1 (en) * 2012-09-06 2014-03-06 Seiko Epson Corporation Projector
CN104216210A (zh) * 2012-09-28 2014-12-17 深圳市绎立锐光科技开发有限公司 光源系统及相关投影系统
CN107765500A (zh) * 2017-09-08 2018-03-06 青岛海信电器股份有限公司 一种dmd调制成像系统以及激光投影设备
CN108074512A (zh) * 2016-11-18 2018-05-25 中兴通讯股份有限公司 投影方法及装置
CN110133857A (zh) * 2018-02-02 2019-08-16 中强光电股份有限公司 投影装置及光机模块

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140063358A1 (en) * 2012-09-06 2014-03-06 Seiko Epson Corporation Projector
CN104216210A (zh) * 2012-09-28 2014-12-17 深圳市绎立锐光科技开发有限公司 光源系统及相关投影系统
CN108074512A (zh) * 2016-11-18 2018-05-25 中兴通讯股份有限公司 投影方法及装置
CN107765500A (zh) * 2017-09-08 2018-03-06 青岛海信电器股份有限公司 一种dmd调制成像系统以及激光投影设备
CN110133857A (zh) * 2018-02-02 2019-08-16 中强光电股份有限公司 投影装置及光机模块

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113721415A (zh) * 2021-08-30 2021-11-30 歌尔光学科技有限公司 投影光机

Also Published As

Publication number Publication date
CN113286131A (zh) 2021-08-20

Similar Documents

Publication Publication Date Title
US10139645B2 (en) Tilted dichroic polarizing beamsplitter
US7325932B2 (en) Display device, lighting device and projector
US8425043B2 (en) Projector having a plurality of optical devices with a purality of optical modulators
TWI255349B (en) Optical system of a projector display and a projector device equipped with this optical system
JP2009265120A (ja) 投射型表示装置
US20060098170A1 (en) Projection display device with enhanced light utilization efficiency
JP4183663B2 (ja) 照明装置及び投写型映像表示装置
CN216595871U (zh) 三色激光光源及激光投影设备
EP3561593B1 (en) Projection display system
JP2003075777A (ja) 投影装置
JP2003330106A (ja) 照明装置および投射型表示装置
WO2022052868A1 (zh) 显示装置
WO2021164441A1 (zh) 投影系统
JP2007065412A (ja) 照明装置及び投写型映像表示装置
JP2008040116A (ja) 画像表示装置
US8508677B2 (en) Reflective liquid crystal projector
JP2004226613A (ja) 照明装置及び投写型映像表示装置
WO2011021304A1 (ja) 照明装置とそれを用いた投射型表示装置
JP5213484B2 (ja) 画像投射装置
JP5967081B2 (ja) プロジェクタおよび画像表示方法
CN211506154U (zh) 一种lcos投影显示系统
US20070081252A1 (en) Single panel reflective-type color optical engine
US20240134260A1 (en) Mixed Illumination Projector for Display System
CN216118359U (zh) 投影设备
US11333962B2 (en) Light source apparatus and projector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20919937

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20919937

Country of ref document: EP

Kind code of ref document: A1