WO2010097014A1 - 一种基于声线偏折理论的消声方法和消声器 - Google Patents

一种基于声线偏折理论的消声方法和消声器 Download PDF

Info

Publication number
WO2010097014A1
WO2010097014A1 PCT/CN2010/000242 CN2010000242W WO2010097014A1 WO 2010097014 A1 WO2010097014 A1 WO 2010097014A1 CN 2010000242 W CN2010000242 W CN 2010000242W WO 2010097014 A1 WO2010097014 A1 WO 2010097014A1
Authority
WO
WIPO (PCT)
Prior art keywords
muffler
sound
wall
temperature
pipe
Prior art date
Application number
PCT/CN2010/000242
Other languages
English (en)
French (fr)
Inventor
吕亚东
刘栋
汪强
Original Assignee
中国科学院声学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院声学研究所 filed Critical 中国科学院声学研究所
Priority to US13/203,699 priority Critical patent/US8408359B2/en
Priority to EP10745798.8A priority patent/EP2402568B1/en
Priority to EA201171092A priority patent/EA019238B1/ru
Priority to JP2011551395A priority patent/JP5291206B2/ja
Publication of WO2010097014A1 publication Critical patent/WO2010097014A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D33/00Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for
    • B64D33/04Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for of exhaust outlets or jet pipes
    • B64D33/06Silencing exhaust or propulsion jets
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/18Methods or devices for transmitting, conducting or directing sound
    • G10K11/26Sound-focusing or directing, e.g. scanning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N1/00Silencing apparatus characterised by method of silencing
    • F01N1/24Silencing apparatus characterised by method of silencing by using sound-absorbing materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/02Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/04Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being an electric, e.g. electrostatic, device other than a heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2260/00Exhaust treating devices having provisions not otherwise provided for
    • F01N2260/02Exhaust treating devices having provisions not otherwise provided for for cooling the device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • F01N2510/04Surface coverings for sound absorption

Definitions

  • the invention relates to a muffler, in particular to a muffling method and a muffler based on the theory of sound line deflection. Background technique
  • Aeronautical noise mainly comes from jet noise and fan noise of aero-engines.
  • researchers have been trying to find a way to have good sound absorption in a wider frequency band, reduce jet noise and fan noise, and generally adopt the following methods and Design guidelines:
  • the sound lining is laid on the pipe wall to reduce the radiation noise of the engine.
  • the present invention provides a method for suppressing sound based on the theory of sound line deflection.
  • a temperature is formed in the wall of the muffler cavity by installing a cryogenic refrigeration system on the outer wall of the muffler duct.
  • the temperature gradient of the temperature outside the pipe wall is used to deflect the sound rays in the pipe wall toward the outer wall of the low-temperature muffler pipe, so that more sound rays enter the sound absorbing structure of the muffler lining in oblique incident form.
  • the incident angle of the ignited incident sound wave is increased, the sound absorption coefficient of the sound absorbing structure is increased, the effective absorption of the noise in the pipeline is enhanced, the amplitude of the stimulated acoustic normal vibration mode in the pipeline is reduced, and the noise reduction amount of the muffler is increased.
  • the radiation noise is reduced, wherein the cryogenic refrigeration system should cover at least 5% of the outer wall area of the muffler pipe.
  • the invention also proposes a muffler based on the theory of sound line deflection, comprising a muffler housing, the muffler
  • the sound absorbing structure 4 is disposed on the inner wall of the housing 1; wherein the outer wall of the muffler housing 1 is provided with a cryogenic refrigeration system 2 corresponding to the sound absorbing structure 4, and the low temperature refrigeration system 2 should at least cover the muffler housing 1 5% of the outer wall area; the muffler housing 1 has a circular, elliptical or rectangular cross section.
  • cryogenic refrigeration system 2 is also coupled to a temperature control device 3 for quantitative control of the temperature gradient by the temperature control device 3.
  • the quantitative control range of the temperature gradient is 1 to 2000, that is, the temperature inside the pipe of the muffler housing 1 is 1 to 2000 larger than the temperature of the cold end of the outer wall of the muffler housing 1.
  • the sound absorbing structure 4 described in the above technical solution may be a porous sound absorbing material, a thin plate resonant sound absorbing structure, a thin film resonant sound absorbing structure, a perforated plate sound absorbing structure, a microperforated sound absorbing structure, a micro slit sound absorbing structure,
  • the tube bundle perforated plate resonance sound absorbing structure or the tube bundle perforated plate composite resonance sound absorbing structure, and the sound absorbing structure 4 has a thickness of 1 to 1000 mm.
  • the cryogenic refrigeration system 2 described in the above technical solution may employ compressor refrigeration, semiconductor refrigeration, liquid nitrogen refrigeration, dry ice refrigeration, acoustic refrigeration, chemical refrigeration, magnetic refrigeration, adsorption refrigeration, pulse tube refrigeration or solar refrigeration, or may be transported.
  • the compressor refrigeration system comprises: a compressor 10, a condenser 1 1 , an evaporator 12 and a liquid storage dryer 5; wherein, the evaporator 12
  • the pipe is wound on the outer wall of the muffler pipe, and the compressor refrigeration system is connected to the temperature control device 3.
  • the temperature control device further comprises: an expansion valve 6 and a capillary temperature package 7:
  • the semiconductor refrigeration system comprises: an insulating ceramic sheet 13, a metal conductor 14, an N-type and a P-type semiconductor 15 and a DC power source 16; after being connected, a cold end 17 and a hot end 18 are respectively formed, wherein the cold end 17 is attached to the muffler shell
  • the temperature control device 3 uses heat sink heat dissipation, fan heat dissipation, air cooling or water cooling to control heat dissipation;
  • the semiconductor refrigeration patch is attached to the outer wall of the muffler pipe, and the muffler is controlled by controlling the heat dissipation of the hot end of the semiconductor refrigeration chip.
  • the liquid nitrogen refrigeration system comprises: a liquid nitrogen dewar 19, a normal temperature nitrogen bottle 39 and a pipe cooler 20; the liquid nitrogen is mixed with a normal temperature nitrogen gas into the pipe cooler 20; the pipe cooler 20 is covered in the muffler On the outer wall of the casing 1, the flow meter of the temperature control device 3 is electrically connected, and the temperature of the outer wall of the casing 1 is controlled by controlling the flow rate of the liquid nitrogen at normal temperature;
  • the magnetic refrigeration system comprises: a magnetic medium 27, a magnetic N pole 25, a magnetic S pole 26, a heat sink 28 and a duct cooler 20; the magnetic medium 27 is isothermally magnetized in the high temperature region 23, and heat is released.
  • the heat sink 28 conducts heat, depolarizes in the low temperature region 24, absorbs heat, places the pipe cooler 20 in the low temperature region of the magnetic medium 27, absorbs heat through the adiabatic demagnetization of the magnetic medium 27, forms a cold end and covers the muffler.
  • thermoacoustic refrigeration system is a standing wave thermoacoustic refrigerator, a traveling wave thermoacoustic refrigerator, a Stirling refrigerator or a pulse tube refrigerator, and emits heat at the high temperature heat exchanger 30 according to the thermoacoustic principle, in the low temperature heat exchanger. 31, the heat is absorbed to form a cold end, the low temperature heat exchanger 31 is in communication with the pipe cooler 20, and the pipe cooler 20 covers the outer wall of the muffler casing 1.
  • the standing wave thermoacoustic refrigerator comprises: sound waves a generator 29, a high temperature heat exchanger 30, a low temperature heat exchanger 31, a regenerator 32, a resonant cavity 33, and a duct cooler 20; the traveling wave thermoacoustic refrigerator comprises: a sound wave generator 29, a high temperature heat exchanger 30.
  • the Stirling refrigerator includes: an acoustic wave generator 29, an acoustic wave absorber 35, a high temperature heat exchanger 30, and a low temperature heat
  • the pulse tube refrigerator comprises: an acoustic wave generator 29, a high temperature heat exchanger 30, a low temperature heat exchanger 31, a regenerator 32, a gas reservoir 36, a valve 37, pulse tube 38 and tube Cooler 20.
  • the gas or cooling liquid below the temperature in the pipe passes through the pipe cooler 20, which covers the outer wall of the muffler housing 1 to form a cold end.
  • the ice layer is placed in a pipe cooler 20 which overlies the outer wall of the muffler housing 1 to provide a cold end using the physical properties of the dry ice itself.
  • the invention installs a cryogenic refrigeration system on the outer wall of the existing muffler pipe, additionally generates a temperature gradient inside and outside the wall of the muffler, and the temperature inside the pipe wall is larger than the pipe wall. According to Fermat's theorem, the temperature gradient is used to generate the sound rays in the pipe wall.
  • Deviation to the outer wall of the muffler pipe installed in the cryogenic refrigeration system so that more sound rays enter the sound absorbing structure of the muffler lining in oblique incidence instead of grazing incidence, so as to more fully and effectively exert the sound absorbing potential of the muffler , reducing the amplitude of the stimulated acoustic normal vibration mode inside the muffler, thereby providing a muffler based on the theory of sound line deflection.
  • the muffler based on the sound line deflection theory of the invention adopts a pipe muffler, and a sound absorption structure with a certain thickness is laid on the inner wall of the muffler housing.
  • a cryogenic refrigeration system is installed on the outer wall of the muffler housing.
  • the cryogenic refrigeration system can use compressor refrigeration, semiconductor refrigeration, liquid nitrogen refrigeration, dry ice refrigeration, acoustic refrigeration, chemical refrigeration, magnetic refrigeration, adsorption refrigeration, solar refrigeration, etc., or the surrounding environment can be used to transport the refrigeration system below the pipeline.
  • the temperature of the gas or cooling liquid, even the outer wall of the muffler housing is covered with ice to provide a cold end.
  • the evaporator pipe can be wound around the outer wall of the muffler pipe; if semiconductor refrigeration is used, the semiconductor refrigeration chip can be attached to the outer wall of the muffler pipe; if liquid nitrogen and dry ice are used for cooling, Liquid nitrogen and dry ice are placed in a heat exchanger and then over the outer wall of the muffler tube.
  • the temperature of the cryogenic refrigeration system is adjusted by the temperature control device to set the temperature gradient inside and outside the muffler. The temperature inside the wall of the muffler is greater than the outside of the pipe wall.
  • a temperature gradient is generated inside and outside the wall of the muffler to bend and distort the sound ray to the sound absorbing structure on the inner wall of the muffler, effectively exerting the sound absorbing performance of the sound absorbing structure, increasing the sound absorption of the sound absorbing structure, and making the sound absorbing
  • the structure changes from the "undersaturated” state to the "saturated, oversaturated” state.
  • the incident angle of the grazing incident sound wave increases.
  • the sound absorption coefficient of the sound absorbing structure is increased, and the sound absorption amount is increased.
  • the present invention proposes a method of capturing noise and reducing noise using a "cold trap" - namely: a muffler having a cryogenic refrigeration system based on a temperature gradient and a sound line deflection.
  • the novel muffler comprises a pipe muffler, a cryogenic refrigeration system and a temperature control device, a sound absorbing structure is arranged on the inner wall of the pipe muffler, and a low temperature refrigeration system is installed on the outer wall of the pipe muffler, and the refrigeration system reduces the temperature of the wall surface of the sound absorbing structure back surface, thereby being in the muffler
  • the temperature inside the sound absorbing structure generates a temperature gradient from relatively high temperature to relatively low temperature, and the temperature gradient generated by the cold end of the cryogenic refrigeration system causes the bending of the sound line in the tube to bend, so that more acoustic components are obliquely incident into the sound absorbing structure.
  • the sound absorbing structure can "capture" more noise through the cold end of the cryogenic refrigeration system, instead of letting the noise pass over its surface, so that the sound absorbing potential of the sound absorbing structure can be fully utilized, so that the sound absorbing ability is fully obtained.
  • the performance of the sound absorption improves the sound absorption performance, so that the muffler's muffling ability changes from "undersaturated” to "saturated, supersaturated” state, which greatly improves the sound absorption effect of the sound absorbing structure, and gives the original muffler of the muffler. Based on the amount of excessive noise reduction.
  • the muffler based on the sound line deflection theory of the present invention can be used for the nacelle noise reduction design of the aviation turbofan engine, and can also be used for the suction processing of the helicopter vortex shaft duct and the pipe noise reduction for the low temperature refrigeration system and the cold end.
  • a muffler based on a sound-line deflection with a cryogenic refrigeration system is applied to the nacelle noise reduction design of an aviation turbofan engine, in order to save energy, it is also possible to start the cryogenic refrigeration system only during the take-off and landing phases of the aircraft (the cryogenic refrigeration system is turned off during the cruise phase). ), significantly increasing the noise reduction of the air-conditioning structure of the aviation turbofan engine, in order to more effectively control the ambient noise around the airport and better meet the noise airworthiness requirements.
  • the advantages of the present invention are: to further improve the noise reduction of the existing pipe muffler based on the theory of sound line deflection.
  • the present invention is an improvement on the existing pipe muffler, it is easy to install and promote only by installing a low temperature refrigeration system on the outer wall of the existing muffler pipe. That is, the invention only installs a cryogenic refrigeration system on the structure of the original muffler, and basically does not change the overall structure of the muffler, thereby reducing the difficulty and cost of the modification.
  • FIG. 1 is a schematic view of a muffler having a cryogenic refrigeration system according to the present invention:
  • Figure 2 is a schematic diagram showing the deflection of the sound line under the condition that the daytime temperature decreases with height
  • Figure 3 is a schematic diagram of the deflection of the sound line at nighttime temperature with increasing height
  • FIG. 4 is a schematic view showing a composite resonance sound absorbing structure of a muffler covered with 100 mm thick ice and using a tube bundle perforated plate;
  • FIG. 5 is an insertion loss measurement result of the outer side of the muffler of the present invention covered with 100 mm thick ice and no ice;
  • FIG. 6 is a high temperature flue gas inlet of the axial flow fan of the present invention, and the outer side of the muffler is covered with a thick ice of 100 tons and is inserted without ice. Loss measurement result;
  • FIG. 7 is a schematic structural view of an embodiment of a muffler using a compressor as a refrigeration system according to the present invention
  • 8 is a schematic structural view of an embodiment of a muffler fabricated by using a semiconductor refrigeration system according to the present invention
  • FIG. 9 is a schematic structural view of an embodiment of a muffler having a liquid nitrogen refrigeration system according to the present invention.
  • Figure 10 is a schematic diagram of the present invention for utilizing a surrounding refrigeration system to deliver a gas below the temperature of the pipe to the outer wall of the muffler housing;
  • FIG. 1 is a schematic structural view of an embodiment of a muffler having a magnetic refrigeration system according to the present invention
  • FIG. 12 is a schematic structural view of an embodiment of a muffler having a standing wave thermoacoustic refrigerator refrigeration system according to the present invention
  • FIG. 13 is a schematic structural view of an embodiment of a muffler having a traveling wave thermoacoustic refrigerator refrigeration system according to the present invention
  • FIG. 15 is a schematic structural view of an embodiment of a muffler having a pulse tube thermoacoustic refrigerator refrigeration system according to the present invention
  • FIG. 16 is a schematic diagram of a micro-slot sound absorbing structure of the present invention. Schematic diagram of the ice structure
  • FIG. 17 is a measurement result of the sound absorption characteristics of the standing wave tube in the case of the bottom frozen ice of the micro-slot sound absorbing structure of the present invention
  • FIG. 18 is a schematic view showing the condition that the cooling system coverage area of the muffler having the refrigeration system of the present invention is 100%;
  • Fig. 19 is a view showing the state in which the refrigeration system of the muffler having the refrigeration system has a coverage area of 5%.
  • the muffler based on the theory of sound line deflection proposed by the present invention includes a muffler housing 1 and a cryogenic refrigeration system 2 and a temperature control device 3, and a certain thickness (1 - 1000 mm) is laid on the inner wall of the muffler housing 1.
  • the sound absorbing structure 4 is provided with a cryogenic refrigeration system 2 on the outer wall of the muffler housing 1.
  • the cryogenic refrigeration system can be compressor refrigeration, semiconductor refrigeration, acoustic refrigeration, liquid nitrogen refrigeration, dry ice refrigeration, chemical refrigeration, magnetic refrigeration, adsorption refrigeration, solar refrigeration, etc., and the surrounding environment can be used to transport the refrigeration system below the pipeline.
  • the temperature of the gas even using the outer wall of the muffler housing to cover the ice layer to provide a cold end; the pipe of the cryogenic refrigeration system 2 covers at least 5% of the outer wall of the gas flow pipe.
  • the cryogenic refrigeration system 2 of the present invention is mounted on a muffler to generate a large (1 to 200 (TC) temperature gradient with respect to the high temperature in the gas flow conduit. According to Fermat's theorem, the sound ray propagates along the slowest path with the least time.
  • the line will be bent toward the cold end, that is, the sound absorption structure of the inner wall of the air flow duct, which reduces the sound wave component of the muffler duct that does not contact with the sound absorbing structure of the muffler, so that more acoustic components are obliquely incident into the sound absorbing structure. Therefore, the sound absorption potential of the sound absorbing structure can be more fully and effectively utilized, the effective absorption of the noise in the pipeline can be enhanced, the amplitude of the stimulated acoustic normal vibration mode in the pipeline can be reduced, the noise reduction of the muffler can be increased, and the radiation noise can be reduced.
  • the temperature inside the pipeline can be normal temperature or high temperature. The higher the temperature, the larger the relative temperature gradient, and the more the components of the sound line are deflected, so that the more the sound absorption potential of the existing sound absorbing structure is fully utilized.
  • a muffler having a cryogenic refrigeration system based on the theory of sound line deflection produced in this embodiment is composed of a muffler housing 1, a sound absorbing structure 4, and a cryogenic refrigeration system 2.
  • the sound absorbing structure 4 adopts a tube bundle micro slit perforated plate resonance sound absorbing device which is laminated with a layer of sound absorbing cotton. Applying a layer of OOrnin thick ice layer 2' to the outer wall of the muffler housing 1 as a cryogenic refrigeration system 2, and then laying the above-mentioned tube bundle perforated plate composite resonant sound absorbing structure 4' on the inner wall of the muffler housing 1. . Based on the treatment of the housing 1 of the axial fan outlet muffler covered with a 100 mm thick ice layer 2', the actual insertion loss caused by the treatment of the 100 mm thick ice layer 2' was measured.
  • the experimental parameters are as follows:
  • the muffler 1 adopts a tube bundle perforated plate composite resonance sound absorbing structure, wherein: the sound absorbing cotton has a thickness of 100 mm, a bulk density of 32 Kg/m 3 , a tube bundle length of 10 mm, a tube diameter of 1.6 mm, a perforation rate of 3.6%, a slit length of 3.6 mm, and a slit width of 0.04 mm.
  • the cavity depth is 100mm.
  • the outer side of the muffler covers the insertion frequency (Hz) caused by the ice layer treatment.
  • the flue gas temperature inside the muffler reaches 65 °C under the condition that the inlet of the axial fan produces flue gas.
  • the outer wall of the muffler is covered with a 100 mm thick ice layer, which is caused by the treatment of covering 100 mm thick ice layer.
  • the actual loss was measured by the insertion loss, and the ambient temperature was 12 ° C. The measurement results are shown in Figure 6 and Table 2.
  • the muffler of the invention comprises a pipe muffler, a cryogenic refrigeration system and a temperature control device, the sound absorption structure is laid on the inner wall of the pipe muffler, and a low temperature refrigeration system is installed on the outer wall of the pipe muffler, and the refrigeration system reduces the temperature of the wall surface of the sound absorption structure back surface, thereby being in the muffler
  • the temperature inside the sound absorbing structure generates a temperature gradient from relatively high temperature to relatively low temperature, and the temperature gradient generated by the cold end of the cryogenic refrigeration system causes the bending of the sound line in the tube to bend, so that more acoustic components are obliquely incident into the sound absorbing structure.
  • the sound absorbing structure can "capture" more noise through the cold end of the cryogenic refrigeration system. Sound, instead of letting noise pass over its surface, can fully utilize the sound-absorbing potential of the sound-absorbing structure, so that its sound-absorbing ability can be fully exerted, and the sound-absorbing performance is improved, thereby making the muffler's sound-absorbing ability
  • the saturation "becomes" a saturated, supersaturated state, which greatly improves the sound absorption effect of the sound absorbing structure, and produces an excessive amount of noise reduction based on the original muffler of the given muffler.
  • the muffler based on the sound line deflection theory of the present embodiment having a cryogenic refrigeration system is composed of a muffler housing 1, a cryogenic refrigeration system 2, a temperature control device 3, and a sound absorbing structure 4, in the shell of the muffler.
  • a cryogenic refrigeration system 2 is installed on the outer wall of the body 1, and the refrigeration system is cooled by a compressor.
  • the refrigeration system is composed of a compressor 10, a condenser 11, an evaporator 12, a low pressure pipe 8, a high pressure pipe 9, and a liquid storage dryer 5.
  • the temperature control device 3 is a temperature control device conventionally used in the art, that is, the temperature control device 3 is composed of an expansion valve 6 and a capillary temperature pack 7.
  • the evaporator 12 is wound around the outer wall of the muffler tube to absorb heat, and the temperature gradient is quantitatively controlled by the refrigeration system 2 and the temperature control device 3.
  • a sound absorbing structure 4 is placed on the inner wall of the casing 1 of the muffler.
  • the sound absorbing structure of the inner wall of the muffler pipe in the embodiment may be a porous sound absorbing material, a thin plate resonance sound absorbing structure, a thin film resonant sound absorbing structure, a perforated plate sound absorbing structure, a micro perforated plate sound absorbing structure, and a micro
  • the sound absorbing structure the Chinese patent number held by the inventor: ZL00100641.X, the tube bundle type perforated plate resonance sound absorbing device and the composite sound absorbing structure thereof.
  • the temperature control device of the cryogenic refrigeration system is used to ensure that there is a temperature gradient of 1-200 between the inner and outer walls of the muffler pipe, and the temperature inside the pipe is greater than the temperature of the cold end of the outer wall of the pipe.
  • the low temperature refrigeration system should at least cover the outer wall area of the muffler casing. 5%.
  • a muffler having a cryogenic refrigeration system based on the theory of sound line deflection is composed of a muffler housing 1, a cryogenic refrigeration system 2", a temperature control device 3, and a sound absorbing structure 4, in the muffler.
  • the cryogenic refrigeration system 2" is mounted on the outer wall of the casing 1.
  • the cryogenic refrigeration system in this embodiment uses semiconductor refrigeration, wherein the semiconductor refrigeration system insulating ceramic sheet 13, the metal conductor 14, the N-type and P-type semiconductor 15, and the DC power source 16 are composed.
  • the cold end 17 and the hot end 18 are respectively formed; the temperature control device 3 can use a conventional heat sink to dissipate heat, a fan to dissipate heat, or a method such as air cooling or water cooling to control heat dissipation.
  • the semiconductor refrigerating patch is attached to the outer wall of the muffler pipe, and the temperature gradient is quantitatively controlled by the refrigeration system and the temperature control device.
  • the sound absorbing structure 4 is laid on the inner wall of the casing 1 of the muffler.
  • the cryogenic refrigeration system in this embodiment uses semiconductor refrigeration, and the semiconductor refrigeration chip, that is, the cold end 17, can be attached to the outer wall of the muffler pipe; Example 4
  • a muffler having a cryogenic refrigeration system based on the theory of sound line deflection is composed of a muffler housing 1, a cryogenic refrigeration system 2, a temperature control device 3, and a sound absorbing structure 4, in the shell of the muffler.
  • the cryogenic refrigeration system 2 is mounted on the outer wall of the body 1, and the refrigeration system in this embodiment is cooled by liquid nitrogen.
  • the cryogenic refrigeration system consists of a liquid nitrogen dewar 19 and a pipe cooler 20, and the temperature control device is controlled by a valve, and the valve is used to control the nitrogen pressure in the liquid nitrogen dewar 19 and the nitrogen bottle 39 and to the pipe cooler. 20 liquid nitrogen and normal temperature nitrogen flow to achieve quantitative control of temperature.
  • a sound absorbing structure 4 is placed on the inner wall of the casing 1 of the muffler.
  • the refrigeration system in this embodiment is cooled by liquid nitrogen, and the liquid nitrogen and normal temperature nitrogen are introduced into the pipe cooler 20, mixed in the pipe cooler 20, and then the pipe cooler 20 is covered.
  • the outer wall of the muffler housing 1 is described; the temperature control device 3 controls the temperature of the outer wall of the muffler housing 1 by controlling the flow rate of the liquid nitrogen dewar 19 and the nitrogen bottle 39 of normal temperature nitrogen.
  • a muffler having a cryogenic refrigeration system based on the theory of sound line deflection is composed of a muffler housing 1, a cryogenic refrigeration system 2, a temperature control device 3, and a sound absorbing structure 4, in the shell of the muffler.
  • the cryogenic refrigeration system 2 is installed on the outer wall of the body 1.
  • the refrigeration system in the embodiment uses a refrigeration system existing in the surrounding environment to supply a gas or a cooling liquid lower than the temperature inside the pipeline to the outer wall of the muffler, and the temperature control device adopts a valve control. Quantitative control of temperature is achieved by using a valve to control the flow of temperature gas or cooling liquid into the cryogenic conduit of the conduit cooler 20.
  • a muffler based on a sound line deflection theory having a cryogenic refrigeration system is composed of a muffler housing 1, a cryogenic refrigeration system 2, a temperature control device 3, and a sound absorbing structure 4, in the muffler.
  • the cryogenic refrigeration system 2 is mounted on the outer wall of the casing 1.
  • the refrigeration system in this embodiment is magnetically cooled, and is composed of a magnetic medium 27, a magnetic N pole 25, a magnetic S pole 26, a radiator 28, and a duct cooler 20, etc.
  • the working medium 27 is isothermally magnetized in the high temperature zone 23, releasing heat, and the heat is led out through the heat sink 28, and the heat is demagnetized in the low temperature zone 24 to absorb heat, and the heat exchanger is placed in the low temperature region of the magnetic medium 27 through the magnetic medium 27
  • the adiabatic demagnetization absorbs heat, forming a cold end, and lowering the temperature of the outer wall of the muffler through the duct cooler 20.
  • the muffler based on the sound line deflection theory of the present embodiment has a muffler of a low temperature refrigeration system, a housing of a muffler 1, a cryogenic refrigeration system 2, a temperature control device 3, and a suction
  • the sound structure 4 is composed, and the low temperature refrigeration system 2 is installed on the outer wall of the casing 1 of the muffler.
  • the refrigeration system in this embodiment adopts thermoacoustic refrigeration, and uses a standing wave thermoacoustic refrigerator, a traveling wave thermoacoustic refrigerator, and a Stirling refrigerator. , pulse tube refrigerator. As shown in Fig.
  • the standing wave thermoacoustic refrigerator is composed of a sound wave generator 29, a high temperature heat exchanger 30, a low temperature heat exchanger 31, a regenerator 32, a resonance chamber 33, and a duct cooler 20.
  • the traveling wave thermoacoustic refrigerator is composed of a sound wave generator 29, a temperature heat exchanger 30, a low temperature heat exchanger 31, a regenerator 32, a traveling wave acoustic tube 34, and a pipe cooler 20.
  • the Stirling refrigerator is composed of a sound wave generator 29, an acoustic wave absorber 35, a high temperature heat exchanger 30, a low temperature heat exchanger 31, a regenerator 32, and a duct cooler 20.
  • the pulse tube refrigerator is composed of a sound wave generator 29, a high temperature heat exchanger 30, a low temperature heat exchanger 31, a regenerator 32, a gas reservoir 36, a valve 37, a pulse tube 38, and a pipe cooler 20. .
  • the bottom of the micro-slot sound absorbing structure is subjected to freezing ice treatment.
  • the micro-slot sound absorbing structure 21 having the ice block 22 at the bottom is frozen in the freezer for more than 10 hours, and the ice 22 is frozen and fixed at the bottom of the micro-slot sound absorbing structure 21 to form a micro-slot sound absorbing structure in the case of frozen ice. .
  • the structural parameters of the micro-slot sound absorbing structure 21 are: slit length: 1.8tnm, slit width: 0.03 mm, slit spacing: 5tnm, thickness: 0.8mm, cavity depth 298mm, ice thickness 42mm.
  • the ice cube is frozen and fixed at the bottom of the micro-slot sound absorbing structure, and the micro-slot sound absorbing structure of the bottom frozen ice is fixed on the test end of the standing wave tube.
  • the micro-slot sound absorbing structure of the bottom frozen ice is prepared, and the sound absorption performance of the micro-slot sound absorbing structure is tested on the standing wave tube.
  • the normal incidence sound absorption coefficient of the micro-slot sound absorption structure before and after the frozen ice treatment on the bottom of the micro-slot sound absorption structure is as shown in Fig. 17.
  • the sound absorption coefficient of the micro-slot sound absorption structure after the bottom frozen ice treatment increased from 0.410, 0.400, 0.420 to 0.685, 0.720 and 0.620, respectively, and in the low frequency range of 125Hz ⁇ 400Hz, the bottom
  • the sound absorption coefficient of the micro-slot sound absorption structure after frozen ice treatment is 0.1-0.3 higher than that of the unfrozen ice treatment, and the sound absorption coefficient at the bottom frozen ice is also compared with the unfrozen at the frequency of 800 Hz to 1600 Hz. The situation of ice has improved.
  • the sound absorption coefficient of the micro-slot sound-absorbing structure before and after freezing ice is not difficult to see: after the bottom-frozen ice treatment of the micro-slot sound-absorbing structure, not only the low-frequency sound absorption coefficient is obviously improved, but also the intermediate frequency suction. The acoustic coefficient is also improved, effectively suppressing broadband noise and increasing the sound absorption of the entire frequency band.
  • the muffler based on the theory of sound line deflection based on the theory of sound line deflection has a muffler installed on the outer wall of the muffler housing, which occupies 5% and 100% of the surface of the muffler, actually In the application, the coverage area can be selected within 5%-100% as needed.
  • the muffler based on the theory of sound line deflection theory of the present invention essentially utilizes the deflection of the sound line caused by the "cold trap" generated by the temperature gradient to maximize the capture and reduce the noise, and at the same time fully exerts the existing
  • the sound absorption potential of the muffler sound absorption structure is a noise reduction technology based on temperature gradient and sound line deflection with a low temperature refrigeration system.
  • the characteristic is that the temperature gradient is artificially introduced into the structure design of the muffler as a design optimization parameter.
  • the cryogenic refrigeration system is installed on the outer wall of the muffler, so that it becomes a cryogenic refrigeration system.
  • the cold-end muffler additionally generates a temperature gradient, and uses the temperature gradient to make the sound line in the pipe wall face the cold end, that is, the bending and deflection of the sound-absorbing structure on the inner wall of the air-flow pipe, which reduces the contact between the muffler pipe and the sound-absorbing structure of the muffler.
  • the sound wave component makes more acoustic components obliquely incident into the sound absorbing structure of the muffler inner lining, so that the sound absorbing potential of the sound absorbing structure of the muffler can be more fully and effectively utilized, the effective absorption of noise in the pipeline is enhanced, and the pipeline is reduced.
  • the amplitude of the stimulated acoustic normal vibration mode increases the muffler of the muffler and reduces the external radiated noise inside the tube.
  • the muffler realizes the quantitative control of the temperature gradient by adjusting the cold end temperature of the cryogenic refrigeration system, further improves the muffling amount of the muffler, and optimizes the sound absorption band.
  • the method is an improvement to the existing pipe muffler, the method of installing the cryogenic refrigeration system on the outer wall of the existing muffler pipe is provided with an additional over-consumption method without substantially modifying the structure of the existing muffler.
  • cryogenic refrigeration systems By optimizing the selection and changing the cold end generation mode of cryogenic refrigeration systems (low temperature refrigeration systems can use dedicated compressor refrigeration, semiconductor refrigeration, liquid nitrogen refrigeration, dry ice refrigeration, acoustic refrigeration, chemical refrigeration, magnetic refrigeration, adsorption refrigeration, pulse tube refrigeration, Solar cooling, etc., can also use the surrounding environment, the transport of the refrigeration system is lower than the temperature inside the pipeline. Gas or cooling liquid, even using the outer wall of the muffler housing to cover the ice layer to provide the cold end, etc.> and the installation method can generate the cold end temperature gradient that can meet the requirements of large noise reduction and application environment to meet the requirements of different noise control occasions. .
  • the invention can be applied to aero-engine nacelle muffling, helicopter turboshaft engine muffling ducts, gas turbines and other intake and exhaust piping systems and other environmental conditions that facilitate and allow the provision of cold-end cryogenic refrigeration systems.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Compressor (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
  • Exhaust Silencers (AREA)

Description

一种基于声线偏折理论的消声方法和消声器 技术领域
本发明涉及一种消声器, 特别涉及一种基于声线偏折理论的消声方法和消声器。 背景技术
近几十年来, 航空运输给人们带来了极大的出行便利, 但是同时也给机场周围带来 了严重的噪声污染, 据调査, 飞机的噪声主要体现在起飞和降落时候, 尤以起飞的时候 最为显著。 由于机场一般离城市不远, 而且航线也部分经过城市上空, 因此, 航空噪声 已成为城市噪声的重要组成部分, 严重影响人们的正常生活。 那么, 最大限度的降低飞 机飞行噪声, 特别是起飞、 降落时候的噪声, 已成为迫在眉睫、 急待解决的问题。
航空噪声主要来自于航空发动机的喷气噪声和风扇噪声, 长期以来,研究人员一直 在努力寻找在较宽频带内具有良好吸声效果、降低喷气噪声和风扇噪声的方法, 目前一 般采取的如下方法和设计准则:
1、 采用高涵道比发动机和喷口设计, 降低喷气噪声。
2、 调整风扇转子 /静子叶片设计和速度, 减少风扇噪声。
3、 管壁敷设声衬, 降低发动机辐射噪声。
尽管航空发动机管壁敷设声衬在降噪方面已具有较好的效果,但是仍无法满足目前 飞机噪声控制、机场周围区域环境噪声控制和噪声适航的实际需要, 据报道空中客车公 司正投入大量经费, 参与欧洲 9国发起的飞机噪声研究计划, 重点攻克飞机降噪技术, 目标是在 8年的时间里把其生产的飞机在现有噪声基础上降低 6分贝。事实上, 从飞机 噪声平均降噪幅度来看, 每 10年平均降噪量也不到 8dB。
应用现有方法和手段要想实现飞机发动机大幅度降噪已显得有些力不从心,因为在 高声强环境下, 中低频噪声往往得不到有效的控制, 要增强其吸收, 就必须大幅增加吸 声结构空腔深度, 而这在实际降噪中往往是无法做到的。 因此, 有必要对现有航空发动 机管壁声衬吸声能力进行深入挖潜, 争取在基本不对现有消声器结构进行改动的情况 下, 探索进一步提高航空发动机现有管壁声衬吸声性能的方法与措施。
下面我们从自然界温度梯度对大气声传播产生的影响获得本发明启示。在白天,我 们会感觉到周围的环境显得喧嚣、嘈杂,但是在夜里,周围的环境则会显得特别的寂静。 那是因为温度梯度对声波传播的影响很大, 声速与温度密切相关,温度梯度使地面以上 的声速出现变化。 在白天, 特别是在晴天, 阳光照射下的午后, 从地面向上有显著的负 温度梯度, 使地表温度高于大气温度, 地面声速大, 上空声速小, 根据费马原理, 声音 会沿着费时最短的最速路径传播。 这样, 在白天, 声线会向"冷端" --天空弯曲折射, 尽 管会同时出现"声影区域", 但向上折射的声线几乎不与地面接触, 大地作为一个 "吸^ 结构"作用得不到发挥, 因而, 白天我们会感觉到周围环境的喧嚣与噌杂。 而夜里的情 况则不同, 从地面向上的正温度梯度, 使地表温度低于大气温度, 地面声速小, 上空声 速大, 按照费马原理, 声线会向"冷端"一地面弯曲偏折, 空气中的声波入射到这种多孔 性地面时只有一部分反射回大气中,大部分能量通过土壤的孔隙传播并被大地土壤吸收 和衰减, 正是夜间大地作为冷端的温度梯度作用下, 大地"吸声结构"的作用得以充分的 发挥, 让我们感觉到夜间周围环境的寂静。
另外,在雪天情况下,大地作为冷端的温度梯度作用下,我们也可以感受到大地"覆 雪冷端吸声结构"带来的静谧。 白天温度随高度递减和夜间温度随高度递增条件下的声 线偏折情况, 如图 2和图 3所示。
从自然界温度梯度对大气声传播产生影响的示例, 我们可以得出: 在温度梯度作用 下声线会朝向 "冷端 "方向偏折。 这就为本发明利用"冷陷阱 "捕获并降低噪声, 即: 采取 上述方法研制基于温度梯度、声线偏折具有低温制冷系统的消声器, 进一步提高现有消 声器的消声能力带来了可能。
而目前在消声器设计的研究方面, 仅考虑了温度的影响, 而没有考虑到利用消声器 内部存在温度梯度导致声线偏折的对于提高消声器消声量的影响, 比如文献: 《穿孔管 消声器的数值分析》, 祝何林、 刘正士, 噪声与振动控制学报 2008年 6月第 3期; 《发 动机消声器静态性能的测试与分析研究》, 王晓军、 李志远、 魏浩征, 噪声与振动控制 学报 2007年 8月第 4期。 发明内容
本发明的目的在于,为克服在现有消声方法和设计准则对吸声能力的改进空间有限 的不足, 从而提出一种基于声线偏折理论的消声方法和消声器。
为了实现上述目的, 本发明提供了一种基于声线偏折理论的消声方法, 该方法根据 费马原理, 通过在消声器管道外壁安装低温制冷系统, 在消声器腔体内外形成管壁内温 度大于管壁外温度的温度梯度,利用温度梯度使管壁内的声线产生向低温的消声器管道 外壁方向偏折, 以让更多的声线以斜入射形式进入了消声器内衬的吸声结构中, 使得掠 入射的声波入射角增大、 吸声结构的吸声系数提高, 增强对管道内噪声的有效吸收, 降 低管道内受激声学简正振动模式的幅值, 增大消声器的消声量, 降低辐射噪声, 其中, 所述的低温制冷系统至少应覆盖消声器管道外壁面积的 5%。
本发明还提出了一种基于声线偏折理论的消声器,包括消声器壳体, 所述的消声器 壳体 1内壁敷设吸声结构 4; 其特征在于, 所述的消声器壳体 1外壁上对应于吸声结构 4的位置上设置有低温制冷系统 2, 该低温制冷系统 2至少应覆盖消声器壳体 1外壁面 积的 5%; 所述的消声器壳体 1的横截面为圆形、 椭圆形或矩形。
作为本发明的又一改进, 所述的低温制冷系统 2还与一温度控制装置 3联接, 通过 温度控制装置 3 实现温度梯度的定量控制。 所述的温度梯度的定量控制范围为 1〜 2000 , 即消声器壳体 1 管道内的温度比消声器壳体 1 管道外壁冷端的温度大 1〜 2000。C。
上述技术方案所述的吸声结构 4, 可以是多孔性吸声材料、 薄板共振吸声结构、 薄 膜共振吸声结构、 穿孔板吸声结构、 微穿孔板吸声结构、 微缝吸声结构、 管束穿孔板共 振吸声结构或管束穿孔板复合共振吸声结构, 且所述的吸声结构 4 的厚度为 1〜 1000mm。
上述技术方案所述的低温制冷系统 2可以采用压缩机制冷、半导体制冷、液氮制冷、 干冰制冷、 声制冷、 化学制冷、 磁制冷、 吸附制冷、 脉管制冷或太阳能制冷, 还可以是 通过输送低于管道内温度的气体或者冷却液体,或覆盖冰层形成的消声器壳体 1管道外 壁的冷端。
其中, 所述的各种低温制冷系统各自结构组成分别如下- 所述的压缩机制冷系统包含: 压缩机 10、 冷凝器 1 1、 蒸发器 12和储液干燥器 5 ; 其中, 蒸发器 12的管道缠绕在消声器管道外壁上, 压缩机制冷系统与温度控制装置 3 连接, 所述的温度控制装置又包含: 膨胀阀 6和毛细管温包 7:
所述的半导体制冷系统包含: 绝缘陶瓷片 13、 金属导体 14、 N型和 P型半导体 15 和直流电源 16; 连接后分别形成冷端 17和热端 18 , 其中, 冷端 17贴在消声器壳体 1 外壁上, 温度控制装置 3采用散热片散热、 风扇散热、 风冷或水冷方法来控制散热; 将 半导体制冷贴片贴在消声器管道外壁上,通过控制半导体制冷片热端的散热情况来控制 消声器壳体 1外壁的温度;
所述的液氮制冷系统包含: 液氮杜瓦瓶 19、 常温氮气瓶 39和管道冷却器 20; 液氮 与常温氮气通入管道冷却器 20中混合;所述的管道冷却器 20覆盖在消声器壳体 1外壁 上,温度控制装置 3的流量计电连接, 通过控制液氮常温氮气的流量来控制壳体 1外壁 的温度;
所述的磁制冷系统包含: 磁工质 27、 磁 N极 25、 磁 S极 26、 散热器 28和管道冷 却器 20; 所述的磁工质 27在高温区 23等温磁化, 放出热量, 通过散热器 28将热量导 出, 在低温区 24绝热退磁, 吸收热量, 将管道冷却器 20置于磁工质 27的低温区, 通 过磁工质 27的绝热退磁吸收热量, 形成冷端并覆盖在消声器壳体 1外壁上。 所述的热声制冷系统为驻波热声制冷机、 行波热声制冷机、 Stirling制冷机或脉冲 管制冷机, 根据热声原理在高温热交换器 30处放出热量, 在低温热交换器 31处吸收热 量, 形成冷端, 低温热交换器处 31与管道冷却器 20联通, 所述的管道冷却器 20覆盖 在消声器壳体 1 外壁上; 所述的驻波热声制冷机包括: 声波发生器 29、 高温热交换器 30、 低温热交换器 31、 回热器 32、 谐振腔 33和管道冷却器 20; 所述的行波热声制冷 机包括: 声波发生器 29、 高温热交换器 30、 低温热交换器 31、 回热器 32、 行波声导管 34和管道冷却器 20; 所述的 Stirling制冷机包括: 声波发生器 29、 声波吸收器 35、 高 温热交换器 30、 低温热交换器 31、 回热器 32和管道冷却器 20; 所述的脉冲管制冷机 包括: 声波发生器 29、 高温热交换器 30、 低温热交换器 31、 回热器 32、 气库 36、 阀 门 37、 脉冲管 38和管道冷却器 20。
所述的低于管道内温度的气体或者冷却液体通过管道冷却器 20中, 该管道冷却器 覆盖在消声器壳体 1外壁上形成冷端。
所述的冰层是将干冰置于管道冷却器 20中, 该管道冷却器覆盖在消声器壳体 1外 壁上, 利用干冰自身的物理特性来提供一个冷端。
本发明通过对现有消声器管道外壁安装低温制冷系统,额外产生一个消声器管壁内 外的温度梯度, 管壁内温度大于管壁外, 根据费马定理, 利用温度梯度使管壁内的声线 产生.向安装低温制冷系统的消声器管道外壁方向偏折,让更多的声线以斜入射而非掠入 射形式进入了消声器内衬的吸声结构中, 从而更加充分有效地发挥消声器的吸声潜能, 降低消声器内部受激声学简正振动模式的幅值,从而提供一种基于声线偏折理论的消声 器。
本发明的基于声线偏折理论的消声器, 采用管道消声器, 消声器壳体内壁敷设一定 厚度的吸声结构。 在消声器壳体外壁上, 安装上低温制冷系统。低温制冷系统可以采用 压缩机制冷、 半导体制冷、 液氮制冷、 干冰制冷、 声制冷、 化学制冷、 磁制冷、 吸附制 冷、太阳能制冷等, 也可以利用周围环境既有制冷系统的输送低于管道内温度的气体或 冷却液体, 甚至采用消声器壳体外壁覆盖冰层来提供冷端的方式。低温制冷系统如果采 用压缩机制冷, 可将蒸发器管道缠绕在消声器管道外壁; 如果采用半导体制冷, 则可将 半导体制冷贴片贴在消声器管道外壁上; 如果采用液氮及干冰制冷, 则可将液氮及干冰 置于热交换器中, 然后覆盖在消声器管道外壁上。通过温度控制装置调节低温制冷系统 的温度, 来设定消声器的内外温度梯度。 消声器管壁内部的温度要大于管壁外部。在消 声器管壁内外产生一个温度梯度, 使声线向消声器内壁的吸声结构处弯曲偏折, 有效地 发挥了吸声结构的吸声性能, 增加了吸声结构的吸声量, 使吸声结构从原来"欠饱和" 状态变成"饱和、过饱和"状态。 同时, 由于声线的偏折,使得掠入射的声波入射角增大, 吸声结构的吸声系数提高, 增加了吸声量。
为此, 本发明提出一种采用 "冷陷阱"捕获噪声并降低噪声的方法——即: 基于温度 梯度、 声线偏折具有低温制冷系统的消声器。这种新型消声器包括管道消声器、 低温制 冷系统和温度控制装置, 管道消声器内壁敷设吸声结构, 在管道消声器外壁上安装低温 制冷系统,制冷系统降低了吸声结构背板壁面的温度, 从而在消声器吸声结构内部的产 生一个由相对高温到相对低温的温度梯度, 利用低温制冷系统冷端产生的温度梯度, 导 致管内声线弯曲偏折, 使更多的声波成分斜入射到吸声结构内, 因此吸声结构就能够通 过低温制冷系统冷端"捕获"更多的噪声, 而不是让噪声从其表面掠过, 这样能够充分地 利用吸声结构的吸声潜质, 使其吸声能力得到充分的发挥, 提高了吸声性能, 从而使得 消声器消声能力由"欠饱和"变成"饱和、过饱和"状态,大大提高了吸声结构的吸声效果, 在给定消声器原有消声量的基础上产生了逾量消声量。
本发明的基于声线偏折理论的消声器可用于航空涡扇发动机短舱消声设计, 也可以 用于直升机涡轴发动机涵道吸声处理以及方便提供低温制冷系统和冷端的管道消声。当 基于声线偏折具有低温制冷系统的消声器应用于航空涡扇发动机短舱消声设计时,为节 省能源, 也可以仅在飞机起飞、 降落阶段启动低温制冷系统(巡航阶段则关闭低温制冷 系统), 显著增大航空涡扇发动机短舱消声结构的消声量, 以期更加有效控制机场周围 环境噪声, 更好地满足噪声适航要求。
本发明的优点在于: 基于声线偏折理论进一歩提高现有管道消声器的消声量。 同 时又由于本发明是对现有管道消声器的一种改进,仅通过对现有消声器管道外壁安装低 温制冷系统的方法, 便于安装推广。 即本发明仅在原有消声器结构上安装一套低温制冷 系统, 基本不改动消声器的整体结构, 因此, 降低了改造的难度和成本。 附图说明
图 1为本发明具有低温制冷系统的消声器的示意图:
图 2为白天温度随高度递减条件下的声线偏折示意图;
图 3为夜间温度随高度递增条件下的声线偏折示意图;
图 4为本发明消声器外侧覆盖 100mm厚冰、 采用管束穿孔板复合共振吸声结构的 示意图;
图 5为本发明的消声器外侧覆盖 100mm厚冰和无冰情况下插入损失测量结果; 图 6为本发明的轴流风机进口通入高温烟气, 消声器外侧覆盖 lOOtnm厚冰和无冰 情况下插入损失测量结果;
图 7为本发明利用压缩机作为制冷系统的消声器的一种实施例结构示意图; 图 8为本发明利用半导体制冷系统制作的消声器的实施例结构示意图;
图 9为本发明具有液氮制冷系统的消声器的实施例结构示意图;
图 10为本发明利用周围环境既有制冷系统向消声器的壳体外壁输送低于管道内温 度的气体;
图 1 1为本发明具有磁制冷系统的消声器的实施例结构示意图;
图 12为本发明具有驻波热声制冷机制冷系统的消声器的实施例结构示意图; 图 13为本发明具有行波热声制冷机制冷系统的消声器的实施例结构示意图; 图 14为本发明具有 Stirling热声制冷机制冷系统的消声器的实施例结构示意图; 图 15为本发明具有脉冲管热声制冷机制冷系统的消声器的实施例结构示意图; 图 16为本发明的微缝吸声结构底部冻冰结构的示意图;
图 17为本发明的微缝吸声结构底部冻冰情况下驻波管吸声特性测量结果; 图 18为本发明的具有制冷系统的消声器其制冷系统覆盖面积为 100%情况的示意 图;
图 19为本发明的具有制冷系统的消声器其制冷系统覆盖面积为 5%情况的示意图。 附图标识:
1-消声器壳体 2-低温制冷系统 2' _i 00mni厚冰层
2'' -半导体制冷系统 3-温度控制装置 4-吸声结构
4' -管束穿孔板复合共振吸声结构 5-储液干燥器
6-膨胀阀 7-毛细管温包 8-低压管
9-高压管 10-压缩机 Π -冷凝器
12-蒸发器 13-绝缘陶瓷片 14-金属导体
15-N型和 P型半导体 16-直流电源 17-冷端
18-热端 19-液氮杜瓦瓶 20-管道冷却器
21-微缝吸声结构 22-冰 23-髙温区
24-低温区 25-磁 N极 26-磁 S极
27-磁工质 28-散热器 29-声波发生器
30-高温热交换器 31 -低温热交换器 32-回热器
33-谐振腔 34-行波声导管 35-声波吸收器
36-气库 37-阀门 38-脉冲管
39-氮气瓶 具体实施方式
下面结合附图和具体实施方式对本发明进行详细说明。
本发明提出的一种基于声线偏折理论的消声器, 如图 1所示, 包括消声器壳体 1和 低温制冷系统 2和温度控制装置 3, 消声器壳体 1 内壁敷设一定厚度 (1 -1000 mm ) 的 吸声结构 4, 在消声器壳体 1外壁上安装低温制冷系统 2。 低温制冷系统可以是压缩机 制冷、 半导体制冷、 声制冷、 液氮制冷、 干冰制冷、 化学制冷、 磁制冷、 吸附制冷、 太 阳能制冷等, 也可以利用周围环境既有制冷系统的输送低于管道内温度的气体, 甚至采 用消声器壳体外壁覆盖冰层来提供冷端的方式;低温制冷系统 2的管道覆盖在气流管道 外壁至少 5%的面积。 本发明低温制冷系统 2安装在消声器上, 相对于气流管道中的高 温产生一个较大 (1〜200(TC ) 的温度梯度, 根据费马定理, 声线沿着费时最少的最速 路径传播, 声线会朝向冷端即气流管道内壁吸声结构处弯曲偏折, 减少了消声器管道内 不与消声器吸声结构接触而掠过的声波成分, 使更多的声波成分斜入射到吸声结构内, 从而能够更加充分有效地发挥吸声结构的吸声潜能, 增强对管道内噪声的有效吸收, 降 低管道内受激声学简正振动模式的幅值, 增大消声器的消声量, 降低辐射噪声。 气流管 道内温度可以为常温或者高温, 温度越高, 相对温度梯度越大, 声线弯曲偏折的成分也 就越多, 这样就越有利于充分发挥现有吸声结构的吸声潜能。
实施例 1
参考图 4, 本实施例制作的基于声线偏折理论具有低温制冷系统的消声器, 由一消 声器的壳体 1、 吸声结构 4和低温制冷系统 2组成。 本实施例中吸声结构 4采用表面复 合一层吸声棉的管束微缝穿孔板共振吸声装置。 在该消声器的壳体 1 外壁上涂覆一层 l OOrnin厚的冰层 2', 作为低温制冷系统 2, 再在消声器的壳体 1 内壁上敷设上述的管 束穿孔板复合共振吸声结构 4'。 在对轴流风机出口消声器的壳体 1进行覆盖 100mm厚 冰层 2'处理基础上, 对由覆盖 100mm厚冰层 2'处理引起的插入损失进行了实际测量。 实验参数如下:
实验参数: 环境温度 12°C, 风机风量 8000m3/h, 风压 200Pa, 风速 12.7m/s, 消声 器内部通道尺寸 0.7mx0.25m, 长 l m。 消声器 1采用管束穿孔板复合共振吸声结构, 其 中: 吸声棉厚 100mm, 容重 32Kg/m3, 管束长 10mm, 管径 1.6mm, 穿孔率 3.6%, 缝 长 3.6mm, 缝宽 0.04mm, 腔深 100mm。
测量结果如图 5和表 1所示。
1. 表 1. 由消声器外壁覆盖 100mm厚冰层处理引起的插入损失测量结果
消声器外侧无覆盖 消 声 器 外 侧 覆 盖 冰层处理引起的插 频率 (Hz)
冰层情况下消声器 100mm 冰层情况下消 入损失 (dB) 出口噪声 (dB ) 声器出口噪声 (dB )
0 59.4 59.9 -0.5 5 59.1 58.8 0.3
31.5 58.1 59.9 -1.8 0 58.7 59.9 - 1.2
50 64 63 1 3 57.2 55.8 1.4
80 56.7 56.8 -0.1
100 54.6 53.2 1.4
125 50.2 48 2.2
160 55 53.2 1.8 00 59.6 59.1 0.5 50 50.3 51 -0.7
315 54.3 52.8 1.5 00 50.4 48.3 2.1
500 52.4 48.7 3.7 30 55.2 53.3 1.9
800 56.1 51.7 4.4 lk 52.8 48.1 4.7
1.25k 50.6 46.4 4.2
1.6k 49.3 45.5 3.8 k 50 45.4 4.6 .5k 48.8 45.7 3.1
3.15k 47.2 44.8 2.4 k 47.1 44.9 2.2
5k 46.7 44.7 2
6.3k 46.1 44.1 2
8k 44.1 40.4 3.7
10k 40.4 35.7 4.7
12.5k 38.6 33.8 4.8
16k 35.7 30.1 5.6 20k 32.5 25.8 6.7
L线性 70.2 69.5 0.7
A声级 62.5 59.4 3.1
从图 5和表 1可以看出: 由于冷端产生的温度梯度, 导致声线弯曲偏折引起的插入 损失, 在 315Hz-20KHz频率范围达到 1.5-6.7dB, 在 100Hz-200Hz频率范围 0.5-2.2dB。 从中可以看出, 由覆盖 100mm厚冰层处理所引起的插入损失为 3.1dBA。
此外, 在轴流风机进口产生烟气情况下, 消声器内部烟气温度达到了 65°C , 在此 情况下,对消声器外壁进行覆盖 100mm厚冰层处理,对由覆盖 100mm厚冰层处理引起 的插入损失迸行了实际测量, 环境温度 12°C, 测量结果如图 6和表 2所示。
表 2. 由消声器外壁覆盖 100mm厚冰层处理引起的插入损失测量结果
有烟气, 消声器外侧无 有烟气, 消声器外侧覆
冰层处理引起的 频率 ( Hz) 冰层情况下消声器出口 盖 100mm冰层情况下消
插入损失 (dB ) 噪声 (dB ) 声器出口噪声 (dB )
20 81.3 73.2 8.1
25 81.7 73.6 8.1
31.5 80.4 69.5 10.9
40 78 69.4 8.6
50 77.9 68.2 9.7
63 77.3 65.5 1 1.8
80 76.2 61 .8 14.4
100 73.8 57.3 16.5
125 72.6 54.3 18.3
160 70.4 55.3 15.1
200 67.6 59.8 7.8
250 62.7 51.2 1 1.5
315 61.6 54.5 7.1
400 59.5 49.7 9.8
500 58.4 51.7 6.7
630 56.7 55.1 1.6
800 56.6 54.2 2.4
lk 50 51.8 -1.8 1.25k 48 48.4 -0.4
1.6k 46.5 46.7 -0.2
2k 48 47.8 0.2
2.5k 47.4 47 0.4
3.15k 43.8 46.4 -2.6
4k 43.9 45.9 -2
5k 44.6 46.5 -1.9
6.3k 43.2 45.1 -1.9
8k 39.6 42.6 -3
10k 36.2 38.3 -2.1
12.5k 34.7 37 -2.3
16k 32.2 34.1 -1.9
20k 29.4 30.5 -1.1
L线性 88.4 78.8 9.6
A声级 66.6 61.4 5.2
从图 6和表 2可以看出: 轴流风机进口产生烟气情况下, 由于 100mm厚冰层冷端 产生的温度梯度, 导致声线弯曲偏折引起的插入损失, 在 20Hz-400Hz 频率范围达到 7.卜 18.3dB, 在 500Hz-800Hz频率范围 2.4-6.7dB, Ι ΚΗζ频率范围以上则存在 -2.4-0.4dB 不同程度的增加。 从中可以看出, 轴流风机进口产生烟气情况下由覆盖 100mm厚冰层 处理所引起的插入损失为 5.2dBA。 可见, 由于消声器中心与外壁之间的温度梯度升高, 更多的声线向着消声器内壁的吸声结构处弯曲偏折, 进一步发挥了消声器的消声潜能, 提高了消声量。
尽管覆盖 100mm厚冰层处理冷端产生的温度梯度 (0- 12Ό和 0-65Ό ) 并不大, 但 由此带来的附加消声量已达到 3.1 -5.2dBA。 通过理论分析可以得出: 温度梯度越大, 声 线弯曲偏折程度越高, 斜入射进入消声器吸声结构的声波成分也就越多, 这样就越有利 于发挥现有消声器的吸声潜能。
本发明的消声器包括管道消声器、低温制冷系统和温度控制装置, 管道消声器内壁 敷设吸声结构, 在管道消声器外壁上安装低温制冷系统, 制冷系统降低了吸声结构背板 壁面的温度, 从而在消声器吸声结构内部的产生一个由相对高温到相对低温的温度梯 度, 利用低温制冷系统冷端产生的温度梯度, 导致管内声线弯曲偏折, 使更多的声波成 分斜入射到吸声结构内, 因此, 吸声结构就能够通过低温制冷系统冷端"捕获"更多的噪 声, 而不是让噪声从其表面掠过, 这样能够充分地利用吸声结构的吸声潜质, 使其吸声 能力得到充分的发挥, 提高了吸声性能, 从而使得消声器消声能力由 "欠饱和"变成"饱 和、 过饱和"状态, 大大提高了吸声结构的吸声效果, 在给定消声器原有消声量的基础 上产生了逾量消声量。当该技术应用在温度梯度可达上千度以上的航空发动机消声短舱 设计中, 那将带来的绝不会仅仅 3-5分贝的降噪量, 届时航空发动机降噪技术将达到一 个崭新的高度。 实施例 2
参考图 7, 本实施例制作的基于声线偏折理论具有低温制冷系统的消声器, 由一消 声器的壳体 1、 低温制冷系统 2、 温度控制装置 3和吸声结构 4组成, 在消声器的壳体 1外壁上安装低温制冷系统 2,该制冷系统采用压缩机制冷,其中制冷系统由压缩机 10、 冷凝器 11、 蒸发器 12、 低压管 8、 高压管 9、 储液干燥器 5组成。 温度控制装置 3是本 专业常规使用的温度控制装置, 即温度控制装置 3由膨胀阀 6、 毛细管温包 7组成。 蒸 发器 12缠绕在消声器管道外壁上吸收热量, 通过制冷系统 2和温度控制装置 3实现温 度梯度的定量控制。 在消声器的壳体 1内壁敷设吸声结构 4。 本实施例中的消声器管道 内壁的吸声结构, 可以是多孔性吸声材料, 也可以是薄板共振吸声结构、 薄膜共振吸声 结构、 穿孔板吸声结构、 微穿孔板吸声结构、 微缝吸声结构、 由本发明人持有的中国专 利号为: ZL00100641.X中的管束式穿孔板共振吸声装置及其复合吸声结构。
低温制冷系统的温度控制装置用于保障消声器管道内外壁之间存在 1-200(TC的温 度梯度, 并且管道内的温度要大于管道外壁冷端的温度。低温制冷系统至少应覆盖消声 器壳体外壁面积的 5%。 实施例 3
参考图 8, 本实施例制作的基于声线偏折理论具有低温制冷系统的消声器, 由一消 声器的壳体 1、 低温制冷系统 2"、 温度控制装置 3和吸声结构 4组成, 在消声器的壳体 1外壁上安装低温制冷系统 2", 本实施例中的低温制冷系统采用半导体制冷, 其中, 半 导体制冷系统绝缘陶瓷片 13、 金属导体 14、 N型和 P型半导体 15、 直流电源 16组成, 分别形成冷端 17和热端 18; 温度控制装置 3可以采用常规的散热片散热、 风扇散热, 也可以采用风冷、 水冷等方法来控制散热。 将半导体制冷贴片贴在消声器管道外壁上, 通过制冷系统和温度控制装置实现温度梯度的定量控制。消声器的壳体 1内壁敷设吸声 结构 4。本实施例中的低温制冷系统采用半导体制冷, 则可将半导体制冷贴片即冷端 17 贴在消声器管道外壁上; 其他同实施例 2。 实施例 4
参考图 9, 本实施例制作的基于声线偏折理论具有低温制冷系统的消声器, 由一消 声器的壳体 1、 低温制冷系统 2、 温度控制装置 3和吸声结构 4组成, 在消声器的壳体 1外壁上安装低温制冷系统 2 , 本实施例中的制冷系统采用液氮制冷。 其中, 低温制冷 系统由液氮杜瓦瓶 19、 管道冷却器 20组成, 温度控制装置采用阀门控制, 利用阀门来 控制液氮杜瓦瓶 19和氮气瓶 39内的氮气压力以及通向管道冷却器 20的液氮和常温氮 气流量来实现温度的定量控制。 在消声器的壳体 1内壁敷设吸声结构 4。 本实施例中的 制冷系统采用液氮制冷, 将所述的液氮与常温氮气通入管道冷却器 20中, 并在管道冷 却器 20中混合, 然后将所述的管道冷却器 20覆盖在所述的消声器壳体 1外壁上; 温度 控制装置 3通过控制液氮杜瓦瓶 19和常温氮气的氮气瓶 39流量来控制消声器壳体 1外 壁的温度。
其他同实施例 2。 实施例 5
参考图 10, 本实施例制作的基于声线偏折理论具有低温制冷系统的消声器, 由一 消声器的壳体 1、 低温制冷系统 2、 温度控制装置 3和吸声结构 4组成, 在消声器的壳 体 1外壁上安装低温制冷系统 2, 本实施例中的制冷系统利用周围环境既有的制冷系统 向消声器的壳体外壁输送低于管道内温度的气体或者冷却液体,温度控制装置采用阀门 控制, 利用阀门来控制通向管道冷却器 20的低温管道内温度气体或者冷却液体的流量 来实现温度的定量控制。
其他同实施例 2。 实施例 6
参考图 1 1 , 本实施例制作的基于声线偏折理论具有低温制冷系统的消声器, 由一 消声器的壳体 1、 低温制冷系统 2、 温度控制装置 3和吸声结构 4组成, 在消声器的壳 体 1外壁上安装低温制冷系统 2, 本实施例中的制冷系统采用磁制冷, 由磁工质 27、 磁 N极 25、 磁 S极 26、 散热器 28和管道冷却器 20等组成, 磁工质 27在高温区 23等温 磁化, 放出热量, 通过散热器 28将热量导出, 在低温区 24绝热退磁, 吸收热量, 将热 交换器置于磁工质 27的低温区, 通过磁工质 27的绝热退磁吸收热量, 形成冷端, 通过 管道冷却器 20降低消声器外壁的温度。 其他同实施例 2 实施例 7
参考图 12、 图 13、 图 14和图 15, 本实施例制作的基于声线偏折理论具有低温制 冷系统的消声器, 由一消声器的壳体 1、 低温制冷系统 2、 温度控制装置 3和吸声结构 4组成, 在消声器的壳体 1外壁上安装低温制冷系统 2, 本实施例中的制冷系统采用热 声制冷, 分别采用驻波热声制冷机、 行波热声制冷机、 Stirling制冷机、 脉冲管制冷机。 如图 12所示, 驻波热声制冷机, 由声波发生器 29、 高温热交换器 30、 低温热交换器 31、 回热器 32、 谐振腔 33和管道冷却器 20组成。 如图 13所示, 行波热声制冷机, 由 声波发生器 29、 髙温热交换器 30、 低温热交换器 31、 回热器 32、 行波声导管 34和管 道冷却器 20组成。 如图 14所示, Stirling制冷机, 由声波发生器 29、 声波吸收器 35、 高温热交换器 30、 低温热交换器 31、 回热器 32和管道冷却器 20组成。 如图 15所示, 脉冲管制冷机, 由声波发生器 29、 高温热交换器 30、 低温热交换器 31、 回热器 32、 气 库 36、 阀门 37、 脉冲管 38和管道冷却器 20组成。
根据热声原理在高温热交换器 30处放出热量, 在低温热交换器处 31吸收热量, 形 成冷端, 通过管道冷却器 20降低消声器外壁的温度。 其他同实施例 2。 实施例 8
参考图 16, 通过对微缝吸声结构底部进行冻冰处理。 将底部有冰块 22的微缝吸声 结构 21置于冷冻室冷冻 10小时以上,冰 22冻结并固定在微缝吸声结构 21的底部, 制 成冻冰情况下的微缝吸声结构 21。
微缝吸声结构 21的结构参数为: 缝长: 1.8tnm, 缝宽: 0.03 mm, 缝间距: 5tnm, 板厚: 0.8mm, 空腔深度为 298mm, 冰的厚度为 42mm。 冰块冻结并固定于微缝吸声结 构底部, 将底部冻冰的微缝吸声结构固定在驻波管的测试端。
本实施例制成底部冻冰的微缝吸声结构,在驻波管上对微缝吸声结构进行了正入射 吸声性能测试。 对微缝吸声结构底部冻冰处理前后, 微缝吸声结构的正入射吸声系数, 如图 17所示。 在 125Hz、 160Hz和 200Hz, 底部冻冰处理之后的微缝吸声结构的吸声 系数分别由原来的 0.410、0.400、0.420上升到 0.685、0.720和 0.620,而且在 125Hz~400Hz 的低频段内, 底部冻冰处理后的微缝吸声结构的吸声系数分别比未冻冰处理的高出 0.1-0.3 , 而且在 800Hz~1600Hz频率内, 底部冻冰情况下的吸声系数也相比与未冻冰的 情况有所提高。
本实施例通过对微缝吸声结构底部冻冰前后吸声系数对比不难看出:对于微缝吸声 结构进行底部冻冰处理之后, 不仅低频的吸声系数得以明显地提高, 而且中频的吸声系 数也有所提高, 有效地抑制了宽带噪声, 提高了整个频带的吸声量。 实施例 9
参考图 18和 19, 实施例制作的基于声线偏折理论具有低温制冷系统的消声器, 分别在消声器壳体外壁上安装的低温制冷系统, 其占据消声器表面的面积为 5%和 100%, 实际应用中, 可以根据需要在 5%-100%内选择覆盖面积。
概括而言,本发明的基于声线偏折理论的消声器,其实质是利用温度梯度产生的"冷 陷阱"导致的声线偏折弯曲来最大限度地捕获并降低噪声, 同时充分发挥了已有消声器 吸声结构的吸声潜能, 是一种基于温度梯度、 声线偏折具有低温制冷系统的降噪技术。 其特点在于把温度梯度作为一个设计优化参数人为地引入到了消声器结构设计中,在现 有消声器消声能力业已饱和的情况下,通过对消声器外壁安装低温制冷系统, 使其成为 具有低温制冷系统的冷端消声器, 额外产生温度梯度, 利用温度梯度使管壁内的声线朝 向冷端, 即气流管道内壁吸声结构处弯曲偏折, 减少了消声器管道内不与消声器吸声结 构接触而掠过的声波成分, 使更多的声波成分斜入射到消声器内衬的吸声结构内, 从而 能够更加充分有效地发挥消声器吸声结构的吸声潜能, 增强对管道内噪声的有效吸收, 降低管道内受激声学简正振动模式的幅值,增大消声器的消声量, 降低管内对外辐射噪 声。
气流管道内温度越高, 相对温度梯度越大, 声线弯曲偏折的成分也就越多, 这样就 越有利于充分发挥现有吸声结构的吸声潜能。该消声器通过对低温制冷系统冷端温度的 调节, 实现对温度梯度的定量控制, 进一步提高消声器的消声量, 优化吸声频带。 同时 又由于该方法是对现有管道消声器的一种改进,在基本不对现有消声器结构进行改动的 情况下,通过对现有消声器管道外壁安装低温制冷系统的方法, 为其额外提供逾量消声 实施例 1和实施例 8的验证实验结果业已证明:利用"冷陷阱"捕获并降低噪声的方 法_即: 基于温度梯度、 声线偏折具有低温制冷降噪技术的可行性和降噪的有效性。一 方面, 由于冷端产生的温度梯度, 导致声线弯曲偏折引起的附加消声量, 说明原有消声 器还是具备一定的消声潜质, 通过冷端产生的温度梯度, 导致管内声线弯曲偏折, 将这 些降噪潜质发挥出来了; 另一方面, 即使是在垂直入射的情况下, 冷端吸声结构的吸声 性能也有一定程度的提高。在温度梯度的作用下, 冷端温度使得部分垂直入射声波难以 反射"逃逸", 又重新进入吸声结构, 再次接受吸声处理。
通过优化选择和改变低温制冷系统的冷端产生方式(低温制冷系统可以采用专用压 缩机制冷、 半导体制冷、 液氮制冷、 干冰制冷、 声制冷、 化学制冷、 磁制冷、 吸附制冷、 脉管制冷、太阳能制冷等, 也可以利用周围环境既有制冷系统的输送低于管道内温度的 气体或冷却液体, 甚至采用消声器壳体外壁覆盖冰层来提供冷端的方式等〉和安装方式 产生能够满足大幅度降噪需求和应用环境允许的冷端温度梯度,以满足不同噪声控制场 合的要求。
本发明可应用于航空发动机短舱消声、直升机涡轴发动机消声涵道、燃气涡轮等进 排气管路系统和其他方便并允许提供冷端低温制冷系统的环境条件。
最后所应说明的是, 以上实施例仅用以说明本发明的技术方案而非限制。尽管参照 实施例对本发明进行了详细说明, 本领域的普通技术人员应当理解, 对本发明的技术方 案进行修改或者等同替换, 都不脱离本发明技术方案的精神和范围, 其均应涵盖在本发 明的权利要求范围当中。

Claims

权 利 要 求
1、 一种基于声线偏折理论的消声方法, 该方法根据费马原理, 通过在消声器管道 外壁安装低温制冷系统, 在消声器腔体内外形成管壁内温度大于管壁外温度的温度梯 度, 利用温度梯度使管壁内的声线产生向低温的消声器管道外壁方向偏折, 以让更多的 声线以斜入射形式进入了消声器内衬的吸声结构中, 使得掠入射的声波入射角增大、吸 声结构的吸声系数提高, 增强对管道内噪声的有效吸收, 降低管道内受激声学简正振动 模式的幅值, 增大消声器的消声量, 降低辐射噪声。
2、 根据权利要求 1所述的基于声线偏折理论的消声方法, 其特征在于, 所述的低 温制冷系统至少应覆盖消声器管道外壁面积的 5%。
3、 一种基于声线偏折理论的消声器, 包括消声器壳体, 所述的消声器壳体(1 ) 内 壁敷设吸声结构(4 ) ; 其特征在于, 所述的消声器壳体(1 )外壁上对应于吸声结构(4 ) 的位置上设置有低温制冷系统 (2 ), 该低温制冷系统 (2 ) 至少应覆盖消声器壳体 (1 ) 外壁面积的 5%。
4、 根据权利要求 3所述的基于声线偏折理论的消声器, 其特征在于, 所述的低温 制冷系统 (2 ) 还与一温度控制装置 (3 ) 联接, 通过温度控制装置 (3 ) 实现温度梯度 的定量控制。
5、 根据权利要求 4所述的基于声线偏折理论的消声器, 其特征在于, 所述的温度 梯度的定量控制范围为 1〜200(TC , 即消声器壳体(1 )管道内的温度比消声器壳体(1 ) 管道外壁冷端的温度大 1〜2000°C。
6、 根据权利要求 3所述的基于声线偏折理论的消声器, 其特征在于, 所述的吸声 结构(4 ), 可以是多孔性吸声材料、 薄板共振吸声结构、 薄膜共振吸声结构、 穿孔板吸 声结构、 微穿孔板吸声结构、 微缝吸声结构、 管束穿孔板共振吸声结构或管束穿孔板复 合共振吸声结构。
7、 根据权利要求 3所述的基于声线偏折理论的消声器, 其特征在于, 所述的消声 器壳体 (1 ) 的横截面为圆形、 椭圆形或矩形。
8、 根据权利要求 3所述的基于声线偏折理论的消声器, 其特征在于, 所述的吸声 结构 (4 ) 的厚度为 l〜1000mm。 9、 根据权利要求 3所述的基于声线偏折理论的消声器, 其特征在于, 所述的低温 制冷系统 (2) 可以采用压缩机制冷、 半导体制冷、 液氮制冷、 干冰制冷、 声制冷、 化 学制冷、 磁制冷、 吸附制冷、 脉管制冷或太阳能制冷, 还可以是通过输送低于管道内温 度的气体或者冷却液体, 或覆盖冰层形成的消声器壳体 (1) 管道外壁的冷端。
10、 根据权利要求 9所述的基于声线偏折理论的消声器, 其特征在于, 所述的压缩 机制冷系统包含: 压缩机(10)、 冷凝器(11)、 蒸发器(12)和储液千燥器(5); 其中, 蒸发器 (12) 的管道缠绕在消声器管道外壁上, 压缩机制冷系统与温度控制装置 (3) 连接, 所述的温度控制装置又包含: 膨胀阀 (6) 和毛细管温包 (7)。
11、 根据权利要求 9所述的基于声线偏折理论的消声器, 其特征在于, 所述的半导 体制冷系统包含: 绝缘陶瓷片 (13)、 金属导体 (14)、 N型和 P型半导体 (15) 和直流 电源 (16); 连接后分别形成冷端 (17) 和热端 (18), 其中, 冷端 (17) 贴在消声器壳 体 (1)外壁上, 温度控制装置 (3) 采用散热片散热、 风扇散热、 风冷或水冷方法来控 制散热; 将半导体制冷贴片贴在消声器管道外壁上,通过控制半导体制冷片热端的散热 情况来控制消声器壳体 (1) 外壁的温度。
12、 根据权利要求 9所述的基于声线偏折理论的消声器, 其特征在于, 所述的液氮 制冷系统包含: 液氮杜瓦瓶 (19)、 常温氮气瓶 (39) 和管道冷却器 (20); 液氮与常温 氮气通入管道冷却器 (20) 中混合; 所述的管道冷却器 (20) 覆盖在消声器壳体 (1) 外壁上, 温度控制装置 (3) 的流量计电连接, 通过控制液氮常温氮气的流量来控制壳 体 (1) 外壁的温度。
13、 根据权利要求 9所述的基于声线偏折理论的消声器, 其特征在于, 所述的磁制 冷系统包含: 磁工质 (27)、 磁 N极 (25)、 磁 S极 (26)、 散热器 (28) 和管道冷却器
(20); 所述的磁工质 (27) 在高温区 (23) 等温磁化, 放出热量, 通过散热器 (28) 将热量导出,在低温区(24)绝热退磁,吸收热量,将管道冷却器(20)置于磁工质(27) 的低温区, 通过磁工质 (27) 的绝热退磁吸收热量, 形成冷端并覆盖在消声器壳体(1) 外壁上。
14、 根据权利要求 9所述的基于声线偏折理论的消声器, 其特征在于, 所述的热声 制冷系统为驻波热声制冷机、 行波热声制冷机、 Stirling 制冷机或脉冲管制冷机, 根据 热声原理在高温热交换器 (30) 处放出热量, 在低温热交换器 (31) 处吸收热量, 形成 冷端, 低温热交换器处 (31) 与管道冷却器 (20)联通, 所述的管道冷却器 (20) 覆盖 在消声器壳体 (1) 外壁上;
所述的驻波热声制冷机包括: 声波发生器(29)、 高温热交换器(30)、 低温热交换 器 (31)、 回热器 (32)、 谐振腔 (33) 和管道冷却器 (20);
所述的行波热声制冷机包括: 声波发生器 (29)、 高温热交换器(30)、 低温热交换 器 (31)、 回热器 (32)、 行波声导管 (34) 和管道冷却器 (20);
所述的 Stirling制冷机包括: 声波发生器 (29)、 声波吸收器 (35)、 高温热交换器
(30)、 低温热交换器 (31)、 回热器 (32) 和管道冷却器 (20);
所述的脉冲管制冷机包括: 声波发生器 (29)、 高温热交换器 (30)、 低温热交换器
(31)、 回热器 (32)、 气库 (36)、 阀门 (37)、 脉冲管 (38) 和管道冷却器 (20)。
15、 根据权利要求 9所述的基于声线偏折理论的消声器, 其特征在于, 所述的低于 管道内温度的气体或者冷却液体通过管道冷却器(20)中, 该管道冷却器覆盖在消声器 壳体 (1) 外壁上形成冷端。
16、 根据权利要求 9所述的基于声线偏折理论的消声器, 其特征在于, 所述的冰层 是将冰或者干冰置于管道冷却器 (20) 中, 该管道冷却器覆盖在消声器壳体 (1) 外壁 上, 利用冰和干冰自身的物理特性来提供一个冷端。
PCT/CN2010/000242 2009-02-27 2010-02-26 一种基于声线偏折理论的消声方法和消声器 WO2010097014A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/203,699 US8408359B2 (en) 2009-02-27 2010-02-26 Acoustic attenuation method based on acoustic ray deflection theory and a muffler
EP10745798.8A EP2402568B1 (en) 2009-02-27 2010-02-26 Noise elimination method and muffler
EA201171092A EA019238B1 (ru) 2009-02-27 2010-02-26 Способ шумопоглощения и шумоглушитель, основанный на теории преломления звуковых лучей
JP2011551395A JP5291206B2 (ja) 2009-02-27 2010-02-26 音線偏向理論に基づく消音方法及び消音器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910119947.3 2009-02-27
CN200910119947 2009-02-27

Publications (1)

Publication Number Publication Date
WO2010097014A1 true WO2010097014A1 (zh) 2010-09-02

Family

ID=42665018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/000242 WO2010097014A1 (zh) 2009-02-27 2010-02-26 一种基于声线偏折理论的消声方法和消声器

Country Status (5)

Country Link
US (1) US8408359B2 (zh)
EP (1) EP2402568B1 (zh)
JP (1) JP5291206B2 (zh)
EA (1) EA019238B1 (zh)
WO (1) WO2010097014A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106448647A (zh) * 2016-10-21 2017-02-22 武汉市发源发明推广有限公司 一种蒸汽或气体特效消声器
CN108615522A (zh) * 2018-04-26 2018-10-02 重庆大学 一种单腔多个共振频率旁支型共振消声器

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5527125B2 (ja) * 2010-09-14 2014-06-18 富士通株式会社 音量予測プログラム、音量予測装置及び音量予測方法
US9752494B2 (en) 2013-03-15 2017-09-05 Kohler Co. Noise suppression systems
US9388731B2 (en) 2013-03-15 2016-07-12 Kohler Co. Noise suppression system
GB2515277B (en) * 2013-06-12 2019-04-17 Airbus Operations Ltd Distributing gas within an aircraft
JP6075263B2 (ja) * 2013-10-04 2017-02-08 株式会社デンソー 車両用吸気装置
US9759447B1 (en) * 2016-03-14 2017-09-12 Acoustic Metameterials, Inc. Acoustic metamaterial noise control method and apparatus for ducted systems

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0419320A (ja) * 1990-05-10 1992-01-23 Nissan Motor Co Ltd 内燃機関の排気管
CN2195622Y (zh) * 1994-06-13 1995-04-26 林隆村 排气管
US5992560A (en) * 1996-02-21 1999-11-30 Ibiden Co., Ltd. Muffler for internal combustion engine
JP2000161042A (ja) * 1998-11-24 2000-06-13 Futaba Industrial Co Ltd 排ガス冷却化マフラ
JP2006104975A (ja) * 2004-10-01 2006-04-20 Nihon Glassfiber Industrial Co Ltd 消音器の製造方法
CN101313130A (zh) * 2005-11-24 2008-11-26 丰田自动车株式会社 次消声器

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6131131Y2 (zh) * 1981-03-26 1986-09-10
JPS61278894A (ja) * 1985-06-04 1986-12-09 松下電工株式会社 音波の屈折装置
FR2642470A1 (fr) * 1989-01-27 1990-08-03 Glaenzer Spicer Sa Silencieux pour gaz d'echappement et partie de ligne d'echappement comportant un tel silencieux
US5936210A (en) * 1998-01-15 1999-08-10 Maremont Exhaust Products, Inc. High performance muffler
US6868939B2 (en) * 2003-02-25 2005-03-22 Vicious Cycle Performance, Inc. Exhaust silencer system
JP4363448B2 (ja) * 2007-02-05 2009-11-11 トヨタ自動車株式会社 排気系熱交換器の車体搭載構造
US20110005856A1 (en) * 2008-01-09 2011-01-13 Leif Larson Exhaust silencer
KR20090119557A (ko) * 2008-05-16 2009-11-19 현대자동차주식회사 열교환 기능을 가지는 차량용 에어컨 머플러
KR20100061875A (ko) * 2008-12-01 2010-06-10 볼보 컨스트럭션 이키프먼트 홀딩 스웨덴 에이비 건설기계용 배기가스 저온화 장치
ITBO20100474A1 (it) * 2010-07-27 2012-01-28 Magneti Marelli Spa Silenziatore con scambiatore di calore integrato

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0419320A (ja) * 1990-05-10 1992-01-23 Nissan Motor Co Ltd 内燃機関の排気管
CN2195622Y (zh) * 1994-06-13 1995-04-26 林隆村 排气管
US5992560A (en) * 1996-02-21 1999-11-30 Ibiden Co., Ltd. Muffler for internal combustion engine
JP2000161042A (ja) * 1998-11-24 2000-06-13 Futaba Industrial Co Ltd 排ガス冷却化マフラ
JP2006104975A (ja) * 2004-10-01 2006-04-20 Nihon Glassfiber Industrial Co Ltd 消音器の製造方法
CN101313130A (zh) * 2005-11-24 2008-11-26 丰田自动车株式会社 次消声器

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HELIN ZHU, ZHENGSHI LIU: "Perforated pipe muffler Numerical Analysis", JOURNAL OF NOISE AND VIBRATION CONTROL, June 2008 (2008-06-01)
See also references of EP2402568A4 *
XIAOJUN WANG, ZHIYUAN LI, HAOZHENG WEI: "Engine Muffler Static Performance Testing and Analysis", JOURNAL OF NOISE AND VIBRATION CONTROL, vol. 4TH, 2007

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106448647A (zh) * 2016-10-21 2017-02-22 武汉市发源发明推广有限公司 一种蒸汽或气体特效消声器
CN108615522A (zh) * 2018-04-26 2018-10-02 重庆大学 一种单腔多个共振频率旁支型共振消声器
CN108615522B (zh) * 2018-04-26 2023-04-28 重庆大学 一种单腔多个共振频率旁支型共振消声器

Also Published As

Publication number Publication date
JP2012518746A (ja) 2012-08-16
US20120055735A1 (en) 2012-03-08
EP2402568A4 (en) 2013-12-18
EP2402568B1 (en) 2016-11-23
US8408359B2 (en) 2013-04-02
JP5291206B2 (ja) 2013-09-18
EA019238B1 (ru) 2014-02-28
EA201171092A1 (ru) 2012-02-28
EP2402568A1 (en) 2012-01-04

Similar Documents

Publication Publication Date Title
WO2010097014A1 (zh) 一种基于声线偏折理论的消声方法和消声器
CN101782008B (zh) 基于声线偏折理论的消声器
US7017706B2 (en) Turbine noise absorber
WO2017181341A1 (zh) 隔声通流且强化传热的声学超材料单元、复合结构及制备
JP2010510120A (ja) 航空機用翼前縁
JP2017172955A (ja) 集中式冷却塔通風騒音低減システム
CN109404127B (zh) 一种高散热静音柴油发电机组
CN205401143U (zh) 一种消声器、制冷系统以及空调设备
CN106401697B (zh) 一种柴油发电机组用复合型消声器
WO2012075844A1 (zh) 消声器
CN105649994A (zh) 一种消声器、制冷系统以及空调设备
KR100358237B1 (ko) 흠음장치
CN212587212U (zh) 一种新型片式消声器
CN206347716U (zh) 一种鲜风系统消音器
CN209706228U (zh) 一种高效减噪的风机盘管
CN209925120U (zh) 一种高速气流喷口的隔声装置
CN204327348U (zh) 一种用于涡轮增压器的管道高频消声器
CN206785451U (zh) 一种封闭空间用柴油发电机组水冷式消音器
CN207879717U (zh) 墙面排风扇复合消声器
CN202382385U (zh) 空调用降噪结构及设有该降噪结构的空调
CN109899618A (zh) 一种金属外壳式管道消声器
CN205403107U (zh) 空调机组消声房
US20190112979A1 (en) Acoustic attenuation on a turbine engine wall
CN103743259A (zh) 倾斜板-蜂窝式消声器
CN208347932U (zh) 一种新型柴油发电机组消音器的隔热结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10745798

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011551395

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13203699

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2010745798

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010745798

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 201171092

Country of ref document: EA