WO2010095609A1 - 散気装置、膜モジュール、膜分離装置、散気方法、及び膜分離方法 - Google Patents

散気装置、膜モジュール、膜分離装置、散気方法、及び膜分離方法 Download PDF

Info

Publication number
WO2010095609A1
WO2010095609A1 PCT/JP2010/052243 JP2010052243W WO2010095609A1 WO 2010095609 A1 WO2010095609 A1 WO 2010095609A1 JP 2010052243 W JP2010052243 W JP 2010052243W WO 2010095609 A1 WO2010095609 A1 WO 2010095609A1
Authority
WO
WIPO (PCT)
Prior art keywords
discharge port
diffuser
membrane
air diffuser
air
Prior art date
Application number
PCT/JP2010/052243
Other languages
English (en)
French (fr)
Inventor
明 石山
淳 川嶋
Original Assignee
株式会社神鋼環境ソリューション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神鋼環境ソリューション filed Critical 株式会社神鋼環境ソリューション
Priority to CN2010800075440A priority Critical patent/CN102317217A/zh
Publication of WO2010095609A1 publication Critical patent/WO2010095609A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/231Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids by bubbling
    • B01F23/23105Arrangement or manipulation of the gas bubbling devices
    • B01F23/2312Diffusers
    • B01F23/23123Diffusers consisting of rigid porous or perforated material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/231Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids by bubbling
    • B01F23/23105Arrangement or manipulation of the gas bubbling devices
    • B01F23/2312Diffusers
    • B01F23/23126Diffusers characterised by the shape of the diffuser element
    • B01F23/231264Diffusers characterised by the shape of the diffuser element being in the form of plates, flat beams, flat membranes or films
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1236Particular type of activated sludge installations
    • C02F3/1268Membrane bioreactor systems
    • C02F3/1273Submerged membrane bioreactors
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/20Activated sludge processes using diffusers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/20Activated sludge processes using diffusers
    • C02F3/201Perforated, resilient plastic diffusers, e.g. membranes, sheets, foils, tubes, hoses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/26Specific gas distributors or gas intakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/18Use of gases
    • B01D2321/185Aeration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present invention relates to an air diffuser that diffuses air bubbles in a sludge mixed solution, a membrane module that includes the air diffuser, a membrane separation device that includes the membrane module, and air bubbles that diffuse into the sludge mixed solution.
  • the present invention relates to an air diffusion method and a membrane separation method using the membrane module.
  • bubbles mainly air
  • the activated sludge is mixed with activated sludge and wastewater for the purpose of supplying oxygen necessary for the microorganisms in the activated sludge to decompose organic matter in the wastewater.
  • Air is diffused in the sludge mixture.
  • an apparatus that diffuses air bubbles from below in the activated sludge treatment tank containing the activated sludge mixed liquid is generally used.
  • an air diffuser includes a perforated plate having a plurality of through holes and a diffuser disposed so that a discharge port for discharging air bubbles into the activated sludge mixed liquid is positioned below the perforated plate.
  • An apparatus is known that includes a trachea and is configured such that the opening direction of the discharge port faces upward (for example, Patent Document 1).
  • such an air diffuser has a problem that if the discharge port is small, the bubbles discharged from the discharge port are not sufficiently divided and diffused.
  • such an air diffuser has a problem that air bubbles may not be uniformly diffused from each through hole if the distance between the discharge port and the perforated plate is short. When the air is diffused, the distance between the discharge port and the perforated plate becomes very long, and the air diffuser itself is too large to be installed in the sludge separation tank (tank containing the sludge mixture) where air bubbles are to be diffused. There is also a problem that it may be difficult.
  • an object of the present invention is to diffuse air bubbles from each through hole substantially uniformly and to reduce the size of a space in which an air diffuser is arranged.
  • the present invention is an air diffuser comprising a perforated plate having a plurality of through holes and an air diffuser arranged so that a discharge port for discharging air bubbles in the sludge mixed solution is positioned below the perforated plate.
  • the center of the opening surface of the discharge port is located substantially directly below the center of the circle that surrounds and is the smallest circle surrounding the through hole of the perforated plate, and the opening direction of the discharge port is a horizontal direction, a vertically downward direction, and a horizontal direction.
  • the discharge port has an inner diameter of 16 mm or more
  • the ratio (L / D) of the distance L between the lower surface of the perforated plate and the center of the opening surface of the discharge port to the diameter D of the circle is 0.8 to 1.2. It is in.
  • the discharge port is discharged from the discharge port when the opening direction of the discharge port is any one of a horizontal direction, a vertically downward direction, and a direction between the horizontal direction and the vertically downward direction.
  • the upward initial velocity of the bubbles is 0 m / s or less, and the bubbles easily diffuse in the horizontal direction for the distance from the discharge port.
  • the center of the opening surface of the discharge port is positioned almost directly below the center of the circle that surrounds and is the smallest of the perforations of the perforated plate, horizontal air bubbles should diffuse from the discharge port to the outer through hole.
  • the direction distance is relatively short.
  • the inner diameter of the discharge port is 16 mm or more
  • the ratio (L / D) of the distance L between the lower surface of the porous plate and the center of the opening surface of the discharge port with respect to the diameter D of the circle is 0.8 or more.
  • the bubbles discharged from the discharge port are relatively large, and the large bubbles are instantaneously split into small bubbles and diffused, and the bubbles can reach the outermost through hole. Therefore, the bubbles can be diffused from each through hole substantially uniformly.
  • the ratio (L / D) of the distance L between the lower surface of the porous plate and the center of the opening surface of the discharge port with respect to the diameter D of the circle is 1.2 or less, the horizontal size of the porous plate is increased.
  • the air diffuser having an inner diameter of the discharge port of 16 mm or more is configured such that the opening direction of the discharge port is any one of a horizontal direction, a vertically downward direction, and a direction between the horizontal direction and the vertically downward direction.
  • the intrusion of the sludge mixed liquid into the air diffuser is suppressed, and as a result, the air bubbles can be diffused more uniformly from each through hole.
  • a skirt portion extending downward is provided on the outer peripheral portion of the perforated plate.
  • an opening is provided at a lower end portion of the skirt portion.
  • the sludge of the sludge mixed liquid that can stay inside the air diffuser surrounded by the skirt portion is likely to flow out from the opening, and the sludge stays inside the air diffuser. Since it becomes difficult, as a result, air bubbles can be diffused substantially uniformly from each through hole.
  • the present invention resides in a membrane module formed by providing a separation membrane portion formed by a bundle of a plurality of separation membranes on the perforated plate of the air diffuser.
  • the present invention resides in a membrane separation apparatus comprising a tank in which a sludge mixed solution is accommodated, and the membrane module is provided as an immersion membrane in the tank.
  • the present invention resides in an air diffusion method in which air bubbles are diffused into the sludge mixed liquid by the air diffusion device.
  • the present invention resides in a membrane separation method for obtaining purified water by membrane separation of a sludge mixed solution with the membrane module.
  • air bubbles can be diffused from each through hole substantially uniformly, and the space in which the diffuser is disposed can be reduced in size.
  • FIG. 1 A is a side view of the air diffuser according to the present embodiment, and (b) is a front view of the air diffuser according to the present embodiment. It is side surface sectional drawing of the membrane module which concerns on this embodiment.
  • the air diffuser 1 As shown in FIGS. 1 to 4, the air diffuser 1 according to the present embodiment includes a porous plate 2 having a plurality of through holes 2a, and a discharge port 3a for discharging bubbles into the sludge mixed solution below the porous plate 2. And an air diffuser 3 arranged so as to be located at the center.
  • the porous plate 2 is configured such that the surface of the porous plate 2 becomes a substantially horizontal surface when placed in the sludge mixed liquid.
  • the perforated plate 2 is formed so that the surface has a substantially circular shape.
  • a plurality of through holes 2 a of the porous plate 2 are provided in the porous plate 2.
  • the shape of the through-hole 2a is formed so that it may become a substantially circular shape.
  • the through hole 2a is formed to have a diameter of 5 to 15 mm, preferably 8 to 11 mm.
  • the air diffuser 1 according to the present embodiment has an advantage that the through hole 2a is less likely to be blocked by the sludge of the sludge mixed liquid because the diameter of the through hole 2a is 5 mm or more.
  • the air diffuser 1 of the present embodiment has an advantage that the diameter of the through hole 2a is 15 mm or less, whereby the bubbles passing through the through hole 2a are reduced and the oxygen dissolution efficiency is easily increased.
  • the porous plate 2 is formed such that the axis of the through hole 2a is substantially perpendicular to the surface of the porous plate.
  • the perforated plate 2 is formed so that the center of the circle that surrounds the through-hole 2a and is the minimum and the substantially circular center of the perforated plate 2 are substantially concentric.
  • the air diffuser 3 is configured such that the discharge port 3a is positioned below the perforated plate 2 when disposed in a sludge mixed solution such as an activated sludge treatment tank or a sludge separation tank. Further, as shown in FIG. 5, the air diffuser 3 is formed so that the cross-sectional shape is circular. Further, the air diffuser 3 is provided with a discharge port 3a for discharging bubbles at one end, and the other end is connected to the gas supply means. The discharge port 3 a is formed so as to open in the axial direction of the diffuser tube 3. As shown in FIG.
  • the shape of the discharge port 3a is formed to be substantially circular, and its inner diameter R is 16 mm or more, preferably from the viewpoint that the air diffuser itself is more compact. It is formed to be 20 mm or more and 50 mm or less.
  • the inner diameter R of the discharge port 3a is 16 mm or more, large bubbles discharged from the discharge port 3a are instantaneously split into small bubbles and diffused. And the discharge port 3a of the air diffuser 3 can be shortened.
  • the air diffusion apparatus 1 of this embodiment can discharge a bubble with a larger diameter when the inner diameter R of the discharge port 3a is 20 mm or more, the bubble can be more reliably diffused.
  • the distance between the plate 2 and the discharge port 3a of the air diffusing tube 3 can be further reduced.
  • the air diffuser 3 is bent at a position away from the discharge port 3a toward the other end, and a bent portion 3b is formed.
  • the bent portion 3b is formed at a predetermined position from the discharge port 3a. Specifically, it is formed at a position where the turbulence of the bubble flow generated in the bent portion 3b can be adjusted before reaching the discharge port 3a. More specifically, when the air diffusing tube 3 is bent at a right angle, the bent portion 3b is, as shown in FIG. 5B, the air diffusing tube 3 on the other end side from the opening end of the discharge port 3a to the bent portion 3b. It is preferable that the distance H to the axis and the inner diameter R of the discharge port 3a have the relationship of the following formula (1).
  • the direction of the air diffuser 3 (the opening direction of the discharge port) is directed differently due to the centrifugal force caused by the bending of the air diffuser 3.
  • the air diffusing tube 3 is configured to be splittable on the other end side with respect to the discharge port 3a.
  • the air diffuser 3 is provided with a connecting portion 3c on the other end side than the bent portion 3b, and on the discharge port side (front end side) and the other end side (base end side) with the connecting portion 3c as a boundary. It is configured to be splittable.
  • the air diffuser 3 is configured so that the opening direction of the discharge port 3a is substantially horizontal. Specifically, the air diffuser 3 is configured such that the axis in the opening direction is horizontal when it is disposed in the sludge mixed liquid. The air diffuser 3 is formed so that the opening surface of the discharge port 3a is perpendicular to the horizontal direction when disposed in the sludge mixed liquid. In other words, the opening surface of the discharge port 3 a is formed so as to be perpendicular to the axis of the air diffuser 3.
  • the linear velocity of the bubbles at the opening end of the discharge port 3a is preferably 4 m / second or more and 15 m / second or less, more preferably 8 m / second or more and 15 m / second or less, although it depends on the sludge concentration of the sludge mixed liquid. It is set to become.
  • the linear velocity is the velocity of bubbles passing through the cross-sectional area of the diffuser tube 3 per unit time, and is calculated by dividing the flow rate of bubbles (volume of bubbles flowing per unit time) by the cross-sectional area of the diffuser tube 3. It is what is done.
  • the material for forming the air diffuser 3 is not particularly limited, but is preferably formed using a material having rigidity.
  • the air diffuser 3 may be formed using a resin material such as polyvinyl chloride, or may be formed using a metal material such as SUS.
  • the distance L between the lower surface of the perforated plate 2 and the center of the opening surface of the discharge port 3a is preferably 200 mm or less, more preferably 150 mm or less, from the viewpoint of compactness and energy saving.
  • the air diffuser 1 of the present embodiment is configured such that the center of the opening surface of the discharge port 3a is located almost directly below the center of the circle that surrounds the through-hole 2a of the porous plate 2 and is the smallest. It becomes.
  • the diameter D of the circle that surrounds the through-hole 2a and is the minimum is preferably not less than the inner diameter of the discharge port 3a, more preferably not less than twice the inner diameter of the discharge port 3a.
  • bubbles are uniformly discharged from the entire surface of the porous plate 2 because the diameter D of the circle that surrounds the through-hole 2a and is the minimum is equal to or longer than the inner diameter of the discharge port 3a.
  • the air diffuser 1 of this embodiment is provided with a skirt portion 4 extending downward on the outer peripheral portion of the perforated plate 2.
  • the skirt portion 4 is formed to extend from the entire outer periphery of the perforated plate 2.
  • the air diffusion device 1 according to the present embodiment is formed so that the lower end of the skirt portion 4 is positioned below the discharge port 3a.
  • the skirt portion 4 is provided with a diffuser tube insertion hole 4a into which the diffuser tube 3 can be inserted.
  • the air diffuser 1 according to the present embodiment has a skirt opening provided at the lower end of the skirt 4.
  • the skirt opening is provided as the air diffuser insertion hole 4a.
  • the skirt opening 4a is formed so that bubbles that are not diffused from the through hole 2a and are not leaked from other portions are generated.
  • the air diffuser 1 of the present embodiment has a vertical distance between the center of the opening surface of the discharge port 3a and the upper end of the skirt opening. When the center of the surface is below, it is preferably 51 mm or less.
  • the air diffusing method of the present embodiment is a method in which air bubbles are diffused into the sludge mixed solution by the air diffusing device 1 of the present embodiment.
  • the membrane module 10 according to the present embodiment includes the air diffuser 1 according to the present embodiment, and a plurality of separation membranes are bundled on the upper portion of the porous plate 2 of the air diffuser 1.
  • the separation membrane part 20 configured as described above is provided and formed.
  • the separation membrane constituting the separation membrane portion 20 is formed by forming a porous membrane in which a large number of micropores are formed into a cylindrical shape, with the lower end portion being closed, on the upper portion of the porous plate 2. It is provided and connected to a suction means (not shown) with its upper end opened.
  • the material for forming the separation membrane is not particularly limited, and examples of the material include cellulose acetate, aromatic polyamide, polyvinyl alcohol, polyvinylidene fluoride, and polytetrafluoroethylene.
  • the membrane separation apparatus according to the present embodiment includes a tank in which a sludge mixed solution is accommodated, and the membrane module according to the present embodiment is provided as an immersion film in the membrane separation tank as the tank.
  • the membrane separation method according to the present embodiment is a method for obtaining purified water by membrane separation of the sludge mixed solution with the membrane module 10 according to the present embodiment.
  • the membrane module 10 is placed in a sludge mixed solution in a membrane separation tank containing microorganisms, and waste water containing a treatment target substance such as organic matter is placed in the tank.
  • This is a method of supplying purified water by decomposing the substance to be treated in the wastewater by the action of microorganisms and separating the membrane to obtain purified water.
  • the waste water is not particularly limited, and examples of the waste water include domestic waste water and factory waste water (food factories, chemical factories, electronic industry factories, pulp factories, etc.).
  • the membrane separation method according to the present embodiment can be used even when the MLSS (solid matter concentration) of the sludge mixed solution is 30000 mg / L or less, preferably 20000 to 25000 mg / L.
  • the inner diameter of the air diffuser 3 is 16 mm or more, so that the air diffuser 3 is less likely to be blocked by the sludge. It is discharged and air bubbles can be diffused substantially uniformly from the through hole 2a, and the hole of the through hole 2a is less likely to be clogged.
  • the gas supplied from the gas supply means is discharged as bubbles from the discharge port 3a, so that the bubbles diffuse in the horizontal direction while rising by buoyancy and reach the porous plate 2.
  • the bubbles pass through the through holes 2a of the perforated plate 2 to become finer bubbles, and rise while shaking the separation membrane so as to cover the separation membrane. Thereby, it becomes possible for the bubbles to peel off the adhering matter adhering to the separation membrane and to suppress adhering adhering matter.
  • the air diffuser, the membrane module, the membrane separator, and the membrane separation method according to the present embodiment are configured as described above, they have the following advantages.
  • the diffuser according to the present embodiment is configured such that the opening direction of the discharge port 3a is downward by being configured so that the opening direction of the discharge port 3a is substantially horizontal. Unlike the above, it is no longer necessary to use a diffusing pipe bent downward, and it is easy to downsize the vertical space in which the diffusing pipe is arranged. Therefore, the space in which the diffusing apparatus is arranged can be further reduced in size. There is an advantage of being able to plan.
  • the diffuser, the membrane module, the membrane separator, and the membrane separation method according to this embodiment are not limited to the above embodiment, and various modifications can be made without departing from the scope of the present invention. is there.
  • the said embodiment uses the diffuser 1 with the separation membrane part 20
  • this invention is not limited to this, The diffuser 1 is used without using the separation membrane part 20. Also good.
  • the air diffuser according to the present embodiment is configured such that the opening direction of the discharge port 3a is substantially horizontal, but the opening direction of the discharge port 3a is vertically downward, and the horizontal direction and vertically downward direction. It may be configured to be in any direction between the two.
  • the membrane separation apparatus is provided with a water treatment tank, waste water is transferred to the water treatment tank, and a target substance in the waste water is decomposed by microorganisms in the water treatment tank.
  • the supernatant water of the sludge mixture discharged from the tank may be transferred to the membrane separation tank and subjected to membrane separation treatment as a sludge mixture.
  • Air diffuser tube An air diffuser tube having the inside diameter of the discharge port described in Table 1 below was used.
  • Perforated plate A perforated plate (the number of through holes) in which the diameter D of a circle (hereinafter also referred to as “enclosed circle”) that surrounds and minimizes the through hole (diameter: about 10 mm) of the porous plate is 124 mm. : 24).
  • Air diffuser The air diffuser and the perforated plate were arranged as follows to produce an air diffuser.
  • the center of the opening surface of the discharge port is located almost directly below the center of the diameter of the surrounding circle, the opening direction of the discharge port is the horizontal direction, and the distance between the lower surface of the perforated plate and the center of the opening surface of the discharge port (Hereinafter, also referred to as “distance between the perforated plate and the discharge port”.)
  • Air diffusers of Examples and Comparative Examples were manufactured so that L was as shown in Table 1 below.
  • Example 1 Uniformity of bubbles diffused from each through hole>
  • the diffuser of Example and Comparative Example was placed in a tank into which tap water was placed, and the tank was filled with tap water so that the liquid level was located at a position 1000 mm from the upper surface of the perforated plate.
  • the gas is supplied to the air diffuser by the gas supply means so that the gas is discharged from the discharge port at a discharge amount of 10 m 3 / h, and the uniformity of the bubbles diffused from each through hole is visually confirmed for 5 minutes. And evaluated.
  • the uniformity of bubbles diffused from each through hole was evaluated according to the following criteria. A: Air bubbles were diffused almost uniformly from each through hole.
  • The amount of bubbles diffused from the outer through-holes was slightly small, but the bubbles were almost uniformly diffused from each through-hole throughout the observation time. ⁇ : The amount of bubbles diffused from the outer through-hole was small. X: Air bubbles were not generated from the outer through-holes.
  • Example 2 Difficulty of clogging the diffuser tube>
  • the air diffuser of Example and Comparative Example is placed in a tank containing sludge mixed liquid (MLSS: 25000 mg / L), and sludge mixed in the tank so that the liquid level is located at a position of 3000 mm from the upper surface of the perforated plate. Filled with liquid.
  • the gas is supplied to the air diffuser by the gas supply means so that the gas is discharged from the discharge port at a discharge rate of 10 m 3 / h, and after operating for two weeks, the difficulty of clogging the air diffuser is visually confirmed. And evaluated.
  • the difficulty of clogging the air diffuser was evaluated according to the following criteria. ⁇ : The inside of the air diffuser was not blocked by sludge. ⁇ : The inside of the air diffuser was blocked by sludge.
  • the air diffuser of the example was less likely to be clogged as compared with the air diffusers of Comparative Examples 1 to 5 in which the inner diameter of the discharge port was smaller than 16 mm.
  • the diffuser of the embodiment is configured to reduce the amount of bubbles diffused from each diffuser. The results showed good uniformity.
  • SYMBOLS 1 Air diffuser
  • 2 Perforated plate
  • 2a Through-hole
  • 3 Air diffuser
  • 3a Discharge port
  • 3b Bending part
  • 3c Connection part
  • 4 Skirt part
  • 4a Air diffuser insertion hole (skirt opening) Part)
  • 10 membrane module
  • 20 separation membrane part

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

 各貫通孔から略均一に気泡を散気させると共に、散気装置を配置する空間の小規模化を図ることを課題とする。複数の貫通孔を有する多孔板と、汚泥混合液中に気泡を吐出する吐出口が前記多孔板の下方に位置するように配された散気管とを備えてなる散気装置であって、  前記吐出口の開口面の中心が、前記多孔板の貫通孔を囲み且つ最小となる円の中心の略真下に位置し、前記吐出口の開口方向が、水平方向、鉛直下方向、及び水平方向と鉛直下方向との間の方向の何れかの方向となるように構成されてなり、  前記吐出口の内径は、16mm以上であり、  前記円の直径Dに対する前記多孔板の下面と前記吐出口の開口面の中心との距離Lの比(L/D)は、0.8~1.2であることを特徴とする散気装置を提供する。

Description

散気装置、膜モジュール、膜分離装置、散気方法、及び膜分離方法
 本発明は、汚泥混合液中に気泡を散気する散気装置、該散気装置を備えてなる膜モジュール、該膜モジュールが設けられてなる膜分離装置、汚泥混合液中に気泡を散気する散気方法、及び該膜モジュールを用いた膜分離方法に関する。
 従来から、廃水等の水処理を行う際には、様々な目的で被処理水中への気泡(主に、空気)の散気が行われている。例えば、活性汚泥を用いて廃水を処理する活性汚泥法では、活性汚泥中の微生物が廃水中の有機物を分解するために必要な酸素を供給する目的で、活性汚泥と廃水等とを混合した活性汚泥混合液中に空気の散気が行われている。
 また、別の目的としては、汚泥と水とへの固液分離を目的として汚泥混合液中に浸漬された分離膜に付着物が付着するのを抑制し、且つ付着物を分離膜の表面から剥がし取る目的で、分離膜の下方から気泡を散気し、気泡が浮上する際の水流や分離膜への気泡の接触によって、分離膜を揺れ動かすために散気が行われている。
 活性汚泥混合液中に気泡を散気する散気装置としては、活性汚泥混合液が入った活性汚泥処理槽内の下方から気泡を散気するものが一般的である。斯かる散気装置としては、具体的には、複数の貫通孔を有する多孔板と、活性汚泥混合液中に気泡を吐出する吐出口が前記多孔板の下方に位置するように配された散気管とを備え、前記吐出口の開口方向が上方を向くように構成されてなる装置が知られている(例えば、特許文献1)。
日本国特開2004-8981号公報
 しかしながら、斯かる散気装置は、吐出口が小さいと吐出口から吐出される気泡の分裂と拡散が不十分となるという問題がある。また、斯かる散気装置は、吐出口と多孔板との距離が短いと各貫通孔から気泡が均一に散気されない場合があるという問題があり、逆に、各貫通孔からの気泡を均一に散気させようとすると吐出口と多孔板との距離が非常に長くなり、散気装置自体が大きすぎて気泡を散気させたい汚泥分離槽(汚泥混合液が入った槽)内に設置が困難な場合があるという問題もある。さらに、斯かる散気装置は、吐出口から吐出される気泡が上向きの初速度を有しているので気泡を拡散させるのに吐出口と多孔板との距離をより長くしなければならず、散気装置自体がより大きくなり、その結果、散気の動力も増加するという問題があり、また、散気管に汚泥が侵入して目詰まりを起こすという問題もある。
 そこで、本発明は、各貫通孔から略均一に気泡を散気させると共に、散気装置を配置する空間の小規模化を図ることを課題とする。
 本発明は、複数の貫通孔を有する多孔板と、汚泥混合液中に気泡を吐出する吐出口が前記多孔板の下方に位置するように配された散気管とを備えてなる散気装置であって、
 前記吐出口の開口面の中心が、前記多孔板の貫通孔を囲み且つ最小となる円の中心の略真下に位置し、前記吐出口の開口方向が、水平方向、鉛直下方向、及び水平方向と鉛直下方向との間の方向の何れかの方向となるように構成されてなり、
 前記吐出口の内径は、16mm以上であり、
 前記円の直径Dに対する前記多孔板の下面と前記吐出口の開口面の中心との距離Lの比(L/D)は、0.8~1.2であることを特徴とする散気装置にある。
 斯かる散気装置によれば、前記吐出口の開口方向が水平方向、鉛直下方向、及び水平方向と鉛直下方向との間の方向の何れかの方向となることにより、吐出口から吐出される気泡の上向きの初速度が0m/s以下となり、吐出口からの距離の割には気泡が水平方向に拡散しやすくなる。また、前記吐出口の開口面の中心が、前記多孔板の貫通孔を囲み且つ最小となる円の中心の略真下に位置することにより、吐出口から外側の貫通孔まで気泡が拡散すべき水平方向の距離が比較的短くなる。更に、前記吐出口の内径が16mm以上であり、且つ前記円の直径Dに対する前記多孔板の下面と前記吐出口の開口面の中心との距離Lの比(L/D)が0.8以上であることにより、吐出口から吐出される気泡が比較的大きなものとなり、その大きな気泡が瞬間的に小さい気泡に分裂して拡散し、最も外側の貫通孔まで気泡が到達することができる。従って、各貫通孔から略均一に気泡を散気させることができる。
 また、前記円の直径Dに対する前記多孔板の下面と前記吐出口の開口面の中心との距離Lの比(L/D)が1.2以下であることにより、多孔板の水平方向の大きさの割には散気装置を配置する縦方向の空間の小規模化を図ることができる。
 さらに、吐出口の内径が16mm以上である散気管を吐出口の開口方向が、水平方向、鉛直下方向、及び水平方向と鉛直下方向との間の方向の何れかの方向となるように構成されてなることにより、散気管内への汚泥混合液の侵入が抑制され、結果として、より一層各貫通孔から略均一に気泡を散気させることができる。
 また、本発明に係る散気装置においては、好ましくは、前記多孔板の外周部に下向きに延びるスカート部が設けられてなる。
 斯かる散気装置によれば、前記スカート部が設けられてなることにより、スカート部がない場合に貫通孔から散気されずに他の部分から漏出され得る気泡が、効率良く各貫通孔から散気され得るという利点がある。
 さらに、前記スカート部が設けられてなる散気装置においては、好ましくは、前記スカート部の下端部に開口部が設けられてなる。
 斯かる散気装置によれば、前記スカート部で囲まれている散気装置の内部に滞留し得る汚泥混合液の汚泥が該開口部から流出されやすくなり、該内部に、該汚泥が滞留しにくくなるため、結果として、より一層各貫通孔から略均一に気泡を散気させることができる。
 また、本発明は、前記散気装置の多孔板の上部に、複数の分離膜が束になって構成された分離膜部が設けられて形成されてなる膜モジュールにある。
 さらに、本発明は、汚泥混合液が収容される槽を備え、該槽内には、前記膜モジュールが浸漬膜として設けられてなる膜分離装置にある。
 また、本発明は、前記散気装置で、汚泥混合液中に気泡を散気させる散気方法にある。
 さらに、本発明は、前記膜モジュールで、汚泥混合液を膜分離して浄化水を得る膜分離方法にある。
 以上のように、本発明によれば、各貫通孔から略均一に気泡を散気させると共に、散気装置を配置する空間の小規模化を図ることができる。
本実施形態に係る散気装置の側面図である。 本実施形態に係る散気装置の正面図である。 本実施形態に係る散気装置の背面図である。 本実施形態に係る散気装置の側面断面図であり、図2のI-I断面図である。 (a)は、本実施形態に係る散気管の側面図であり、(b)は、本実施形態に係る散気管の正面図である。 本実施形態に係る膜モジュールの側面断面図である。
 以下、添付図面を参照しつつ、本発明の一実施形態について説明する。
 図1~4に示すように、本実施形態の散気装置1は、複数の貫通孔2aを有する多孔板2と、汚泥混合液中に気泡を吐出する吐出口3aが前記多孔板2の下方に位置するように配された散気管3とを備えてなる。
 前記多孔板2は、汚泥混合液中に配置された際に、多孔板2の面が略水平面となるように構成されてなる。また、多孔板2は、面の形状が略円形状になるように形成されてなる。
 前記多孔板2の貫通孔2aは、多孔板2に、複数個設けられてなる。
 また、貫通孔2aの形状は、略円形状になるように形成されてなる。
 さらに、貫通孔2aは、直径が5~15mm、好ましくは8~11mmとなるように形成されている。
 本実施形態の散気装置1は、貫通孔2aの直径が5mm以上であることにより、汚泥混合液の汚泥による貫通孔2aの閉塞が生じ難くなるという利点がある。また、本実施形態の散気装置1は、貫通孔2aの直径が15mm以下であることにより、貫通孔2aを通過する気泡が小さくなり酸素溶解効率が高まりやすくなるという利点がある。
 前記多孔板2は、貫通孔2aの軸が多孔板の面に対して略垂直をなすように形成されてなる。また、多孔板2は、貫通孔2aを囲み且つ最小となる円の中心と多孔板2の略円形状の中心とが略同心となるように形成されてなる。
 前記散気管3は、活性汚泥処理槽や汚泥分離槽等の汚泥混合液中に配置された際に、前記吐出口3aが前記多孔板2の下方に位置するように構成されてなる。また、散気管3は、図5に示すように、断面形状が円状となるように形成されている。さらに、散気管3は、一端部に気泡を吐出する吐出口3aを備え、他端側が気体供給手段に連なるように構成されている。前記吐出口3aは、散気管3の軸方向に開口するように形成されている。前記吐出口3aの形状は、図5(a)に示すように、略円形となるように形成され、その内径Rが、16mm以上、好ましくは、散気装置自体がよりコンパクトになるという観点から20mm以上50mm以下となるように形成されている。
 本実施形態の散気装置1は、吐出口3aの内径Rが16mm以上であることにより、吐出口3aから吐出された大きな気泡が瞬間的に小さな気泡に分裂して拡散するため、多孔板2と散気管3の吐出口3aとの距離を縮めることができる。また、本実施形態の散気装置1は、吐出口3aの内径Rが20mm以上であることにより、より大きな径の気泡を吐出することができるため、より確実に気泡を拡散させ得るので、多孔板2と散気管3の吐出口3aとの距離をより一層に縮めることができる。
 また、前記散気管3は、吐出口3aから他端側に離れた位置で屈曲しており、屈曲部3bが形成されている。該屈曲部3bは、吐出口3aから所定の位置に形成されている。具体的には、屈曲部3bで生じた気泡の流れの乱れが吐出口3aに到達するまでに整えることができるような位置に形成されている。より詳しくは、散気管3が直角に屈曲している場合、屈曲部3bは、図5(b)に示すように、吐出口3aの開口端から屈曲部3bよりも他端側の散気管3の軸線までの距離Hと、吐出口3aの内径Rとが下記式(1)の関係となることが好ましい。
 H ≧ R×3                     (1)
 該距離Hと該内径Rとが上記式(1)の関係となることにより、散気管3の屈曲による遠心力等によって散気管3の向き(吐出口の開口方向)と異なる向きを向いてしまった気泡が屈曲部3bから吐出口3aの開口端までに移動する間に吐出口の開口方向を向きやすくなるという利点がある。
 また、散気管3は、吐出口3aよりも他端側で分割可能に構成されている。具体的には、散気管3は、屈曲部3bよりも他端側に連結部3cを備え、該連結部3cを境に吐出口側(先端側)と他端側(基端側)とに分割可能に構成されている。
 また、散気管3は、吐出口3aの開口方向が略水平方向となるように構成されている。具体的には、散気管3は、汚泥混合液中に配置された際に、該開口方向の軸が水平となるように構成されている。また、散気管3は、汚泥混合液中に配置された際に、吐出口3aの開口面が水平方向に対して直角をなすように形成されている。言い換えれば、吐出口3aの開口面は、散気管3の軸に対して直角をなすように形成されている。
 前記吐出口3aから吐出される気泡としては、コンプレッサ等の気体供給手段から供給される空気が用いられている。また、吐出口3aの開口端における気泡の線速度は、汚泥混合液の汚泥濃度にもよるが、好ましくは、4m/秒以上15m/秒以下、より好ましくは、8m/秒以上15m/秒以下となるように設定されている。なお、線速度とは、単位時間あたりに散気管3の断面積を通過する気泡の速度で、気泡の流量(単位時間当たりに流れる気泡の体積)を散気管3の断面積で割ることで算出されるものである。
 前記散気管3を形成する素材としては、特に限定されるものではないが、剛性を有する素材を用いて形成されることが好ましい。例えば、前記散気管3は、ポリ塩化ビニル等の樹脂製素材を用いて形成されてもよく、SUS等の金属製素材を用いて形成されてもよい。
 本実施形態の散気装置1は、貫通孔2aを囲み且つ最小となる円の直径Dに対する前記多孔板2の下面と前記吐出口3aの開口面の中心との距離Lの比(L/D)が、0.8~1.2、好ましくは、0.9~1.1となるように構成されてなる。
 尚、多孔板2の下面と前記吐出口3aの開口面の中心との距離Lは、コンパクト化及び省エネルギー化の観点から、200mm以下であることが好ましく、150mm以下であることがより好ましい。
 また、本実施形態の散気装置1は、前記吐出口3aの開口面の中心が、前記多孔板2の貫通孔2aを囲み且つ最小となる円の中心の略真下に位置するように構成されてなる。
 さらに、本実施形態の散気装置1は、貫通孔2aを囲み且つ最小となる円の直径Dが、好ましくは、吐出口3aの内径以上、より好ましくは、吐出口3aの内径の2倍以上の長さである。本実施形態の散気装置1は、貫通孔2aを囲み且つ最小となる円の直径Dが吐出口3aの内径以上の長さであることにより、多孔板2の全面から均一に気泡が吐出されやすくなるという利点がある。
 また、本実施形態の散気装置1は、前記多孔板2の外周部に、下向きに延びるスカート部4が設けられてなる。該スカート部4は、多孔板2の外周の全周から延びて形成されてなる。また、本実施形態の散気装置1は、スカート部4の下端が吐出口3aよりも下側に位置するように形成されてなる。該スカート部4には、散気管3が挿入可能な散気管挿入孔4aが設けられてなる。
 さらに、本実施形態の散気装置1は、スカート部4の下端部にスカート開口部が設けられてなる。図1の散気装置においては、スカート開口部は、散気管挿入孔4aとして設けられてなる。
 また、本実施形態の散気装置1は、スカート部4がない場合に貫通孔2aから散気されずに他の部分から漏出される気泡が生じないようにスカート開口部4aが形成されてなる。本実施形態の散気装置1は、例えば、多孔板2の径が約124mmである場合には、吐出口3aの開口面の中心とスカート開口部の上端との鉛直方向の距離が、該開口面の中心が下方にある時、51mm以下であることが好ましい。
 本実施形態の散気方法は、本実施形態の散気装置1で、汚泥混合液中に気泡を散気させる方法である。
 次に、本実施形態に係る膜モジュールについて説明する。
 図6に示すように、本実施形態に係る膜モジュール10は、本実施形態に係る散気装置1を備え、該散気装置1の多孔板2の上部には、複数の分離膜が束となって構成された分離膜部20が設けられて形成されてなる。
 前記分離膜部20を構成する分離膜は、多数の微細孔が形成された多孔性膜が筒状に形成されてなるものであり、その下端部が閉塞された状態で多孔板2の上部に設けられ、上端部が開口した状態で吸引手段(図示せず)に連結されている。
 前記分離膜を形成する素材は、特に限定されるものではないが、該素材としては、例えば、酢酸セルロース、芳香族ポリアミド、ポリビニールアルコール、ポリフッ化ビニリデン、ポリテトラフルオロエチレン等が挙げられる。
 次に、本実施形態に係る膜分離装置及び膜分離方法について説明する。
 本実施形態に係る膜分離装置は、汚泥混合液が収容される槽を備え、該槽たる膜分離槽内には、本実施形態に係る膜モジュールが浸漬膜として設けられてなる装置である。
 また、本実施形態に係る膜分離方法は、本実施形態に係る膜モジュール10で、汚泥混合液を膜分離して浄化水を得る方法である。具体的には、本実施形態に係る膜分離方法は、微生物を含む膜分離槽内に前記膜モジュール10を汚泥混合液に浸漬状態で設置し、有機物等の処理対象物質を含む廃水を該槽内に供給して、微生物の作用により廃水中の処理対象物質を分解し、膜分離して浄化水を得る方法である。
 前記廃水は、特に限定されるものではないが、該廃水としては、例えば、生活廃水や、工場の廃水(食品工場、化学工場、電子産業工場、パルプ工場等)等が挙げられる。
 本実施形態に係る膜分離方法は、主に汚泥混合液のMLSS(固形物濃度)が30000mg/L以下、好ましくは、20000~25000mg/Lとなるものにおいても用いることができる。このように、汚泥混合液中のMLSSが高い場合でも、散気管3の内径が16mm以上であることにより、散気管3が汚泥によって閉塞され難くなるため、散気管から必要量の気泡が正常に吐出され、貫通孔2aから略均一に気泡を散気させることができ、貫通孔2aの孔が目詰まりし難くなる。
 本実施形態に係る膜分離方法は、気体供給手段から供給された気体を吐出口3aから気泡として吐出することにより、該気泡は、浮力で上昇しながら水平方向にも拡散して多孔板2まで到達する。そして、該気泡は、前記多孔板2の貫通孔2aを通って更に細かな気泡となり、分離膜を覆うようにして分離膜を揺り動かしながら上昇することとなる。これにより、該気泡は、分離膜に付着した付着物を剥がし取り、また、付着物が付着するのを抑制することが可能となる。
 本実施形態に係る散気装置、膜モジュール、膜分離装置、及び膜分離方法は、上記のように構成されているので、以下の利点を有するものである。
 即ち、本実施形態に係る散気装置は、吐出口3aの開口方向が略水平方向となるように構成されてなることにより、吐出口3aの開口方向が下方となるように構成されている場合と異なり下方に屈曲した散気管を用いる必要がなくなり、散気管が配置される上下方向の空間を小規模化することが容易となるため、散気装置を配置する空間の小規模化をより一層図ることができるという利点がある。
 なお、本実施形態に係る散気装置、膜モジュール、膜分離装置、及び膜分離方法は、上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変更が可能である。
 例えば、上記実施形態は、散気装置1を分離膜部20と共に用いているが、本発明は、これに限定されるものではなく、分離膜部20を用いずに散気装置1を用いても良い。
 また、本実施形態に係る散気装置は、吐出口3aの開口方向が略水平方向となるように構成されてなるが、吐出口3aの開口方向が鉛直下方向、及び水平方向と鉛直下方向との間の方向の何れかの方向となるように構成されてもよい。
 さらに、本実施形態に係る膜分離装置は、水処理槽が設けられ、該水処理槽に廃水が移送され、該水処理槽において微生物により該廃水中の処理対象物質が分解され、該水処理槽から排出された汚泥混合液の上澄水が前記膜分離槽に移送されて汚泥混合液として膜分離処理されるように構成されてもよい。
 以下、本発明の実施例について説明する。
(1)散気管:下記表1に記載の吐出口の内径となる散気管を用いた。
(2)多孔板:前記多孔板の貫通孔(直径:約10mm)を囲み且つ最小となる円(以下、「囲み円」ともいう。)の直径Dが124mmとなる多孔板(貫通孔の個数:24個)を用いた。
(3)散気装置
 上記散気管及び上記多孔板を以下のように配して散気装置を作製した。
 即ち、吐出口の開口面の中心が、囲み円の直径の中心の略真下に位置し、吐出口の開口方向が、水平方向となり、多孔板の下面と吐出口の開口面の中心との距離(以下、「多孔板と吐出口との距離」ともいう。)Lが、下記表1のようになるように、実施例及び比較例の散気装置を作製した。
<試験例1:各貫通孔から散気される気泡の均一性>
 実施例及び比較例の散気装置を水道水を入れる槽の中に配置し、多孔板の上面から1000mmの位置に液面が位置するように槽内に水道水を満たした。
 そして、気体が吐出量10m/hで吐出口から吐出するように気体供給手段で気体を散気装置に供給し、各貫通孔から散気される気泡の均一性を5分間目視で確認して評価した。
 各貫通孔から散気される気泡の均一性は、以下の基準で評価した。
  ◎: 各貫通孔から常に略均一に気泡が散気した。
  ○: 外側の貫通孔から散気される気泡の量が若干少ない場合もあったが、観察時間を通してほとんど各貫通孔から略均一に気泡が散気した。
  △: 外側の貫通孔から散気される気泡の量が少なかった。
  ×: 外側の貫通孔から気泡がでなかった。
<試験例2:散気管の目詰まり難さ>
 実施例及び比較例の散気装置を汚泥混合液(MLSS:25000mg/L)を入れる槽の中に配置し、多孔板の上面から3000mmの位置に液面が位置するように槽内に汚泥混合液を満たした。
 そして、気体が吐出量10m/hで吐出口から吐出するように気体供給手段で気体を散気装置に供給し、2週間稼動させた後、散気管の目詰まり難さを目視で確認して評価した。
 散気管の目詰まり難さは、以下の基準で評価した。
  ○: 散気管内が汚泥により閉塞されなかった。
  ×: 散気管内が汚泥により閉塞された。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、吐出口の内径が16mmよりも小さい比較例1~5の散気装置に比して、実施例の散気装置は、散気管が目詰まりし難かった。また、L/Dの値が0.8よりも小さい比較例1、2、6~11の散気装置に比して、実施例の散気装置は、各散気孔から散気される気泡の均一性が良好の結果を示した。
 1:散気装置、2:多孔板、2a:貫通孔、3:散気管、3a:吐出口、3b:屈曲部、3c:連結部、4:スカート部、4a:散気管挿入孔(スカート開口部)、10:膜モジュール、20:分離膜部

Claims (7)

  1.  複数の貫通孔を有する多孔板と、汚泥混合液中に気泡を吐出する吐出口が前記多孔板の下方に位置するように配された散気管とを備えてなる散気装置であって、
     前記吐出口の開口面の中心が、前記多孔板の貫通孔を囲み且つ最小となる円の中心の略真下に位置し、前記吐出口の開口方向が、水平方向、鉛直下方向、及び水平方向と鉛直下方向との間の方向の何れかの方向となるように構成されてなり、
     前記吐出口の内径は、16mm以上であり、
     前記円の直径Dに対する前記多孔板の下面と前記吐出口の開口面の中心との距離Lの比(L/D)は、0.8~1.2であることを特徴とする散気装置。
  2.  前記多孔板の外周部に下向きに延びるスカート部が設けられてなることを特徴とする請求項1記載の散気装置。
  3.  前記スカート部の下端部には、開口部が設けられてなることを特徴とする請求項2記載の散気装置。
  4.  請求項1~3の何れかに記載の散気装置を備え、該散気装置の多孔板の上部には、複数の分離膜が束になって構成された分離膜部が設けられて形成されてなる膜モジュール。
  5.  汚泥混合液が収容される槽を備え、該槽内には、請求項4記載の膜モジュールが浸漬膜として設けられてなる膜分離装置。
  6.  請求項1~3の何れかに記載の散気装置で、汚泥混合液中に気泡を散気させる散気方法。
  7.  請求項4記載の膜モジュールで、汚泥混合液を膜分離して浄化水を得る膜分離方法。
PCT/JP2010/052243 2009-02-18 2010-02-16 散気装置、膜モジュール、膜分離装置、散気方法、及び膜分離方法 WO2010095609A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010800075440A CN102317217A (zh) 2009-02-18 2010-02-16 散气装置、膜组件、膜分离装置、散气方法和膜分离方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009035138A JP2010188278A (ja) 2009-02-18 2009-02-18 散気装置、膜モジュール、膜分離装置、散気方法、及び膜分離方法
JP2009-035138 2009-02-18

Publications (1)

Publication Number Publication Date
WO2010095609A1 true WO2010095609A1 (ja) 2010-08-26

Family

ID=42633889

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/052243 WO2010095609A1 (ja) 2009-02-18 2010-02-16 散気装置、膜モジュール、膜分離装置、散気方法、及び膜分離方法

Country Status (3)

Country Link
JP (1) JP2010188278A (ja)
CN (1) CN102317217A (ja)
WO (1) WO2010095609A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6405596B2 (ja) * 2015-11-18 2018-10-17 三菱重工環境・化学エンジニアリング株式会社 膜モジュール及び水処理システム

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09131518A (ja) * 1995-11-09 1997-05-20 Hitachi Ltd 濾過装置
JP2003024751A (ja) * 2001-07-11 2003-01-28 Asahi Kasei Corp 中空糸膜カートリッジ
JP2004008981A (ja) * 2002-06-10 2004-01-15 Asahi Kasei Corp 膜分離装置
JP2004290735A (ja) * 2003-03-25 2004-10-21 Kobelco Eco-Solutions Co Ltd 膜分離活性汚泥処理装置
WO2004112944A1 (ja) * 2003-06-17 2004-12-29 Asahi Kasei Chemicals Corporation 膜カートリッジ、膜分離装置及び膜分離方法
WO2008001730A1 (fr) * 2006-06-26 2008-01-03 Sumitomo Electric Fine Polymer, Inc. Appareil de filtration
JP2008194680A (ja) * 2007-01-18 2008-08-28 Asahi Kasei Chemicals Corp 膜分離ユニット

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI222895B (en) * 1998-09-25 2004-11-01 Usf Filtration & Separations Apparatus and method for cleaning membrane filtration modules
DE60124925T2 (de) * 2000-07-10 2007-09-20 Asahi Kasei Kabushiki Kaisha Hohlfaserkartusche, diese verwendendes hohlfaserfilmmodul und reservoirfilter
AU2002953111A0 (en) * 2002-12-05 2002-12-19 U. S. Filter Wastewater Group, Inc. Mixing chamber
JP2004344848A (ja) * 2003-05-26 2004-12-09 Asahi Kasei Chemicals Corp 膜分離方法および膜分離装置
JP4699716B2 (ja) * 2004-07-07 2011-06-15 株式会社神鋼環境ソリューション 中空糸膜モジュール及びそれを用いた水処理装置
JP2006116495A (ja) * 2004-10-25 2006-05-11 Sumitomo Electric Fine Polymer Inc 濾過装置
JP4716829B2 (ja) * 2005-09-21 2011-07-06 旭化成ケミカルズ株式会社 膜分離ユニット
JP2009119354A (ja) * 2007-11-14 2009-06-04 Kobelco Eco-Solutions Co Ltd 生物処理装置および生物処理方法
JP2009285532A (ja) * 2008-05-27 2009-12-10 Kobelco Eco-Solutions Co Ltd 中空糸膜モジュール、膜分離方法及び水処理装置
JP5175695B2 (ja) * 2008-11-25 2013-04-03 アタカ大機株式会社 膜分離装置
JP5048637B2 (ja) * 2008-11-26 2012-10-17 アタカ大機株式会社 膜分離装置
JP5390499B2 (ja) * 2010-11-25 2014-01-15 株式会社神鋼環境ソリューション 中空糸膜モジュール及びそれを用いた水処理装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09131518A (ja) * 1995-11-09 1997-05-20 Hitachi Ltd 濾過装置
JP2003024751A (ja) * 2001-07-11 2003-01-28 Asahi Kasei Corp 中空糸膜カートリッジ
JP2004008981A (ja) * 2002-06-10 2004-01-15 Asahi Kasei Corp 膜分離装置
JP2004290735A (ja) * 2003-03-25 2004-10-21 Kobelco Eco-Solutions Co Ltd 膜分離活性汚泥処理装置
WO2004112944A1 (ja) * 2003-06-17 2004-12-29 Asahi Kasei Chemicals Corporation 膜カートリッジ、膜分離装置及び膜分離方法
WO2008001730A1 (fr) * 2006-06-26 2008-01-03 Sumitomo Electric Fine Polymer, Inc. Appareil de filtration
JP2008194680A (ja) * 2007-01-18 2008-08-28 Asahi Kasei Chemicals Corp 膜分離ユニット

Also Published As

Publication number Publication date
CN102317217A (zh) 2012-01-11
JP2010188278A (ja) 2010-09-02

Similar Documents

Publication Publication Date Title
JP2009183939A (ja) 膜分離ユニット
JP2006305443A (ja) 濾過装置
JP5822264B2 (ja) 膜分離活性汚泥処理装置の運転方法
JP3831942B2 (ja) 膜分離装置
JP5823489B2 (ja) 膜分離装置
JPH10156159A (ja) 混合及び曝気装置
JP2008246357A (ja) 膜分離方法および装置
JP5648387B2 (ja) 散気装置及び膜分離装置の運転方法
WO2010095609A1 (ja) 散気装置、膜モジュール、膜分離装置、散気方法、及び膜分離方法
JP2008119609A (ja) 散気システムおよび散気方法
JP2016087567A (ja) 膜モジュール
JPH04290590A (ja) 浄化槽における膜分離装置
WO2010101152A1 (ja) 膜分離式活性汚泥処理装置及びその方法
JP2012157849A (ja) 膜分離活性汚泥装置
JP5420985B2 (ja) エアリフトポンプ装置
JP6172531B2 (ja) 膜分離活性汚泥処理装置
JP2002224685A (ja) 活性汚泥処理装置及びその運転方法
JP2006043631A (ja) 浸漬平膜濾過装置
JP2007268415A (ja) 浸漬型膜分離装置および造水方法
JP2010172792A (ja) 散気方法及び散気装置
JP2011115794A (ja) 濾過装置
JP2023073851A (ja) 排水処理装置及び排水処理方法
JP4724552B2 (ja) 排水処理装置
JP2017209618A (ja) 散気装置および散気方法
JP2010194523A (ja) 分離膜の洗浄装置、膜分離装置及び洗浄方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080007544.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10743735

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 4965/DELNP/2011

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10743735

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: PI1005348

Country of ref document: BR

Free format text: COMPROVAR, EM ATE 60 (SESSENTA) DIAS, QUE O SIGNATARIO DA PETICAO NO 018140002610 DE 04/02/2014 E DA PETICAO NO 018110029323 DE 01/08/2011 TEM PODERES PARA ATUAR EM NOME DO DEPOSITANTE, UMA VEZ QUE CONFORME DETERMINADO PELO ARTIGO 216 DA LEI 9.279/1996 DE 14/05/1996 (LPI), OS ATOS PREVISTOS NESTA LEI DEVERAO SER PRATICADOS PELAS PARTES OU POR SEUS PROCURADORES, DEVIDAMENTE QUALIFICADOS.APRESENTE, AINDA, A TRADUCAO SIMPLES DA FOLHA DE ROSTO DA CERTIDAO DE DEPOSITO DA PRIORIDADE DE 18/02/2009 JP 2009-035138; OU DECLARACAO DE QUE OS DADOS DO PEDIDO INTERNACIONAL ESTAO FIELMENTE CONTIDOS NA PRIORIDADE REIVINDICADA, CONTENDO TODOS OS DADOS IDENTIFICADORES DESTA (TITULARES, NUMERO DE REGISTRO, DAT

ENPW Started to enter national phase and was withdrawn or failed for other reasons

Ref document number: PI1005348

Country of ref document: BR

Free format text: PEDIDO CONSIDERADO RETIRADO EM RELACAO AO BRASIL ( CODIGO 1.2), POR NAO CUMPRIR A EXIGENCIA FEITA NA RPI NO 2604 DE 01/12/2020, NAO ATENDENDO DESTA FORMA AS DETERMINACOES REFERENTES A ENTRADA DO PEDIDO DA FASE NACIONAL.