WO2010095225A1 - ロータリ内燃機関 - Google Patents

ロータリ内燃機関 Download PDF

Info

Publication number
WO2010095225A1
WO2010095225A1 PCT/JP2009/052833 JP2009052833W WO2010095225A1 WO 2010095225 A1 WO2010095225 A1 WO 2010095225A1 JP 2009052833 W JP2009052833 W JP 2009052833W WO 2010095225 A1 WO2010095225 A1 WO 2010095225A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
rotor
shut
cylinder
internal combustion
Prior art date
Application number
PCT/JP2009/052833
Other languages
English (en)
French (fr)
Inventor
村田 誠
Original Assignee
Murata Makoto
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to KR1020137013532A priority Critical patent/KR101315877B1/ko
Priority to EP09840332.2A priority patent/EP2400128B1/en
Priority to EP12166508.7A priority patent/EP2511473B1/en
Priority to KR1020117019773A priority patent/KR101315874B1/ko
Application filed by Murata Makoto filed Critical Murata Makoto
Priority to US12/675,061 priority patent/US8528505B2/en
Priority to MX2011008357A priority patent/MX2011008357A/es
Priority to CA2752459A priority patent/CA2752459C/en
Priority to ES12166508.7T priority patent/ES2470321T3/es
Priority to CN2009801570476A priority patent/CN102325975B/zh
Priority to JP2011500390A priority patent/JP4918177B2/ja
Priority to ES09840332.2T priority patent/ES2445893T3/es
Priority to PCT/JP2009/052833 priority patent/WO2010095225A1/ja
Priority to RU2011138258/06A priority patent/RU2511953C2/ru
Publication of WO2010095225A1 publication Critical patent/WO2010095225A1/ja
Priority to US13/447,669 priority patent/US8528506B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B53/00Internal-combustion aspects of rotary-piston or oscillating-piston engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/30Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F01C1/34Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members
    • F01C1/356Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/08Rotary pistons
    • F01C21/0809Construction of vanes or vane holders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B53/00Internal-combustion aspects of rotary-piston or oscillating-piston engines
    • F02B53/10Fuel supply; Introducing fuel to combustion space
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B55/00Internal-combustion aspects of rotary pistons; Outer members for co-operation with rotary pistons
    • F02B55/02Pistons
    • F02B55/04Cooling thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B55/00Internal-combustion aspects of rotary pistons; Outer members for co-operation with rotary pistons
    • F02B55/14Shapes or constructions of combustion chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2250/00Geometry
    • F04C2250/20Geometry of the rotor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a rotary internal combustion engine.
  • Wankel cycle Conventionally, various studies have been conducted on a rotary internal combustion engine in which the combustion pressure directly rotates the piston head. One of them is the so-called Wankel cycle.
  • Patent Document 1 discloses a rotary engine in which a substantially triangular rotor is accommodated in a bowl-shaped housing having an inner peripheral surface of a trochoid curve.
  • the present invention has been made in view of the above-mentioned technical problems, and the object is as follows. That is, in the cylinder, the radial direction of the cylinder space is shut off by the shut-off valve in synchronization with the rotation of the rotor. As a result, an air-fuel mixture or high-pressure air and fuel are injected into the combustion chamber, which is a sealed layer formed between the rotor blades and the shut-off valve, and ignition or ignition is performed simultaneously with this injection. Then, the rotor and the working shaft fixed to the rotor are directly rotated by the combustion expansion pressure. Furthermore, it aims at the following.
  • a coil spring, an elastic body of a spring, or the like is used between a plurality of constituent members in each of the rotor base and the rotor blades constituting the rotor. This makes it possible to adjust the distance over the left and right and top and bottom of the rotor, thereby preventing seizure.
  • a rotary internal combustion engine of the present invention includes a cylinder having a cylinder peripheral wall having a lateral valve groove on an inner peripheral surface, an operating shaft that is concentrically held by the cylinder and rotatably held, and a circular shape.
  • a rotor base composed of a shell and a rotor blade standing in the radial direction of the rotor base peripheral wall, a rotor fixed to the operating shaft, and a shut-off valve that performs intermittent insertion and return movement between the outside of the cylinder and the cylinder space;
  • both ends of the shut-off valve are hermetically held in the two vertical valve grooves on the left and right side lids, and the upper part of the shut-off valve is hermetically held in the side valve groove on the cylinder peripheral wall, and Block
  • the lower end surface of the rotor is in airtight contact with the rotor base peripheral wall to form a sliding surface of the rotor base.
  • the shut-off valve is immediately inserted into the cylinder space.
  • the combustion chamber is a sealed layer formed between the shut-off valve and the rotor blades, and a compressed mixture or compressed air and fuel are injected, and ignition or ignition is performed in the combustion chamber.
  • the rotor blades are pressed to directly rotate the operating shaft, release the combustion gas into the exhaust hole, and the shut-off valve returns to the outside of the cylinder to prepare for the next stroke. Is completed.
  • the radial direction of the cylinder space is shut off by the shut-off valve in accordance with the timing of the rotation of the rotor in the cylinder, thereby forming a sealed layer formed between the rotor blades and the shut-off valve.
  • air-fuel mixture or high-pressure air and fuel are injected, and ignition or ignition is performed simultaneously with the injection, and the rotor and the operating shaft fixed to the rotor can be directly rotated by the combustion expansion pressure.
  • the distance between the left and right sides and the top and bottom of the rotor is adjusted by using coil springs, springs, etc. between a plurality of components in each of the rotor base and rotor blades constituting the rotor. By making it possible, baking can be prevented.
  • 1 is a partial cross-sectional view of a rotary internal combustion engine according to a first embodiment of the present invention.
  • 1 is a partial cross-sectional view of a rotary internal combustion engine according to a first embodiment of the present invention.
  • or (d) is a figure for demonstrating the mode of rotation of the rotor blade
  • 1 is an exploded perspective view of a rotor of a rotary internal combustion engine according to a first embodiment of the present invention.
  • or (c) is a figure which shows an example of notching etc. FIG.
  • (A) And (b) is a figure which shows other examples, such as cutting.
  • (A) And (b) is a figure which shows the structure which provided the ski in the sealing board. It is a partial cross section figure of the rotary internal combustion engine which concerns on the 2nd Embodiment of this invention. It is a partial cross section figure of the rotary internal combustion engine which concerns on the 2nd Embodiment of this invention. It is a partial cross section figure of the rotary internal combustion engine which concerns on the 3rd Embodiment of this invention. It is a partial cross section figure of the rotary internal combustion engine which concerns on the 3rd Embodiment of this invention. It is a partial cross section figure of the rotary internal combustion engine which concerns on the 4th Embodiment of this invention.
  • the rotary internal combustion engine is shown as a principle in which the operating shaft is installed horizontally.
  • the description will be made with reference to the drawings.
  • the axis of the operating shaft is down, and the inner circumferential wall direction is up. This applies in particular to any rotation angle of the rotor.
  • the front-rear relationship of the rotary internal combustion engine is such that the direction of travel after passing through the side valve groove of the shutoff valve is the front while the rotor rotates.
  • the “sealing layer” is a space formed between the rotating rotors by the shutoff valve shutting off the cylinder circumferential space.
  • the hermetic layer and the combustion chamber are the same, and the period before air and fuel are injected is called the hermetic layer.
  • the “seizure prevention distance” is a distance that prevents burning or the like caused by the heat of combustion and the expansion distance of the member caused by sliding.
  • One operation stroke means that a shut-off valve and a rotating rotor in a cylinder form a hermetic layer, fuel or air is injected into the hermetic layer, and the combustion and expansion pressure causes the rotor and the motor to operate by ignition or ignition.
  • Opening angle refers to an angle formed between the shut-off valve and the rotor with the axis as a base point when the rotary combustion engine is operating.
  • Working distance refers to the distance between the rotor blade and the shutoff valve at the end of one working stroke, and the arc distance measured at the average position of the height of the rotor blade.
  • Core refers to the angle at which the inner wall and the left and right side walls touch.
  • FIG. 1 is a cross-sectional view of the rotary internal combustion engine according to the first embodiment of the present invention taken along line aa of FIG.
  • FIG. 2 shows a cross-sectional view of the rotary internal combustion engine taken along line bb of FIG.
  • FIGS. 3A to 3D show the rotation of the rotor blades of the rotary internal combustion engine and how the shut-off valve 31 is opened and closed.
  • FIG. 4 is an exploded perspective view of the rotor of the rotary internal combustion engine.
  • the operating shaft 3 is passed concentrically with the cylinder 1, and the rotor 10 is fixed to the operating shaft 3. That is, an opening is provided at the center of the rotor 10, and the operating shaft 3 is passed through the opening, and both are fixed.
  • the rotor 10 includes a rotor base 11 made of a circular shell and rotor blades 20 standing in the radial direction of the rotor base peripheral wall 13.
  • the rotor base 11 and the rotor blade 20 are integrally formed.
  • Bearings 15 arranged at the center of the circle of the side lid 2 attached to the left and right end faces of the cylinder 1 support the operating shaft 3, respectively.
  • a bearing 17 is provided between the bearing 15 and the operating shaft 3 in order to facilitate the rotation of the operating shaft 3.
  • both sides of the rotor base 11 and all of the outer edges of the rotor blades 20 are in airtight contact with the left and right side inner walls 5 and the cylinder peripheral wall 4. This contact state is maintained at any rotation angle of the rotor 10 as the operating shaft 3 rotates.
  • the shut-off valve 31 is mechanically connected to the valve reciprocating mechanism 61 via the valve mounting bar 43.
  • the shut-off valve 31 performs an intermittent movement between insertion and return between the outside of the cylinder 1 and the cylinder space 8 by the driving force of the valve reciprocating mechanism 61.
  • the shut-off valve 31 is accommodated in the casing 45.
  • both ends of the shut-off valve 31 are airtightly held in the two vertical valve grooves 40 provided in the left and right side lids 2.
  • the upper part of the shut-off valve 31 is airtightly held in a side valve groove 41 provided in the cylinder peripheral wall 4.
  • the lower end surface of the shutoff valve 31 is in airtight contact with the rotor base peripheral wall 13 to form a sliding surface of the rotor base 11.
  • the reciprocating distance of the shut-off valve 31 is shorter than the rotational distance of the rotor 10, it can be said that the speed capability is sufficiently ensured (the same applies to other embodiments).
  • shut-off valve 31 In operation of the rotary internal combustion engine, when the rotor blade 20 passes the position of the shut-off valve 31, the shut-off valve 31 is immediately inserted into the cylinder space 8 by the valve reciprocating mechanism 61 to shut off the radial direction of the cylinder space 8 (FIG. 3 ( a)). Along with this, a sealed layer formed between the shut-off valve 31 and the rotor blade 20 is used as the combustion chamber 9, and compressed mixture or compressed air and fuel are injected from the injection nozzle 6 facing the cylinder space 8, and the combustion chamber 9 ignites or ignites with the spark plug 7. Note that switching of ignition or ignition by the spark plug 7 is controlled by a switching pointer 50.
  • the combustion expansion pressure generated thereby presses the rotor blade 20 with the shut-off valve 31 as an action base point to directly rotate the operating shaft 3 (see FIGS. 3B and 3C).
  • the combustion gas is discharged into the exhaust holes 42 at appropriate positions on the side inner wall 5 or the cylinder peripheral wall 4 near the end of one rotation of the rotor 10 (see FIG. 3D), and in preparation for the next stroke,
  • the valve reciprocating mechanism 61 returns the shut-off valve 31 to the outside of the cylinder 1 to complete one operation stroke.
  • the combustion chamber 9 is formed in the cylinder space 8 and the combustion expansion pressure directly rotates the rotor 10 and the operating shaft 3 with the shut-off valve 31 as an action base point.
  • the exhaust hole 42 is provided with a transition plate 29 for smooth movement of the rotor blades 20.
  • the shut-off valve 31 shown in FIG. 1 has a so-called “longitudinal insertion” configuration in which the circumferential space of the cylinder 1 is taken in and out in the radial direction.
  • the problem mentioned above does not occur because it goes up. Therefore, it is not necessary to form the rotor base peripheral wall 13 in a cam shape in the return time zone of the shutoff valve 31.
  • the lower end surface of the shut-off valve 31 and the rotor base peripheral wall 13 are formed by shortening the radial distance of the rotor base 11 in accordance with the time of insertion of the shut-off valve 31 into the cylinder space 8 and forming it into a cam shape. Can prevent the impact and interference of each other, and can start the smooth sliding of each other.
  • the adjustment valve 33 is provided under the valve body 32 of the shutoff valve 31, and the distance between them is adjusted using an elastic body (or a leaf spring) such as a coil spring 35a.
  • an elastic body or a leaf spring
  • the thermal expansion distance that occurs when the shut-off valve 31 is operated is absorbed to prevent seizure between them.
  • the airtightness of the lower end surface of the shut-off valve 31 and the sliding surface of the rotor base peripheral wall 13 is enhanced by the stress of the coil spring 35a and the like.
  • the adjustment valve 33 is provided under the shut-off valve 31 so that the vertical distance between the two can be adjusted by an elastic body such as a coil spring 35a, so that the lower end surface of the shut-off valve 31 and the rotor base peripheral wall can be adjusted. 13 can be prevented, and sliding between the two can be made appropriate.
  • the rotor base 11 is divided into a plurality of parts on the left and right. That is, it is set as the structure provided with the side rotor base 12 on either side. An appropriate interval is provided between the divided portions so that the thermal expansion distance of the rotor base 11 can be adjusted, and the left and right distances can be adjusted between the divided portions using an elastic body such as a coil spring 35c.
  • a plate spring may be used instead of the coil spring 35c.
  • FIGS. 6 (a) and 6 (b) An example of this notching and phase missing is shown in FIGS. 6 (a) and 6 (b). Thereby, both overheating baking is prevented and the appropriate contact between facing walls is maintained.
  • the hole of the pin 38 a of the side rotor base 12 is a floating hole with respect to the pin 38 a attached to the rotor base 11. According to the above configuration, the sliding between the left and right side surfaces of the rotor 10 and the contact wall can be made appropriate.
  • the rotor blade 20 is integral with the rotor base 11, but paying attention to the difference in shape and function, it is possible to prevent seizure by an individual method. Take measures. That is, the upper top part and both side end surfaces of the blade base plate 21 are formed with an interval of a seizing prevention distance between the cylinder peripheral wall 4 and the left and right side inner walls 5.
  • the rear surface of the blade base plate 21 is formed into a flat surface, and has a rectangular base 25 that faces upward from the lower center of the plane of the blade base plate 21.
  • Side seal plates 22 are disposed on the left and right sides of the base plate 25, respectively.
  • a top seal plate 23 and corner seal plates 24 are provided at both upper corners.
  • Each of the seal plates 22 to 24 closes the seizing prevention distance provided between each outer end of the above-described blade base plate and each facing wall and is in contact with the nectar on the facing wall.
  • Each of the above-described sealing plates 22 to 24 has an inner end face provided with an appropriate interval on the base 25, and the interval is adjusted by using coil springs 34, 35b or a leaf spring.
  • the respective seal plates 22 to 24 are appropriately pressed to make the mutual contact between the respective seal plates 22 to 24 and the cylinder peripheral wall 4 and the side inner wall 5 which are facing walls more reliable.
  • the seal plates 22 to 24 are kept airtight across the rotor blades 20 by joining by means of the phase-notch shown in FIGS. 6 (a) to (c).
  • the parts such as the above-described seal plates are stably held by using the pressing plate 27.
  • the pin 38 b is fixed to the bolt 37 via the coil spring 35 d and the nut 36 in a state where the base 25 and the seal plates 22 to 24 are sandwiched between the blade base plate 21 and the holding plate 27.
  • a small spring that contacts the base 25 at an angle of 45 degrees may be provided at the corner of the corner seal plate 24 on the base 25 side.
  • the rotor blades 20 and the rotor blades 20 face each other by adjusting the vertical and horizontal distances of the rotor blades 20 using the coil springs 34 and 35b between the sealing plates 22 to 24 of the rotor blades 20 and the base. Baking between the cylinder peripheral wall 4 and the side inner wall 5 can be prevented, and good sliding between the two can be obtained while maintaining airtightness across the rotor 10.
  • each of the seal plates 22 to 24 is depressed or caught in the vertical valve groove 40, the horizontal valve groove 41, the exhaust hole 42, and an oil collection groove (not shown here).
  • the following configuration is adopted. That is, as shown in FIGS. 7 (a) and 7 (b), a bar called a ski 28 with an appropriate distance is provided on the seal plate for positioning through the holes and grooves, and the above-described holes are provided. Cross each hole and each groove.
  • FIG. 7A shows a configuration in which the ski 28 is provided on the top seal plate 23, and
  • FIG. 7B shows a configuration in which the ski 28 is provided on the corner seal plate 24.
  • ski 28 In some drawings, the illustration of the ski 28 is simplified. Thus, by providing the transfer levers called skis 28 on the seal plates 22 to 24 of the rotor blades 20 and passing the grooves or holes, the interference between the grooves and the holes and the seal plate can be prevented.
  • the rotary internal combustion engine according to the first embodiment of the present invention has the cylinder 1 having the cylinder peripheral wall 4 provided with the lateral valve groove 41 on the inner peripheral surface, and is passed through the cylinder 1 concentrically and freely rotatable.
  • the rotor 10 that is held in the radial direction of the rotor base 11 and the rotor base peripheral wall 13, the rotor 10 that is fixed to the operation shaft 3, the outside of the cylinder 1, and the cylinder space 8.
  • a side cover 2 provided with a longitudinal valve groove 40.
  • both sides of the rotor base 11 and all the outer edges of the rotor blade 20 are in airtight contact with the left and right inner walls, and when the shut-off valve 31 completes insertion into the cylinder space 8, Both ends of the shut-off valve 31 are airtightly held in two vertical valve grooves 40 provided on the left and right side lids 2, and an upper portion of the shutoff valve 31 is airtightly held in a lateral valve groove 41 provided on the cylinder peripheral wall 4.
  • the lower end surface of the shut-off valve 31 is in airtight contact with the rotor base peripheral wall 13 to form a sliding surface of the rotor base 11, and immediately after the rotor blade 20 passes through the position of the shut-off valve 31, the shut-off valve 31 is moved into the cylinder space. 8, the radial direction of the cylinder space 8 is shut off, and a compressed air-fuel mixture or compressed air and fuel are injected with the sealed layer formed between the shut-off valve 31 and the rotor blade 20 as the combustion chamber 9. Then, the combustion chamber 9 is ignited or ignited, and further, the combustion expansion pressure presses the rotor blade 20 with the shut-off valve 31 as an action base point to directly rotate the operating shaft 3, and the exhaust gas is burned into the exhaust hole 42. The shutoff valve 31 returns to the outside of the cylinder 1 to prepare for the next stroke, and one operation stroke is completed.
  • the radial distance in the rotation angle region W of the circle of the rotor base 11 that matches the timing of insertion into the cylinder space 8 of the shut-off valve 31 is the interference prevention distance H.
  • the rotor base peripheral wall 13 is shortened to form a cam shape.
  • the shut-off valve 31 includes a valve body 32 and a control valve 33 provided at a lower portion of the valve body 32, and an elastic body is interposed therebetween.
  • the distance between the two can be adjusted, and the gap between the two can be adjusted by closing the top or bottom distance by either cutting each other, interlacing, or overlapping. It is characterized by.
  • the rotor base 11 is divided into a plurality of parts on the left and right sides, an appropriate interval is provided, and an elastic body or the like is used between the divided parts. It is characterized in that the distance between the left and right can be adjusted by maintaining the airtightness across the front and rear of the rotor 10 by cutting each other between the divided parts, overlapping each other, and the like.
  • the rotor blade 20 includes a blade base plate 21, a rectangular base 25 facing upward from the lower center of the plane of the blade base plate 21, A side seal plate 22 disposed on the left and right sides of the base 25, a top seal plate 23 disposed on the top of the base 25, and corner seal plates 24 provided at both upper corners of the base 25.
  • the top top and both side end surfaces of the blade base plate 21 are formed with an interval of a seizing prevention distance between the cylinder peripheral wall 4 and the left and right side inner walls 5, respectively, to form a side seal plate 22, a top seal plate 23, and a corner seal plate 24.
  • each outer end of the blade base plate 21 and each facing wall closes the seizure prevention distance provided between each outer end of the blade base plate 21 and each facing wall and hermetically contacts the facing wall.
  • the side seal plate 22, the top seal plate 23, and the corner seal plate 24 are Inside Each of the surfaces is provided with an appropriate interval on the base 25, and the interval allows the distance between them to be adjusted using an elastic body, and each of the seal plates 22 to 24 is appropriately pressed to each of the seal plates 22 24 to ensure mutual contact between the facing walls 4 and 5, and the side seal plate 22, the top seal plate 23, and the corner seal plate 24 are cut, phased, or overlapped.
  • the airtightness over the front and rear of the rotor blade 20 is maintained by the joining by the above.
  • the rotary internal combustion engine according to the first embodiment of the present invention is characterized in that each hole and each groove are crossed by using a ski 28 having a predetermined distance on at least one of the respective seal plates 22 to 24. .
  • the following effects are produced. That is, the radial direction of the cylinder space 8 is shut off with the shut-off valve 31 in synchronization with the rotating rotor 10, and the high-pressure air and the sealed layer formed by the rotor blades 20 and the shut-off valve 31 are used as the combustion chamber 9.
  • the fuel is injected, and the combustion expansion pressure can directly rotate the rotor 10 and the operating shaft 3 with the shut-off valve 31 as an action base point.
  • the following points can be pointed out by creating a so-called rotary internal combustion engine in which the rotor 10 rotates.
  • the engine is operated by the circular rotation of the rotor without using a rotation mechanism such as a crank or an eccentric shaft, the movement of the machine can be simplified and the mechanical loss can be reduced. Further, as a feature of the rotary internal combustion engine, since the supply of high-pressure air, fuel, etc. is entrusted to a specialized mechanism, the work in the cylinder 1 is shortened to only the combustion expansion stroke, and fuel leakage during operation can be prevented. Furthermore, since the internal combustion engine can be reduced in size by simple assembly, it can be seen that the manufacturing cost is reduced, the mechanical loss is reduced, and the volume and weight of the engine are reduced. Further, since the rotation direction of the rotor 10 is the same, inertia weight loss does not occur.
  • the types of fuel used are not limited to gasoline and light oil, but can be applied to natural gas, organic brewing fuel, heavy oil, hydrogen gas, and the like. Further, the internal combustion engine has a high capacity for scale from large to small.
  • the surrounding space of the cylinder 1 is cut off and sealed in the radial direction by using the shut-off valve 31, but the impact when the shut-off valve 31 is inserted into the cylinder space, the shut-off valve 31 and the rotor base peripheral wall.
  • the radial distance of the rotor base 11 is shortened into a cam shape in accordance with the insertion time zone of the shut-off valve 31, so that the lower end surface of the shut-off valve 31 and the rotor base peripheral wall 13 are formed.
  • a control valve 33 is provided under the shut-off valve 31 so that the vertical distance between the two can be adjusted by a coil spring, an elastic body, etc., thereby preventing the lower end surface of the valve and the rotor base peripheral wall 13 from being seized. Furthermore, the sliding between the two is made appropriate.
  • the rotor 10 is divided into a plurality of left and right parts and provided in the gap between the divided parts.
  • the distance between the left and right sides is adjusted by a spring or the like, and the sliding between the left and right side surfaces of the rotor 10 and the contact wall is made appropriate.
  • the vertical and horizontal distances of the rotor blade 20 are adjusted to prevent seizure between the rotor blade and the facing wall. Good sliding between the two is obtained while maintaining airtightness across the front and back.
  • FIG. 8 is a sectional view taken along line cc of FIG. 9 of a rotary internal combustion engine according to the second embodiment of the present invention.
  • FIG. 9 is a sectional view of the rotary internal combustion engine taken along line ee of FIG.
  • the operating shaft 103 is passed concentrically with the cylinder 101, and the rotor 110 is fixed to the operating shaft 103.
  • the rotor 110 includes a rotor base 111 made of a circular shell and rotor blades 120 standing in the radial direction of the rotor base peripheral wall 113.
  • the rotor base 111 and the rotor blade 120 are formed so as to be integrated.
  • Bearings 115 having the operating shaft 103 at the center of the circle of the side lid 102 attached to the left and right end surfaces of the cylinder 101 are supported.
  • a bearing 117 is provided between the bearing 115 and the operating shaft 103 in order to smoothly rotate the operating shaft 103.
  • the shut-off valve 131 is mechanically connected to the valve reciprocating mechanism 161 via a valve push rod 144.
  • a control valve 133 is provided below the valve body 132 of the shut-off valve 131.
  • the plain bearing 158 is provided to facilitate the driving of the shut-off valve 131 by the valve push rod 144.
  • the shut-off valve 131 performs an intermittent motion of insertion and return between the outside of the cylinder 101 and the cylinder space 108 by the driving force of the valve reciprocating mechanism 161. When returning, the shut-off valve 131 is housed in the casing.
  • the upper part of the shut-off valve 131 is hermetically held in a side valve groove provided on the cylinder peripheral wall, and the lower end surface of the shut-off valve 131 is in air-tight contact with the rotor base peripheral wall 113 and the sliding surface of the rotor base 111 is made.
  • shut-off valve 131 When the rotary internal combustion engine is operated, when the rotor blade 120 passes the position of the shut-off valve 131, the shut-off valve 131 is immediately inserted into the cylinder space 108 by the valve reciprocating mechanism 161, and the radial direction of the cylinder space 108 is shut off.
  • a compression layer or a compression mixture supplied from the compression mixture supply mechanism 147 from the injection nozzle 106 facing the cylinder space 108 is formed with a sealed layer formed between the shut-off valve 131 and the rotor blade 120 as the combustion chamber 109. Air and fuel are injected, and ignition or ignition by the spark plug 107 is performed in the combustion chamber 109.
  • the combustion expansion pressure generated thereby presses the rotor blade 120 with the shut-off valve 131 as an action base point to directly rotate the operating shaft 103.
  • the rotor 110 discharges combustion gas to the exhaust hole 142 near the end of one rotation, and the valve reciprocating mechanism 161 returns the shut-off valve 131 to the outside of the cylinder 101 to prepare for the next stroke. finish.
  • the combustion chamber 109 is formed in the cylinder space 108, and the combustion expansion pressure directly rotates the rotor 110 and the operating shaft 103 with the shut-off valve 131 as an action base point.
  • the rotor blade 120 has a flat rear surface of the blade base plate 121 and has a rectangular base 125 that faces upward from the lower center of the plane of the blade base plate 121.
  • a top seal plate 123 is provided at the top
  • corner seal plates 124 are provided at both upper corners.
  • Each of the seal plates 122 to 124 closes the seizing prevention distance provided between each outer end of the blade base plate 121 and each facing wall and is in contact with the honey on the facing wall.
  • Each of the above-described sealing plates 122 to 124 has an inner end face provided with an appropriate interval on the base 125, and the interval is adjusted by using a coil spring 135b or the like.
  • the seal plates 122 to 124 are appropriately pressed to make the contact between the seal plates 122 to 124 and the cylinder peripheral wall 104 more reliable.
  • the pin 138 b is fixed to the bolt 137 in a state where the base 125 and the seal plates 122 to 124 are sandwiched between the blade base plate 121 and the holding plate 127.
  • the lift electromagnet 151 is provided in the upper section of the shutoff valve 131.
  • the two poles of the lift electromagnet 151 descend to the left and right of the side surface of the shut-off valve 131, and the lower end surfaces thereof are set apart from the upper left and right sides of the control valve 133 by an interference avoidance distance h.
  • the current of the lift electromagnet 151 is switched by the switching pointer 150 and electronic control. Electric power is supplied to the electronic coil 153 from the wiring 155 via the electrode 154.
  • the lift electromagnet 151 is energized to keep the control valve 133 pulled up by the interference avoidance distance h, that is, between the control valve 133 and the rotor peripheral wall.
  • the shut-off valve 131 is inserted into the cylinder space 108 while maintaining the distance. Then, the energization to the lift electromagnet 151 is stopped at the same timing as the shutoff valve 131 completes the insertion.
  • the control valve 133 drops, but at the same time, the suction electromagnet 156 provided in the lower part of the vertical valve groove is energized through the electric wire 160 and the lower end surface of the control valve 133 is attracted by the stress of the suction electromagnet 156. Accelerate the fall of the control valve 133. In addition, sliding between the lower end surface of the control valve 133 and the rotor base peripheral wall 113 is stably maintained.
  • the energization of the attracting electromagnet 156 is stopped, and in conjunction with this, the lift electromagnet 151 is energized to raise the control valve 133 by the interference avoidance distance h and Return outside.
  • the current of the attracting electromagnet 156 is switched by the switching pointer 150 and electronic control.
  • the rotary internal combustion engine includes the lift electromagnet 151 provided in the upper section of the shutoff valve 131 and the attracting electromagnet 156 provided in the lower part of the vertical valve groove. .
  • the two poles of the lift electromagnet 151 descend to the left and right of the side surface of the shut-off valve 131, and the lower end surfaces thereof are set apart from the left and right upper portions of the control valve 133 by an interference avoidance distance h.
  • the energization to the lift electromagnet 151 is stopped and the control valve 133 is dropped.
  • the attracting electromagnet 156 is energized to attract the lower end surface of the control valve 133 due to the stress of the attracting electromagnet 156 to accelerate the fall of the control valve 133 and to slide between the lower end surface of the control valve 133 and the rotor peripheral wall 113. Is maintained stably.
  • the control valve 133 can be moved up and down by a distance from the valve body 132 of the shutoff valve 131 using the two electromagnets 151 and 156. That is, when inserting or returning the shut-off valve 131 into the cylinder 101, the lift electromagnet 151 is used to pull up the control valve 133, and when the insertion is completed, the suction electromagnet 156 provided at the lower part of the vertical valve groove is energized. 133 is pulled down, and the lower end surface of the control valve 133 and the rotor peripheral wall 113 begin to slide smoothly and quickly. That is, the interference with the rotor peripheral wall 113 when the shut-off valve 131 is inserted into the cylinder 101 and returned can be removed.
  • the insertion method of the shut-off valve 131 shown in FIGS. 8 and 9 into the cylinder 101 is a so-called “lateral insertion” in which the shut-off valve 131 is inserted and removed in a direction perpendicular to the radial direction of the cylinder 101.
  • lateral insertion in which the shut-off valve 131 is inserted and removed in a direction perpendicular to the radial direction of the cylinder 101.
  • various methods for inserting the shut-off valve 131 such as a method of rotating and inserting an arc-shaped valve.
  • the name of the electromagnet is a naming for convenience of explanation and does not relate to the essence of the electromagnet.
  • the switching of the currents of the lift electromagnet 151 and the attraction electromagnet 156 is performed by the switching pointer 150 and electronic control.
  • FIG. 10 is a partial sectional view of a rotary internal combustion engine according to the third embodiment of the present invention.
  • FIG. 11 shows a partial cross-sectional view of an improved example of the rotary internal combustion engine.
  • the rotary internal combustion engine 603 has two shut-off valves 231a and 231b that are driven and controlled by a valve reciprocating mechanism 261.
  • the rotor 210 includes two rotor blades 220a and 220b. Each half rotation of the rotor 210 has equipment capable of performing one work process such as shut-off valves 231a and 231b, injection nozzles 206a and 206b, spark plugs 207a and 207b, and exhaust holes 242a and 242b. . And two operation strokes are complete
  • the compressed air-fuel mixture is supplied from a compressed air-fuel mixture supply mechanism 247.
  • the rotary internal combustion engine has three shut-off valves 231a, 231b, and 231c that are driven and controlled by a valve reciprocating mechanism 261.
  • the rotor 210 includes three rotor blades 220a to 220c.
  • the shutoff valves 231a to 231c, the injection nozzles 206a to 206c, the spark plugs 207a to 207c It has equipment capable of performing one work process such as exhaust holes 242a to 242c. Then, three operation strokes are completed in one third of the rotation of the rotor 210.
  • the compressed air-fuel mixture is supplied from a compressed air-fuel mixture supply mechanism 247.
  • X 1, 2,
  • the upper part of the shut-off valve 231 (231a, 231b ) is airtightly held in the side valve groove on the cylinder peripheral wall 204, and the shut-off valve 231 (231a, 231b ... ) Is in airtight contact with the rotor base peripheral wall to form a sliding surface of the rotor base integral with the side rotor base.
  • one operation corresponds to the operation of one cylinder of the reciprocating engine, and performing a plurality of operations simultaneously in one cylinder reduces the volume of the internal combustion engine.
  • the working distance can be adapted to the combustion distance due to the difference in fuel type and quality.
  • the rotor 210 includes a plurality of rotor blades in the cylinder 201, and one rotation of the rotor 210, that is, an angle obtained by dividing 360 degrees by the number of rotor blades is defined as one working angle.
  • the number of operating strokes equal to the number of rotor blades is completed at one operating angle.
  • FIG. 12 shows a partial cross-sectional view of a rotary internal combustion engine according to the fourth embodiment of the present invention
  • FIG. 13 shows a part of the configuration around the auxiliary combustion chamber of the rotary internal combustion engine in more detail. A sectional view is shown and described.
  • the operating shaft 303 is passed concentrically with the cylinder 301, and the rotor 310 is fixed to the operating shaft 303.
  • the rotor 310 includes a rotor base 311 formed of a circular shell and a rotor blade 320 standing in the radial direction of the rotor base peripheral wall 313.
  • the rotor base 311 and the rotor blades 320 are formed so as to be integrated.
  • the upper part of the shut-off valve 331 driven by the valve reciprocating mechanism 361 is airtightly held in a side valve groove provided on the cylinder peripheral wall 304, and the lower end surface of the shutoff valve 331 is in airtight contact with the rotor base peripheral wall 313.
  • a sliding surface of the rotor base 311 is formed.
  • the rotor blade 320 has a base 325, side seal plates 322 are disposed on the left and right sides thereof, a top seal plate 323 is provided at the upper portion, and corner seal plates 324 are provided at both upper corners. ing.
  • a part of the seal plate 323 is also provided with a bar called the ski 328 as described above in the first embodiment.
  • a sub-combustion chamber 351 located outside the cylinder 301 of the rotary internal combustion engine and in front of the shut-off valve 331, and the sub-combustion chamber 351 is opposed to the position.
  • Two high-pressure air nozzles 352 are provided.
  • a fuel nozzle 353 is attached to the injection destination of both the high-pressure air nozzles 352.
  • the air and fuel injected from the three nozzles 352 to 353 are mixed and stirred, and the spontaneous ignition of the fuel is observed. Further, the flame jet flows from the communication port 354 to the cylinder space 308, and in the combustion chamber 309 generated between the shut-off valve 331 and the rotor 310, the rotor blade 320 is pressed using the shut-off valve 331 as an action base point to rotate the operating shaft 3. Thus, the rotor 310 releases combustion gas to the exhaust hole 342 near the end of one rotation, and the valve reciprocating mechanism 361 returns the shut-off valve 331 outside the cylinder 301 to prepare for the next stroke, and one operation stroke is completed. finish.
  • the exhaust hole 342 is provided with a transition plate 329 for smoothly passing the rotor blades 320. Further, in this example, water cooling is assumed, and the outer shell 359 is provided with a water channel 358 for allowing cooling water to pass therethrough.
  • Reference numeral 326 denotes a rib for mounting the machine.
  • the rotary internal combustion engine according to the fourth embodiment of the present invention has a cylinder 301 having a cylinder peripheral wall provided with a lateral valve groove on its inner peripheral surface, and is concentrically passed through the cylinder 301 and is rotatable.
  • a shutoff valve 331 that performs intermittent motion between insertion and return between the cylinder 301, an auxiliary combustion chamber 351 provided outside the cylinder 301 and in front of the cutoff valve 331, and a position in the auxiliary combustion chamber 351 facing each other.
  • Two high-pressure air nozzles 352 and a fuel nozzle 353 attached to the injection destination of the high-pressure air nozzle 352.
  • both sides of the rotor base 311 and all the outer edges of the rotor blades 320 are in airtight contact with the left and right inner walls.
  • both ends of the shut-off valve 331 are hermetically held in the two vertical valve grooves provided on the left and right side lids, and the upper portion of the shut-off valve 331 is the lateral wall of the cylinder peripheral wall 304.
  • the lower end surface of the shut-off valve 331 is hermetically in contact with the rotor base peripheral wall 313 to form a sliding surface of the rotor base 311, and is opposed to the auxiliary fuel chamber 351.
  • the gas mixture is stirred and ignited by injection from two high-pressure air nozzles 352 and a fuel nozzle 353.
  • the gas mixture is stirred and ignited by the injection from the two high-pressure air nozzles 352 and the fuel nozzle 353 provided in the opposing positions in the auxiliary fuel chamber 351.
  • the sub-combustion chamber 351 performs agitation and mixing of air and fuel by simultaneously performing air injection and fuel injection in the sub-combustion chamber 351, thereby making combustion more reliable.
  • a flame flow is sent to the sealed layer in the cylinder 301 by ignition or ignition in the auxiliary fuel chamber 351, so that the use range of the fuel material can be expanded. It becomes possible.
  • FIG. 14 is a partial sectional view of a rotary internal combustion engine according to the fifth embodiment of the present invention, and will be described.
  • the rotary internal combustion engine 605 has a plurality of injection nozzles 406 a, 405 a, an appropriate positioning of the operating angle according to the progress of the rotor 410 with respect to the shutoff valve 431, and facing the cylinder space 408.
  • 406b is provided, and high-pressure air, fuel, air-fuel mixture, etc. are injected from the injection nozzles 406a, 406b into the combustion chamber 409, which is a sealed layer formed between the shut-off valve 431 and the rotor blade 420 during operation, to assist combustion and work. It is characterized by increasing power.
  • shut-off valve 431 is immediately inserted into the cylinder space 408 by the valve reciprocating mechanism 461 and the radial direction of the cylinder space 408 is shut off.
  • a sealed layer formed between the shut-off valve 431 and the rotor blade 420 is used as a combustion chamber 409 to inject compressed mixture or compressed air and fuel from the injection nozzles 406a and 406b facing the cylinder space 408, and Ignition or ignition by the spark plug 407 is performed in the combustion chamber 409.
  • the combustion expansion pressure generated thereby presses the rotor blade 420 with the shut-off valve 431 as an action base point and directly rotates the operating shaft 3.
  • the rotor 410 releases combustion gas to the exhaust hole 442 near the end of one rotation, and the valve reciprocating mechanism 461 returns the shut-off valve 431 to the outside of the cylinder 401 to prepare for the next stroke. finish.
  • the exhaust hole 442 is provided with a jumper plate 429 for smoothly passing the rotor blades 420.
  • a plurality of rotary internal combustion engines facing the cylinder space 408 with appropriate positioning of the operating angle according to the progress of the rotor 410 with respect to the cutoff valve 431 are provided.
  • Injection nozzles 406a and 406b are provided, and either high pressure air, fuel, or air-fuel mixture is injected from each nozzle into the combustion chamber 409, which is a sealed layer formed between the shut-off valve 431 and the rotor blades during operation. To do.
  • a plurality of injection nozzles 406a and 406b are provided at appropriate positions where the operation angle with respect to the shutoff valve 431 is changed, and air, fuel, etc. are supplied to the injection nozzle in one operation stroke. Additional injection can be performed from 406a and 406b to increase the moving force and to increase the combustion force. Furthermore, it is possible to use the exhaust gas as a secondary fuel. In this example, two injection nozzles are provided. However, the present invention is not limited to this, and it is possible to provide more injection nozzles.
  • FIGS. 15 and 16 are partial sectional views of a rotary internal combustion engine according to the sixth embodiment of the present invention.
  • the operating shaft 503 is passed concentrically with the cylinder 501, and the rotor 510 is fixed to the operating shaft 503.
  • the rotor 510 includes a rotor base 511 made of a circular shell and rotor blades 520 that stand in the radial direction of the rotor base peripheral wall 513.
  • the rotor base 511 and the rotor blade 520 are integrally formed.
  • the upper portion of the shut-off valve 531 is hermetically held in a side valve groove provided on the cylinder peripheral wall 504, and the lower end surface of the shut-off valve 531 is in air-tight contact with the rotor base peripheral wall 513 and the rotor base 511 slides. Form a surface.
  • the shut-off valve 531 is driven and controlled by a valve reciprocating mechanism 561. Furthermore, it has the equipment which can perform one work process, such as the injection nozzle 506, the spark plug 507, and the exhaust hole 542. Also in this example, the exhaust hole 542 is provided with a transition plate 528 for smooth passage of the rotor blades 520.
  • the oil feed hole 551 passing through the axis of the operating shaft 503 extends from the left and right ends of the shaft 503 toward the center, and changes the angle in the radial direction at a position beyond the line of the cylinder side inner wall 505.
  • the left and right oil feed holes 551 are respectively connected to the oil feed grooves 552 provided on the left and right side surfaces of the rotor base 511 when they are exposed on the shaft surface.
  • the left and right oil feed grooves 552 open from the same location to the rotor base peripheral wall 513 at a position in front of the rotor blade 520 base.
  • the lubricating oil sent out by the oil supply pump 550 enters the oil feed groove 552 during operation of the internal combustion engine, the lubricating oil lubricates both side surfaces of the rotor base 511, and further, the lubricating oil that has come out of the oil feed groove 552 to the rotor peripheral wall 513. Lubricates the seals 522 to 524 on the left and right side surfaces of the rotor blade 520 by the centrifugal force of the rotation of the rotor. Excess lubricating oil stays at the bottom of the cylinder peripheral wall 503 and lubricates the seal plates 523 to 524 on the surface of the rotor blade 520.
  • the remaining lubricating oil falls into the oil recovery groove 553 provided in the cylinder peripheral wall 504 by the discharge of the rotor, and further enters the oil recovery hole 554 to be recycled.
  • the remaining lubricating oil is recovered by an oil recovery mechanism 557.
  • the rotary internal combustion engine collects the oil feed hole 551 and the oil feed groove 552 for sending the lubricant supplied from the oil supply pump 550 and the remaining lubricant.
  • An oil recovery groove 553 and an oil recovery hole 554 for putting the recovered lubricating oil in a recycling cycle are provided.
  • the oil feed hole 551 passes through the axis of the operating shaft 503, extends from the left and right ends of the operating shaft 503 toward the center, and each of the oil feeding holes 551 has an angle in a radial direction at a position beyond the line of the cylinder side inner wall 505.
  • the left and right oil feed holes 551 are respectively connected to the oil feed grooves 552 provided on the left and right side surfaces of the rotor base 511 when they are exposed to the shaft surface, and the left and right oil feed grooves 552 are connected to the rotor blades from the same place.
  • the rotor base peripheral wall 513 opens and ends.
  • the lubricating oil sent out by the oil supply pump 550 enters the oil feeding groove 552
  • the lubricating oil lubricates both side surfaces of the rotor base 511 and further comes out of the oil feeding groove 552 to the rotor peripheral wall 513.
  • the lubricating oil lubricates the left and right side surfaces of the rotor blades 520 by the centrifugal force of the rotation of the rotor, the surplus lubricating oil stays at the bottom of the cylinder peripheral wall 503 and lubricates the term surfaces of the rotor blades 520, and the remaining lubricating oil
  • the rotor 510 is discharged to fall into an oil recovery groove 553 provided in the cylinder peripheral wall 504, and further enters the oil recovery hole 554 to be recycled.
  • the oil feed hole 551 passed through the operation shaft and the oil feed hole 551 are arranged in the radial direction.
  • the lubricating oil introduced into the oil feeding groove 552 to lubricate both sides of the rotor 510 and flowed out of the groove by the centrifugal force of the rotating rotor 510 lubricates the outer edge of the rotor 510, that is, the rotor seal and its contact wall.
  • the surplus lubricating oil enters the oil recovery groove and enters the cycle for re-use.
  • the lubricating oil lubrication technique shown in this embodiment is merely an example, and the lubricating oil can be supplied by various methods from the configuration of the present rotary internal combustion engine.
  • the rotary internal combustion engine described in each of the above-described embodiments is applicable to natural gas, organic brewing fuel, heavy oil, hydrogen gas, etc. as well as gasoline and light oil because of the shape of the internal combustion engine.
  • the internal combustion engine can be applied to each scale from large to small.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Valve Device For Special Equipments (AREA)

Abstract

 ロータリ内燃機関の実現を阻止する要因は、シリンダ内が吹き抜けの為、燃料の燃焼圧をロータの羽根に伝える物理的作用基点を作れないことにある。本発明のロータリ内燃機関(601)は、シリンダ(1)の中、ロータ羽根(20)の回転に合わせて遮断弁(31)をシリンダ(1)内に挿入し、同シリンダ周空間(8)の半径方向を遮断すると共に、該遮断弁(31)とロータ羽根(20)の間にできる密閉層に対し燃料及び空気を噴射燃焼させ、同燃焼圧は該遮断弁(31)を作用基点としてロータ(10)と作動軸(3)に直接的に回転を与えることを特徴とする。

Description

ロータリ内燃機関
 本発明は、ロータリ内燃機関に関するものである。
 従来、燃焼圧が直接的にピストンヘッドに回転を与える方式のロータリ内燃機関について種々の研究が進められている。その一つに所謂ヴァンケルサイクルがある。
 ヴァンケルサイクルでは、エピトロコイド曲線のハウジングの中を略三角形のロータがエキセントリック軸の介在により公転しつつ回転するといった複雑な運動を行う事と、燃料の漏洩が課題となっていた。このヴァンケルサイクルは、燃焼圧を受けたロータの面が直接的に回転を行うことはなく、ロータがハウジング内を公転しつつ回転する際にエキセントリック軸の介在が必要となる。このエキセントリック軸は、往復機構のクランク軸に相当するものである。従って、ヴァンケルサイクルはロータが純正な円運動を行うことはない。ロータリ内燃機関の本来の目指す姿はシリンダの中で作動軸に固着したロータの面が燃焼膨張圧を受けて円運動を行い、作動軸に直接的に回転を与えることである。しかしながら、そのようなロータリ内燃機関は実現されていない。
 ここで、例えば、特許文献1では、トロコイド曲線の内周面を有する繭状のハウジング内に略三角形のロータを収容したロータリーエンジンが開示されている。
特開2007-298013号公報
 従来技術に係るロータリ内燃機関の成立を阻む要因は大きく3つある。
 即ち、ロータリ内燃機関のロータ周空間は吹き抜けのため、以下が問題となる。
 a シリンダの中、もしくはシリンダ空間に面して燃焼室の形成が難しい。
 b 作業行程において、燃焼膨張圧をロータの面に与える作用基点を作れない。
 c シリンダ周壁とロータ外縁との摺動面に生じる焼き付けにより故障が生じる。
 そこで、本発明は上述の技術的な課題に鑑みてなされたもので、その目的とするところは以下にある。即ち、シリンダの中、ロータの回転にタイミングに合わせて、遮断弁でシリンダ空間の半径方向を遮断する。これによりロータ羽根と遮断弁との間にできる密閉層である燃焼室に対して混合気、或いは高圧空気並びに燃料を噴射し、この噴射と同時に点火、若しくは着火を行う。そして、同燃焼膨張圧によりロータ並びに同ロータに固着した作動軸に直接回転を与える。さらに、以下を目的とする。即ち、ロータ外縁と接触壁間の焼き付けに関し、ロータを構成するロータベース及びロータ羽根のそれぞれにおいて、複数の構成部材間にコイルスプリング、バネの弾性体等を用いる。これにより、ロータの左右並びに上下に亘る距離を調節可能とすることで、焼き付けを防止する。
 上述目的を達成するために、本発明のロータリ内燃機関は、内周面に横弁溝を備えたシリンダ周壁を有するシリンダと、シリンダと同心に通され回転自在に保持される作動軸と、円形殻からなるロータベースとロータベース周壁の半径方向に立つロータ羽根とからなり、作動軸に固着されたロータと、シリンダ外とシリンダ空間との間で挿入と返戻の間歇運動を行う遮断弁と、縦弁溝を備えた側蓋とを備え、シリンダ内のシリンダ空間において、ロータベースの両側面並びにロータ羽根の外縁の全ての部位が左右内壁と気密的に接しており、遮断弁がシリンダ空間に挿入を完了すると、該遮断弁の両端は左右の側蓋に有する二つの縦弁溝に気密的に保持され、該遮断弁の上部はシリンダ周壁に有する横弁溝に気密的に保持され、且つ該遮断弁の下端面はロータベース周壁と気密的に接して該ロータベースの摺動面を形成し、ロータ羽根が遮断弁の位置を通過すると、直ちに遮断弁をシリンダ空間に挿入し、シリンダ空間の半径方向を遮断し、該遮断弁とロータ羽根間にできる密閉層を燃焼室として、圧縮混合気又は圧縮空気と燃料を噴射し、且つ燃焼室で点火若しくは着火を行い、更にその燃焼膨張圧により該遮断弁を作用基点としてロータ羽根を押圧して作動軸に直接的に回転を与え、排気孔に燃焼ガスを放出し、遮断弁が次の行程の準備のため、シリンダ外に返戻して一作動行程が終了することを特徴とする。
 本発明のロータリ内燃機関によれば、シリンダの中、ロータの回転にタイミングに合わせて、遮断弁でシリンダ空間の半径方向を遮断し、これによりロータ羽根と遮断弁との間にできる密閉層に対して混合気、或いは高圧空気並びに燃料を噴射し、この噴射と同時に点火、若しくは着火を行い、同燃焼膨張圧によりロータ並びに同ロータに固着した作動軸に直接回転を与えることができる。さらに、ロータ外縁と接触壁間の焼き付けに関し、ロータを構成するロータベース及びロータ羽根のそれぞれにおいて、複数の構成部材間にコイルスプリング、バネ等を用いて、ロータの左右並びに上下に亘る距離を調節可能とすることで、焼き付けを防止することができる。
本発明の第1の実施形態に係るロータリ内燃機関の一部断面図である。 本発明の第1の実施形態に係るロータリ内燃機関の一部断面図である。 (a)乃至(d)は、本発明の第1の実施形態に係るロータリ内燃機関のロータ羽根の回転並びに遮断弁の開閉の様子を説明するための図である。 本発明の第1の実施形態に係るロータリ内燃機関のロータの分解斜視図である。 (a)乃至(c)は、切り込み合わせ等の一例を示す図である。 (a)及び(b)は、切り込み合わせ等の他の例を示す図である。 (a)及び(b)は、シール板にスキーを設けた構成を示す図である。 本発明の第2の実施形態に係るロータリ内燃機関の一部断面図である。 本発明の第2の実施形態に係るロータリ内燃機関の一部断面図である。 本発明の第3の実施形態に係るロータリ内燃機関の一部断面図である。 本発明の第3の実施形態に係るロータリ内燃機関の一部断面図である。 本発明の第4の実施形態に係るロータリ内燃機関の一部断面図である。 本発明の第4の実施形態に係るロータリ内燃機関の一部断面図である。 本発明の第5の実施形態に係るロータリ内燃機関の一部断面図である。 本発明の第6の実施形態に係るロータリ内燃機関の一部断面図である。 本発明の第6の実施形態に係るロータリ内燃機関の一部断面図である。
符号の説明
 1 シリンダ
 2 側蓋
 3 作動軸
 4 シリンダ周壁
 5 側内壁
 6 噴射ノズル
 7 点火プラグ
 8 シリンダ空間
 9 燃焼室
10 ロータ
11 ロータベース
12 サイドロータベース
13 ロータベース周壁
15 軸受
17 ベアリング
20 ロータ羽根
21 羽根台板
22 サイドシール板
23 トップシール板
24 コーナーシール板
25 基台
26 リブ
27 押さえ板
28 スキー
31 遮断弁
32 弁体
33 調節弁
34,35a~35d コイルスプリング
37 ボルト
38a,38b ピン
39a,39b 遊動孔
40 縦弁溝
41 横弁溝
42 排気孔
50 切り替えポインタ
61 弁往復機構
151 リフト電磁石
156 吸引電磁石
 以下、本発明のロータリ内燃機関に係る好適な実施形態について図面を参照しながら説明する。なお、本発明のロータリ内燃機関は、以下の記述に限定されるものではなく、本発明の要旨を逸脱しない範囲において、適宜変更可能である。
 先ず、本発明の実施形態に係るロータリ内燃機関における部品相互の位置関係及び用語について説明し、定義する。
 a 各図面では、ロータリ内燃機関を、原則として作動軸を水平に設置したものとして図示している。以下では、当該図面を参照しつつ説明を進める。
 b シリンダ内において、ロータの位置関係を特定する為に、作動軸の軸心を下、周内壁方向を上とする。殊にロータの如何なる回転角度においても適用する。
 c ロータリ内燃機関の前後関係は、ロータが回転する中、遮断弁の横弁溝の下を通ってから進行する方向が前とする。
 d 「密閉層」とは、遮断弁がシリンダ周空間を遮断し、回転するロータ間にできる空間である。密閉層と燃焼室は同一であり、空気及び燃料が噴射される以前を密閉層という。
 e 「焼き付き防止距離」とは、燃焼熱及び摺動により生じる部材の膨張距離により生じる焼き付け等を防ぐ距離である。
 f 「一作動行程」とは、シリンダ内で遮断弁と回転するロータが密閉層を作り、同密閉層内に燃料や空気等を噴射し、且つ点火或いは着火によりその燃焼膨張圧によりロータ及び作動軸が回転を得て、且つ排気を行い、次の行程に移るために遮断弁をシリンダ外に返戻するまでの一連の作業をいう。
 g 「作動角」とは、該ロータリ燃焼機関の作動時、軸心を基点として遮断弁とロータ間にできる角度をいう。
 h 「作動距離」とは、一作動行程終了時のロータ羽根と遮断弁間の距離で、ロータ羽根の高さの平均位置で測る円弧の距離をいう。
 i 「隅角」とは、周内壁と左右の側壁が接する角をいう。
 以下、以上の定義を踏まえて、各実施形態について説明する。
[第1の実施形態]
 図1には本発明の第1の実施形態に係るロータリ内燃機関の図2のa-a線での断面図を示す。図2には同ロータリ内燃機関の図1のb-b線での断面図を示す。図3(a)乃至(d)には同ロータリ内燃機関のロータ羽根の回転並びに遮断弁31の開閉の様子を示す。そして、図4には同ロータリ内燃機関のロータの分解斜視図を示す。
 図1,2に示されるように、本実施の形態に係るロータリ内燃機関601では、シリンダ1と同心に作動軸3を通し、同作動軸3にロータ10を固着する。即ち、ロータ10の中心には開口部が設けられており、該開口部に作動軸3が通され、両者は固着される。ロータ10は、円形殻からなるロータベース11とロータベース周壁13の半径方向に立つロータ羽根20からなる。ロータベース11とロータ羽根20は、一体に形成されている。シリンダ1の左右端面に取り付けた側蓋2の円の中心に配設された軸受け15は、作動軸3をそれぞれ支持する。この軸受け15と作動軸3との間には、該作動軸3の回転を円滑にするために、ベアリング17が設けられている。シリンダ空間8においては、ロータベース11の両側面並びにロータ羽根20の外縁の全ての部位が、左右の側内壁5及びシリンダ周壁4と気密的に接している。この接触状態は、作動軸3の回転に伴うロータ10のどの回転角度においても維持されるようになっている。
 遮断弁31は、弁取り付けバー43を介して、弁往復機構61に機械的に接続されている。そして、遮断弁31は、弁往復機構61の駆動力により、シリンダ1の外とシリンダ空間8との間において、挿入と返戻の間歇運動を行う。返戻時には、遮断弁31は、ケーシング45の中に収納される。このような構成の下、遮断弁31のシリンダ空間8への挿入が完了すると、該遮断弁31の両端は左右の側蓋2に設けられた二つの縦弁溝40に気密的に保持される。該遮断弁31の上部は、シリンダ周壁4に設けられた横弁溝41に気密的に保持される。そして、該遮断弁31の下端面は前述のロータベース周壁13と気密的に接して、該ロータベース11の摺動面を形成する。尚、ロータ10の回転距離に比して遮断弁31の往復運動する距離は短いので、スピード対応能力は充分に保障されているといえる(他の実施形態も同様)。
 ロータリ内燃機関の作動に際しては、ロータ羽根20が遮断弁31の位置を通過すると弁往復機構61により直ちに遮断弁31をシリンダ空間8に挿入し、シリンダ空間8の半径方向を遮断する(図3(a)参照)。これに伴い、該遮断弁31とロータ羽根20との間にできる密閉層を燃焼室9として、シリンダ空間8に面した噴射ノズル6より圧縮混合気又は圧縮空気と燃料を噴射し、且つ燃焼室9で点火プラグ7による点火若しくは着火を行う。尚、点火プラグ7による点火若しくは着火の切り替えは、切り替えポインタ50により制御されるようになっている。これにより生じる燃焼膨張圧は、該遮断弁31を作用基点としてロータ羽根20を押圧して作動軸3に直接回転を与える(図3(b)、図(c)参照)。こうして、ロータ10が一回転の終末近くの側内壁5若しくはシリンダ周壁4の適宜な位置に有する排気孔42に燃焼ガスを放出し(図3(d)参照)、次なる行程の準備のため、弁往復機構61が遮断弁31をシリンダ1外に返戻して、一作動行程が終了する。このように、シリンダ空間8に燃焼室9を形成し、且つその燃焼膨張圧が遮断弁31を作用基点として直接ロータ10及び作動軸3に回転を与える事を特徴の一つとする。尚、排気孔42には、ロータ羽根20の移動を円滑にするための渡り板29が設けられている。
 さらに、図1に示されるように、本実施の形態では、遮断弁31のシリンダ空間8への挿入の際に、遮断弁31の下端面とロータベース周壁13との間に生じる擦過や衝突等の相互干渉事故を避け、遮断弁31の下端面とロータベース周壁13のスムーズな摺動開始を促す為に、以下のような構成としている。
 即ち、遮断弁31のシリンダ空間8への挿入の時間帯に合致したロータベース11の円の回転角度域Wにおける半径距離を干渉防止距離Hだけ短縮し、ロータベース周壁13をカム状に形成する。尚、図1に記載の遮断弁31は、シリンダ1の周空間を半径方向に出し入れされる所謂「縦入れ」構成であり、該遮断弁31がシリンダ1外に返戻される際には上方に向けて上がる為、前述したような問題が生じることはない。従って、同遮断弁31の返戻の時間帯におけるロータベース周壁13をカム状に形成する必要はない。このように遮断弁31のシリンダ空間8への挿入の時間帯に合わせて、ロータベース11の半径距離を短くしてカム状に形成することにより、遮断弁31の下端面とロータベース周壁13との衝撃や干渉を防止し、相互のスムーズな摺動の開始を得ることができる。
 一方、図1,2に示されるように、本実施形態では、遮断弁31とロータベース周壁13間に生じる過熱焼き付けを防ぐ為、次の構成を採用している。即ち、遮断弁31の弁体32の下に調節弁33を設け、両者間にはコイルスプリング35a等の弾性体(板バネでもよい)等を用いて相互間の距離を調節する。これにより遮断弁31の作動時に起きる熱膨張距離を吸収して相互間の焼き付けを防止する。同時にコイルスプリング35a等の応力により遮断弁31の下端面とロータベース周壁13の摺動面の気密性を高めている。
 尚、図1,2では図示を簡略化しているが、両者間の間隙は同部材の相互の切り込み合せ、相欠き合わせ、或いは重ね合わせ等によりこれを塞ぎ、遮断弁31の前後に亘る気密性を保持している。尚、切り込み合わせ、相欠き合わせ等の一例については、図5(a)乃至(c)に示している。このように、遮断弁31の下に調節弁33を設けて両者間をコイルスプリング35a等の弾性体等で上下の距離を調節可能にしたことにより、該遮断弁31の下端面とロータベース周壁13との焼き付けを防止し、更に両者間の摺動を適宜なものとすることができる。
 さらに、図2,4に示されるように、本実施形態では、ロータベース11の両側面と左右の側内壁5との間に生じる過熱焼き付きを防ぎ、且つ両者間の適宜な接触を維持するために、該ロータベース11を左右に複数個に分割する。即ち、左右にサイドロータベース12を備えた構成とする。そして、分割部位間には該ロータベース11の熱膨張距離を調節できる適宜な間隔を設け、同分割部位間にはコイルスプリング35c等の弾性体等を用いて左右の距離を調節可能とする。このコイルスプリング35cに換えて板バネを用いてもよい。分割部位間は、部材の相互の切り込み合せ、重ね合わせ等によりロータ10の前後に亘る気密を保持する。尚、この切り込み合わせ、相欠き合わせ等の一例については図6(a),(b)に示している。これにより、両者の過熱焼き付けを防ぎ、且つ対面壁間の適宜な接触を維持している。サイドロータベース12のピン38aの孔は、ロータベース11に取り付けたピン38aに対して遊動孔である。以上の構成によれば、ロータ10の左右側面と抵触壁間との摺動を適宜なものとすることができる。
 また、図1,2,4に示されるように、本実施形態では、ロータ羽根20はロータベース11と一体のものであるが、形状及び機能が異なることに着目し、個別の方法で焼き付け防止策を講じている。即ち、羽根台板21の上頂部及び両側端面はシリンダ周壁4及び左右の側内壁5間のそれぞれに焼き付き防止距離の間隔を開けて形成する。羽根台板21後面は平面に形成し、該羽根台板21平面の下部中央より上方に向く方形の基台25を有し、その左右のそれぞれにはサイドシール板22を配置し、上部にはトップシール板23を、更に上部両隅角にはコーナーシール板24をそれぞれ設ける。各シール板22乃至24は、前述の羽根台板の各外端と各対面壁間に設けた焼き付き防止距離を塞いで対面壁に蜜に接している。前述の各シール板22乃至24は、その内側端面のそれぞれが前記基台25に適宜な間隔を設け、同間隔はコイルスプリング34、35b或いは板バネ等を用いて相互間の距離を調節する。それと共に、各シール板22乃至24を適宜に押圧して各シール板22乃至24と対面壁であるシリンダ周壁4,側内壁5との相互の接触をより確かなものとしている。
 尚、各々のシール板22乃至24の相互間は、先に図6(a)乃至(c)に示した相欠き合わせ等による接合によりロータ羽根20の前後に亘る気密性を保持している。前記の各シール板等の部品は押さえ板27を用いて安定的に保持する。即ち、基台25及び各シール板22乃至24が羽根台板21と押さえ板27に挟持された状態で、ピン38bがコイルスプリング35d、ナット36を介してボルト37に固定される。また、不図示であるが、コーナーシール板24の基台25側のコーナーに45度の角度をもって該基台25に当接する小さなスプリングを設けるようにしてもよいことは勿論である。
 以上の構成によれば、ロータ羽根20のシール板22乃至24と基盤間にコイルスプリング34、35b等を用いて、ロータ羽根20の上下左右の距離を調節してロータ羽根20と対面壁であるシリンダ周壁4、側内壁5間の焼き付けを防止し、且つロータ10の前後に亘る気密性を維持しつつ両者間の良好な摺動を得ることができる。
 更に、ロータ10の回転の際に、シール板22乃至24の各々が縦弁溝40、横弁溝41、排気孔42、及びここでは不図示の油回収溝等に対して落ち込みや引っ掛かり等の相互干渉が生じ、ロータ10の回転の障害になる事を防止するために、次の構成を採用する。即ち、図7(a),(b)に示されるように、前述の各孔、各溝を通過する位置取りをためすシール板には適宜の距離のスキー28と称するバーを設けて前述の各孔、各溝を渡らせる。詳細には、図7(a)はトップシール板23にスキー28を設けた構成を示しており、図7(b)はコーナーシール板24にスキー28を設けた構成を示している。尚、他図面においてスキー28の図示を簡略化しているところもある。このようにロータ羽根20のシール板22乃至24にスキー28と称する渡しレバーを設けて、溝あるいは孔等を渡らせることにより、溝、孔とシール板との相互の干渉を防ぐことができる。
 以上説明したように、本発明の第1の実施形態に係るロータリ内燃機関は、内周面に横弁溝41を備えたシリンダ周壁4を有するシリンダ1と、シリンダ1と同心に通され回転自在に保持される作動軸3と、円形殻からなるロータベース11とロータベース周壁13の半径方向に立つロータ羽根20とからなり作動軸3に固着されたロータ10と、シリンダ1外とシリンダ空間8との間で挿入と返戻の間歇運動を行う遮断弁31と、縦弁溝40を備えた側蓋2とを備える。そして、シリンダ内のシリンダ空間8において、ロータベース11の両側面並びにロータ羽根20の外縁の全ての部位が左右内壁と気密的に接しており、遮断弁31がシリンダ空間8に挿入を完了すると、該遮断弁31の両端は左右の上記側蓋2に有する二つの縦弁溝40に気密的に保持され、該遮断弁31の上部はシリンダ周壁4に有する横弁溝41に気密的に保持される。該遮断弁31の下端面はロータベース周壁13と気密的に接して該ロータベース11の摺動面を形成し、ロータ羽根20が遮断弁31の位置を通過すると、直ちに遮断弁31をシリンダ空間8に挿入し、シリンダ空間8の半径方向を遮断し、該遮断弁31とロータ羽根20間にできる密閉層を燃焼室9として、圧縮混合気又は圧縮空気と燃料を噴射する。そして、燃焼室9で点火若しくは着火を行い、更にその燃焼膨張圧により該遮断弁31を作用基点としてロータ羽根20を押圧して作動軸3に直接的に回転を与え、排気孔42に燃焼ガスを放出し、遮断弁31が次の行程の準備のためシリンダ1外に返戻して一作動行程が終了することを特徴とする。
 さらに、本発明の第1の実施形態に係るロータリ内燃機関は、遮断弁31のシリンダ空間8に挿入のタイミングに合致したロータベース11の円の回転角度域Wにおける半径距離を干渉防止距離Hだけ短縮して、ロータベース周壁13をカム状に形成することを特徴とする。
 さらに、本発明の第1の実施形態に係るロータリ内燃機関は、遮断弁31は、弁体32と該弁体32の下部に設けられた調節弁33を備え、両者間に弾性体を介在させて相互間の距離を調節することを可能とし、両者間の間隙は同部材の相互の切り込み合せ、相欠き合わせ、或いは重ね合わせのいずれかによりこれを塞ぐことで上下距離を調節可能としたことを特徴とする。
 また、本発明の第1の実施形態に係るロータリ内燃機関は、ロータベース11を左右に複数個に分割し、適宜な間隔を設け、同分割部位間には弾性体等を用いて左右の距離を調節可能とし、分割部位間は部材の相互の切り込み合せ、重ね合わせ等によりロータ10の前後に亘る気密を保持することで、左右の距離を調節可能としたことを特徴とする。
 さらに、本発明の第1の実施形態に係るロータリ内燃機関は、ロータ羽根20は、羽根台板21と、該羽根台板21の平面の下部中央より上方に向く方形の基台25と、該基台25の左右に配置されるサイドシール板22と、該基台25の上部に配置されるトップシール板23と、該基台25の上部両隅角に設けられるコーナーシール板24とからなり、羽根台板21の上頂部及び両側端面はシリンダ周壁4及び左右の側内壁5間のそれぞれに焼き付き防止距離の間隔を開けて形成し、サイドシール板22、トップシール板23、コーナーシール板24は、羽根台板21の各外端と各対面壁間に設けた焼き付き防止距離を塞いで対面壁に気密的に接しており、サイドシール板22、トップシール板23、コーナーシール板24は、その内側端面のそれぞれが基台25に適宜な間隔を設け、該間隔は弾性体を用いて相互間の距離を調節可能とすると共に、これら各シール板22~24を適宜に押圧して各シール板22~24と対面壁4,5との相互の接触を確かなものとし、サイドシール板22、トップシール板23、コーナーシール板24の相互間は切り込み合わせ、相欠き合わせ、或いは重ね合わせのいずれかによる接合によりロータ羽根20の前後に亘る気密性を保持していることを特徴とする。
 さらに、本発明の第1の実施形態に係るロータリ内燃機関は、各シール板22~24の少なくともいずれかに所定の距離のスキー28を用いて各孔、各溝を渡らせることを特徴とする。
 従って、本発明の第1の実施形態によれば、以下の効果が奏される。
 即ち、回転するロータ10にタイミングを合わせて、遮断弁31を以ってシリンダ空間8の半径方向を遮断し、ロータ羽根20と遮断弁31によって形成される密閉層を燃焼室9として高圧空気及び燃料を噴射し、その燃焼膨張圧が遮断弁31を作用基点として直接的にロータ10と作動軸3に回転を与えることができる。更に、ロータ10が回転する所謂ロータリ内燃機関の創出により次のような点が指摘できる。すなわち、クランク等回転機構、或いはエキセントリック軸等を使用せず、ロータの円回転でエンジンが作動するため機械の動きが単純化し機械損失を削減することができる。更に、ロータリ内燃機関の特徴として、高圧空気及び燃料等の供給を専門機構に委ねた為、シリンダ1内における作業が燃焼膨張行程のみと短くなり作動中の燃料漏洩を防ぐことができる。更に、内燃機関がシンプルな組み立てで小型化できる為、製造コストの削減、機械損失の軽減、同機関の体積及び重量の縮小等を見る事ができる。更に、ロータ10の回転方向が同一のため慣性の重量損失が発生しない。また、作動時の衝撃音や摩擦音を減らす事で静粛性を保てる。更に、当該内燃機関の形状から使用燃料の種類はガソリンや軽油は勿論、天然ガス、有機醸造燃料、重油、水素ガス等と適用範囲が広い。また、当該内燃機関は大型から小型までスケールに対する対応能力が高い。
 また、遮断弁31を用いてシリンダ1の周空間を半径方向に遮断密閉することが本発明の特徴であるが、遮断弁31をシリンダ空間に挿入の際の衝撃と遮断弁31とロータベース周壁13との相互干渉事故を防ぐ為に遮断弁31の挿入の時間帯に合わせて、ロータベース11の半径距離を短くしてカム状にすることで、遮断弁31の下端面とロータベース周壁13との衝撃や干渉を排し、相互のスムーズな摺動の開始を得る。
 さらに、遮断弁31の下に調節弁33を設けて両者間をコイルスプリング、弾性体等で上下の距離を調節可能にしたことにより、該弁下端面とロータベース周壁13との焼き付けを防止し、更に両者間の摺動を適宜なものとしている。
 また、ロータベース11の左右側面と接触する両内壁であるシリンダ周壁4、側内壁5との過熱焼き付けを防ぐ為に、ロータ10を左右複数個に分割して、同分割部の間隙に設けたスプリング等により左右の距離を調節し、且つ前述したロータ10の左右側面と抵触壁間との摺動を適宜にする。
 さらに、ロータ羽根20のシール板22乃至24と基盤間にコイルスプリング等を用いて、ロータ羽根20の上下左右の距離を調節して、ロータ羽根と対面壁間の焼き付けを防ぎ、且つロータ10の前後に亘る気密性を維持しつつ両者間の良好な摺動を得る。
 また、ロータ羽根20のシール板22乃至24にスキー28と称する渡しレバーを設けて、溝あるいは孔等を渡らせることにより、溝、孔とシール板22乃至24との相互の干渉を防ぐことができる。
[第2の実施形態]
 図8には本発明の第2の実施形態に係るロータリ内燃機関の図9のc-c線での断面図を示す。図9には同ロータリ内燃機関の図8のe-e線での断面図を示す。
 図8,9に示されるように、この実施の形態に係るロータリ内燃機関602では、シリンダ101と同心に作動軸103を通し、同作動軸103にロータ110を固着する。ロータ110は、円形殻からなるロータベース111とロータベース周壁113の半径方向に立つロータ羽根120からなる。ロータベース111とロータ羽根120は一体となるように形成されている。作動軸103をシリンダ101の左右端面に取り付けた側蓋102の円の中心に有する軸受け115がそれぞれ支持する。この軸受け115と作動軸103との間には、該作動軸103の回転を円滑にするために、ベアリング117が設けられている。遮断弁131は、弁押し棒144を介して、弁往復機構161に機械的に接続されている。尚、遮断弁131の弁体132の下には調節弁133が設けられている。平軸受158は、弁押し棒144による遮断弁131の駆動を円滑にするために設けられている。そして、遮断弁131は、弁往復機構161の駆動力により、シリンダ101の外とシリンダ空間108との間において、挿入と返戻の間歇運動を行う。返戻時には、遮断弁131は、ケーシングの中に収納される。遮断弁131の上部は、シリンダ周壁に有する横弁溝に気密的に保持され、該遮断弁131の下端面は前述のロータベース周壁113と気密的に接して該ロータベース111の摺動面を形成する。
 このロータリ内燃機関の作動に際しては、ロータ羽根120が遮断弁131の位置を通過すると弁往復機構161により直ちに遮断弁131をシリンダ空間108に挿入し、シリンダ空間108の半径方向を遮断する。これに伴い、該遮断弁131とロータ羽根120との間にできる密閉層を燃焼室109として、シリンダ空間108に面した噴射ノズル106より圧縮混合気供給機構147から供給された圧縮混合気又は圧縮空気と燃料を噴射し、且つ燃焼室109で点火プラグ107による点火若しくは着火を行う。これにより生じる燃焼膨張圧は、該遮断弁131を作用基点としてロータ羽根120を押圧して作動軸103に直接回転を与える。こうして、ロータ110が一回転の終末近くの排気孔142に燃焼ガスを放出し、次なる行程の準備のために、弁往復機構161が遮断弁131をシリンダ101外に返戻し、一作動行程が終了する。この第2の実施形態においても、シリンダ空間108に燃焼室109を形成し、且つその燃焼膨張圧が遮断弁131を作用基点として直接ロータ110及び作動軸103に回転を与えている。
 一方、ロータ羽根120については、羽根台板121後面は平面に形成し、該羽根台板121平面の下部中央より上方に向く方形の基台125を有し、その左右のそれぞれにはサイドシール板122を配置し、上部にはトップシール板123を、更に上部両隅角にはコーナーシール板124をそれぞれ設ける。各シール板122乃至124は、前述の羽根台板121の各外端と各対面壁間に設けた焼き付き防止距離を塞いで対面壁に蜜に接している。前述の各シール板122乃至124は、その内側端面のそれぞれが前記基台125に適宜な間隔を設け、同間隔はコイルスプリング135b等を用いて相互間の距離を調節する。それと共に、各シール板122乃至124を適宜に押圧して各シール板122乃至124とシリンダ周壁104との相互の接触をより確かなものとしている。基台125及び各シール板122乃至124が羽根台板121と押さえ板127に挟持された状態でピン138bがボルト137に固定される。
 そして、特に、第2の実施形態に係るロータリ内燃機関では、当該内燃機関の作動時における遮断弁131のシリンダ空間108内への挿入及びシリンダ101外に返戻に際し、遮断弁131の下端面とロータベース周壁113との衝突、擦過等の接触干渉を回避する目的を達成するために、次の様に構成している。即ち、遮断弁131の上項にリフト電磁石151を設ける。リフト電磁石151の二つの極は、該遮断弁131の側面の左右に下り、その下端面は調節弁133の左右の上部と干渉回避距離hだけ離して設定する。リフト電磁石151の電流の切り替えは、切り替えポインタ150、並びに電子制御等による。電子コイル153には、電極154を介して、配線155より給電されるようになっている。
 このような構成の下、遮断弁131のシリンダ空間108への挿入時には、リフト電磁石151に通電して調節弁133を干渉回避距離hだけ引き上げた状態を保ちつつ、即ち調節弁133とロータ周壁間に距離を保ちつつ、遮断弁131をシリンダ空間108内に挿入する。そして、同遮断弁131が挿入を完了するのとタイミングを合わせて、リフト電磁石151への通電を停止する。通電の停止により、調節弁133は落下するが、それと同時に縦弁溝下部に設けた吸引電磁石156に電線160を介して通電して同吸引電磁石156の応力により調節弁133の下端面を吸引し、調節弁133の落下を早める。且つ、該調節弁133の下端面とロータベース周壁113との摺動を安定的に維持する。更に、遮断弁131がシリンダ101外に返戻の際は吸引電磁石156の通電を停止し、これに連動してリフト電磁石151に通電して、調節弁133を干渉回避距離hだけ引き上げてシリンダ101の外に返戻する。尚、吸引電磁石156の電流の切り替えは、切り替えポインタ150、並びに電子制御等による。
 以上説明したように、本発明の第2の実施形態に係るロータリ内燃機関は、上記遮断弁131の上項に設けたリフト電磁石151と、上記縦弁溝下部に設けた吸引電磁石156とを備える。上記リフト電磁石151の二つの極は該遮断弁131の側面の左右に下り、その下端面は調節弁133の左右の上部と干渉回避距離hだけ離して設定する。該遮断弁131のシリンダ空間108への挿入時には、リフト電磁石151に通電して調節弁133を干渉回避距離hだけ引き上げた状態を保ちつつ遮断弁131をシリンダ空間108内に挿入し、該遮断弁131が挿入を完了するのとタイミングを合わせてリフト電磁石151への通電を停止し、調節弁133を落下させる。それと同時に吸引電磁石156に通電して同吸引電磁石156の応力により調節弁133の下端面を吸引して調節弁133の落下を早め、且つ該調節弁133の下端面とロータ周壁113との摺動を安定的に維持する。遮断弁131のシリンダ101外への返戻時には、上記吸引電磁石156への通電を停止し、これに連動して上記リフト電磁石151に通電して調節弁133を干渉回避距離hだけ引き上げてシリンダ101の外に返戻することを特徴とする。
 従って、第2の実施形態によれば、2つの電磁石151,156を用いて、遮断弁131の弁体132に対し調節弁133を上下に距離移動することができる。即ち、遮断弁131をシリンダ101内に挿入又は返戻の際はリフト電磁石151を使用して調節弁133を引き上げて行い、挿入完了時には縦弁溝下部に設けた吸引電磁石156に通電して調節弁133を引き下げ、調節弁133の下端面とロータ周壁113とがスムーズ且つ速やかに摺動し始める。つまり、遮断弁131のシリンダ101内への挿入及び返戻に際してのロータ周壁113との干渉を取り除く事ができる。
 尚、この図8,9で示した遮断弁131のシリンダ101内への挿入方法が該シリンダ101の半径方向と垂直な方向に出し入れされる所謂「横入れ」である。しかしながら、遮断弁131の挿入方法は、他にも円弧型の弁を回転挿入する方法なども考えられ、多様性がある。電磁石の名前は、説明上の便宜によるネーミングであって、電磁石の本質に関するものではない。更に付け加えれば、リフト電磁石151並びに吸引電磁石156の電流の切り替えは切り替えポインタ150、並びに電子制御等による。
[第3の実施形態]
 図10には本発明の第3の実施形態に係るロータリ内燃機関の一部断面図を示す。図11には同ロータリ内燃機関の改良例の一部断面図を示す。
 図10に示されるように、ロータリ内燃機関603は、弁往復機構261により駆動制御される2つの遮断弁231a、231bを有している。さらに、シリンダ201内において、ロータ210が2つのロータ羽根220a,220bを備えている。そして、ロータ210の2分の1回転毎に、遮断弁231a,231b、噴射ノズル206a,206b、点火プラグ207a,207b、排気孔242a、242b等の一作業行程を行い得る設備を有している。そして、該ロータ10の2分の1回転で2つの作動行程を終了する。尚、圧縮混合気は、圧縮混合気供給機構247から供給される。
 更に、図11に示されるように、ロータリ内燃機関は、弁往復機構261により駆動制御される3つの遮断弁231a、231b、231cを有している。そして、シリンダ201内において、ロータ210が3個のロータ羽根220a乃至220cを備え、ロータ210の3分の1回転毎に、遮断弁231a乃至231c、噴射ノズル206a乃至206c、点火プラグ207a乃至207c、排気孔242a乃至242c等の一作業行程を行い得る設備を有している。そして、ロータ210の3分の1回転の中で3回の作動行程を終了する。尚、圧縮混合気は、圧縮混合気供給機構247から供給される。
 つまり、第3の実施形態に係るロータリ内燃機関は、ロータ210がX(X=1,2,...)個のロータ羽根を備え、ロータ210のX分の1回転の中でX回の作動行程を終了することを特徴の一つとしている。尚、第3の実施形態においても、遮断弁231(231a,231b...)の上部はシリンダ周壁204に有する横弁溝に気密的に保持され、該遮断弁231(231a,231b...)の下端面はロータベース周壁と気密的に接して、サイドロータベースと一体のロータベースの摺動面を形成する。
 上記において、一作動の作業は往復機関の一気筒の作業に相当し、一シリンダ内において、同時に複数の作動を行う事は内燃機関の体積の縮小となる。また、燃料の種類や質の違いによる燃焼距離に対し作動距離を適合させて設計することができる。
 以上説明したように、本発明の第3の実施形態に係るロータリ内燃機関は、ロータはX(X=1,2,3...)個のロータ羽根220a,220b...を備え、ロータ210のX分の1回転毎に、遮断弁231a,231b...、噴射ノズル206a,206b...、点火プラグ207a,207b...、排気孔242a,242b...を含む一作業行程を行い得る設備を有し、該ロータのN分の1回転でN回の作動行程を終了することを特徴とする。
 従って、第3の実施形態によれば、シリンダ201内においてロータ210が複数個のロータ羽根を備え、ロータ210の一回転、即ち360度をロータ羽根の数で除算した角度を一作動角とし、一作動角においてロータ羽根の数と同数の作動行程を終了する。これによりシリンダ201の容積を有効的に使用でき、ひいては燃料の燃焼距離に適合した作動距離を設定することができる。
[第4の実施形態]
 図12には、本発明の第4の実施形態に係るロータリ内燃機関の一部断面図を示し、図13には、同ロータリ内燃機関の副燃焼室周辺の構成を更に詳細に図示した一部断面図を示し、説明する。
 図12,13に示されるように、この実施の形態に係るロータリ内燃機関604では、シリンダ301と同心に作動軸303を通し、同作動軸303にロータ310を固着する。ロータ310は、円形殻からなるロータベース311とロータベース周壁313の半径方向に立つロータ羽根320からなる。ロータベース311とロータ羽根320は一体となるように形成されている。弁往復機構361により駆動される遮断弁331の上部は、シリンダ周壁304に有する横弁溝に気密的に保持され、該遮断弁331の下端面は前述のロータベース周壁313と気密的に接して該ロータベース311の摺動面を形成する。ロータ羽根320については、基台325を有し、その左右のそれぞれにはサイドシール板322を配置し、上部にはトップシール板323を、更に上部両隅角にはコーナーシール板324をそれぞれ設けている。シール板323の一部には、第1の実施形態で前述したようなスキー328と称されるバーも設けられている。
 そして、この第4の実施形態では、特に、ロータリ内燃機関のシリンダ301の外、遮断弁331の前方に位置して副燃室351を有し、該副燃室351の中に位置を対向して2つの高圧空気ノズル352を設ける。更に該両高圧空気ノズル352の噴射先に向き燃料ノズル353を取り付ける。ロータリ内燃機関の作動時は、2つの高圧空気ノズル352からの高圧空気供給機構348から供給された高圧空気を噴射する。それとタイミングを合わせて、燃料ノズル353より燃料供給機構349から供給された燃料の噴射が行われる。3つのノズル352乃至353より噴射された空気と燃料は混合攪拌され、且つ燃料の自然着火を見る。さらに、火焔の噴流は連絡口354からシリンダ空間308に至り遮断弁331とロータ310間に生じる燃焼室309において遮断弁331を作用基点としてロータ羽根320を押圧して作動軸3に回転を与える。こうして、ロータ310が一回転の終末近くの排気孔342に燃焼ガスを放出し、次なる行程の準備のために、弁往復機構361が遮断弁331をシリンダ301外に返戻し、一作動行程が終了する。尚、排気孔342には、ロータ羽根320を円滑に通過させるための渡り板329が設けられている。また、この例では、水冷を想定しており、外殻359には、冷却水が通過するための水路358が設けられている。符号326は、機械の取り付け用のリブである。
 以上説明したように、本発明の第4の実施形態に係るロータリ内燃機関は、その内周面に横弁溝を備えたシリンダ周壁を有するシリンダ301と、シリンダ301と同心に通され回転自在に保持される作動軸303と、円形殻からなるロータベース311とロータベース周壁313の半径方向に立つロータ羽根320とからなり作動軸303に固着されたロータ310と、シリンダ301外とシリンダ空間308との間で挿入と返戻の間歇運動を行う遮断弁331と、シリンダ301の外、遮断弁331の前方に設けられた副燃室351と、該副燃室351の中に位置を対向して設けられた2つの高圧空気ノズル352と、高圧空気ノズル352の噴射先に向き取り付けられた燃料ノズル353とを備える。そして、シリンダ内のシリンダ空間308において、ロータベース311の両側面並びにロータ羽根320の外縁の全ての部位が左右内壁と気密的に接している。遮断弁331がシリンダ空間308に挿入を完了すると、該遮断弁331の両端は左右側蓋に有する二つの縦弁溝に気密的に保持され、該遮断弁331の上部はシリンダ周壁304に有する横弁溝に気密的に保持され、且つ該遮断弁331の下端面は上記ロータベース周壁313と気密的に接して該ロータベース311の摺動面を形成し、副燃室351の中、対向位置に設けた2つの高圧空気ノズル352と燃料ノズル353よりの噴射によりガスの混合攪拌と着火を行うことを特徴とする。
 従って、第4の実施形態によれば、副燃室351の中、対向位置に設けた2つの高圧空気ノズル352と燃料ノズル353よりの噴射によりガスの混合攪拌と着火を行う。副燃焼室351は、該副燃室351内の空気と燃料噴射を同時に行う事により空気と燃料の攪拌混交を行い、燃焼をより確実にする。また、燃焼の遅い燃料を使用する際の副燃室351での着火若しくは点火で火炎流をシリンダ301内の密閉層に送り込み燃料の材質の使用幅を広げられ、例えば低燃質油にも適用可能となる。
[第5の実施形態]
 図14には、本発明の第5の実施形態に係るロータリ内燃機関の一部断面図を示し、説明する。図14に示されるように、このロータリ内燃機関605は、遮断弁431に対するロータ410の進行に応じた作動角の適宜な位置取りで、且つシリンダ空間408に面して複数個の噴射ノズル406a,406bを設け、作動時に遮断弁431とロータ羽根420間にできる密閉層である燃焼室409に対して高圧空気、燃料、混合気等を各噴射ノズル406a,406bより噴射し、燃焼の補助、作動力の増大等を図ることを特徴とする。
 ロータリ内燃機関の作動に際しては、ロータ羽根420が遮断弁431の位置を通過すると弁往復機構461により直ちに遮断弁431をシリンダ空間408に挿入し、シリンダ空間408の半径方向を遮断する。これに伴い、該遮断弁431とロータ羽根420との間にできる密閉層を燃焼室409として、シリンダ空間408に面した噴射ノズル406a,406bより圧縮混合気又は圧縮空気と燃料を噴射し、且つ燃焼室409で点火プラグ407による点火若しくは着火を行う。これにより生じる燃焼膨張圧は、該遮断弁431を作用基点としてロータ羽根420を押圧して作動軸3に直接回転を与える。こうして、ロータ410が一回転の終末近くの排気孔442に燃焼ガスを放出し、次なる行程の準備のために、弁往復機構461が遮断弁431をシリンダ401外に返戻し、一作動行程が終了する。尚、この例でも、排気孔442には、ロータ羽根420を円滑に通過させるための渡り板429が設けられている。
 以上説明したように、本発明の第5の実施形態に係るロータリ内燃機関は、遮断弁431に対するロータ410の進行に応じた作動角の適宜な位置取りで且つシリンダ空間408に面して複数個の噴射ノズル406a,406bを設け、作動時に遮断弁431とロータ羽根間にできる密閉層である燃焼室409に対して高圧空気、燃料、混合気のいずれかを各ノズルより噴射することを特徴とする。
 従って、第5の実施形態によれば、遮断弁431に対する作動角度を変えた適宜な位置に複数個の噴射ノズル406a,406bを設けて、一作動行程の中で空気、燃料等を該噴射ノズル406a,406bより追加噴射して可動力を強めたり、また燃焼力を高めたりすることができる。更に、副次的には、排気ガスの二次燃料としての使用も可能にすることができる。尚、この例では、噴射ノズルを2つ設ける例を示したが、これには限定されず、更に多くの噴射ノズルを設けることも可能である。
[第6の実施形態]
 図15、16には、本発明の第6の実施形態に係るロータリ内燃機関の一部断面図を示す。図15,16に示されるように、第6の実施形態に係るロータリ内燃機関606では、シリンダ501と同心に作動軸503を通し、同作動軸503にロータ510を固着する。ロータ510は、円形殻からなるロータベース511とロータベース周壁513の半径方向に立つロータ羽根520からなる。ロータベース511とロータ羽根520は一体となるように形成されている。該遮断弁531の上部は、シリンダ周壁504に有する横弁溝に気密的に保持され、該遮断弁531の下端面は前述のロータベース周壁513と気密的に接して該ロータベース511の摺動面を形成する。遮断弁531は弁往復機構561により駆動制御される。さらに、噴射ノズル506、点火プラグ507、排気孔542等の一作業行程を行い得る設備を有する。この例でも、排気孔542には、ロータ羽根520の通過を円滑にするための渡り板528が設けられている。
 そして、この第6の実施形態では、特に内燃機関のロータ510と、その摺動面であるシリンダ内壁504,505との間に要する潤滑油の供給に関し次のように構成する。即ち、作動軸503の軸心を通る油送孔551は該軸503の左右両端より中央に向かって伸び、それぞれがシリンダ側内壁505の線を超えた位置で半径方向に角度を変える。左右の油送孔551は軸の表面に出たところでロータベース511の左右側面に設けられた油送溝552とそれぞれが接続されている。左右の油送溝552は同所からロータ羽根520基部の前方の位置でロータベース周壁513に開口して終わる。
 該内燃機関の作動時には給油ポンプ550により送り出される潤滑油が油送溝552に入ると同潤滑油はロータベース511の両側面を潤滑し、更に油送溝552よりロータ周壁513に出た潤滑油はロータの回転の遠心力によりロータ羽根520の左右側面のシール522乃至524板を潤滑する。余剰の潤滑油はシリンダ周壁503の底部に滞留してロータ羽根520の項面のシール板523~524に潤滑を与える。尚、残余の潤滑油はロータの払い出しによりシリンダ周壁504に設けられた油回収溝553に落ち、更に油回収孔554に入って再利用の循環にのる。この残余の潤滑油は、油回収機構557により回収されるようになっている。
 以上説明したように、本発明の第6の実施形態に係るロータリ内燃機関は、給油ポンプ550から供給された潤滑油を送る油送孔551及び油送溝552と、残余の潤滑油を回収する油回収溝553と、この回収された潤滑油を再利用の循環にのせる油回収孔554とを備える。そして、上記油送孔551は、上記作動軸503の軸心を通り、該作動軸503の左右両端より中央に向かって伸び、それぞれがシリンダ側内壁505の線を超えた位置で半径方向に角度を変え、左右の油送孔551は軸の表面に出たところで上記ロータベース511の左右側面に設けられた油送溝552とそれぞれが接続され、左右の油送溝552は同所からロータ羽根520基部の前方の位置でロータベース周壁513に開口して終わる。ロータリ内燃機関の作動時には、給油ポンプ550により送り出される潤滑油が油送溝552に入ると、同潤滑油はロータベース511の両側面を潤滑し、更に油送溝552よりロータ周壁513に出た潤滑油はロータの回転の遠心力によりロータ羽根520の左右側面を潤滑し、余剰の潤滑油はシリンダ周壁503の底部に滞留してロータ羽根520の項面に潤滑を与え、残余の潤滑油はロータ510の払い出しによりシリンダ周壁504に設けられた油回収溝553に落ち、更に油回収孔554に入って再利用の循環にのることを特徴とする。
 従って、第6の実施形態によれば、ロータ510外縁と接触するシリンダ501の各内壁504,505間との潤滑油の供給に関して、作動軸内に通した油送孔551とそれを半径方向に導き、油送溝552に入ってロータ510の両側面を潤滑し、更に回転するロータ510の遠心力により溝を流れ出た潤滑油はロータ510の外縁、即ちロータシールとその接触壁を潤滑する。余剰の潤滑油は油回収溝に入って再使用の循環に乗るので、一連の無駄が無く全般に給油できる仕組みとなっている。尚、この実施の形態で示した潤滑油の潤滑手法は一例であって、本ロータリ内燃機関の構成からさまざまな方法で潤滑油を供給することができる。
 上述の各実施形態に説明したロータリ内燃機関は、当該内燃機関の形状から使用燃料の種類はガソリンや軽油は勿論、天然ガス、有機醸造燃料、重油、水素ガス等と適用可能である。また、当該内燃機関は大型から小型までの各スケールに適用可能である。

Claims (11)

  1.  内周面に横弁溝を備えたシリンダ周壁を有するシリンダと、
     上記シリンダと同心に通され回転自在に保持される作動軸と、
     円形殻からなるロータベースとロータベース周壁の半径方向に立つロータ羽根とからなり、上記作動軸に固着されたロータと、
     上記シリンダ外とシリンダ空間との間で挿入と返戻の間歇運動を行う遮断弁と、
     縦弁溝を備えた側蓋と、
     を備え、
     上記シリンダ内のシリンダ空間において、上記ロータベースの両側面並びに上記ロータ羽根の外縁の全ての部位が左右内壁と気密的に接しており、
     上記遮断弁がシリンダ空間に挿入を完了すると、該遮断弁の両端は左右の上記側蓋に有する二つの縦弁溝に気密的に保持され、該遮断弁の上部はシリンダ周壁に有する横弁溝に気密的に保持され、且つ該遮断弁の下端面は上記ロータベース周壁と気密的に接して該ロータベースの摺動面を形成し、
     上記ロータ羽根が遮断弁の位置を通過すると、直ちに遮断弁をシリンダ空間に挿入し、シリンダ空間の半径方向を遮断し、該遮断弁とロータ羽根間にできる密閉層を燃焼室として、圧縮混合気又は圧縮空気と燃料を噴射し、且つ燃焼室で点火若しくは着火を行い、更にその燃焼膨張圧により該遮断弁を作用基点としてロータ羽根を押圧して作動軸に直接的に回転を与え、排気孔に燃焼ガスを放出し、遮断弁が次の行程の準備のため、シリンダ外に返戻して一作動行程が終了する
     ことを特徴とするロータリ内燃機関。
  2.  上記遮断弁の上記シリンダ空間に挿入のタイミングに合致した上記ロータベースの円の回転角度域における半径距離を干渉防止距離だけ短縮して、上記ロータベース周壁をカム状に形成する
     ことを特徴とする請求項1に記載のロータリ内燃機関。
  3.  上記遮断弁は、弁体と該弁体の下部に設けられた調節弁を更に備え、
     上記弁体と調節弁との間に弾性体を介在させて相互間の距離を調節することを可能とし、上記弁体と調節弁との間隙は同部材の相互の切り込み合せ、相欠き合わせ、或いは重ね合わせのいずれかによりこれを塞ぐことで上下距離を調節可能とした
     ことを特徴とする請求項1のロータリ内燃機関。
  4.  上記ロータベースを左右に複数個に分割し、適宜な間隔を設け、同分割部位間には弾性体を用いて左右の距離を調節可能とし、
     更に分割部位間は部材の相互の切り込み合せ、相欠き合わせ、或いは重ね合わせのいずれかによりロータの前後に亘る気密を保持することで左右の距離を調節可能とした
    ことを特徴とする請求項1に記載のロータリ内燃機関。
  5.  上記ロータ羽根は、羽根台板と、該羽根台板の平面の下部中央より上方に向く方形の基台と、該基台の左右に配置されるサイドシール板と、該基台の上部に配置されるトップシール板と、該基台の上部両隅角に設けられるコーナーシール板とからなり、
     上記羽根台板の上頂部及び両側端面はシリンダ周壁及び左右側内壁間のそれぞれに焼き付き防止距離の間隔を開けて形成し、
     上記サイドシール板、トップシール板、コーナーシール板は、上記羽根台板の各外端と各対面壁間に設けた焼き付き防止距離を塞いで対面壁に気密的に接しており、
     上記サイドシール板、トップシール板、コーナーシール板は、その内側端面のそれぞれが上記基台に適宜な間隔を設け、該間隔は弾性体を用いて相互間の距離を調節可能とすると共に、各シール板を適宜に押圧して各シール板と対面壁との相互の接触を確かなものとし、各シール板の相互間は切り込み合わせ、相欠き合わせ、或いは重ね合わせのいずれかによる接合により上記ロータ羽根の前後に亘る気密性を保持している
     ことを特徴とする請求項1に記載のロータリ内燃機関。
  6.  上記サイドシール板、トップシール板、コーナーシール板の少なくともいずれかに所定の距離のスキーを用いて上記各孔及び各溝を渡らせる
     ことを特徴とする請求項5に記載のロータリ内燃機関。
  7.  上記遮断弁の上項に設けたリフト電磁石と
     上記縦弁溝下部に設けた吸引電磁石と、
    を更に備え、
     上記リフト電磁石の二つの極は該遮断弁の側面の左右に下り、その下端面は調節弁の左右の上部と干渉回避距離だけ離して設定し、
     該遮断弁のシリンダ空間への挿入時には、リフト電磁石に通電して調節弁を干渉回避距離だけ引き上げた状態を保ちつつ遮断弁をシリンダ空間内に挿入し、該遮断弁が挿入を完了するのとタイミングを合わせてリフト電磁石への通電を停止し、調節弁を落下させ、それと同時に吸引電磁石に通電して同吸引電磁石の応力により調節弁の下端面を吸引して調節弁の落下を早め、且つ該調節弁の下端面とロータ周壁との摺動を安定的に維持し、遮断弁のシリンダ外への返戻時には、上記吸引電磁石への通電を停止し、これに連動して上記リフト電磁石に通電して調節弁を干渉回避距離だけ引き上げてシリンダの外に返戻する
     ことを特徴とする請求項1に記載のロータリ内燃機関。
  8.  上記ロータはN(N=1,2,3...)個のロータ羽根を備え、ロータのN分の1回転毎に、遮断弁、噴射ノズル、点火プラグ、排気孔を含む一作業行程を行い得る設備を有し、該ロータのN分の1回転でN回の作動行程を終了する
     ことを特徴とする請求項1に記載のロータリ内燃機関。
  9.  上記シリンダの外、遮断弁の前方に設けられた副燃室と、
     上記該副燃室の中に位置を対向して設けられた2つの高圧空気ノズルと、
     上記高圧空気ノズルの噴射先に向き取り付けられた燃料ノズルと、
    を更に備え、
     上記副燃室の中、対向位置に設けた2つの高圧空気ノズルと燃料ノズルよりの噴射によりガスの混合攪拌と着火を行う
     ことを特徴とする請求項1に記載のロータリ内燃機関。
  10.  上記遮断弁に対するロータの進行に応じた作動角の適宜な位置取りで且つ上記シリンダ空間に面して複数個の噴射ノズルを設け、作動時に遮断弁とロータ羽根間にできる密閉層である燃焼室に対して高圧空気、燃料、混合気のいずれかを各ノズルより噴射する
     ことを特徴とする請求項1に記載のロータリ内燃機関。
  11.  給油ポンプら供給された潤滑油を送る油送孔及び油送溝と、
     残余の潤滑油を回収する油回収溝と、
     この回収された潤滑油を再利用の循環にのせる油回収孔と、
    を更に備え、
     上記油送孔は、上記作動軸の軸心を通り、上記作動軸の左右両端より中央に向かって伸び、それぞれがシリンダ側内壁の線を超えた位置で半径方向に角度を変え、左右の油送孔は軸の表面に出たところで上記ロータベースの左右側面に設けられた油送溝とそれぞれが接続され、左右の油送溝は同所からロータ羽根基部の前方の位置でロータベース周壁に開口して終わり、
     ロータリ内燃機関の作動時には、給油ポンプにより送り出される潤滑油が油送溝に入ると、同潤滑油はロータベースの両側面を潤滑し、更に油送溝よりロータ周壁に出た潤滑油はロータの回転の遠心力によりロータ羽根の左右側面を潤滑し、余剰の潤滑油はシリンダ周壁の底部に滞留してロータ羽根の項面に潤滑を与え、残余の潤滑油はロータの払い出しによりシリンダ周壁に設けられた油回収溝に落ち、更に油回収孔に入って再利用の循環に載せる
     ことを特徴とする請求項1に記載のロータリ内燃機関。
PCT/JP2009/052833 2009-02-19 2009-02-19 ロータリ内燃機関 WO2010095225A1 (ja)

Priority Applications (14)

Application Number Priority Date Filing Date Title
MX2011008357A MX2011008357A (es) 2009-02-19 2009-02-19 Motor de combustion interna giratorio.
EP12166508.7A EP2511473B1 (en) 2009-02-19 2009-02-19 Rotary internal combustion engine
KR1020117019773A KR101315874B1 (ko) 2009-02-19 2009-02-19 로터리 내연 기관
ES12166508.7T ES2470321T3 (es) 2009-02-19 2009-02-19 Motor de combustión interna rotativo
US12/675,061 US8528505B2 (en) 2009-02-19 2009-02-19 Rotary internal combustion engine
EP09840332.2A EP2400128B1 (en) 2009-02-19 2009-02-19 Rotary internal combustion engine
CA2752459A CA2752459C (en) 2009-02-19 2009-02-19 Rotary internal combustion engine
KR1020137013532A KR101315877B1 (ko) 2009-02-19 2009-02-19 로터리 내연 기관
CN2009801570476A CN102325975B (zh) 2009-02-19 2009-02-19 旋转式内燃机
JP2011500390A JP4918177B2 (ja) 2009-02-19 2009-02-19 ロータリ内燃機関
ES09840332.2T ES2445893T3 (es) 2009-02-19 2009-02-19 Motor de combustión interna rotativo
PCT/JP2009/052833 WO2010095225A1 (ja) 2009-02-19 2009-02-19 ロータリ内燃機関
RU2011138258/06A RU2511953C2 (ru) 2009-02-19 2009-02-19 Роторный двигатель внутреннего сгорания
US13/447,669 US8528506B2 (en) 2009-02-19 2012-04-16 Rotary internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/052833 WO2010095225A1 (ja) 2009-02-19 2009-02-19 ロータリ内燃機関

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/675,061 A-371-Of-International US8528505B2 (en) 2009-02-19 2009-02-19 Rotary internal combustion engine
US13/447,669 Continuation US8528506B2 (en) 2009-02-19 2012-04-16 Rotary internal combustion engine

Publications (1)

Publication Number Publication Date
WO2010095225A1 true WO2010095225A1 (ja) 2010-08-26

Family

ID=42633526

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/052833 WO2010095225A1 (ja) 2009-02-19 2009-02-19 ロータリ内燃機関

Country Status (10)

Country Link
US (2) US8528505B2 (ja)
EP (2) EP2400128B1 (ja)
JP (1) JP4918177B2 (ja)
KR (2) KR101315877B1 (ja)
CN (1) CN102325975B (ja)
CA (1) CA2752459C (ja)
ES (2) ES2445893T3 (ja)
MX (1) MX2011008357A (ja)
RU (1) RU2511953C2 (ja)
WO (1) WO2010095225A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI504805B (zh) * 2013-08-23 2015-10-21 qin hao Zhu 轉輪內燃機
JP2022505351A (ja) * 2018-11-01 2022-01-14 ダブリュビー デベロップメント カンパニー エルエルシー 循環式ピストン・エンジンのための空気燃料システム

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2511953C2 (ru) * 2009-02-19 2014-04-10 Макото МУРАТА Роторный двигатель внутреннего сгорания
US8967114B2 (en) 2011-03-09 2015-03-03 John Larry Gaither Rotary engine with rotary power heads
WO2013033732A1 (en) * 2011-09-01 2013-03-07 Furnari Joseph Rotational engine
CN103032158B (zh) * 2012-12-05 2015-04-01 汪辉 一种圆环缸体发动机
US9464566B2 (en) * 2013-07-24 2016-10-11 Ned M Ahdoot Plural blade rotary engine
CN104481681B (zh) * 2014-12-24 2017-08-25 南通江海港建设工程有限公司 一种新型握轴发动机
CN105781725B (zh) * 2016-05-03 2018-02-27 侯春景 转轮式发动机
CN105781726B (zh) * 2016-05-03 2018-06-12 侯春景 转轮式发动机的进气机构
JP7391915B2 (ja) * 2021-06-08 2023-12-05 章 小倉 ロータリブレード型エンジン

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4828811A (ja) * 1971-08-19 1973-04-17
JPS5221371Y2 (ja) * 1974-03-27 1977-05-17
JPS55114803A (en) * 1979-02-27 1980-09-04 Masayoshi Keii Rotary engine
JPS58131320A (ja) * 1982-01-30 1983-08-05 Hachiro Hayashida ジスクエンジン
JPS5913304Y2 (ja) * 1979-12-03 1984-04-20 マツダ株式会社 ロ−タリピストンエンジンの吸気装置
JPS605775B2 (ja) * 1975-04-02 1985-02-14 カーチス・ライト・コーポレーシヨン ロ−タリ−エンジン
JPS6228293B2 (ja) * 1980-02-25 1987-06-19 Zabeeto Futsushangu
JPS6441601A (en) * 1987-08-04 1989-02-13 Takashio Giken Kogyo Kk Seal valve construction for rotary engine
JPS6441602A (en) * 1987-08-04 1989-02-13 Takashio Giken Kogyo Kk Rotor-seal part construction for rotary engine
JPH0552119A (ja) * 1991-08-22 1993-03-02 Osamu Ikeda 回転ピストン機関
JPH10231732A (ja) * 1997-02-18 1998-09-02 Hajime Irisawa 仕切り弁燃焼室方式ロータリーエンジン
JP2005273505A (ja) * 2004-03-24 2005-10-06 Omunitekku:Kk 多気室型ロータリーエンジン
JP2007298013A (ja) 2006-05-08 2007-11-15 Koji Sasaki ロータリーエンジン

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1145627A (en) * 1911-04-10 1915-07-06 Bohumil Stradovsky Rotary engine.
US1239853A (en) * 1916-07-29 1917-09-11 Enos F Schlichter Rotary internal-combustion engine.
JPS4613881Y1 (ja) * 1968-07-03 1971-05-17
JPS5776205A (en) * 1980-10-30 1982-05-13 Matsushita Electric Works Ltd Vane type motor
JPH04101021A (ja) * 1990-08-13 1992-04-02 Ishikawajima Harima Heavy Ind Co Ltd ロータリーエンジン
US5203297A (en) * 1992-01-27 1993-04-20 Iversen Dennis D Rotary engine
CN1323945A (zh) * 2000-05-11 2001-11-28 杜仁忠 旋流式发动机
RU2275507C1 (ru) * 2004-11-17 2006-04-27 Игорь Васильевич Боев Роторный двигатель внутреннего сгорания
JP5052119B2 (ja) * 2006-12-20 2012-10-17 株式会社ブリヂストン 弾性ローラ用成形型および弾性ローラの製造方法
RU2511953C2 (ru) * 2009-02-19 2014-04-10 Макото МУРАТА Роторный двигатель внутреннего сгорания

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4828811A (ja) * 1971-08-19 1973-04-17
JPS5221371Y2 (ja) * 1974-03-27 1977-05-17
JPS605775B2 (ja) * 1975-04-02 1985-02-14 カーチス・ライト・コーポレーシヨン ロ−タリ−エンジン
JPS55114803A (en) * 1979-02-27 1980-09-04 Masayoshi Keii Rotary engine
JPS5913304Y2 (ja) * 1979-12-03 1984-04-20 マツダ株式会社 ロ−タリピストンエンジンの吸気装置
JPS6228293B2 (ja) * 1980-02-25 1987-06-19 Zabeeto Futsushangu
JPS58131320A (ja) * 1982-01-30 1983-08-05 Hachiro Hayashida ジスクエンジン
JPS6441601A (en) * 1987-08-04 1989-02-13 Takashio Giken Kogyo Kk Seal valve construction for rotary engine
JPS6441602A (en) * 1987-08-04 1989-02-13 Takashio Giken Kogyo Kk Rotor-seal part construction for rotary engine
JPH0552119A (ja) * 1991-08-22 1993-03-02 Osamu Ikeda 回転ピストン機関
JPH10231732A (ja) * 1997-02-18 1998-09-02 Hajime Irisawa 仕切り弁燃焼室方式ロータリーエンジン
JP2005273505A (ja) * 2004-03-24 2005-10-06 Omunitekku:Kk 多気室型ロータリーエンジン
JP2007298013A (ja) 2006-05-08 2007-11-15 Koji Sasaki ロータリーエンジン

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2400128A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI504805B (zh) * 2013-08-23 2015-10-21 qin hao Zhu 轉輪內燃機
JP2022505351A (ja) * 2018-11-01 2022-01-14 ダブリュビー デベロップメント カンパニー エルエルシー 循環式ピストン・エンジンのための空気燃料システム
JP7130285B2 (ja) 2018-11-01 2022-09-05 ダブリュビー デベロップメント カンパニー エルエルシー 循環式ピストン・エンジンのための空気燃料システム
US11719187B2 (en) 2018-11-01 2023-08-08 WB Development Company, LLC Air-fuel system for a circulating piston engine

Also Published As

Publication number Publication date
EP2511473A2 (en) 2012-10-17
KR20110106467A (ko) 2011-09-28
ES2470321T3 (es) 2014-06-23
MX2011008357A (es) 2011-10-12
US8528505B2 (en) 2013-09-10
EP2400128A4 (en) 2013-01-16
CA2752459A1 (en) 2010-08-26
KR101315874B1 (ko) 2013-10-08
CA2752459C (en) 2014-12-02
US20110107999A1 (en) 2011-05-12
CN102325975A (zh) 2012-01-18
RU2511953C2 (ru) 2014-04-10
EP2511473A3 (en) 2013-06-19
US8528506B2 (en) 2013-09-10
KR101315877B1 (ko) 2013-10-08
JPWO2010095225A1 (ja) 2012-08-16
ES2445893T3 (es) 2014-03-05
CN102325975B (zh) 2013-04-10
EP2400128A1 (en) 2011-12-28
KR20130064146A (ko) 2013-06-17
US20120210973A1 (en) 2012-08-23
JP4918177B2 (ja) 2012-04-18
EP2400128B1 (en) 2013-12-11
EP2511473B1 (en) 2014-05-21
RU2011138258A (ru) 2013-03-27

Similar Documents

Publication Publication Date Title
JP4918177B2 (ja) ロータリ内燃機関
CN105008666A (zh) 空气冷却式转子发动机
CN106574500B (zh) 旋转马达
US6129068A (en) Rotary engine
EP1117911B1 (en) A valveless engine
JP2017172574A (ja) 1ストローク内燃機関
US20130092122A1 (en) Rotary engine
JP4995982B2 (ja) ロータリ内燃機関
US9334792B2 (en) Straight shaft rotary engine
KR20210004330A (ko) 로터리 엔진
JP7407314B1 (ja) 回転式エンジン
US10202894B2 (en) Internal combustion rotary engine
CN102691572B (zh) 旋转式内燃机

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980157047.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 12675061

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09840332

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011500390

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 5908/DELNP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2009840332

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: MX/A/2011/008357

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 12011501614

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: 2752459

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117019773

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011138258

Country of ref document: RU

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI0924382

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI0924382

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110817