WO2010094168A1 - 用于甲醛乙醛氨合成吡啶碱的钛基催化剂及其制备方法 - Google Patents

用于甲醛乙醛氨合成吡啶碱的钛基催化剂及其制备方法 Download PDF

Info

Publication number
WO2010094168A1
WO2010094168A1 PCT/CN2009/001483 CN2009001483W WO2010094168A1 WO 2010094168 A1 WO2010094168 A1 WO 2010094168A1 CN 2009001483 W CN2009001483 W CN 2009001483W WO 2010094168 A1 WO2010094168 A1 WO 2010094168A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
catalyst
mcm
zsm
pyridine
Prior art date
Application number
PCT/CN2009/001483
Other languages
English (en)
French (fr)
Inventor
徐龙伢
刘盛林
杨寿海
陶峻
谢素娟
薛谊
王清遐
Original Assignee
中国科学院大连化学物理研究所
南京第一农药集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院大连化学物理研究所, 南京第一农药集团有限公司 filed Critical 中国科学院大连化学物理研究所
Publication of WO2010094168A1 publication Critical patent/WO2010094168A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/06Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom
    • C07D213/08Preparation by ring-closure
    • C07D213/09Preparation by ring-closure involving the use of ammonia, amines, amine salts, or nitriles
    • C07D213/10Preparation by ring-closure involving the use of ammonia, amines, amine salts, or nitriles from acetaldehyde or cyclic polymers thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/80Mixtures of different zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0045Drying a slurry, e.g. spray drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/42Addition of matrix or binder particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7038MWW-type, e.g. MCM-22, ERB-1, ITQ-1, PSH-3 or SSZ-25

Definitions

  • the invention relates to the field of chemical industry, and in particular to a titanium-based catalyst for synthesizing pyridine base and a preparation method thereof.
  • Pyridine is a six-membered heterocyclic compound formed by substituting a carbon atom on a benzene ring with a nitrogen atom.
  • Pyridine and alkylpyridine are commonly referred to as pyridine bases, and mainly include pyridine, 2-methylpyridine, 3-methylpyridine, 4-methylpyridine, and 2-methyl-5ethylpyridine.
  • pyridine series raw materials are important organic raw materials for the production of high value-added fine chemical products. They are widely used in medicine, pesticides, dyes, perfumes, feed additives, food additives, rubber additives and synthetic materials.
  • Chichbabin proposed an industrial method for the mass production of pyridine base using aldehydes and ammonia as raw materials. Through continuous improvement of the catalyst, the yield has increased from 40%-50% in the 1950s to around 80%. With the development of the oil and gas industry, taking into account the cost of raw materials, there have been methods for the catalytic synthesis of pyridine bases using ketones, alcohols, alkenes, alkynes, etc., but the process is not mature and the yield is low. At present, 95% of the world's pyridine base is still obtained by catalytic synthesis using aldehyde and ammonia as raw materials.
  • the catalyst was first prepared for pyridine base synthesis mostly amorphous aluminosilicate catalyst and a through-modified amorphous aluminosilicate catalysts, as described in US Patent No. US2507618; US3946020 and US3932431 reported the Si0 2 -Al 2 0 3 and halogen compounds and modified ⁇ 0 4 3 ⁇ Si0 2 -Al 2 0 3 compound, but the total yield of pyridine bases which is generally not high ( ⁇ 50%).
  • U.S. Patent No. 4,861,894 (1989), entitled “Synthesis of Pyridine and Alkyl Pyridine with a Crystalline Molecular Sieve of ZSM-5 Structure", discloses a high silicon ZSM-5 having a Si0 2 /Al 2 0 3 molar ratio of 225.
  • the zeolite is a raw powder, and the molecular sieve made of SiO 2 as a binder is used as a catalyst for the synthesis of pyridine base.
  • the pyridine yield of the catalyst was 47%, and methylpyridine (including 2-methylpyridine, 3) The yield of -methylpyridine and 4-methylpyridine) was 14%, and the total yield of pyridine and picoline was 61%.
  • Japanese patents Publication Nos. CN1330068 A and 1172915C
  • U.S. Patent No. 6,281,362 which are entitled “Methods for Preparing Pyridine Bases”
  • Japanese Patent No. 6,281,362 use crystals containing titanium and/or cobalt and silicon as constituent elements of zeolite.
  • Zeolite as a catalyst in which silicon and titanium and / Or the atomic ratio of cobalt is from about 5 to about 1000.
  • titanium and/or cobalt is synthesized in the molecular sieve structure and enters the skeleton of the molecular sieve, the total yield of the pyridine base using the zeolite as a catalyst is less than 50%.
  • lead, tungsten, zinc, ruthenium, osmium and indium are modified into the zeolite framework, the total yield of pyridine base is increased, and the highest can reach 72.5%.
  • Xiao Guomin et al. disclosed in Chinese patent CN1631536A that ZSM-5 catalyst was modified with lead, cobalt and palladium in a continuous flow fixed bed with a space velocity of 1000 h" and a formaldehyde/acetaldehyde/ammonia molar ratio of 1/2/4.
  • Catalysts with a reaction temperature of 450 ° C, lead (2w%), cobalt (10 w%) and palladium (0.01 w%) modified ZSM-5 (Si0 2 /Al 2 0 3 molar ratio 150) catalyst
  • the yield of pyridine is 55%, the total yield is 72%, and the regeneration period is 24 hours.
  • the catalyst (Si0 2 /Al 2 0 3 molar ratio was 150) had a pyridine yield of 70%, a total yield of 87%, and a regeneration period of 48 hours.
  • Chinese patent CN20071002 47.4 discloses a catalyst for producing pyridine base and a preparation method thereof.
  • the catalyst is supported on a ZSM-5 molecular sieve support; the composition comprises a ZSM-5 molecular sieve support having a mass percentage of 90-99.9% and 10-0.1% ruthenium supported thereon.
  • This invention The catalyst increases the selectivity of the pyridine base and reduces the high-boiling by-products, resulting in a total yield of pyridine and picoline up to 88%.
  • An object of the present invention is to provide a titanium-based catalyst for the synthesis of pyridine base from formaldehyde acetaldehyde to ammonia and a process for the preparation thereof.
  • the invention provides a titanium-based catalyst for synthesizing pyridine base with formaldehyde acetaldehyde, wherein the weight percentage of each component in the catalyst is: ZSM-5 MCM-22 (MCM-49) composite molecular sieve 30-45 %, TiO 2 0.5-2.5% (preferably TiO 2 1.0-2.0%), the balance being the matrix component.
  • the invention provides a titanium-based catalyst for synthesizing pyridine base with formaldehyde acetaldehyde, wherein the weight ratio of ZSM-5 to MCM-22 (MCM-49) in the ZSM-5/MCM-22 (MCM-49) composite molecular sieve is 0.05-20;
  • the matrix contains components such as tri-alumina, kaolin and/or silica.
  • the invention provides a titanium-based catalyst for synthesizing pyridine base by formaldehyde acetaldehyde ammonia, the tri-alumina is derived from an aluminum sol, and the content thereof is 2-40 S%; the kaolin content is 20-50% by weight; In the silica sol, the content is 0.05-20% by weight.
  • the invention has the advantages of being industrially operable, relatively simple in process, high in yield of pyridine base and the like.
  • BEST MODE FOR CARRYING OUT THE INVENTION The invention is further illustrated by the following examples, which are not intended to limit the invention.
  • a certain amount of ZSM-5 molecular sieve (Si0 2 /Al 2 0 3 molar ratio is 55), Ti0 2 , aluminum sol (alumina accounts for 23.0% by weight of aluminum sol, the same applies hereinafter, no longer described), silica sol (silicon oxide) It accounts for 27.0% by weight of silica sol, the same as the following, and will not be described.)
  • Kaolin deionized water is uniformly mixed, spray-formed, and dried to obtain catalyst Al.
  • the spray conditions were an inlet temperature of 450 ° C, an exhaust gas temperature of 150 ° C, a spray pressure of 2.0 MPa, and a drying temperature of 500 ° C for 2 hours.
  • the obtained catalyst Al wherein the ZSM-5 molecular sieve, Ti0 2 , alumina and silica were present in weight fractions of 39%, 1.5%, 20% and 1%, respectively.
  • a certain amount of MCM-22 molecular sieve (Si0 2 /Al 2 0 3 molar ratio is 55), Ti0 2 , aluminum sol (alumina accounts for 23.0% by weight of aluminum sol, the same applies hereinafter, no longer described), silica sol (silicon oxide)
  • the silica sol is 27.0% by weight, the same as the following, and will not be described.
  • Kaolin and deionized water are uniformly mixed, spray-molded, and dried to obtain a catalyst A2.
  • the spray conditions were an inlet temperature of 450 ° C, an exhaust gas temperature of 150 V, a spray pressure of 2.0 MPa, and a drying temperature of 500 ° C for 2 hours.
  • the obtained catalyst A2, wherein MCM-22 molecular sieve, Ti0 2 , alumina and silica were present in weight fractions of 39%, 1.5%, 20% and 1%, respectively.
  • a certain amount of 70 S% ZSM-5/30 wt%] ⁇ !-22 composite molecular sieve (Z0 2 /Al 2 0 3 molar ratio in both ZSM-5 and MCM-22 is 55), Ti0 2 , aluminum sol, Silica sol, kaolin, deionized water are uniformly mixed, spray-formed, and dried to obtain catalyst B.
  • the spray condition is the inlet
  • the temperature was 450 ° C
  • the exhaust gas temperature was 150 ° C
  • the spray pressure was 2.0 MPa
  • the drying temperature was 500 ° C for 2 hours.
  • the catalyst B obtained had a weight content of 70% by weight of ZSM-5/30 3 ⁇ 4% MCM-22 composite molecular sieve, Ti0 2 , alumina and silica of 39%, 1.5%, 20% and 1%, respectively.
  • a certain amount of 50% by weight 28? -5/50% by weight%1 0 ⁇ 4-49 composite molecular sieve (Z0 2 /Al 2 0 3 molar ratios of ZSM-5 and MCM-49 are 40 and 100, respectively), Ti0 2 , aluminum sol, silica sol, kaolin, deionized water, uniformly mixed, spray-formed, and dried to obtain catalyst C.
  • the spray conditions were an inlet temperature of 500 ° C, an exhaust gas temperature of 200 C, a spray pressure of 8 MPa, and a drying temperature of 580 ° C for 2 hours.
  • a certain amount of 10%% 28? ⁇ -5/90% by weight! ⁇ 1 ⁇ [-22 composite molecular sieves (Si0 2 /Al 2 0 3 molar ratios of 175 and 50 in ZSM-5 and MCM-22, respectively), Ti0 2 , aluminum sol, silica sol, kaolin, deionized water, uniformly mixed, spray-formed, dried, steam treated to obtain catalyst D.
  • the spraying conditions were an inlet temperature of 650 ° C, an exhaust gas temperature of 200 ° C, a spray pressure of 0.8 Mpa, and a drying temperature of 450 ° C for 4 hours.
  • a certain amount of 90% by weight 281 ⁇ 1-5/10 weight%1 ⁇ 0 ⁇ -49 composite molecular sieve (the ratio of Si0 2 /Al 2 0 3 in ZSM-5 and MCM-49 is 70 and 90 respectively), Ti0 2 , aluminum sol, silica sol, kaolin, deionized water is uniformly mixed, spray-formed, dried, steam treated to obtain catalyst E.
  • the spray conditions were an inlet temperature of 620 ° C, an exhaust gas temperature of 200 ° C, a spray pressure of 5 MPa, and a drying temperature of 620 ° C for 2 hours.
  • the obtained catalyst E, wherein 90% by weight of ZSM-5/10 S%MCM-49 composite molecular sieve, Ti0 2 , alumina and silica were respectively 41%, 1.4%, 10% and 10% by weight.
  • a certain amount of 70% by weight 28] ⁇ -5/30%%1 ⁇ 10 ⁇ -22 composite molecular sieve (Z0 2 /Al 2 0 3 molar ratios of ZSM-5 and MCM-22 are 70 and 75, respectively), Ti0 2 , aluminum sol, silica sol, kaolin, deionized water mixed uniformly, spray molding, drying, steam treatment, to obtain catalyst F.
  • the spray conditions were an inlet temperature of 500 ° C, an exhaust gas temperature of 200 ° C, a spray pressure of 5 MPa, and a drying temperature of 500 ° C for 3 hours.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Catalysts (AREA)
  • Pyridine Compounds (AREA)

Description

用于甲醛乙醒氨合成吡啶碱的钛基催化剂及其制备方法 技术领域
本发明涉及化工领域, 具体涉及一种合成吡啶碱的钛基催化剂及其制 备方法。
背景技术
吡啶是苯环上一个碳原子被氮原子取代后所形成的六元杂环化合物。 吡啶及烷基吡啶通称为吡啶碱, 主要包括吡啶、 2-甲基吡啶、 3-甲基吡啶、 4-甲基吡啶和 2-甲基 -5乙基吡啶等。 吡啶系列原料作为化学工业品, 是生 产高附加值精细化工产品的重要有机原料, 广泛应用于医药、农药、染料、 香料、 饲料添加剂、 食品添加剂、 橡胶助剂及合成材料等领域。
1924年 Chichbabin提出了以醛和氨为原料, 大批量生产吡啶碱的工业 方法,经过对催化剂的不断改进,产率已由 50年代的 40%-50%提高到 80% 左右。 随着石油天然气工业的发展, 考虑到原料成本, 又出现了以酮、 醇、 烯烃、炔烃等为原料催化合成吡啶碱的方法, 但工艺尚不成熟而产率较低。 目前, 世界上 95%的吡啶碱仍然是以醛和氨作为原料, 经催化合成而得。
最早用于合成法制备吡啶碱的催化剂多为无定形硅铝酸盐催化剂及经 过改性的无定形硅铝酸盐催化剂, 如美国专利 US2507618; US3946020和 US3932431 等报道的 Si02-Al203 化合物及经卤素和 Ρ04 3·改性的 Si02-Al203化合物, 但其吡啶碱的总产率一般不高 (<50%)。
题为 "用具有 ZSM-5结构的晶型分子筛合成吡啶及烷基吡啶"的美国 专利 US4861894 ( 1989)披露了以 Si02/Al203摩尔比为 225的高硅 ZSM-5 沸石为原粉, Si02为粘结剂制成的分子筛作为吡啶碱合成的催化剂。 在乙 醛 /甲醛摩尔比为 1.4、 氨气 /醛摩尔比为 1.5、 反应压力为常压的反应条 件下, 催化剂的吡啶产率为 47%, 甲基吡啶 (包括 2-甲基吡啶, 3-甲基吡 啶和 4-甲基吡啶) 的产率为 14%, 吡啶和甲基吡啶的总产率为 61%。
题为 "吡啶碱的合成及其催化剂"的美国专利 US5218122 ( 1993)披 露了以钨、 锌或锡改性的晶型沸石作为吡啶碱合成的催化剂, 在甲醛 /乙 醛摩尔比为 1、 氨气 /醛摩尔比为 1.2, 反应温度 450°C的反应条件下, 钨 改性催化剂的吡啶收率为 32°/。, 3-甲基吡啶的收率为 16%, 2-甲基吡啶的 收率为 1%。 在同样的反应条件下, 锌或锡改性的催化剂, 其吡啶收率为 34%, 3-甲基吡啶的收率为 14%, 2-甲基吡啶的收率为 1%。 同时用锌和锡 改性的催化剂, 其吡啶收率为 34%, 3-甲基吡啶的收率为 16%, 2-甲基吡 啶的收率为 1%。
题为 "吡啶及 3-甲基吡啶的合成"的美国专利 US5395940 ( 1995)披 露了以特定的晶型沸石如 MCM-22或 MCM-49作为吡啶及 3-甲基吡啶合成 的催化剂。 在乙醛 /甲醛 /氨气摩尔比为 1.4/1/3.6、 反应温度 427°C的反应条 件下, 吡啶的收率为 9.3%, 3-甲基吡啶的收率为 4.1%, 2-甲基吡啶的收率 为 0.6%, 4-甲基吡啶的收率为 0.9%。虽然上述方法合成的吡啶及 3-甲基吡 啶中 2-甲基吡啶和 4-甲基吡啶的含量均很少, 但吡啶及 3-甲基吡啶的总收 率太低, 无任何工业应用的可能。
最近, 日本广荣化学株式会社的题为 "制备吡啶碱类的方法"的中国 专利(公开号 CN1330068 A和 1172915C)及美国专利 US 6281362采用含 钛和 /或钴和硅作为沸石组成元素的晶型沸石作为催化剂, 其中硅与钛和 / 或钴的原子比率为约 5至约 1000。但由于鈦和 /或钴是合成于分子筛结构中, 进入分子筛的骨架, 用该沸石作催化剂的吡啶碱总收率低于 50%。 同样使 铅、 钨、 锌、 佗、 镧及铟等进入沸石骨架改性后, 吡啶碱的总收率有所提 高, 其中最高的可以达到 72.5%。
卢冠忠等在中国专利 CN1263741C和 CN1565736A披露了以铅和钴的 混合物对 ZSM-5催化剂进行改性, 在连续流动固定床, 空速: 1000 h'1, 甲 醛 /乙醛摩尔比为 1/2、 氨气 /醛摩尔比为 4.5, 反应温度 450Ό的反应条 件下, 铅(2.5w%)和钴 (1.5w%) 改性的 ZSM-5 (Si02/Al203摩尔比为 150)催化剂,连续反应 4小时,吡啶收率为 68%, 3-甲基吡啶的收率为 4.5%, 2-甲基吡啶的收率为 4%。其它条件相同, 只是反应空速 SOOOh ,氨气 /醛 摩尔比为 4.5, 其吡啶收率为 55.5%, 3-甲基吡啶的收率 25%, 2-甲基吡啶 的收率 0.5%, 4-甲基吡啶的收率为 0, 总收率为 81%。
肖国民等在中国专利 CN1631536A披露了以铅,钴和钯对 ZSM-5催化 剂进行改性, 在连续流动固定床, 空速: 1000h", 甲醛 /乙醛 /氨摩尔比为 1/2/4, 反应温度 450°C的反应条件下, 铅(2w%), 钴(10 w%)和钯(0.01 w%)改性的 ZSM-5 (Si02/Al203摩尔比为 150)催化剂,吡啶收率为 55%, 总收率为 72%,再生周期为 24小时。其它条件相同,铅( 12.5w%),钴(2w%) 和钯(0.2w%)改性的 ZSM-5 (Si02/Al203摩尔比为 150)催化剂, 吡啶收 率为 70%, 总收率为 87%, 再生周期为 48小时。
中国专利 CN20071002 47.4披露一种生产吡啶碱的催化剂及其制备 方法。 该催化剂为将铋负载在 ZSM-5分子筛载体上; 其组成包括质量百分 比为 90-99.9%的 ZSM-5分子筛载体和负载于其上的 10-0.1%的铋。 本发明 的催化剂增加了吡啶碱的选择性, 减少了高沸点副产物, 可以使吡啶及甲 基吡啶的总收率最高至 88%。
发明内容
本发明的目的是提供一种用于甲醛乙醛氨合成吡啶碱的钛基催化剂及 其制备方法。
本发明提供了一种用于甲醛乙醛氨合成吡啶碱的钛基催化剂, 该催化 剂中各组分占整个催化剂的重量百分比为: ZSM-5 MCM-22(MCM-49)复合 分子筛 30-45%, TiO20.5-2.5% (优选 TiO21.0-2.0%), 其余为基质组分。
本发明提供的用于甲醛乙醛氨合成吡啶碱的钛基催化剂, 所述 ZSM-5/MCM-22(MCM-49)复合分子筛中 ZSM-5与 MCM-22(MCM-49)重量 比为 0.05-20; 基质含有三氧化铝, 高岭土和 /或二氧化硅等组分。
本发明提供的用于甲醛乙醛氨合成吡啶碱的钛基催化剂, 所述三氧化 铝来源于铝溶胶, 其含量为 2-40 S%; 高岭土含量为 20-50重%; 二氧化 硅来源于硅溶胶, 其含量为 0.05-20重%。
本发明提供了用于甲醛乙醛氨合成吡啶碱的钛基催化剂的制备方法, 具体步骤为: 将 30-45重%-ZSM-5/MCM-22(MCM-49)复合分子筛, 0.5-2.5 重%1 02, 2-40重%三氧化铝, 0.05-20重%二氧化硅, 20-50重%高岭土混 合均匀后 (混合物中固体 /水 = 0.2-0.5, 重 /重)喷雾成型和干燥, 制得本发 明催化剂; 其中喷雾条件为入口温度 450-650°C, 尾气温度 120-250°C, 喷 雾压力 0.5-10Mpa, 干燥温度 400-650°C, 时间 2-4小时。
本发明具有可供工业操作, 工艺比较简单, 吡啶碱收率高等优点。 本发明的最佳实施方式 下面的实施例将对本发明予以进一步的说明, 但并不因此而限制本发 明。
比较例 1
将一定量的 ZSM-5分子筛(Si02/Al203摩尔比为 55), Ti02,铝溶胶(氧 化铝占铝溶胶 23.0重%, 以下相同, 不再叙述), 硅溶胶(氧化硅占硅溶胶 27.0重%,以下相同, 不再叙述), 高岭土, 去离子水混合均匀后喷雾成型, 干燥制得催化剂 Al。 其中喷雾条件为入口温度 450°C, 尾气温度 150°C, 喷雾压力 2.0Mpa,干燥温度 500°C , 2小时。制得的催化剂 Al,其中 ZSM-5 分子筛, Ti02, 氧化铝以及氧化硅的重量含量分别为 39%, 1.5%, 20%和 1%。
比较例 2
将一定量的 MCM-22分子筛(Si02/Al203摩尔比为 55), Ti02,铝溶胶 (氧化铝占铝溶胶 23.0重%, 以下相同, 不再叙述), 硅溶胶(氧化硅占硅 溶胶 27.0重%, 以下相同, 不再叙述), 高岭土,去离子水混合均匀后喷雾 成型,干燥制得催化剂 A2。其中喷雾条件为入口温度 450'C,尾气温度 150 V, 喷雾压力 2.0Mpa, 干燥温度 500°C, 2小时。 制得的催化剂 A2, 其中 MCM-22分子筛, Ti02, 氧化铝以及氧化硅的重量含量分别为 39%, 1.5%, 20%和 1%。
实施例 1
将一定量的 70 S%ZSM-5/30重%]^ ! -22复合分子筛 (ZSM-5 和 MCM-22中 Si02/Al203摩尔比均为 55), Ti02, 铝溶胶, 硅溶胶, 高岭土, 去离子水混合均匀后喷雾成型, 干燥制得催化剂 B。 其中喷雾条件为入口 温度 450°C,尾气温度 150°C, 喷雾压力 2.0Mpa,干燥温度 500°C, 2小时。 制得的催化剂 B,其中 70重% ZSM-5/30 ¾%MCM-22复合分子筛, Ti02,氧 化铝以及氧化硅的重量含量分别为 39%, 1.5%, 20%和 1%。
实施例 2
将一定量的 50重%28? -5/50重%1 0\4-49复合分子筛(ZSM-5和 MCM-49中 Si02/Al203摩尔比分别为 40和 100), Ti02, 铝溶胶, 硅溶胶, 高岭土, 去离子水混合均匀后喷雾成型, 干燥制得催化剂 C。 其中喷雾条 件为入口温度 500°C, 尾气温度 200 C, 喷雾压力 8Mpa, 干燥温度 580°C , 2小时。制得的催化剂 C,其中 50 S%ZSM-5/50重%1^0^-49复合分子筛, Ti02, 氧化铝以及氧化硅的童量含量分别为 35%, 1.0%, 10%和 10%。 实施例 3
将一定量的 10重%28?^-5/90重%!^1 ^[-22 复合分子筛 (ZSM-5和 MCM-22中 Si02/Al203摩尔比分别为 175和 50), Ti02, 铝溶胶, 硅溶胶, 高岭土, 去离子水混合均匀后喷雾成型, 干燥, 水蒸汽处理, 制得催化剂 D。 其中喷雾条件为入口温度 650°C, 尾气温度 200°C, 喷雾压力 0.8Mpa, 干燥温度 450°C, 4小时。 制得的催化剂 D, 其中 10重%28 -5/90重 %MCM-22复合分子筛, Ti02, 氧化铝以及氧化硅的重量含量分别为 33%, 0.7%, 35%和 1%。
实施例 4
将一定量的 90重%281^1-5/10重%1^0\ -49复合分子筛 (ZSM-5 和 MCM-49中 Si02/Al203摩尔比分别为 70和 90), Ti02, 铝溶胶, 硅溶胶, 高岭土,去离子水混合均匀后喷雾成型,干燥,水蒸汽处理,制得催化剂 E。 其中喷雾条件为入口温度 620°C, 尾气温度 200°C, 喷雾压力 5Mpa, 干燥 温度 620°C, 2小时。制得的催化剂 E,其中 90重% ZSM-5/10 S%MCM-49 复合分子筛, Ti02,氧化铝以及氧化硅的重量含量分别为 41%, 1.4%, 10% 和 10%。
实施例 5
将一定量的 70重%28]^-5/30重%1^10^-22 复合分子筛 (ZSM-5 和 MCM-22中 Si02/Al203摩尔比分别为 70和 75), Ti02, 铝溶胶, 硅溶胶, 高岭土,去离子水混合均匀后喷雾成型,干燥,水蒸汽处理,制得催化剂 F。 其中喷雾条件为入口温度 500°C, 尾气温度 200°C, 喷雾压力 5Mpa, 干燥 温度 500°C, 3小时。制得的催化剂 F,其中 70 S%ZSM-5/30 S%MCM-22 复合分子筛, Ti02, 氧化铝以及氧化硅的重量含量分别为 39%, 2.1%, 5% 和 18%。
实施例和比较例的应用
本发明的实施例和比较例在甲醛乙醛氨合成吡啶碱方面的应用。 在固 定流化床反应管内装 800g催化剂,在 N2气氛下升温到 500°C活化,然后在 2气氛下降到反应温度, 在如表 1所示的条件下进行反应, 原料为甲醛、 乙醛和氨气混合物, 自下而上通过催化剂床层, 在一定的空速和温度下发 生气相縮合反应, 生成目的产物吡啶和甲基吡啶等, 每次反应 40分钟, 然 后用水蒸汽汽提, 连续三次, 用气相色谱进行定量, 反应结果取平均值。
由表 1的结果可见, 单纯采用 ZSM-5和 MCM-22 (催化剂 A1和 A2, 需要说明的是 MCM-49与 MCM-22的反应性能相似, 所以未列出), 吡啶 碱总摩尔产率和吡啶 /3-甲基吡啶的比均低于本发明的催化剂。 本发明提供 的催化剂 B, C, D, E和 F, 总体情况差不多。 相对而言, 催化剂 C样吡 啶产率稳定在 50%以上, 略好些。
表 1 吡啶催化剂评价结果
Figure imgf000009_0001
E-3 66.50 3.24
F-l 49.43; 16.31; 0.48 66.94 2.57
F-2 49.33; 13.46; 0.38 63.80 65.76 3.11 2.90
F-3 51.02; 14.29; 0.50 66.55 3.03 反应条件: 温度 450°C ; 乙醛 /甲醛 /氨摩尔比 1/1/2; 重量空速 0.3 h ;
p
流化床, 催化剂 800 g。
A-1*: 催化剂 A反应一次。

Claims

权 利 要 求
1、化剂含有 30-45重%281^-5 \10^-22(]^0^-49)复合分子筛, 0.5-2.5 S%Ti02,其余为基质组分。
2、按照权利要求 1所述用于甲醛乙醛氨合成吡啶碱的钛基催化剂, 其 特征在于: 所述 ZSM-5/MCM-22(MCM-49)复合分子筛中 ZSM-5 与 MCM-22(MCM-49)重量比为 0.05-20。
3、按照权利要求 1所述用于甲醛乙醛氨合成吡啶碱的钛基催化剂, 其 特征在于: 所述 Ti02的含量 1.0-2.0重%。
4、按照权利要求 1所述用于甲醛乙醛氨合成吡啶碱的钛基催化剂, 其 特征在于: 所述基质含有三氧化铝, 高岭土和 /或二氧化硅一些组分。
5、按照权利要求 4所述用于甲醛乙醛氨合成吡啶碱的钛基催化剂, 其 特征在于: 所述三氧化铝来源于铝溶胶, 其含量为 2-40重%。
6、按照权利要求 4所述用于甲醛乙醛氨合成吡啶碱的钛基催化剂, 其 特征在于: 所述高岭土含量为 20-50重%。
7、按照权利要求 4所述用于甲醛乙醛氨合成吡啶碱的钛基催化剂, 其 特征在于: 所述二氧化硅来源于硅溶胶, 其含量为 0.05-20重%。
8、 权利要求 1 所述催化剂的制备方法, 其特征在于: 将 30-45 重 %-ZSM-5/MCM-22(MCM-49)复合分子筛, 0.5-2.5重%1102, 2-40重%三氧 化铝, 0.05-20重%二氧化硅, 20-50重%高岭土混合均匀后喷雾成型和干燥, 制得催化剂。
9、按照权利要求 8所述催化剂的制备方法, 其特征在于: 所述喷雾条 件为入口温度 450-650°C, 尾气温度 120-250°C, 喷雾压力 0.5-10Mpa, 干 燥温度 400-650°C, 时间 2-4小时。
PCT/CN2009/001483 2009-02-18 2009-12-17 用于甲醛乙醛氨合成吡啶碱的钛基催化剂及其制备方法 WO2010094168A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910010393A CN100577286C (zh) 2009-02-18 2009-02-18 用于甲醛乙醛氨合成吡啶碱的钛基催化剂及其制备方法
CN200910010393.3 2009-02-18

Publications (1)

Publication Number Publication Date
WO2010094168A1 true WO2010094168A1 (zh) 2010-08-26

Family

ID=40889149

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2009/001484 WO2010094169A1 (zh) 2009-02-18 2009-12-17 用于甲醛乙醛氨合成吡啶碱的镁钴基催化剂及其制备方法
PCT/CN2009/001483 WO2010094168A1 (zh) 2009-02-18 2009-12-17 用于甲醛乙醛氨合成吡啶碱的钛基催化剂及其制备方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/001484 WO2010094169A1 (zh) 2009-02-18 2009-12-17 用于甲醛乙醛氨合成吡啶碱的镁钴基催化剂及其制备方法

Country Status (2)

Country Link
CN (1) CN100577286C (zh)
WO (2) WO2010094169A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100577286C (zh) * 2009-02-18 2010-01-06 中国科学院大连化学物理研究所 用于甲醛乙醛氨合成吡啶碱的钛基催化剂及其制备方法
CN101856622B (zh) * 2009-12-16 2012-06-13 中国科学院大连化学物理研究所 一种合成吡啶碱的共结晶沸石催化剂及其制备方法
CN114602545B (zh) * 2022-03-15 2023-08-15 明士新材料有限公司 一种多级孔复合分子筛催化剂的制备及其应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5395940A (en) * 1993-06-07 1995-03-07 Mobil Oil Corp. Synthesis of pyridine and 3-alkylpyridine
US5969143A (en) * 1997-12-31 1999-10-19 Mobil Oil Corporation Pyridine/picoline production process
CN1330068A (zh) * 2000-06-26 2002-01-09 广荣化学工业株式会社 制备吡啶碱类的方法
US6727365B1 (en) * 2002-10-31 2004-04-27 Shivanand Janardan Kulkarni Process for the preparation of vinylpyridine from picoline over modified zeolites
CN101485996A (zh) * 2009-02-18 2009-07-22 中国科学院大连化学物理研究所 用于甲醛乙醛氨合成吡啶碱的钛基催化剂及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4810794A (en) * 1986-02-06 1989-03-07 Koei Chemical Co., Ltd. Process for producing pyridine bases
US5218122A (en) * 1988-09-30 1993-06-08 Reilly Industries, Inc. Pyridine base synthesis process and catalyst for same
CN100540140C (zh) * 2007-04-09 2009-09-16 南京第一农药有限公司 用于生产吡啶碱的催化剂及其制备方法
CN101148436B (zh) * 2007-11-12 2010-04-21 中国海洋石油总公司 一种吡啶碱的催化合成方法
CN101161343B (zh) * 2007-11-22 2010-12-01 天津大学 一种应用于合成吡啶碱的催化剂及其制备和使用方法
CN100574880C (zh) * 2009-02-18 2009-12-30 中国科学院大连化学物理研究所 用于甲醛乙醛氨合成吡啶碱的镁钴基催化剂及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5395940A (en) * 1993-06-07 1995-03-07 Mobil Oil Corp. Synthesis of pyridine and 3-alkylpyridine
US5969143A (en) * 1997-12-31 1999-10-19 Mobil Oil Corporation Pyridine/picoline production process
CN1330068A (zh) * 2000-06-26 2002-01-09 广荣化学工业株式会社 制备吡啶碱类的方法
US6727365B1 (en) * 2002-10-31 2004-04-27 Shivanand Janardan Kulkarni Process for the preparation of vinylpyridine from picoline over modified zeolites
CN101485996A (zh) * 2009-02-18 2009-07-22 中国科学院大连化学物理研究所 用于甲醛乙醛氨合成吡啶碱的钛基催化剂及其制备方法

Also Published As

Publication number Publication date
CN101485996A (zh) 2009-07-22
CN100577286C (zh) 2010-01-06
WO2010094169A1 (zh) 2010-08-26

Similar Documents

Publication Publication Date Title
CN101347744B (zh) 以微球型高硅zsm-5分子筛为载体的吡啶合成催化剂及其制备方法
JP2008537944A (ja) アセチレンのエチレンへの選択的水素化方法
CN100574880C (zh) 用于甲醛乙醛氨合成吡啶碱的镁钴基催化剂及其制备方法
WO2011072469A1 (zh) 一种用于合成吡啶碱的共结晶沸石催化剂及其制备方法和应用
TW200800853A (en) Method for producing propylene
WO2010094168A1 (zh) 用于甲醛乙醛氨合成吡啶碱的钛基催化剂及其制备方法
JP6322198B2 (ja) ピリジン及びそのアルキル誘導体の製造のための方法及び触媒
JP3481647B2 (ja) ゼオライトの表面選択的脱アルミニウム化方法および表面を脱アルミニウム化したゼオライトの使用
JPWO2014129248A1 (ja) エタノールから1,3−ブタジエンを選択的に製造する方法
JP6839715B2 (ja) 1−(4−メタンスルホニル−2−トリフルオロメチル−ベンジル)−2−メチル−1H−ピロロ[2,3−b]ピリジン−3−イル−酢酸を調製するための方法
CN110038630A (zh) 用于制备3-甲基吡啶的分子筛催化剂及制备方法和应用
CN102020527B (zh) 一种二异丙苯烷基转移生产异丙苯的方法
TW201036939A (en) Method for producing propylene
CN114602545B (zh) 一种多级孔复合分子筛催化剂的制备及其应用
TWI451906B (zh) Synthesis of pyridine base (Pyridine Base) co - crystallization zeolite catalyst and its preparation method
JP4574348B2 (ja) カルボニル化合物のアンモオキシム化法
CN105524028B (zh) 一种氯丙烯氧化方法
JP2002320857A (ja) イソブチレン合成用触媒、その製造方法、およびイソブチレンの製造方法
JP7109018B2 (ja) 固体触媒およびブタジエンの製造方法
CN108479847B (zh) 用于丙烯醛、丙醛和氨气反应的分子筛催化剂的制备方法
CN113769727B (zh) 一种高稳定性固体碱催化剂及制备方法
JP3489869B2 (ja) メチルアミン類の製造方法
WO2023071891A1 (zh) 一种由苯胺选择性连续生产2-甲基吡啶和二苯胺的方法
CN103739436B (zh) 乙醇与乙苯烷基化合成对二乙苯的方法
JP2003327551A (ja) インダンの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09840219

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09840219

Country of ref document: EP

Kind code of ref document: A1