WO2010092927A1 - コーティング方法及びコーティング物品 - Google Patents

コーティング方法及びコーティング物品 Download PDF

Info

Publication number
WO2010092927A1
WO2010092927A1 PCT/JP2010/051793 JP2010051793W WO2010092927A1 WO 2010092927 A1 WO2010092927 A1 WO 2010092927A1 JP 2010051793 W JP2010051793 W JP 2010051793W WO 2010092927 A1 WO2010092927 A1 WO 2010092927A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
mass
fine particles
parts
coating
Prior art date
Application number
PCT/JP2010/051793
Other languages
English (en)
French (fr)
Inventor
育弘 吉田
義則 山本
輝彦 熊田
怜司 森岡
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US13/201,316 priority Critical patent/US20110300370A1/en
Priority to CN201080007722.XA priority patent/CN102316996B/zh
Priority to JP2010550510A priority patent/JP5404656B2/ja
Publication of WO2010092927A1 publication Critical patent/WO2010092927A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/08Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an anti-friction or anti-adhesive surface
    • B05D5/083Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an anti-friction or anti-adhesive surface involving the use of fluoropolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B17/00Methods preventing fouling
    • B08B17/02Preventing deposition of fouling or of dust
    • B08B17/06Preventing deposition of fouling or of dust by giving articles subject to fouling a special shape or arrangement
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • C09D5/1606Antifouling paints; Underwater paints characterised by the anti-fouling agent
    • C09D5/1612Non-macromolecular compounds
    • C09D5/1625Non-macromolecular compounds organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • C09D5/1606Antifouling paints; Underwater paints characterised by the anti-fouling agent
    • C09D5/1637Macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/36Successively applying liquids or other fluent materials, e.g. without intermediate treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2420/00Indexing scheme corresponding to the position of each layer within a multilayer coating relative to the substrate
    • B05D2420/01Indexing scheme corresponding to the position of each layer within a multilayer coating relative to the substrate first layer from the substrate side
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2451/00Type of carrier, type of coating (Multilayers)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249994Composite having a component wherein a constituent is liquid or is contained within preformed walls [e.g., impregnant-filled, previously void containing component, etc.]

Definitions

  • the present invention relates to a coating method and a coated article, and in particular, a coating method that provides a coating film that has an excellent effect of suppressing the adhesion of oil stains over a long period of time and can be wiped off or washed with water. And a coated article having the coating film.
  • a method of forming a coating film on the surface of an article using a coating composition in which a hydroxyl-containing silicone additive and / or a hydroxyl-containing fluorine-based additive is blended with a powder coating material containing a polyester resin and a blocked isocyanate For example, see Patent Document 1
  • a method of forming a coating film on the surface of an article using a coating composition in which a specific fluorosilicone compound is blended in a paint as a paint modifier for example, see Patent Document 2.
  • an undercoat layer containing water glass, a hardener for water glass, and an aggregate is applied to the surface of the article to form an undercoat layer, it contains water glass and silica fine particles, and does not contain a hardener for water glass.
  • a method of applying a top coating to an undercoat layer to form a top coat layer and firing it for example, see Patent Document 3
  • a resin containing a fluorine-based oligomer having a plurality of predetermined water-repellent groups and hydrophilic groups in the molecule A method of forming a coating film on the surface of an article using the composition (see, for example, Patent Document 4) has been proposed.
  • a method of decomposing oil stains adhering to the article surface with a photocatalyst has been proposed (see, for example, Patent Document 5).
  • oil stains may be attached to a hydrophobic (water-repellent) oil-repellent coating film such as a fluororesin or a hydrophilic oil-repellent coating film such as a hydrophilic resin.
  • a hydrophobic oil-repellent coating film such as a fluororesin
  • a hydrophilic oil-repellent coating film such as a hydrophilic resin.
  • the coating film is made of fluororesin, etc.
  • there is less adhesion of oil stains compared to general hydrophobic coating films but it is difficult to remove oil stains attached to the surface of the article by wiping or washing with water.
  • the coating film is hydrophilic, oil stains can enter the minute irregularities on the surface or the hydrophilic groups can chemically bond with the oil, so the attached oil stains can be removed by wiping or washing with water. It can be difficult.
  • oil stains adhering to the surface of the article can be removed by using washing water containing a surfactant during wiping or washing with water, but the reaction such as oxidation proceeds and adheres as time passes. As a result, not only cleaning with water but also wiping off oil stains is often difficult. Therefore, there are cases where cleaning using an alkali or a solvent is required.
  • the oil stain decomposition technique using a photocatalyst is effective for adhesion of a very small amount of oil stain, a sufficient effect cannot be obtained for adhesion of a large amount of oil stain.
  • the present invention has been made in order to solve the above-described problems, and has an excellent effect of suppressing the adhesion of oil stains over a long period of time. Even if oil stains adhere, the oil is removed by wiping or washing with water. It is an object of the present invention to provide a coating method capable of forming a coating film from which dirt can be easily removed. In addition, the present invention provides a coated article having a coating film that has an excellent effect of suppressing the adhesion of oil stains over a long period of time and can easily remove oil stains by wiping or washing with water even when oil stains adhere. The purpose is to provide.
  • the present inventors have filled a predetermined water-soluble substance into the voids of a porous membrane of inorganic fine particles in which fluororesin particles are dispersed, thereby preventing oil stains. It has been found that the effect of suppressing adhesion is excellent for a long period of time, and even if oil stains adhere, a coating film that can be easily removed by wiping or washing with water is obtained.
  • the present invention includes a step of applying a coating composition containing inorganic fine particles and fluororesin particles in an aqueous medium to a material to be coated, and drying the coating composition on the material to be coated to thereby form the aqueous medium.
  • a coating composition containing inorganic fine particles and fluororesin particles in an aqueous medium to a material to be coated, and drying the coating composition on the material to be coated to thereby form the aqueous medium.
  • 1 or more types of water-soluble substances selected from the group consisting of a water-soluble surfactant and a water-soluble polymer
  • a step of forming a porous membrane of inorganic fine particles in which fluorine resin particles are dispersed and having voids Coating the porous film, and filling the voids in the porous film with the water-soluble substance selected from the group consisting of a water-soluble surfactant and a water-soluble polymer
  • the present invention also provides a porous film of inorganic fine particles having voids, fluororesin particles dispersed in the porous film, filled in the voids of the porous film, and having a water-soluble surfactant and a water-soluble surfactant.
  • a coated article comprising a coating film containing one or more water-soluble substances selected from the group consisting of polymers.
  • the effect of suppressing the adhesion of oil stains is excellent over a long period of time, and a coating that can form a coating film that can be easily removed by wiping or washing with water even if oil stains adhere A method can be provided.
  • the effect of suppressing the adhesion of oil stains is excellent over a long period of time, and the coating has a coating film that can easily remove oil stains by wiping or washing with water even if oil stains adhere Articles can be provided.
  • the coating method of the present invention comprises a step of applying a predetermined coating composition to a material to be coated, a step of drying the coating composition on the material to be coated to form a predetermined porous film, and a predetermined water-soluble substance. And applying a water-soluble substance to the voids of the porous film.
  • the coating composition used in the coating method of the present invention contains inorganic fine particles and fluororesin particles in an aqueous medium.
  • Inorganic fine particles are components that form a porous film.
  • the inorganic fine particles are not particularly limited as long as they can form a porous film.
  • metals such as silicon, magnesium, aluminum, titanium, cerium, tin, zinc, germanium, indium, and antimony are used. Fine particles, or fine particles of oxides or nitrides of these elements can be given. These fine particles can be used alone or in combination.
  • General binders may be added to the coating composition.
  • the binder contains inorganic fine particles, the binder can be used alone.
  • the average particle diameter of the inorganic fine particles is not particularly limited, but if it is 20 nm or less, a high-strength porous film can be obtained by drying or heating without adding a binder.
  • silica fine particles having an average particle diameter of 20 nm or less can obtain a porous film having a relatively high strength simply by drying at room temperature.
  • the “average particle diameter” in the present specification means an average value of particle diameters obtained by particle size distribution measurement by a laser diffraction / scattering method.
  • the content of the inorganic fine particles in the coating composition is not particularly limited, but is preferably 0.5% by mass or more and 60% by mass or less, more preferably 1% by mass or more and 40% by mass or less.
  • the mass of the inorganic fine particles varies depending on the dry state or the like, the mass after sufficiently evaporating the water by drying at 100 ° C. is defined as the mass of the inorganic fine particles (hereinafter, the mass of the inorganic fine particles is as described above. The same meaning).
  • the content of the inorganic fine particles is less than 0.5% by mass, the porous membrane becomes too thin, so the amount of water-soluble substance to be filled in the porous membrane is reduced, and the attached oil stains are wiped off or washed with water. It may not be able to be removed sufficiently.
  • the content of the inorganic fine particles exceeds 60% by mass, the porous film becomes too thick, so that defects such as cracks may occur in the porous film.
  • Fluorine resin particles are components that impart antifouling properties to the porous film of inorganic fine particles.
  • the fluororesin particles can be dispersed in the porous film of inorganic fine particles.
  • This porous film has a surface in which the fluororesin particles are scattered and exposed, and it is difficult for both hydrophilic substances and hydrophobic substances to adhere to the porous film.
  • adhesion of mist adhesion of dust or the like that promotes adhesion of oil mist can also be suppressed.
  • the fluororesin particles are scattered and exposed on the surface of the porous membrane, so that even when oil stains are attached, the oil stains can be easily removed when wiping or washing with water. It is also possible to suppress the reattachment of.
  • the fluororesin particles are also a component that imparts lubricity to the porous membrane, it is possible to further improve the oil dirt wiping property.
  • the fluororesin particles are not particularly limited.
  • PTFE polytetrafluoroethylene
  • FEP tetrafluoroethylene / hexafluoropropylene copolymer
  • PFA tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer
  • Coalescence FEVE (fluorinated ethylene / vinyl ether copolymer), ETFE (ethylene / tetrafluoroethylene copolymer), ECTFE (ethylene / chlorotrifluoroethylene copolymer), PVDF (polyvinylidene fluoride), PCTFE (poly)
  • examples thereof include particles formed from chlorotrifluoroethylene), PVF (polyvinyl fluoride), copolymers and mixtures thereof, or those obtained by mixing these resins with other resins.
  • the average particle diameter of the fluororesin particles is not particularly limited, but is preferably 0.05 ⁇ m or more and 200 ⁇ m or less, more preferably 0.1 ⁇ m or more and 80 ⁇ m or less.
  • the average particle size of the water-insoluble polymer particles is less than 0.05 ⁇ m, the hydrophobic portion in the porous membrane becomes small. As a result, the effect of suppressing the adhesion of oil stains may not be sufficient.
  • the average particle size of the water-insoluble polymer particles exceeds 200 ⁇ m, the surface unevenness of the porous film becomes large. As a result, dust, dust, and the like are easily caught, and the adhesion of oil stains may be promoted.
  • the content of the fluororesin particles in the coating composition is not particularly limited, but is preferably 5 parts by mass or more and 70 parts by mass or less, more preferably 10 parts by mass or more and 50 parts by mass with respect to 100 parts by mass of the inorganic fine particles. Or less. If the content of the fluororesin particles is less than 5 parts by mass, the effect of suppressing the adhesion of oil stains may not be sufficient. On the other hand, when the content of the fluororesin particles exceeds 70 parts by mass, oil stains may easily adhere to the coating film. Since the fluororesin particles are non-volatile components, the above content is the same as the content of the fluororesin particles in the coating film.
  • the coating composition is preferably produced by blending a dispersion in which fluororesin particles are dispersed in water by the effect of a hydrophilic group contained in the surfactant or the fluororesin particles into the coating composition.
  • the simplest method for producing the coating composition is to blend this dispersion into the coating composition.
  • the fluororesin particles are directly blended into the coating composition and self-emulsified or dispersed with a homogenizer or the like. It is also possible.
  • the coating composition contains an aqueous medium in addition to the inorganic fine particles and the fluororesin particles.
  • the aqueous medium is not particularly limited and is preferably water. It is also possible to use a mixture of water and a polar solvent compatible with water. Water is not particularly limited, but when the amount of mineral contained in the water is large, if the average particle size of inorganic fine particles such as silica is small or the concentration is high, the aggregation of inorganic fine particles May occur. Therefore, it is preferable to use deionized water. However, when the inorganic fine particles do not aggregate, tap water or the like can be used.
  • Polar solvents include alcohols such as ethanol, methanol, 2-propanol and butanol; ketones such as acetone, methyl ethyl ketone and diacetone alcohol; ethyl acetate, methyl acetate, cellosolve acetate, methyl lactate, ethyl lactate and butyl lactate Esters; ethers such as methyl cellosolve, cellosolve, butyl cellosolve and dioxane; glycols such as ethylene glycol, diethylene glycol and propylene glycol; diethylene glycol monomethyl ether, triethylene glycol monomethyl ether, propylene glycol monomethyl ether and 3-methoxy-3-methyl -1-glycol ethers such as butanol; ethylene glycol monomethyl ether acetate, propylene glycol mono Examples thereof include glycol esters such as methyl ether acetate, diethylene glycol monobutyl ether acetate, and diethylene glycol monoeth
  • Oil stains adhering to the article surface may adhere to the article surface over time due to air oxidation, photoreaction, etc., and may be difficult to remove by wiping or washing with water. Therefore, the oil film can be prevented from sticking to the article surface by adding an antioxidant to the coating film.
  • the term “antioxidant” is a component that prevents oil stains from being oxidized and denatured by heat or light in the presence of oxygen, and is a radical scavenger that captures radicals generated in the process of degeneration. And a peroxide decomposing agent that decomposes and stabilizes the peroxide formed in the oil stain, and an ultraviolet absorber that suppresses a photoreaction that causes an oxidation reaction.
  • the method for adding the antioxidant to the coating film is not particularly limited. For example, the antioxidant is added to the coating composition, or the antioxidant is added to the voids of the porous film after the porous film is formed. Can be filled.
  • the antioxidant is not particularly limited.
  • hydroquinone 2,6-di-t-butyl-p-cresol; dibutylhydroxytoluene (BHT); butylhydroxyanisole (BHA); 2,6- Di-t-butyl-4-ethylphenol, 2,2-methylene-bis- (4-methyl-6-t-butylphenol), n-octadecyl-3- (3,5-di-t-butyl-4- Hydroxyphenyl) propionate, 1,1,3-tris- (2-methyl-4-hydroxy-5-tert-butylphenyl) butane, and tris (3,5-di-tert-butyl-4-hydroxybenzyl) isocyanate
  • Phenol compounds such as nurate; sulfur compounds such as dilauryl thiodipropionate; phosphorus compounds such as triphenyl phosphite; phenothiazi Ascorbic acid; ascorbate; ascorbic acid stea
  • the content thereof is not particularly limited, but is preferably 0.05 parts by mass or more and 30 parts by mass or less with respect to 100 parts by mass of the inorganic fine particles. Preferably they are 0.5 mass part or more and 15 mass parts or less.
  • the content of the antioxidant is less than 0.05 parts by mass, the effect of including the antioxidant may not be sufficiently obtained.
  • content of antioxidant exceeds 30 mass parts, the intensity
  • the coating composition can contain other components for imparting desired characteristics.
  • the other components are not particularly limited, and various components that can be generally blended in the coating composition can be used.
  • surfactants for improving coatability, antibacterial and antifungal agents for suppressing the generation of bacteria and mold during storage, and adjusting the viscosity of the composition organic viscosity modifiers such as water-soluble polymers and inorganic viscosity modifiers such as montmorillonite, organic solvents and coatings intended to adjust the stability, coating properties and drying properties of coating compositions Examples thereof include a dye for the purpose of coloring the film.
  • the content of other components in the coating composition varies depending on the type of the other components, it is necessary to appropriately set according to the other components to be used.
  • the content of other components in the coating composition is preferably 10 parts by mass or less, more preferably 5 parts by mass or less, with respect to 100 parts by mass of the inorganic fine particles.
  • content of another component exceeds 10 mass parts, the intensity
  • it does not specifically limit as a compounding method of another component, It can mix
  • other components may be blended and mixed in the coating composition.
  • the method for applying the coating composition to the material to be coated is not particularly limited, and can be applied using, for example, a dipping method, a brush, or various coaters.
  • the coating composition can be applied to the material to be coated.
  • the coating composition can be applied to the material to be coated without any defects.
  • the coating composition in order to obtain a porous film with less unevenness, after the coating composition is applied to the material to be coated, the excess coating composition may be removed by an air stream.
  • unevenness of the porous film due to the coating composition flowing down can be prevented by slowly pulling up the material to be coated.
  • the coating composition is applied to the material to be coated by the dipping method, after the coating composition is applied to the material to be coated, the extra material is removed by shaking off the material to be coated. You can also
  • inorganic fine particles As a drying method of the coating composition apply
  • inorganic fine particles when inorganic fine particles are solidified at room temperature, they can be dried at room temperature. Conversely, when the inorganic fine particles are difficult to solidify at room temperature, it is necessary to heat and dry. Even when the inorganic fine particles are solidified at room temperature, when drying is performed at room temperature (when heating is not performed), it may take a certain time to solidify the inorganic fine particles. Therefore, it may be heated and dried from the viewpoint of shortening the time required for forming the porous film.
  • the heating temperature is preferably 40 ° C. or higher and 250 ° C. or lower, more preferably 45 ° C. or higher and 200 ° C. or lower. If the heating temperature is less than 40 ° C., the inorganic fine particles may not be sufficiently solidified. On the other hand, when the heating temperature exceeds 250 ° C., the fluororesin particles may be altered.
  • the heating time is preferably 10 minutes or longer, more preferably 30 minutes or longer. If the heating time is less than 10 minutes, the inorganic fine particles may not be sufficiently solidified. However, if the material to be coated is a material having low thermal conductivity such as resin or a thin steel plate having a thickness of 0.2 mm or less, the inorganic fine particles are solidified by heating for 30 seconds or more. May get.
  • the fluororesin particles are uniformly dispersed and have voids.
  • the porous membrane has a porosity of preferably 5% or more and 70% or less, more preferably 10% or more and 60% or less in order to sufficiently fill the water-soluble substance.
  • porosity preferably 5% or more and 70% or less, more preferably 10% or more and 60% or less in order to sufficiently fill the water-soluble substance.
  • the porosity is less than 5%, the water-soluble substance filled in the porous membrane decreases, and the attached oil stains may not be sufficiently removed by wiping or washing with water.
  • the porosity exceeds 70%, the strength of the porous film may be lowered.
  • the porous membrane has a thickness of preferably 0.1 ⁇ m or more and 250 ⁇ m or less in order to sufficiently fill the water-soluble substance.
  • the film thickness is less than 0.1 ⁇ m, the water-soluble substance to be filled decreases, and the attached oil stains may not be sufficiently removed by wiping or washing with water.
  • the film thickness exceeds 250 ⁇ m, the porous film may be too thick and the porous film may be peeled off from the material to be coated.
  • the water-soluble substance is used to fill the voids in the porous membrane.
  • a coating film is formed using a coating composition containing a water-soluble substance, sufficient film strength cannot be obtained.
  • a water-soluble substance is applied to the porous film. Water-soluble substances can be filled in the voids of the membrane.
  • the water-soluble substance is a water-soluble polymer or a water-soluble surfactant having characteristics that it does not dissolve in oil stains and does not have deliquescence. These can be used alone or in combination.
  • a substance that dissolves in oil stains is not preferable because the oil stains diffuse into the interior when the oil stains adhere.
  • a substance having deliquescence is not preferable because it may flow out as an aqueous solution during use of the coated article on which the coating film is formed.
  • the water-soluble substance preferably has a characteristic of low crystallinity. This is because it is difficult to uniformly fill the voids of the porous film when the substance has high crystallinity. However, even if the substance has high crystallinity, it may be difficult to crystallize in the voids of the porous film. In such a case, a substance having high crystallinity can also be used.
  • the water-soluble substance has a hydrophilic group and has a boiling point or decomposition point of preferably 150 ° C. or higher, more preferably 200 ° C. or higher.
  • a boiling point or decomposition point preferably 150 ° C. or higher, more preferably 200 ° C. or higher.
  • the water-soluble substance is filled in the voids of the porous membrane, but part of it covers the surface of the porous membrane.
  • the water-soluble substance filled in the voids of the porous film has an effect of suppressing the oil dirt from entering the porous film when the oil dirt adheres.
  • the water-soluble substance covering the surface of the porous membrane has an effect of inhibiting oil stains from binding to the surface of the porous membrane.
  • the hydrophilicity of the water-soluble substance has an effect of suppressing the adhesion of oil stains such as oil mist.
  • the water-soluble polymer When a water-soluble polymer is used among the water-soluble substances, the water-soluble polymer is dissolved by swelling and slowly diffusing at the time of washing with water. Therefore, the water-soluble polymer has an effect of lifting and removing oil stains and an effect of suppressing reattachment of the peeled oil stains, and is excellent in oil stain removal by water washing.
  • the water-soluble polymer when the water-soluble polymer is filled in the voids of the porous membrane, the coating of the porous membrane surface is rarely incomplete due to crystallization or the like. Filling can be performed efficiently.
  • the water-soluble polymer having the above properties examples include polyvinyl alcohol, polyvinyl pyrrolidone, polyethylene glycol, polyvinyl acetate, polyacrylic acid and salts thereof, polyacrylamide and copolymers thereof, and mixtures thereof.
  • the water-soluble polymer preferably has an average degree of polymerization of 50 or more. If the average degree of polymerization of the water-soluble polymer is less than 50, the properties as a polymer may not be sufficient, and good detergency may be difficult to obtain.
  • a crosslinking agent with a water-soluble polymer.
  • a crosslinking agent together with the water-soluble polymer, the water-solubility of the water-soluble polymer is lowered, and the outflow rate of the water-soluble polymer during water washing can be suppressed.
  • the effect of suppressing the adhesion of oil stains and the effect of removing oil stains are not easily lowered. It does not specifically limit as a crosslinking agent, What is necessary is just to select according to the kind of water-soluble polymer to be used.
  • cross-linking agents examples include polyvalent metal compounds such as zirconium carbonate and aluminum sulfate; adipic acid dihydrazide; glyoxal and reaction products thereof; compounds having cross-linkable functional groups such as oxazoline group, carbodiimide group, isocyanate group, and aziridine group Is mentioned.
  • the compounding quantity of a crosslinking agent is 5 mass parts or less with respect to 100 mass parts of water-soluble polymers.
  • the amount of the crosslinking agent exceeds 5 parts by mass, the crosslinking reaction between the water-soluble polymer and the crosslinking agent proceeds excessively. As a result, at the time of washing with water, the water-soluble polymer hardly dissolves, and the effect of suppressing the adhesion of oil stains and the effect of removing oil stains may be reduced.
  • the diffusion of the water-soluble substance into the water becomes faster, so the amount of the water-soluble substance that diffuses into the washing water while floating the oil stains in contact with the washing water. Will increase.
  • the effect of improving the cleaning property may not be obtained with a low-molecular water-soluble substance.
  • good detergency can be obtained if it is a water-soluble surfactant. This is because the water-soluble surfactant has an effect of adsorbing on the surface of the removed oil and suppressing the reattachment of the oil.
  • the water-soluble surfactant since the water-soluble surfactant has an effect of reducing the surface tension of water, water drainage is improved during water washing. As a result, it is possible to suppress excessive outflow of water-soluble substances caused by contact with water for a long time. In addition, the water-soluble surfactant is difficult to crystallize and has good filling properties into the voids of the porous membrane.
  • water-soluble surfactants examples include anionic surfactants such as fatty acid sodium, monoalkyl sulfate, alkyl polyoxyethylene sulfate, alkylbenzene sulfonate, and monoalkyl phosphate; alkyltrimethylammonium salt, dialkyldimethylammonium salt Salts, and cationic surfactants such as alkylbenzyldimethylammonium salts; amphoteric surfactants such as alkyldimethylamine oxide and alkylcarboxybetaine; polyoxyethylene alkyl ether, polyoxyethylene polyoxypropylene graft polymer, fatty acid sorbitan Nonionic surfactants such as esters, alkyl polyglucosides, fatty acid diethanolamides, and alkyl monoglyceryl ethers may be mentioned.
  • anionic surfactants such as fatty acid sodium, monoalkyl sulfate, alkyl polyoxyethylene sulfate, alkylbenzene
  • the HLB value of the surfactant is preferably 6 or more, more preferably 8 or more.
  • the surfactant has low hydrophilicity (low water solubility), and when oil stains adhere, good detergency can be obtained by dissolving in oil. It may be difficult.
  • the method for applying the water-soluble substance to the porous film is not particularly limited, and the spray method, dipping method, brush, various coaters, etc. are used in the same manner as the method for applying the coating composition to the coating material.
  • the water-soluble substance is liquid or pasty, the water-soluble substance may be directly applied to the porous film or the porous film may be directly immersed in the water-soluble substance.
  • the coating film formed by the coating method of the present invention when applying to a porous film formed in a difficult part such as a complicated shape or a wall surface or a ceiling surface, bubbles and particles may be added to adjust the fluidity of the coating solution.
  • the coating film formed by the coating method of the present invention is wiped off or washed with water many times to remove oil stains, water-soluble substances in the coating film flow out, The adhesion prevention effect may be reduced. Therefore, the coating film can be regenerated by filling the voids in the coating film with a water-soluble substance in the same manner as in the above method. When a water-soluble substance is applied to the coating film after wiping or washing with water, the coating film can be left wet with water.
  • the method for drying the water-soluble substance applied to the coating film may be appropriately set according to the type of the water-soluble substance, for example, it may be dried at room temperature, or heated and dried if necessary. .
  • the amount of the water-soluble substance in the coating film is preferably 5 parts by mass or more and 250 parts by mass, more preferably 20 parts by mass or more and 200 parts by mass with respect to 100 parts by mass of the inorganic fine particles, from the viewpoint of ensuring detergency against oil stains. Or less. If the filling amount of the water-soluble substance is less than 5 parts by mass, a sufficient removal effect of oil stains may not be obtained. On the other hand, if the filling amount of the water-soluble substance is larger than the amount that can be filled in the voids of the coating film, a large amount of water-soluble substance is present on the surface of the coating film, and the entire surface of the coating film is water-soluble substance. May be covered.
  • the filling amount of the water-soluble substance in the coating film is preferably 5 parts by mass or more and 120 parts by mass or less, more preferably 100 parts by mass or less with respect to 100 parts by mass of the inorganic fine particles, in the case of ensuring the antifouling property as well as the detergency against oil stains 20 parts by mass or more and 100 parts by mass or less.
  • the filling amount of the water-soluble substance is less than 5 parts by mass, a sufficient removal effect of oil stains may not be obtained.
  • the filling amount of the water-soluble substance exceeds 120 parts by mass, the fluororesin particles and the like are covered with the water-soluble substance, and the desired antifouling property may not be obtained.
  • an antioxidant can be applied together with the water-soluble substance from the viewpoint of preventing oil stains from sticking to the article surface.
  • the antioxidant when it is water-soluble, it can be applied to the porous film as a mixture of a water-soluble substance and an antioxidant, so that these substances are applied to the porous film separately. Also, the number of steps required for the coating method can be reduced.
  • coating separately what is necessary is just to apply
  • the method for drying the water-soluble substance applied to the porous membrane is not particularly limited, and it may be dried by leaving it at room temperature. Alternatively, heating and drying can be performed as necessary.
  • the coating film formed by the above coating method includes a porous film of inorganic fine particles having voids, fluororesin particles dispersed in the porous film, and a predetermined water-soluble substance filled in the voids of the porous film (As well as any antioxidant). Since this coating film is mainly composed of a porous film of inorganic fine particles and the pores of the porous film are filled with a water-soluble substance, the film as a whole is hydrophilic and hardly adheres to oil. In addition, the porous membrane has voids, but since these voids are filled with water-soluble substances, it is possible to prevent oil stains from entering the voids. Removal is not difficult.
  • the water-soluble substance dissolves during the water washing, it is possible to promote the removal of attached oil stains.
  • the oil dirt is removed from the gap by the volume expansion of the water-soluble substance when the water-soluble substance dissolves. Can do.
  • the coated article of the present invention has a coating film formed by the coating method described above. That is, the coated article of the present invention includes a porous film of inorganic fine particles having voids, fluororesin particles dispersed in the porous film, and a predetermined water-soluble substance filled in the voids of the porous film. It has a coating film.
  • the article on which the coating film is formed is not particularly limited, and can be used for a wide range of articles. For example, kitchen utensils (for example, a range hood, a gas range, etc.), an air conditioner, factory equipment, etc. in which adhesion of oil dirt becomes a problem are mentioned as articles.
  • Example 1 Deionize colloidal silica containing silica fine particles (inorganic fine particles) with an average particle size of 85 nm, colloidal silica containing silica fine particles (inorganic fine particles) with an average particle size of 5 nm, and PTFE particles (fluororesin particles) with an average particle size of 0.3 ⁇ m After adding to water and mixing, a coating composition was prepared by further adding and mixing polyoxyethylene lauryl ether (surfactant).
  • surfactant polyoxyethylene lauryl ether
  • the content of silica fine particles having an average particle size of 85 nm is 4% by mass
  • the content of silica fine particles having an average particle size of 5 nm is 1% by mass
  • the content of surfactant is 0.05% by mass. It was.
  • the content of PTFE particles was 6 to 7 parts by mass with respect to 100 parts by mass of silica fine particles.
  • a stainless steel plate was immersed in the obtained coating composition, slowly pulled up, and then dried at 100 ° C. for 30 minutes to form a porous film (film thickness: 0.8 ⁇ m).
  • the stainless steel plate on which this porous film was formed was immersed in an aqueous solution containing 2% by mass of polyvinylpyrrolidone.
  • the stainless steel plate was pulled up from the aqueous solution, the excess aqueous solution was shaken off, and then dried at room temperature, thereby producing a coating film filled with polyvinylpyrrolidone.
  • the content of polyvinylpyrrolidone in the coating film was 30 parts by mass with respect to 100 parts by mass of the silica fine particles.
  • Example 2 to 4 a stainless steel plate on which a coating film was formed in the same manner as in Example 1 except that the thickness of the porous film and the type of water-soluble substance filled in the voids of the porous film were changed. was made. The thickness of the porous film was adjusted by increasing or decreasing the number of coating compositions applied to the stainless steel plate.
  • polyethylene glycol degree of polymerization: 4,000
  • a stainless steel plate on which a porous film (film thickness: 1.0 ⁇ m) is formed is an aqueous solution containing 2% by mass of polyethylene glycol. Then, the coating film was prepared by drying at room temperature.
  • the content of polyethylene glycol in the coating film was 45 parts by mass with respect to 100 parts by mass of silica fine particles.
  • sodium lauryl sulfate was used as a water-soluble substance, and a stainless steel plate on which a porous film (film thickness: 0.5 ⁇ m) was formed was immersed in an aqueous solution containing 2% by mass of sodium lauryl sulfate, and then room temperature.
  • a coating film was prepared by drying with The content of sodium lauryl sulfate in the coating film was 32 parts by mass with respect to 100 parts by mass of silica fine particles.
  • Example 4 a stainless steel plate on which a porous film (film thickness: 0.8 ⁇ m) was formed using a polyoxyethylene-polyoxypropylene block polymer (Adeka Pluronic L-64, ADEKA Corporation) as a water-soluble substance was used. After immersing in an aqueous solution containing 2% by mass of polyoxyethylene-polyoxypropylene block polymer, a coating film was prepared by drying at room temperature. The content of the polyoxyethylene-polyoxypropylene block polymer in the coating film was 35 parts by mass with respect to 100 parts by mass of the silica fine particles.
  • a polyoxyethylene-polyoxypropylene block polymer Adeka Pluronic L-64, ADEKA Corporation
  • Example 5 Alumina powder (inorganic fine particles) having an average particle size of 0.5 ⁇ m, ethyl silicate 48 (inorganic fine particles, Colcoat Co., Ltd.), PTFE particles (fluorine resin particles) having an average particle size of 0.3 ⁇ m, phosphoric acid, and polyethylene glycol lauryl ether (A coating composition was prepared by adding (surfactant) to deionized water and mixing.
  • the content of alumina particles having an average particle size of 0.5 ⁇ m is 5 mass%
  • the content of ethyl silicate 48 is 1 mass%
  • the content of phosphoric acid is 0.2 mass%
  • the surface activity was 0.05% by mass.
  • the content of PTFE particles was 7 parts by mass with respect to 100 parts by mass of the inorganic fine particles.
  • the obtained coating composition was spray-coated on a stainless steel plate and dried at 150 ° C. for 30 minutes to form a porous film (film thickness: 2.1 ⁇ m).
  • the stainless steel plate on which this porous film was formed was immersed in an aqueous solution containing 2% by mass of polyvinylpyrrolidone. Next, the stainless steel plate was pulled up from the aqueous solution, the excess aqueous solution was shaken off, and then dried at room temperature, thereby producing a coating film filled with polyvinylpyrrolidone.
  • the content of polyvinylpyrrolidone in the coating film was 50 parts by mass with respect to 100 parts by mass of the inorganic fine particles.
  • Example 6 a stainless steel plate on which a coating film was formed in the same manner as in Example 5 except that the thickness of the porous film and the type of water-soluble substance filled in the voids of the porous film were changed. was made. The thickness of the porous film was adjusted by increasing or decreasing the number of coating compositions applied to the stainless steel plate.
  • a sorbitan lauryl ester (Adecatol S-20, ADEKA Co., Ltd.) was used as a water-soluble substance, and a stainless steel plate on which a porous film (film thickness: 3.0 ⁇ m) was formed was 2% by mass of sorbitan lauryl.
  • Example 7 After being immersed in an aqueous solution containing an ester, the coating film was produced by drying at room temperature. The content of sorbitan lauryl ester in the coating film was 62 parts by mass with respect to 100 parts by mass of the inorganic fine particles.
  • Example 7 a stainless steel plate on which a porous film (film thickness: 3.2 ⁇ m) was formed using a polyoxyethylene-polyoxypropylene block polymer (Adeka Pluronic L-64, ADEKA Corporation) as a water-soluble substance was used. After immersing in an aqueous solution containing 2% by mass of polyoxyethylene-polyoxypropylene block polymer, a coating film was prepared by drying at room temperature. The content of the polyoxyethylene-polyoxypropylene block polymer in the coating film was 58 parts by mass with respect to 100 parts by mass of the inorganic fine particles.
  • Comparative Example 1 a coating film made only of inorganic fine particles and not filled with a water-soluble substance was produced. After colloidal silica containing silica fine particles (inorganic fine particles) with an average particle size of 85 nm and colloidal silica containing silica fine particles (inorganic fine particles) with an average particle size of 5 nm are added to deionized water and mixed, polyoxyethylene lauryl ether (interface) A coating composition was prepared by further adding and mixing the activator).
  • the content of silica fine particles having an average particle diameter of 85 nm was 4 mass%
  • the content of silica fine particles having an average particle diameter of 5 nm was 1 mass%
  • the content of the surfactant was 0.05 mass%.
  • a stainless steel plate was immersed in the obtained coating composition, slowly pulled up, and then dried at 100 ° C. for 30 minutes to prepare a coating film (film thickness: 1.0 ⁇ m).
  • Comparative Example 2 In Comparative Example 2, a coating film made only of inorganic fine particles and filled with a water-soluble substance was produced.
  • a stainless steel plate on which a porous film (film thickness: 0.5 ⁇ m) was formed by the same procedure as in Comparative Example 1 was immersed in an aqueous solution containing 2% by mass of polyvinylpyrrolidone. Next, the stainless steel plate was pulled up from the aqueous solution, the excess aqueous solution was shaken off, and then dried at room temperature, thereby producing a coating film filled with polyvinylpyrrolidone.
  • the content of polyvinylpyrrolidone in the coating film was 30 parts by mass with respect to 100 parts by mass of the silica fine particles.
  • Comparative Example 3 a coating film made of inorganic fine particles and fluororesin particles and not filled with a water-soluble substance was produced. Deionize colloidal silica containing silica fine particles (inorganic fine particles) with an average particle size of 85 nm, colloidal silica containing silica fine particles (inorganic fine particles) with an average particle size of 5 nm, and PTFE particles (fluororesin particles) with an average particle size of 0.3 ⁇ m After adding to water and mixing, a coating composition was prepared by further adding and mixing polyoxyethylene lauryl ether (surfactant).
  • surfactant polyoxyethylene lauryl ether
  • the content of silica fine particles having an average particle size of 85 nm is 4% by mass
  • the content of silica fine particles having an average particle size of 5 nm is 1% by mass
  • the content of surfactant is 0.05% by mass. It was.
  • the content of PTFE particles was 9 parts by mass with respect to 100 parts by mass of silica fine particles.
  • a stainless steel plate was immersed in the obtained coating composition, slowly pulled up, and then dried at 100 ° C. for 30 minutes to prepare a coating film (film thickness: 0.8 ⁇ m).
  • the stainless steel plates of Examples 1 to 7 and Comparative Examples 1 to 3 were exposed to oil smoke generated by heating vegetable oil with a hot plate for 5 minutes, thereby attaching oil stains.
  • the adhered oil stain was dissolved in hexane and collected, and quantified by liquid chromatography.
  • the stainless steel plate prepared in the same manner and attached with oil stains was washed by immersing it in water at 40 ° C. for 30 seconds, and then dissolved and collected in hexane in the same manner, and quantified by liquid chromatography. The results are shown in Table 1.
  • Example 8 A stainless steel plate on which the same porous film as in Example 4 was formed was immersed in an aqueous solution containing 2% by mass of polyvinylpyrrolidone and 0.1% by mass of dibutylhydroxytoluene (antioxidant). Next, the stainless steel plate was pulled up from the aqueous solution, the excess aqueous solution was shaken off, and then dried at room temperature to prepare a coating film filled with polyvinylpyrrolidone and dibutylhydroxytoluene.
  • the content of polyvinylpyrrolidone was 30 parts by mass with respect to 100 parts by mass of silica fine particles, and the content of dibutylhydroxytoluene was 1.5 parts by mass with respect to 100 parts by mass of silica fine particles.
  • Example 9 to 11 stainless steel plates on which a coating film was formed were produced in the same manner as in Example 8 except that the type of antioxidant was changed.
  • a tocopherol was used as an antioxidant, and a stainless steel plate on which a porous film was formed was immersed in an aqueous solution containing 2% by mass polyvinylpyrrolidone and 0.2% by mass tocopherol, and then dried at room temperature.
  • a coating film was prepared.
  • the content of polyvinylpyrrolidone was 30 parts by mass with respect to 100 parts by mass of silica fine particles
  • the content of tocopherol was 3 parts by mass with respect to 100 parts by mass of silica fine particles.
  • Example 10 by using hydroquinone as an antioxidant and immersing a stainless steel plate on which a porous film was formed in an aqueous solution containing 2% by mass of polyvinylpyrrolidone and 1% by mass of hydroquinone, it was dried at room temperature. A coating film was prepared.
  • the content of polyvinylpyrrolidone was 30 parts by mass with respect to 100 parts by mass of silica fine particles
  • the content of hydroquinone was 15 parts by mass with respect to 100 parts by mass of silica fine particles.
  • Example 11 sodium erythorbate was used as an antioxidant and a stainless steel plate on which a porous film was formed was immersed in an aqueous solution containing 2% by mass polyvinylpyrrolidone and 2% by mass sodium erythorbate, and then at room temperature.
  • a coating film was prepared by drying.
  • the content of polyvinylpyrrolidone was 20 parts by mass with respect to 100 parts by mass of silica fine particles
  • the content of sodium erythorbate was 20 parts by mass with respect to 100 parts by mass of silica fine particles.
  • the stainless steel plates of Examples 4 and 8 to 11 were placed inside the kitchen exhaust duct and left for half a year.
  • the stainless steel plate was removed from the exhaust duct and washed with tap water, and then the oil stain was collected by dissolving in hexane and quantified by liquid chromatography.
  • cleaning with a tap water was also calculated
  • Example 12 Deionize colloidal silica containing silica fine particles (inorganic fine particles) with an average particle size of 85 nm, colloidal silica containing silica fine particles (inorganic fine particles) with an average particle size of 5 nm, and PTFE particles (fluororesin particles) with an average particle size of 0.3 ⁇ m
  • a coating composition was prepared by further adding and mixing polyoxyethylene lauryl ether (surfactant).
  • the content of silica fine particles having an average particle diameter of 85 nm is 3.5 mass%
  • the content of silica fine particles having an average particle diameter of 5 nm is 1.2 mass%
  • the content of the surfactant is 0.
  • the content of PTFE particles was 15 parts by mass with respect to 100 parts by mass of silica fine particles.
  • a stainless steel plate was immersed in the obtained coating composition, slowly pulled up, and then dried at 100 ° C. for 30 minutes to form a porous film (film thickness: 1.5 ⁇ m).
  • the stainless steel plate on which the porous film was formed was immersed in an aqueous solution containing 1% by mass of polyvinyl alcohol (Goseifamer Z-200 manufactured by Nippon Synthetic Chemical Industry Co., Ltd.). Next, the stainless steel plate was pulled up from the aqueous solution, the excess aqueous solution was shaken off, and then dried at room temperature, thereby producing a coating film filled with polyvinyl alcohol.
  • the content of polyvinyl alcohol in the coating film was 35 parts by mass with respect to 100 parts by mass of silica fine particles.
  • Example 13 a stainless steel plate on which a coating film was formed was produced in the same manner as in Example 12 except that an aqueous solution using adipic acid dihydrazide together with polyvinyl alcohol was used.
  • the compounding quantity of the adipic acid dihydrazide in aqueous solution was 1.5 mass parts with respect to 100 mass parts of polyvinyl alcohol.
  • Comparative Example 4 a stainless steel plate on which a coating film was formed was produced in the same manner as in Example 12 except that sorbitol, which is a low-molecular water-soluble substance, was used instead of polyvinyl alcohol.
  • sorbitol which is a low-molecular water-soluble substance
  • the content of sorbitol in the aqueous solution was 5% by mass.
  • the stainless steel plates of Examples 12 to 13 and Comparative Example 4 were exposed to oil smoke generated by heating vegetable oil with a hot plate for 5 minutes, thereby attaching oil stains.
  • the adhered oil stain was dissolved in hexane and collected, and quantified by liquid chromatography.
  • a stainless steel plate prepared in the same manner and attached with oil stains was washed by pouring water at about 40 ° C. for about 10 seconds, and then dissolved and collected in hexane in the same manner, and quantified by liquid chromatography. .
  • This oil dirt adhesion and washing cycle was repeated twice, three times and four times, and the amount of oil adhesion after each cycle was evaluated. The results are shown in Table 3.
  • Example 6 The stainless steel plate was exposed to oil smoke generated by heating vegetable oil on a hot plate for 5 minutes to attach oil stains.
  • the adhered oil stain was dissolved in hexane and collected, and quantified by liquid chromatography.
  • a stainless steel plate prepared in the same manner and having oil stains attached thereto is washed with an aqueous solution containing 2% by mass of sorbitan lauryl ester, and the oil stains attached are quantified by liquid chromatography in the same manner as described above. did.
  • the above oil contamination and washing cycle was repeated twice, three times, and four times, and the amount of oil adhered after each cycle was evaluated. The results are shown in Table 4.
  • Comparative Example 5 a coating film made of inorganic fine particles and fluororesin particles and not filled with a water-soluble substance was produced.
  • a coating film made of a porous film was formed on a stainless steel plate in the same manner as in Example 12 except that the porous film was not filled with polyvinyl alcohol.
  • the coating method of the present invention has an excellent effect of suppressing the adhesion of oil stains over a long period of time, and even if oil stains adhere, the oil stains can be easily removed by wiping or washing with water. Possible coating films can be formed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Paints Or Removers (AREA)

Abstract

 本発明は、水性媒体中に無機微粒子とフッ素樹脂粒子とを含有するコーティング組成物を被コーティング材に塗布する工程と、前記被コーティング材上の前記コーティング組成物を乾燥させて前記水性媒体を除去し、フッ素樹脂粒子が分散され且つ空隙を有する、無機微粒子の多孔質膜を形成する工程と、水溶性界面活性剤及び水溶性ポリマーからなる群から選択される1種以上の水溶性物質を前記多孔質膜に塗布し、前記多孔質膜の空隙に前記水溶性物質を充填する工程とを含むことを特徴とするコーティング方法である。このコーティング方法によれば、油汚れの付着を抑制する効果が長期間に渡って優れると共に、油汚れが付着しても拭き取りや水洗浄によって油汚れを容易に除去可能なコーティング膜を形成することができる。

Description

コーティング方法及びコーティング物品
 本発明は、コーティング方法及びコーティング物品に関するものであり、特に、油汚れの付着を抑制する効果が長期間に渡って優れると共に油汚れに対して拭き取りや水洗が可能なコーティング膜を与えるコーティング方法、及び当該コーティング膜を有するコーティング物品に関するものである。
 厨房や工場等では、様々な物品の表面にオイルミスト等の付着による油汚れが生じるため、物品の美観を損ねたり、臭気等の衛生上の問題が発生したりすることがある。そのため、近年、物品表面の油汚れの付着を抑制するコーティング技術の開発が盛んに行われている。具体的には、ポリエステル樹脂及びブロックイソシアネートを含む粉体塗料に水酸基含有シリコーン系添加剤及び/又は水酸基含有フッ素系添加剤を配合したコーティング組成物を用いて物品表面にコーティング膜を形成する方法(例えば、特許文献1参照)や、塗料改質剤として特定のフルオロシリコーン化合物を塗料に配合したコーティング組成物を用いて物品表面にコーティング膜を形成する方法(例えば、特許文献2参照)が提案されている。また、水ガラスと水ガラス用硬化剤と骨材とを含む下塗り用塗料を物品表面に塗布して下塗り層を形成した後、水ガラスとシリカ微粒子とを含み、水ガラス用硬化剤を含まない上塗り塗料を下塗り層に塗布して上塗り層を形成して焼成する方法(例えば、特許文献3参照)や、所定の撥水性基及び親水性基を分子内に複数有するフッ素系オリゴマーを含有する樹脂組成物を用いて物品表面にコーティング膜を形成する方法(例えば、特許文献4参照)が提案されている。さらに、物品表面に付着した油汚れを光触媒により分解する方法も提案されている(例えば、特許文献5参照)。
特開平9-53026号公報 特開平8-60030号公報 特開2006-152221号公報 特開2009-127015号公報 特開平9-4900号公報
 しかしながら、従来のコーティング技術は、油汚れの付着を抑制する効果を与え得るものの、付着した油汚れを十分に除去することができなかったり、長期間に渡って当該効果を維持することが困難であったりするという問題があった。
 また、一般的に、油汚れの付着は、フッ素樹脂等のような疎水(撥水)撥油性のコーティング膜であっても、親水性樹脂等のような親水撥油性のコーティング膜であっても生じるが、コーティング膜が疎水性である場合には、油がなじみ易いため、油汚れがより一層付着し易いと共に、付着した油汚れを拭き取りや水洗浄によって除去することも難しい。なお、コーティング膜がフッ素樹脂等である場合には、一般的な疎水性のコーティング膜に比べて油汚れの付着が少ないが、物品表面に付着した油汚れを拭き取りや水洗浄によって除去し難い点は一般的な疎水性のコーティング膜と同じである。また、コーティング膜が親水性である場合は、表面の微小凹凸に油汚れが入り込んだり、親水基が油と化学結合を起こしたりするため、付着した油汚れを拭き取りや水洗浄によって除去することが難しい場合がある。
 さらに、物品表面に付着した油汚れは、拭き取りや水洗浄の際に界面活性剤を含む洗浄水を用いることで除去することができるが、時間の経過と共に酸化等の反応が進んで固着してしまうと、水洗浄だけでなく油汚れの拭き取り自体も難しくなることが多い。そのため、アルカリや溶剤等を用いた洗浄が必要になる場合もある。
 なお、光触媒による油汚れの分解技術については、極微量の油汚れの付着に対しては効果があるが、多量の油汚れの付着に対しては十分な効果が得られない。
 本発明は、上記のような問題を解決するためになされたものであり、油汚れの付着を抑制する効果が長期間に渡って優れると共に、油汚れが付着しても拭き取りや水洗浄によって油汚れを容易に除去可能なコーティング膜を形成し得るコーティング方法を提供することを目的とする。
 また、本発明は、油汚れの付着を抑制する効果が長期間に渡って優れると共に、油汚れが付着しても拭き取りや水洗浄によって油汚れを容易に除去可能なコーティング膜を有するコーティング物品を提供することを目的とする。
 本発明者等は上記のような問題を解決すべく鋭意研究した結果、フッ素樹脂粒子が分散された無機微粒子の多孔質膜の空隙に、所定の水溶性物質を充填させることにより、油汚れの付着を抑制する効果が長期間に渡って優れると共に、油汚れが付着しても拭き取りや水洗浄によって油汚れを容易に除去可能なコーティング膜が得られることを見出した。
 すなわち、本発明は、水性媒体中に無機微粒子とフッ素樹脂粒子とを含有するコーティング組成物を被コーティング材に塗布する工程と、前記被コーティング材上の前記コーティング組成物を乾燥させて前記水性媒体を除去し、フッ素樹脂粒子が分散され且つ空隙を有する、無機微粒子の多孔質膜を形成する工程と、水溶性界面活性剤及び水溶性ポリマーからなる群から選択される1種以上の水溶性物質を前記多孔質膜に塗布し、前記多孔質膜の空隙に前記水溶性物質を充填する工程とを含むことを特徴とするコーティング方法である。
 また、本発明は、空隙を有する、無機微粒子の多孔質膜と、前記多孔膜中に分散されたフッ素樹脂粒子と、前記多孔質膜の空隙に充填され、且つ水溶性界面活性剤及び水溶性ポリマーからなる群から選択される1種以上の水溶性物質とを含むコーティング膜を有することを特徴とするコーティング物品である。
 本発明によれば、油汚れの付着を抑制する効果が長期間に渡って優れると共に、油汚れが付着しても拭き取りや水洗浄によって油汚れを容易に除去可能なコーティング膜を形成し得るコーティング方法を提供することができる。また、本発明によれば、油汚れの付着を抑制する効果が長期間に渡って優れると共に、油汚れが付着しても拭き取りや水洗浄によって油汚れを容易に除去可能なコーティング膜を有するコーティング物品を提供することができる。
 実施の形態1.
 本発明のコーティング方法は、所定のコーティング組成物を被コーティング材に塗布する工程と、被コーティング材上のコーティング組成物を乾燥させて所定の多孔質膜を形成する工程と、所定の水溶性物質を多孔質膜に塗布して多孔質膜の空隙に水溶性物質を充填する工程とを含む。
 本発明のコーティング方法において使用されるコーティング組成物は、水性媒体中に無機微粒子とフッ素樹脂粒子とを含有する。
 無機微粒子は、多孔質膜を形成する成分である。無機微粒子としては、多孔質膜を形成し得るものであれば特に限定されることはなく、例えば、ケイ素、マグネシウム、アルミニウム、チタン、セリウム、スズ、亜鉛、ゲルマニウム、インジウム、アンチモン等の元素の金属微粒子、又はこれらの元素の酸化物や窒化物の微粒子が挙げられる。これらの微粒子は、単独又は混合して用いることができる。
 また、多孔質膜における無機微粒子間の結合力を高める観点から、シリカやアルミナ等の金属酸化物のゾル、ナトリウムシリケートやリチウムシリケート等の各種シリケート、金属アルキレート、リン酸アルミやρ-アルミナ等の一般的なバインダーをコーティング組成物に添加してもよい。なお、バインダーが無機微粒子を含有するものであれば、そのバインダーを単独で用いることもできる。
 無機微粒子の平均粒径は、特に限定されることはないが、20nm以下であれば、バインダーを添加しなくても乾燥や加熱によって高強度の多孔質膜を得ることができる。例えば、20nm以下の平均粒径を有するシリカ微粒子は、室温で乾燥させるだけで比較的高強度の多孔質膜を得ることができる。ここで、本明細書における「平均粒径」とは、レーザ回折・散乱法による粒度分布測定によって得られる粒径の平均値を意味する。
 コーティング組成物における無機微粒子の含有量は、特に限定されることはないが、好ましくは0.5質量%以上60質量%以下、より好ましくは1質量%以上40質量%以下である。ここで、無機微粒子の質量は乾燥状態等によって変化するため、100℃で乾燥させることによって水分を十分に蒸発させた後の質量を無機微粒子の質量とする(以下、無機微粒子の質量は上記と同様の意味である)。無機微粒子の含有量が0.5質量%未満であると、多孔質膜が薄くなりすぎるため、多孔質膜に充填させる水溶性物質の量が少なくなり、付着した油汚れを拭き取りや水洗浄によって十分に除去できなくなることがある。一方、無機微粒子の含有量が60質量%を超えると、多孔質膜が厚くなりすぎるため、多孔質膜にクラック等の欠陥が生じることがある。
 フッ素樹脂粒子は、無機微粒子の多孔質膜に防汚性を与える成分である。このフッ素樹脂粒子をコーティング組成物に含有させることで、無機微粒子の多孔質膜中にフッ素樹脂粒子を分散させることができる。この多孔質膜は、フッ素樹脂粒子が点在して露出した状態の表面を有しており、親水性物質及び疎水性物質の両方が付着し難いため、油汚れの直接的な原因となるオイルミストの付着のみならず、オイルミストの付着を促進する埃等の付着も抑制することができる。また、多孔質膜の表面にフッ素樹脂粒子が点在して露出していることにより、油汚れが付着した場合であっても、拭き取りや水洗浄時に油汚れが除去し易くなると共に、油汚れの再付着も抑制することができる。特に、フッ素樹脂粒子は、多孔質膜に潤滑性を与える成分でもあるため、油汚れの拭き取り性をより一層向上させることができる。
 フッ素樹脂粒子としては、特に限定されることはなく、例えば、PTFE(ポリテトラフルオロエチレン)、FEP(テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体)、PFA(テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体)、FEVE(フッ化エチレン・ビニルエーテル共重合体)、ETFE(エチレン・テトラフルオロエチレン共重合体)、ECTFE(エチレン・クロロトリフルオロエチレン共重合体)、PVDF(ポリフッ化ビニリデン)、PCTFE(ポリクロロトリフルオロエチレン)、PVF(ポリフッ化ビニル)、これらの共重合体及び混合物、又はこれらのフッ素樹脂に他の樹脂を混合したもの等から形成される粒子が挙げられる。
 フッ素樹脂粒子の平均粒径は、特に限定されることはないが、好ましくは0.05μm以上200μm以下、より好ましくは0.1μm以上80μm以下である。水不溶性ポリマー粒子の平均粒径が0.05μm未満であると、多孔質膜中の疎水部分が小さくなる。その結果、油汚れの付着を抑制する効果が十分でないことがある。一方、水不溶性ポリマー粒子の平均粒径が200μmを超えると、多孔質膜の表面凹凸が大きくなる。その結果、埃や粉塵等が引っかかり易くなって、油汚れの付着を促進させてしまうことがある。
 コーティング組成物におけるフッ素樹脂粒子の含有量は、特に限定されることはないが、無機微粒子100質量部に対して、好ましくは5質量部以上70質量部以下、より好ましくは10質量部以上50質量部以下である。フッ素樹脂粒子の含有量が5質量部未満であると、油汚れの付着を抑制する効果が十分でないことがある。一方、フッ素樹脂粒子の含有量が70質量部を超えると、コーティング膜に対して油汚れが付着し易くなることがある。なお、フッ素樹脂粒子は不揮発成分であるので、上記の含有量はコーティング膜におけるフッ素樹脂粒子の含有量と同じである。
 フッ素樹脂粒子が分散した多孔質膜を形成するためには、コーティング組成物中でフッ素樹脂粒子が分散している必要がある。そのため、コーティング組成物は、界面活性剤やフッ素樹脂粒子中に含まれる親水基の効果によってフッ素樹脂粒子を水中に分散させたディスパージョンをコーティング組成物に配合して製造することが好ましい。コーティング組成物の製造方法は、このディスパージョンをコーティング組成物に配合する方法が最も簡単であるが、コーティング組成物にフッ素樹脂粒子を直接配合して自己乳化させたり、ホモジナイザー等で分散させたりすることも可能である。
 コーティング組成物は、上記の無機微粒子及びフッ素樹脂粒子に加えて水性媒体を含有する。水性媒体としては、特に限定されることはなく、水であることが好ましい。また、水及び水と相溶する極性溶剤の混合物を用いることも可能である。
 水としては、特に限定されることはないが、水に含まれるミネラル分の量が多い場合には、シリカ等の無機微粒子の平均粒径が小さかったり、濃度が高かったりすると、無機微粒子の凝集が生じることがある。そのため、脱イオン水を用いることが好ましい。しかし、無機微粒子の凝集が生じない場合には、水道水等の使用も可能である。
 極性溶剤としては、エタノール、メタノール、2-プロパノール及びブタノール等のアルコール類;アセトン、メチルエチルケトン及びジアセトンアルコール等のケトン類;酢酸エチル、酢酸メチル、酢酸セロソルブ、乳酸メチル、乳酸エチル及び乳酸ブチル等のエステル類;メチルセロソルブ、セロソルブ、ブチルセロソルブ及びジオキサン等のエーテル類;エチレングリコール、ジエチレングリコール及びプロピレングリコール等のグリコール類;ジエチレングリコールモノメチルエーテル、トリエチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル及び3-メトキシ-3-メチル-1-ブタノール等のグリコールエーテル類;エチレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート及びジエチレングリコールモノエチルエーテルアセテート等のグリコールエステル類等が挙げられる。
 コーティング組成物における水性媒体の含有量は、特に制限されることはなく、コーティング方法等にあわせて適宜調整すればよいが、一般に40質量%以上99.5質量%以下である。
 物品表面に付着した油汚れは、時間の経過と共に空気酸化や光反応等によって物品表面に固着し、拭き取りや水洗浄で除去し難くなることがある。そのため、コーティング膜に酸化防止剤を含有させることにより、油汚れの物品表面への油汚れの固着を防止することができる。
 本明細書において「酸化防止剤」とは、酸素の存在下で油汚れが熱や光によって酸化して変質することを防止する成分であり、変質の過程で発生するラジカルを捕捉するラジカル捕捉剤、油汚れ中に形成された過酸化物を分解して安定化させる過酸化物分解剤、及び酸化反応を引き起こす光反応を抑制する紫外線吸収剤を包含する。
 コーティング膜に酸化防止剤を含有させる方法としては、特に限定されることはなく、例えば、コーティング組成物に酸化防止剤を配合したり、多孔質膜の形成後に酸化防止剤を多孔質膜の空隙に充填させればよい。
 酸化防止剤としては、特に限定されることはなく、例えば、ヒドロキノン;2,6-ジ-t-ブチル-p-クレゾール;ジブチルヒドロキシトルエン(BHT);ブチルヒドロキシアニソール(BHA);2,6-ジ-t-ブチル-4-エチルフェノール、2,2-メチレン-ビス-(4-メチル-6-t-ブチルフェノール)、n-オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、1,1,3-トリス-(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ブタン、及びトリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)イソシアヌレイト等のフェノール系化合物;ジラウリルチオジプロピオネート等の硫黄系化合物;トリフェニルフォスファイト等のリン系化合物;フェノチアジン等のアミン系化合物等;アスコルビン酸;アスコルビン酸塩;アスコルビン酸ステアリン酸エステル;エリソルビン酸;エリソルビン酸塩;没食子酸プロピル;トコフェロール等が挙げられる。これらは、単独又は混合して使用することができる。
 コーティング組成物に酸化防止剤を配合する場合、その含有量としては、特に限定されることはないが、無機微粒子100質量部に対して、好ましくは0.05質量部以上30質量部以下、より好ましくは0.5質量部以上15質量部以下である。酸化防止剤の含有量が0.05質量部未満であると、酸化防止剤を含有させることによる効果が十分得られないことがある。一方、酸化防止剤の含有量が30質量部を超えると、コーティング膜の強度が低下しすぎることがある。なお、酸化防止剤は不揮発成分であるので、上記の含有量はコーティング膜における酸化防止剤の含有量と同じである。
 また、コーティング組成物は、上記成分に加えて、所望の特性を付与するための他の成分を含有することができる。他の成分としては、特に限定されることはなく、コーティング組成物に一般に配合され得る各種成分を用いることができる。例えば、他の成分として、塗布性を向上させることを目的とした界面活性剤、保存時の菌やカビの発生を抑制することを目的とした抗菌剤や抗かび剤、組成物の粘度を調整することを目的とした水溶性高分子等の有機粘度調整剤やモンモリロナイト等の無機粘度調整剤、コーティング組成物としての安定性、塗布性及び乾燥性を調整することを目的とした有機溶剤、コーティング膜の着色を目的とした色素等が挙げられる。
 コーティング組成物における他の成分の含有量は、他の成分の種類によって異なるため、使用する他の成分にあわせて適宜設定する必要がある。一般に、コーティング組成物における他の成分の含有量は、無機微粒子100質量部に対して、好ましくは10質量部以下、より好ましくは5質量部以下である。他の成分の含有量が10質量部を超えると、コーティング膜の強度が低下しすぎることがある。
 また、他の成分の配合方法としては、特に限定されることはなく、公知の方法に従って配合することができる。具体的には、コーティング組成物に他の成分を配合し、混合すればよい。
 コーティング組成物を被コーティング材に塗布する方法としては、特に制限されることはなく、例えば、浸漬法や、ブラシや各種コーターを用いて塗布することができる。また、コーティング組成物を被コーティング材にかけ流して塗布することもできる。これらの方法を用いれば、被コーティング材にコーティング組成物を欠陥なく塗布することができる。
 コーティング組成物を被コーティング材に塗布する場合、ムラの少ない多孔質膜を得るために、コーティング組成物を被コーティング材に塗布した後、余分なコーティング組成物を気流により除去してもよい。また、浸漬法によってコーティング組成物を被コーティング材に塗布する場合には、被コーティング材をゆっくり引上げることにより、コーティング組成物の流れ落ちによる多孔質膜のムラを防ぐことができる。さらに、浸漬法によってコーティング組成物を被コーティング材に塗布する場合には、コーティング組成物を被コーティング材に塗布した後、被コーティング材を回転させる等して、余分なコーティング組成物を振り切って除去することもできる。
 また、浸漬法、ブラシや各種コーターによる塗布等が困難な場合には、噴霧によるコーティングを行うことが好ましいことがある。この噴霧によるコーティング方法であれば、微小凹凸が多孔質膜に形成されるため、薄膜の多孔質膜による干渉色の発生を防止することができる。
 なお、より確実に多孔質膜のムラをなくしたり、多孔質膜の厚さを大きくしたりする場合には、上記のコーティング方法を繰返し行ってもよい。また、被コーティング材に対するコーティング組成物の付着性を向上させたり、界面活性剤等の配合量を減少させたりすることを目的として、コーティング組成物を被コーティング材に塗布する前に、UV処理、コロナ処理、フレーム処理又はクロム酸処理等の前処理を被コーティング材に行ってもよい。
 被コーティング材に塗布したコーティング組成物の乾燥方法としては、無機微粒子の種類等にあわせて適宜設定すればよく、例えば、室温で乾燥させたり、加熱して乾燥させたりすればよい。
 一般に、室温において無機微粒子が固化する場合には、室温で乾燥させることが可能である。逆に、室温において無機微粒子が固化し難い場合には、加熱して乾燥させることが必要である。また、室温において無機微粒子が固化する場合であっても、室温で乾燥を行う場合(加熱を行わない場合)には、無機微粒子の固化に一定の時間を要することがある。そのため、多孔質膜の形成に要する時間を短くする観点から、加熱して乾燥させてもよい。
 コーティング組成物を加熱して乾燥させる場合、加熱温度は、好ましくは40℃以上250℃以下、より好ましくは45℃以上200℃以下である。加熱温度が40℃未満であると、無機微粒子の固化が十分でないことがある。一方、加熱温度が250℃を超えると、フッ素樹脂粒子が変質することがある。また、加熱時間は、好ましくは10分以上、より好ましくは30分以上である。加熱時間が10分未満であると、無機微粒子の固化が十分でないことがある。ただし、被コーティング材が、樹脂等の熱伝導性が低い材料であったり、厚さが0.2mm以下の薄い鋼板等であったりする場合には、30秒以上の加熱によって無機微粒子を固化させ得ることがある。
 上記のようにして形成される多孔質膜は、フッ素樹脂粒子が均一に分散されており、且つ空隙を有している。
 この多孔質膜は、水溶性物質を十分に充填させるために、空隙率が、好ましくは5%以上70%以下、より好ましくは10%以上60%以下である。空隙率が5%未満であると、多孔質膜に充填される水溶性物質が少なくなり、付着した油汚れを拭き取りや水洗浄によって十分に除去できなくなることがある。一方、空隙率が70%を超えると、多孔質膜の強度が低下してしまうことがある。
 また、多孔質膜は、水溶性物質を十分に充填させるために、膜厚が、好ましくは0.1μm以上250μm以下である。膜厚が0.1μm未満であると、充填される水溶性物質が少なくなり、付着した油汚れを拭き取りや水洗浄によって十分に除去できなくなることがある。一方、膜厚が250μmを超えると、多孔質膜が厚すぎて、被コーティング材から多孔質膜が剥離することがある。
 水溶性物質は、多孔質膜の空隙を充填するために使用される。
 ここで、水溶性物質を含有するコーティング組成物を用いてコーティング膜を形成した場合、十分な膜強度が得られない。これに対して、本発明のコーティング方法によれば、膜強度に優れた多孔質膜を形成した後に、多孔質膜に水溶性物質を塗布するため、十分な膜強度を保持しつつ、多孔質膜の空隙に水溶性物質を充填させることができる。
 水溶性物質は、油汚れに溶解せず、且つ潮解性を有さないという特性を有する水溶性ポリマー又は水溶性界面活性剤である。これらは、単独又は組み合わせて使用することができる。油汚れに溶解する物質であると、油汚れが付着した際に油汚れが内部に拡散してしまうので好ましくない。さらに、潮解性を有する物質であると、コーティング膜を形成したコーティング物品の使用中に水溶液となって流出することがあるので好ましくない。
 また、水溶性物質は、結晶性が低いという特性を有することが好ましい。結晶性が高い物質であると、多孔質膜の空隙に均一に充填され難いためである。ただし、結晶性が高い物質であっても、多孔質膜の空隙内では結晶化し難い場合もあるので、このような場合には、結晶性が高い物質も使用することができる。
 水溶性物質は、親水基を有し、且つ沸点又は分解点が好ましくは150℃以上、より好ましくは200℃以上である。沸点又は分解点が150℃未満であると、使用環境にもよるが、蒸発や分解によって消失又は変質した際に、付着した油汚れを拭き取りや水洗浄によって十分に除去できなくなることがある。
 水溶性物質は、多孔質膜の空隙内に充填されるが、その一部は多孔質膜の表面を覆う。多孔質膜の空隙内に充填された水溶性物質は、油汚れが付着した場合に、油汚れが多孔質膜の内部に侵入することを抑制する効果がある。また、多孔質膜の表面を覆う水溶性物質は、多孔質膜の表面に油汚れが結合することを阻害する効果がある。さらに、水溶性物質の親水性により、オイルミスト等の油汚れの付着自体を抑制する効果もある。そして、これらの効果が相乗的に作用し、油汚れの付着を抑制する効果が長期間に渡って維持されると共に、油汚れが付着しても拭き取りや水洗浄によって油汚れを容易に除去できるようになる。
 拭き取りによって油汚れを除去する場合、油汚れと共に水溶性物質も部分的に除去されるが、拭き取りによって除去される水溶性物質の量は僅かであるため、上記の効果は持続して得られる。同様に、水洗浄によって油汚れを除去する場合でも、水溶性物質は部分的に溶解して除去されるが、多孔質膜の空隙内に水溶性物質を充填しているため、水溶性物質の流失速度は遅い。それ故、複数回の水洗浄を行っても上記の効果は持続して得られる。
 水溶性物質の中でも水溶性ポリマーを用いた場合、水溶性ポリマーは、水洗浄の際に膨潤してゆっくりと拡散することで溶解する。そのため、水溶性ポリマーは、油汚れを浮き上がらせて剥離させる効果や、剥離した油汚れの再付着を抑制する効果を有しており、水洗浄による油汚れの除去性に優れている。また、水溶性ポリマーは、多孔膜の空隙に充填する際に、結晶化等によって多孔膜表面の被覆が不完全になるということも少なく、多孔質膜表面の被覆や多孔質膜の空隙への充填を効率的に行うことができる。
 上記のような特性を有する水溶性ポリマーとしては、ポリビニルアルコール、ポリビニルピロリドン、ポリエチレングリコール、ポリ酢酸ビニル、ポリアクリル酸やその塩、ポリアクリルアミドやその共重合体、及びこれらの混合物等が挙げられる。特に、洗浄性の観点から、水溶性ポリマーは、平均重合度が50以上であることが好ましい。水溶性ポリマーの平均重合度が50未満であると、ポリマーとしての性質が十分でなく、良好な洗浄性が得られ難いことがある。
 また、水溶性物質として水溶性ポリマーを用いる場合、水溶性ポリマーと共に架橋剤を使用してもよい。水溶性ポリマーと共に架橋剤を使用することにより、水溶性ポリマーの水溶性が低下し、水洗浄の際の水溶性ポリマーの流出速度を抑制することができる。その結果、複数回の水洗浄を行っても、油汚れの付着を抑制する効果や油汚れを除去する効果が低下し難くなる。
 架橋剤としては、特に限定されず、使用する水溶性ポリマーの種類に応じて選択すればよい。架橋剤の例としては、炭酸ジルコニウム、硫酸アルミニウム等の多価金属化合物;アジピン酸ジヒドラジド;グリオキサールやその反応生成物;オキサゾリン基、カルボジイミド基、イソシアネート基、アジリジン基等の架橋性官能基を有する化合物が挙げられる。
 架橋剤を用いる場合、架橋剤の配合量は、水溶性ポリマー100質量部に対して、5質量部以下であることが好ましい。架橋剤の配合量が5質量部を超えると、水溶性ポリマーと架橋剤との架橋反応が進行しすぎてしまう。その結果、水洗浄の際に、水溶性ポリマーの溶解が起こり難くなり、油汚れの付着を抑制する効果や油汚れを除去する効果が低下してしまうことがある。
 また、一般的に、水溶性物質が低分子である場合、水に対する水溶性物質の拡散が速くなるため、洗浄水と接して油汚れを浮き上がらせる間に洗浄水中に拡散する水溶性物質の量が多くなる。特に、薄いコーティング膜を形成する場合においては、低分子の水溶性物質では、洗浄性の向上効果が得られないことがある。
 しかし、低分子の水溶性物質であっても、水溶性界面活性剤であれば、良好な洗浄性が得られる。これは、水溶性界面活性剤が、除去した油の表面に吸着して油の再付着を抑制するという効果を有しているためである。また、水溶性界面活性剤は、水の表面張力を小さくする効果があるため、水洗浄の際に水切れが良くなる。その結果、長時間水と接することにより生じる水溶性物質の過剰な流出を抑制することができる。また、水溶性界面活性剤は、結晶化し難く、多孔質膜の空隙への充填性も良好である。
 水溶性界面活性剤としては、脂肪酸ナトリウム、モノアルキル硫酸塩、アルキルポリオキシエチレン硫酸塩、アルキルベンゼンスルホン酸塩、及びモノアルキルリン酸塩等の陰イオン界面活性剤;アルキルトリメチルアンモニウム塩、ジアルキルジメチルアンモニウム塩、及びアルキルベンジルジメチルアンモニウム塩等の陽イオン界面活性剤;アルキルジメチルアミンオキシド、及びアルキルカルボキシベタイン等の両性界面活性剤;ポリオキシエチレンアルキルエーテル、ポリオキシエチレンポリオキシプロピレングラフト重合体、脂肪酸ソルビタンエステル 、アルキルポリグルコシド、脂肪酸ジエタノールアミド、及びアルキルモノグリセリルエーテル等の非イオン界面活性剤が挙げられる。
 なお、界面活性剤のHLB値が規定され得るならば、界面活性剤のHLB値は、好ましくは6以上、より好ましくは8以上である。界面活性剤のHLB値が6未満であると、界面活性剤の親水性が低く(水溶性が低く)、油汚れが付着した場合に、油に溶解する等して良好な洗浄性が得られ難いことがある。
 水溶性物質を多孔質膜に塗布する方法としては、特に制限されることはなく、コーティング組成物を被コーティング材に塗布する方法と同様に、噴霧法、浸漬法、ブラシや各種コーター等を用いて塗布することができる。
 具体的には、水やアルコール等の溶媒に水溶性物質を溶解させた溶液を調製し、この溶液を多孔質膜に塗布するか、又はこの溶液に多孔質膜を浸漬させればよい。また、水溶性物質が液状やペースト状である場合には、水溶性物質を多孔質膜に直接塗布するか、又は水溶性物質に多孔質膜を直接浸漬すればよい。その他、複雑な形状や壁面及び天井面等の塗布等し難い部分に形成した多孔質膜に塗布を行う場合には、泡や粒子を添加して塗布液の流動性を調整してもよい。
 また、本発明のコーティング方法により形成されるコーティング膜は、油汚れを除去するために拭き取りや水洗浄を何度も行うと、コーティング膜中の水溶性物質が流出し、油汚れの除去効果や付着防止効果が低下することがある。そのため、上記方法と同様にして水溶性物質によるコーティング膜中の空隙の充填を行い、コーティング膜を再生することもできる。拭き取りや水洗浄後に水溶性物質をコーティング膜に塗布する場合、コーティング膜が水で濡れた状態のまま行うことも可能である。ただし、比較的親水性の低い水溶性界面活性剤、分子量が非常に大きい水溶性ポリマーの場合には、コーティング膜を乾燥させた後に水溶性物質をコーティング膜に塗布する方が、コーティング膜の空隙に水溶性物質が充填され易いため好ましい。また、水洗浄液に水溶性物質を含有させておくことで、コーティング膜からの油汚れの除去と、コーティング膜への水溶性物質の塗布とを同時に行うことも可能である。
 また、コーティング膜に塗布した水溶性物質の乾燥方法としては、水溶性物質の種類等にあわせて適宜設定すればよく、例えば、室温で乾燥させたり、必要なら加熱して乾燥させたりすればよい。
 コーティング膜における水溶性物質の充填量は、油汚れに対する洗浄性を確保する観点から、無機微粒子100質量部に対して、好ましくは5質量部以上250質量部、より好ましくは20質量部以上200質量部以下である。水溶性物質の充填量が5質量部未満であると、油汚れの十分な除去効果が得られないことがある。一方、水溶性物質の充填量が、コーティング膜の空隙に充填可能な量よりも多くなると、コーティング膜の表面に水溶性物質が多量に存在することとなり、コーティング膜の表面全体が水溶性物質で覆われることがある。このような状態であっても、油汚れに対する洗浄性の点で問題はないが、水溶性物質の含有量が250質量部を超えると、コーティング膜の表面に形成された水溶性物質の膜が剥離したり、物品の美観が低下したりすることがある。
 また、コーティング膜における水溶性物質の充填量は、油汚れに対する洗浄性と共に防汚性を確保する場合、無機微粒子100質量部に対して、好ましくは5質量部以上120質量部以下、より好ましくは20質量部以上100質量部以下である。水溶性物質の充填量が5質量部未満であると、油汚れの十分な除去効果が得られないことがある。一方、水溶性物質の充填量が120質量部を超えると、フッ素樹脂粒子等が水溶性物質で覆われてしまい、所望の防汚性が得られないことがある。
 水溶性物質を多孔質膜に塗布する場合、上記で説明したように、物品表面への油汚れの固着を防止する観点から、水溶性物質と共に酸化防止剤を塗布することができる。特に、酸化防止剤が水溶性である場合には、水溶性物質と酸化防止剤との混合物として多孔質膜に塗布することができるため、これらの物質を多孔質膜に別々に塗布する場合よりもコーティング方法に要する工程を少なくすることができる。なお、別々に塗布する場合は、酸化防止剤を溶剤に溶解した後、多孔質膜に塗布すればよい。
 多孔質膜に塗布した水溶性物質等の乾燥方法としては、特に限定されることはなく、室温で放置することによって乾燥させればよい。或いは、必要に応じて加熱して乾燥することもできる。
 上記のコーティング方法により形成されたコーティング膜は、空隙を有する、無機微粒子の多孔質膜と、多孔膜中に分散されたフッ素樹脂粒子と、多孔質膜の空隙に充填された所定の水溶性物質(並びに任意の酸化防止剤)とを含む。このコーティング膜は、無機微粒子の多孔質膜を主体にすると共に、多孔質膜の空隙に水溶性物質を充填しているので、膜全体としては親水性であり、油の付着が起こり難い。また、多孔質膜は空隙を有しているが、この空隙には水溶性物質が充填されているため、空隙への油汚れの侵入を防止することができ、拭き取りや水洗浄による油汚れの除去が困難になることもない。加えて、水溶性物質は、水洗浄の際に溶解するので、付着した油汚れの除去を促進させることができる。特に、空隙における水溶性物質の充填量が少なく油汚れが空隙に侵入していた場合であっても、水溶性物質が溶解する際の水溶性物質の体積膨張によって空隙から油汚れを除去することができる。
 実施の形態2.
 本発明のコーティング物品は、上記のコーティング方法により形成されるコーティング膜を有する。すなわち、本発明のコーティング物品は、空隙を有する、無機微粒子の多孔質膜と、多孔膜中に分散されたフッ素樹脂粒子と、多孔質膜の空隙に充填された所定の水溶性物質とを含むコーティング膜を有する。
 このコーティング膜が形成される物品としては、特に限定されることはなく、幅広い用途の物品で使用可能である。例えば、物品として、油汚れの付着が問題となる厨房器具類(例えば、レンジフードやガスレンジ等)、空気調和機、工場設備類等が挙げられる。
 以下、実施例により本発明の詳細を説明するが、これらによって本発明が限定されるものではない。
 (実施例1)
 平均粒径85nmのシリカ微粒子(無機微粒子)を含むコロイダルシリカ、平均粒径5nmのシリカ微粒子(無機微粒子)を含むコロイダルシリカ、及び平均粒径0.3μmのPTFE粒子(フッ素樹脂粒子)を脱イオン水に加えて混合した後、ポリオキシエチレンラウリルエーテル(界面活性剤)をさらに加えて混合することによりコーティング組成物を調製した。ここで、コーティング組成物において、平均粒径85nmのシリカ微粒子の含有量を4質量%、平均粒径5nmのシリカ微粒子の含有量を1質量%、界面活性剤の含有量を0.05質量%とした。また、PTFE粒子の含有量をシリカ微粒子100質量部に対して6~7質量部とした。
 得られたコーティング組成物にステンレス板を浸漬し、ゆっくりと引き上げた後、100℃で30分間乾燥させることによって多孔質膜(膜厚:0.8μm)を形成した。この多孔質膜が形成されたステンレス板を、2質量%のポリビニルピロリドンを含む水溶液に浸漬した。次に、ステンレス板を水溶液から引き上げ、余分な水溶液を振り切った後、室温で乾燥させることによって、ポリビニルピロリドンを充填したコーティング膜を作製した。ここで、コーティング膜におけるポリビニルピロリドンの含有量を、シリカ微粒子100質量部に対して30質量部とした。
 (実施例2~4)
 実施例2~4では、多孔質膜の厚さや、多孔質膜の空隙に充填する水溶性物質の種類等を変えたこと以外は、実施例1と同様にしてコーティング膜が形成されたステンレス板を作製した。なお、多孔質膜の厚さは、ステンレス板に対するコーティング組成物の塗布回数の増減等により調整した。
 実施例2では、水溶性物質としてポリエチレングリコール(重合度:4,000)を用い、多孔質膜(膜厚:1.0μm)が形成されたステンレス板を、2質量%のポリエチレングリコールを含む水溶液に浸漬した後、室温で乾燥させることによってコーティング膜を作製した。また、コーティング膜におけるポリエチレングリコールの含有量を、シリカ微粒子100質量部に対して45質量部とした。
 実施例3では、水溶性物質としてラウリル硫酸ナトリウムを用い、多孔質膜(膜厚:0.5μm)が形成されたステンレス板を、2質量%のラウリル硫酸ナトリウムを含む水溶液に浸漬した後、室温で乾燥させることによってコーティング膜を作製した。また、コーティング膜におけるラウリル硫酸ナトリウムの含有量を、シリカ微粒子100質量部に対して32質量部とした。
 実施例4では、水溶性物質としてポリオキシエチレン-ポリオキシプロピレンブロックポリマー(アデカプルロニックL-64、株式会社ADEKA)を用い、多孔質膜(膜厚:0.8μm)が形成されたステンレス板を、2質量%のポリオキシエチレン-ポリオキシプロピレンブロックポリマーを含む水溶液に浸漬した後、室温で乾燥させることによってコーティング膜を作製した。また、コーティング膜におけるポリオキシエチレン-ポリオキシプロピレンブロックポリマーの含有量を、シリカ微粒子100質量部に対して35質量部とした。
 (実施例5)
 平均粒径0.5μmのアルミナ粉末(無機微粒子)、エチルシリケート48(無機微粒子、コルコート株式会社)、平均粒径0.3μmのPTFE粒子(フッ素樹脂粒子)、リン酸、及びポリエチレングリコールラウリルエーテル(界面活性剤)を脱イオン水に加えて混合することによりコーティング組成物を調製した。ここで、コーティング組成物において、平均粒径0.5μmのアルミナ粒子の含有量を5質量%、エチルシリケート48の含有量を1質量%、リン酸の含有量を0.2質量%、界面活性剤の含有量を0.05質量%とした。また、PTFE粒子の含有量を無機微粒子100質量部に対して7質量部とした。
 得られたコーティング組成物をステンレス板にスプレー塗布し、150℃で30分間乾燥させることによって多孔質膜(膜厚:2.1μm)を形成した。この多孔質膜が形成されたステンレス板を、2質量%のポリビニルピロリドンを含む水溶液に浸漬した。次に、ステンレス板を水溶液から引き上げ、余分な水溶液を振り切った後、室温で乾燥させることによって、ポリビニルピロリドンを充填したコーティング膜を作製した。ここで、コーティング膜におけるポリビニルピロリドンの含有量を、無機微粒子100質量部に対して50質量部とした。
 (実施例6~7)
 実施例6~7では、多孔質膜の厚さや、多孔質膜の空隙に充填する水溶性物質の種類等を変えたこと以外は、実施例5と同様にしてコーティング膜が形成されたステンレス板を作製した。なお、多孔質膜の厚さは、ステンレス板に対するコーティング組成物の塗布回数の増減等により調整した。
 実施例6では、水溶性物質としてソルビタンラウリルエステル(アデカトールS-20、株式会社ADEKA)を用い、多孔質膜(膜厚:3.0μm)が形成されたステンレス板を、2質量%のソルビタンラウリルエステルを含む水溶液に浸漬した後、室温で乾燥させることによってコーティング膜を作製した。また、コーティング膜におけるソルビタンラウリルエステルの含有量を、無機微粒子100質量部に対して62質量部とした。
 実施例7では、水溶性物質としてポリオキシエチレン-ポリオキシプロピレンブロックポリマー(アデカプルロニックL-64、株式会社ADEKA)を用い、多孔質膜(膜厚:3.2μm)が形成されたステンレス板を、2質量%のポリオキシエチレン-ポリオキシプロピレンブロックポリマーを含む水溶液に浸漬した後、室温で乾燥させることによってコーティング膜を作製した。また、コーティング膜におけるポリオキシエチレン-ポリオキシプロピレンブロックポリマーの含有量を、無機微粒子100質量部に対して58質量部とした。
 (比較例1)
 比較例1では、無機微粒子のみからなり、且つ水溶性物質を充填させていないコーティング膜を作製した。
 平均粒径85nmのシリカ微粒子(無機微粒子)を含むコロイダルシリカ、及び平均粒径5nmのシリカ微粒子(無機微粒子)を含むコロイダルシリカを脱イオン水に加えて混合した後、ポリオキシエチレンラウリルエーテル(界面活性剤)をさらに加えて混合することによりコーティング組成物を調製した。コーティング組成物において、平均粒径85nmのシリカ微粒子の含有量を4質量%、平均粒径5nmのシリカ微粒子の含有量を1質量%、界面活性剤の含有量を0.05質量%とした。
 得られたコーティング組成物にステンレス板を浸漬し、ゆっくりと引き上げた後、100℃で30分間乾燥させることによってコーティング膜(膜厚:1.0μm)を作製した。
 (比較例2)
 比較例2では、無機微粒子のみからなり、且つ水溶性物質を充填させたコーティング膜を作製した。
 比較例1と同様の手順によって多孔質膜(膜厚:0.5μm)が形成されたステンレス板を2質量%のポリビニルピロリドンを含む水溶液に浸漬した。次に、ステンレス板を水溶液から引き上げ、余分な水溶液を振り切った後、室温で乾燥させることによって、ポリビニルピロリドンを充填したコーティング膜を作製した。ここで、コーティング膜におけるポリビニルピロリドンの含有量を、シリカ微粒子100質量部に対して30質量部とした。
 (比較例3)
 比較例3では、無機微粒子及びフッ素樹脂粒子からなり、且つ水溶性物質を充填させていないコーティング膜を作製した。
 平均粒径85nmのシリカ微粒子(無機微粒子)を含むコロイダルシリカ、平均粒径5nmのシリカ微粒子(無機微粒子)を含むコロイダルシリカ、及び平均粒径0.3μmのPTFE粒子(フッ素樹脂粒子)を脱イオン水に加えて混合した後、ポリオキシエチレンラウリルエーテル(界面活性剤)をさらに加えて混合することによりコーティング組成物を調製した。ここで、コーティング組成物において、平均粒径85nmのシリカ微粒子の含有量を4質量%、平均粒径5nmのシリカ微粒子の含有量を1質量%、界面活性剤の含有量を0.05質量%とした。また、PTFE粒子の含有量をシリカ微粒子100質量部に対して9質量部とした。
 得られたコーティング組成物にステンレス板を浸漬し、ゆっくりと引き上げた後、100℃で30分間乾燥させることによってコーティング膜(膜厚:0.8μm)を作製した。
 実施例1~7及び比較例1~3のステンレス板を、植物油をホットプレートで加熱することにより生じた油煙に5分間曝すことで、油汚れを付着させた。そして、この付着した油汚れをヘキサンで溶解して集め、液体クロマトグラフィーにより定量した。次に、同様に作製して油汚れを付着させたステンレス板を、40℃の水に30秒間浸漬することによって洗浄した後、同様にヘキサンで溶解して集め、液体クロマトグラフィーにより定量した。この結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示されているように、実施例1~7のステンレス板では、油汚れの付着量が少ないと共に、付着した油汚れを水洗浄によって容易に除去することができた。これに対して比較例1(フッ素樹脂粒子及び水溶性物質を含有しないコーティング膜)のステンレス板では、油汚れの付着量が多いと共に、付着した油汚れを水洗浄によって十分に除去することができなかった。また、比較例2(フッ素樹脂粒子を含有しないコーティング膜)のステンレス板では、付着した油汚れが水洗浄によって除去される量が増加するものの、油汚れの付着量が多すぎた。比較例3(水溶性物質を含有しないコーティング膜)のステンレス板では、油汚れの付着量が少ないものの、付着した油汚れが水洗浄によって除去される量が少なかった。従って、コーティング膜がフッ素樹脂粒子を含有していなければ、油汚れ付着の防止効果が十分得られず、また、コーティング膜が水溶性物質を含有していなければ、油汚れの除去効果が十分得られないと考えられる。
 (実施例8)
 実施例4と同じ多孔質膜が形成されたステンレス板を、2質量%のポリビニルピロリドン及び0.1質量%のジブチルヒドロキシトルエン(酸化防止剤)を含む水溶液に浸漬した。次いで、ステンレス板を水溶液から引き上げ、余分な水溶液を振り切った後、室温で乾燥させることによって、ポリビニルピロリドン及びジブチルヒドロキシトルエンを充填したコーティング膜を作製した。ここで、コーティング膜において、ポリビニルピロリドンの含有量をシリカ微粒子100質量部に対して30質量部、ジブチルヒドロキシトルエンの含有量をシリカ微粒子100質量部に対して1.5質量部とした。
 (実施例9~11)
 実施例9~11では、酸化防止剤の種類等を変えたこと以外は、実施例8と同様にしてコーティング膜を形成したステンレス板を作製した。
 実施例9では、酸化防止剤としてトコフェロールを用い、多孔質膜が形成されたステンレス板を、2質量%のポリビニルピロリドン及び0.2質量%のトコフェロールを含む水溶液に浸漬した後、室温で乾燥させることによってコーティング膜を作製した。ここで、コーティング膜において、ポリビニルピロリドンの含有量をシリカ微粒子100質量部に対して30質量部、トコフェロールの含有量をシリカ微粒子100質量部に対して3質量部とした。
 実施例10では、酸化防止剤としてヒドロキノンを用い、多孔質膜が形成されたステンレス板を、2質量%のポリビニルピロリドン及び1質量%のヒドロキノンを含む水溶液に浸漬した後、室温で乾燥させることによってコーティング膜を作製した。ここで、コーティング膜において、ポリビニルピロリドンの含有量をシリカ微粒子100質量部に対して30質量部、ヒドロキノンの含有量をシリカ微粒子100質量部に対して15質量部とした。
 実施例11では、酸化防止剤としてエリソルビン酸ナトリウムを用い、多孔質膜が形成されたステンレス板を、2質量%のポリビニルピロリドン及び2質量%のエリソルビン酸ナトリウムを含む水溶液に浸漬した後、室温で乾燥させることによってコーティング膜を作製した。ここで、コーティング膜において、ポリビニルピロリドンの含有量をシリカ微粒子100質量部に対して20質量部、エリソルビン酸ナトリウムの含有量をシリカ微粒子100質量部に対して20質量部とした。
 実施例4、8~11のステンレス板を、厨房の排気ダクト内部に設置して半年間放置した。このステンレス板を排気ダクトから取外し、水道水を用いて洗浄した後、油汚れをヘキサンで溶解して集め、液体クロマトグラフィーにより定量した。なお、実施例4及び11のコーティング膜を有するステンレス板については、水道水による洗浄前の油汚れ量も液体クロマトグラフィーにより求めた。この結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示されているように、実施例4のステンレス板では、半年間経過後、付着した油汚れが水洗浄によって除去し難くなっていたものの、実施例8~11のステンレス板では、半年間経過後でも付着した油汚れが水洗浄によって容易に除去することができた。従って、コーティング膜に酸化防止剤を含有させておくことで、油汚れの酸化等を防止し、長期間経過後でも付着した油汚れを水洗浄によって容易に除去することができると考えられる。
 (実施例12)
 平均粒径85nmのシリカ微粒子(無機微粒子)を含むコロイダルシリカ、平均粒径5nmのシリカ微粒子(無機微粒子)を含むコロイダルシリカ、及び平均粒径0.3μmのPTFE粒子(フッ素樹脂粒子)を脱イオン水に加えて混合した後、ポリオキシエチレンラウリルエーテル(界面活性剤)をさらに加えて混合することによりコーティング組成物を調製した。ここで、コーティング組成物において、平均粒径85nmのシリカ微粒子の含有量を3.5質量%、平均粒径5nmのシリカ微粒子の含有量を1.2質量%、界面活性剤の含有量を0.05質量%とした。また、PTFE粒子の含有量をシリカ微粒子100質量部に対して15質量部とした。
 得られたコーティング組成物にステンレス板を浸漬し、ゆっくりと引き上げた後、100℃で30分間乾燥させることによって多孔質膜(膜厚:1.5μm)を形成した。この多孔質膜が形成されたステンレス板を、1質量%のポリビニルアルコール(日本合成化学工業株式会社製ゴーセファイマーZ-200)を含む水溶液に浸漬した。次に、ステンレス板を水溶液から引き上げ、余分な水溶液を振り切った後、室温で乾燥させることによって、ポリビニルアルコールを充填したコーティング膜を作製した。コーティング膜におけるポリビニルアルコールの含有量を、シリカ微粒子100質量部に対して35質量部とした。
 (実施例13)
 実施例13では、ポリビニルアルコールと共にアジピン酸ジヒドラジドを用いた水溶液を用いたこと以外は、実施例12と同様にしてコーティング膜が形成されたステンレス板を作製した。ここで、水溶液中のアジピン酸ジヒドラジドの配合量は、ポリビニルアルコール100質量部に対して1.5質量部とした。
 (比較例4)
 比較例4では、ポリビニルアルコールの代わりに、低分子の水溶性物質であるソルビトールを用いたこと以外は、実施例12と同様にしてコーティング膜が形成されたステンレス板を作製した。ここで、水溶液中のソルビトールの含有量は5質量%とした。
 実施例12~13及び比較例4のステンレス板を、植物油をホットプレートで加熱することにより生じた油煙に5分間曝すことで、油汚れを付着させた。そして、この付着した油汚れをヘキサンで溶解して集め、液体クロマトグラフィーにより定量した。次に、同様に作製して油汚れを付着させたステンレス板を、約40℃の水を約10秒間流しかけることによって洗浄した後、同様にヘキサンで溶解して集め、液体クロマトグラフィーにより定量した。この油汚れ付着及び洗浄のサイクルを2回、3回、4回繰返し、各サイクル後の油付着量を評価した。この結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3に示されているように、実施例12~13のステンレス板では、4サイクル後においても付着した油汚れを水洗浄によって容易に除去することができた。特に、ポリビニルアルコールと共に、架橋剤のアジピン酸ジヒドラジドを用いた水溶液を用いた実施例13のステンレス板では、4サイクル後においても付着した油汚れの除去性が著しく高かった。これに対して比較例4のステンレス板では、サイクルが増加するにつれて付着した油汚れが除去し難くなった。
 次に、実施例6で作製したステンレス板を用いて以下の実験を行った。
 ステンレス板を、植物油をホットプレートで加熱することにより生じた油煙に5分間曝すことで、油汚れを付着させた。そして、この付着した油汚れをヘキサンで溶解して集め、液体クロマトグラフィーにより定量した。次に、同様に作製して油汚れを付着させたステンレス板を、2質量%のソルビタンラウリルエステルを含有する水溶液を用いて洗浄し、上記と同様にして付着した油汚れを液体クロマトグラフィーにより定量した。
 さらに、上記の油汚染及び洗浄のサイクルを、2回、3回、4回繰返し、各サイクル後の油付着量を評価した。この結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4に示されているように、実施例6のステンレス板では、4サイクル後においても付着した油汚れを水洗浄によって容易に除去することができた。また、水溶性物質を含有する水溶液を用いて洗浄することにより、コーティング膜中の水溶性物質を保持し、付着した油汚れの除去効果を維持できることがわかった。
 (比較例5)
 比較例5では、無機微粒子及びフッ素樹脂粒子からなり、且つ水溶性物質を充填させていないコーティング膜を作製した。ここで、多孔質膜にポリビニルアルコールを充填させないこと以外は、実施例12と同様にして多孔質膜からなるコーティング膜をステンレス板上に形成した。
 次に、実施例4、5及び12、比較例5で作製したステンレス板を用いて以下の実験を行った。
 ステンレス板を、植物油をホットプレートで加熱することにより生じた油煙に5分間曝すことで、油汚れを付着させた。そして、この付着した油汚れをヘキサンで溶解して集め、液体クロマトグラフィーにより定量した。次に、同様に作製して油汚れを付着させたステンレス板を、水を浸したタオル地で2回軽く拭いた後、上記と同様にして付着した油汚れを液体クロマトグラフィーにより定量した。この結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 表5に示されているように、実施例4、5及び12のステンレス板では、付着した油汚れを拭き取りによって容易に除去することができた。これに対して比較例5のステンレス板では、付着した油汚れを拭き取りによって十分に除去することができなかった。
 以上の結果からわかるように、本発明のコーティング方法は、油汚れの付着を抑制する効果が長期間に渡って優れると共に、油汚れが付着しても拭き取りや水洗浄によって油汚れを容易に除去可能なコーティング膜を形成することができる。
 なお、本国際出願は、2009年2月13日に出願した日本国特許出願第2009-031673号に基づく優先権を主張するものであり、この日本国特許出願の全内容を本国際出願に援用する。

Claims (10)

  1.  水性媒体中に無機微粒子とフッ素樹脂粒子とを含有するコーティング組成物を被コーティング材に塗布する工程と、
     前記被コーティング材上の前記コーティング組成物を乾燥させて前記水性媒体を除去し、フッ素樹脂粒子が分散され且つ空隙を有する、無機微粒子の多孔質膜を形成する工程と、
     水溶性界面活性剤及び水溶性ポリマーからなる群から選択される1種以上の水溶性物質を前記多孔質膜に塗布し、前記多孔質膜の空隙に前記水溶性物質を充填する工程と
    を含むことを特徴とするコーティング方法。
  2.  前記コーティング組成物が、酸化防止剤をさらに含有することを特徴とする請求項1に記載のコーティング方法。
  3.  前記水溶性物質と共に酸化防止剤を前記多孔質膜に塗布して、前記多孔質膜の空隙に前記水溶性物質及び前記酸化防止剤を充填することを特徴とする請求項1に記載のコーティング方法。
  4.  前記コーティング組成物における前記無機微粒子の含有量が、0.5質量%以上60質量%以下であることを特徴とする請求項1~3のいずれか一項に記載のコーティング方法。
  5.  前記コーティング組成物における前記フッ素樹脂粒子の含有量が、前記無機微粒子100質量部に対して5質量部以上70質量部以下であることを特徴とする請求項1~4のいずれか一項に記載のコーティング方法。
  6.  空隙を有する、無機微粒子の多孔質膜と、前記多孔膜中に分散されたフッ素樹脂粒子と、前記多孔質膜の空隙に充填され、且つ水溶性界面活性剤及び水溶性ポリマーからなる群から選択される1種以上の水溶性物質とを含むコーティング膜を有することを特徴とするコーティング物品。
  7.  前記水溶性物質と共に酸化防止剤が前記多孔質膜の空隙に充填されていることを特徴とする請求項6に記載のコーティング物品。
  8.  前記コーティング膜における前記フッ素樹脂粒子の含有量が、前記無機微粒子100質量部に対して5質量部以上70質量部以下であることを特徴とする請求項6又は7に記載のコーティング物品。
  9.  前記コーティング膜における前記水溶性物質の充填量が、前記無機微粒子100質量部に対して5質量部以上120質量部以下であることを特徴とする請求項6~8のいずれか一項に記載のコーティング物品。
  10.  前記コーティング膜における前記酸化防止剤の充填量が、前記無機微粒子100質量部に対して0.05質量部以上30質量部以下であることを特徴とする請求項7~9のいずれか一項に記載のコーティング物品。
PCT/JP2010/051793 2009-02-13 2010-02-08 コーティング方法及びコーティング物品 WO2010092927A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/201,316 US20110300370A1 (en) 2009-02-13 2010-02-08 Coating method and coated article
CN201080007722.XA CN102316996B (zh) 2009-02-13 2010-02-08 涂覆方法及涂覆物品
JP2010550510A JP5404656B2 (ja) 2009-02-13 2010-02-08 コーティング方法及びコーティング物品

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009031673 2009-02-13
JP2009-031673 2009-02-13

Publications (1)

Publication Number Publication Date
WO2010092927A1 true WO2010092927A1 (ja) 2010-08-19

Family

ID=42561769

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/051793 WO2010092927A1 (ja) 2009-02-13 2010-02-08 コーティング方法及びコーティング物品

Country Status (4)

Country Link
US (1) US20110300370A1 (ja)
JP (1) JP5404656B2 (ja)
CN (1) CN102316996B (ja)
WO (1) WO2010092927A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102368033A (zh) * 2011-06-28 2012-03-07 苏州方暨圆节能科技有限公司 具有薄膜的铝散热器翅片
JP2013177584A (ja) * 2012-02-07 2013-09-09 Nippon Soda Co Ltd 拭き取り可能な油汚れ防止用被覆剤
JPWO2016125409A1 (ja) * 2015-02-05 2017-07-20 三菱電機株式会社 コーティング材、その製造方法、および、表面構造
JPWO2018066142A1 (ja) * 2016-10-07 2019-07-11 日産自動車株式会社 汚れ消失性積層物、該汚れ消失性積層物を用いた画像表示装置および自動車部品
JP2019209592A (ja) * 2018-06-05 2019-12-12 リソテック ジャパン株式会社 複合材料

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110691822B (zh) * 2017-06-02 2021-06-15 三菱电机株式会社 涂料膜、涂料组合物及具有该涂料膜的物品
CN109535957A (zh) * 2017-08-16 2019-03-29 3M创新有限公司 防尘涂层组合物、涂布制品及其制备方法
CN110922872A (zh) * 2018-09-20 2020-03-27 3M创新有限公司 玻璃防灰涂层组合物、防灰涂层分散液及包含其的制品
CN112137426A (zh) * 2019-06-28 2020-12-29 武汉苏泊尔炊具有限公司 涂料与烹饪器具
JP6967637B1 (ja) * 2020-07-30 2021-11-17 中外炉工業株式会社 縁部平坦化デバイスおよび該デバイスを含む塗工乾燥システム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001088247A (ja) * 1996-05-31 2001-04-03 Toto Ltd 防汚性部材および防汚性コーティング組成物
WO2008087877A1 (ja) * 2007-01-18 2008-07-24 Mitsubishi Electric Corporation コーティング組成物、コーティング方法、熱交換器及び空気調和機
JP2008302266A (ja) * 2007-06-05 2008-12-18 Mitsubishi Electric Corp コーティング方法及び物品

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5814567A (en) * 1996-06-14 1998-09-29 Kimberly-Clark Worldwide, Inc. Durable hydrophilic coating for a porous hydrophobic substrate
US5773091A (en) * 1996-07-11 1998-06-30 Brandeis University Anti-graffiti coatings and method of graffiti removal
CN1245625C (zh) * 2003-04-30 2006-03-15 陕西西大北美基因股份有限公司 一种核/壳型超顺磁性复合微粒及其制备方法与应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001088247A (ja) * 1996-05-31 2001-04-03 Toto Ltd 防汚性部材および防汚性コーティング組成物
WO2008087877A1 (ja) * 2007-01-18 2008-07-24 Mitsubishi Electric Corporation コーティング組成物、コーティング方法、熱交換器及び空気調和機
JP2008302266A (ja) * 2007-06-05 2008-12-18 Mitsubishi Electric Corp コーティング方法及び物品

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102368033A (zh) * 2011-06-28 2012-03-07 苏州方暨圆节能科技有限公司 具有薄膜的铝散热器翅片
JP2013177584A (ja) * 2012-02-07 2013-09-09 Nippon Soda Co Ltd 拭き取り可能な油汚れ防止用被覆剤
JPWO2016125409A1 (ja) * 2015-02-05 2017-07-20 三菱電機株式会社 コーティング材、その製造方法、および、表面構造
JPWO2018066142A1 (ja) * 2016-10-07 2019-07-11 日産自動車株式会社 汚れ消失性積層物、該汚れ消失性積層物を用いた画像表示装置および自動車部品
JP2019209592A (ja) * 2018-06-05 2019-12-12 リソテック ジャパン株式会社 複合材料
JP7214374B2 (ja) 2018-06-05 2023-01-30 リソテック ジャパン株式会社 複合材料

Also Published As

Publication number Publication date
CN102316996B (zh) 2014-01-08
US20110300370A1 (en) 2011-12-08
JP5404656B2 (ja) 2014-02-05
CN102316996A (zh) 2012-01-11
JPWO2010092927A1 (ja) 2012-08-16

Similar Documents

Publication Publication Date Title
JP5404656B2 (ja) コーティング方法及びコーティング物品
JP5254042B2 (ja) コーティング組成物及びその製造方法、熱交換器、並びに空気調和機
JP4698721B2 (ja) 空気調和機及びコーティング組成物
JP5202467B2 (ja) 送風装置
US20180320999A1 (en) Antifouling coating, heat exchanger provided with same, and method for manufacturing heat exchanger
JP4840899B2 (ja) 親水防汚コーティング組成物、それを用いた被膜の形成方法及び用途
WO2010106762A1 (ja) コーティング組成物、コーティング方法、空気調和機、換気扇、および電気機器
JP6216925B2 (ja) 抗菌性コーティング剤
FR3054840A1 (fr) Gel aspirable et procede pour eliminer une contamination contenue dans une couche organique en surface d'un substrat solide.
JP2011208937A (ja) 空気調和機及びコーティング組成物
JP6300097B2 (ja) 親水処理塗料組成物及び親水化処理方法
JP6381483B2 (ja) コーティング組成物、防汚性部材、空気調和機及び換気扇
JP6525559B2 (ja) 硬質表面用処理剤組成物
JP5065236B2 (ja) 防汚コーティング液、防汚コーティング層形成方法、および防汚コーティング層を有する窯業建材
JP2015155512A (ja) コーティング組成物及びその製造方法、並びに撥水性部材及び換気扇
JP2010138358A5 (ja)
JP5306311B2 (ja) コーティング方法及びコーティング物品
CA2885481A1 (en) Low voc construction primer
JP2649297B2 (ja) 塗料組成物及び塗装フィン材並びにフィン材の製造方法
JP2012189272A (ja) 熱交換器及びその製造方法
JP4318840B2 (ja) 硬質表面用防汚剤
JP2012116037A (ja) 防汚性部材及びその製造方法
JPWO2018220883A1 (ja) コーティング膜、コーティング組成物および該コーティング膜を備えた物品
JP6097252B2 (ja) 非粘着性皮膜構造
JP2016084382A (ja) 表面処理剤

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080007722.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10741204

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010550510

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13201316

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10741204

Country of ref document: EP

Kind code of ref document: A1