WO2010091592A1 - 等离子显示器的驱动方法和驱动电路 - Google Patents

等离子显示器的驱动方法和驱动电路 Download PDF

Info

Publication number
WO2010091592A1
WO2010091592A1 PCT/CN2009/076377 CN2009076377W WO2010091592A1 WO 2010091592 A1 WO2010091592 A1 WO 2010091592A1 CN 2009076377 W CN2009076377 W CN 2009076377W WO 2010091592 A1 WO2010091592 A1 WO 2010091592A1
Authority
WO
WIPO (PCT)
Prior art keywords
driving
electrode
scan
pulse
sustain
Prior art date
Application number
PCT/CN2009/076377
Other languages
English (en)
French (fr)
Inventor
符赞宣
Original Assignee
四川虹欧显示器件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 四川虹欧显示器件有限公司 filed Critical 四川虹欧显示器件有限公司
Publication of WO2010091592A1 publication Critical patent/WO2010091592A1/zh

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/28Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels
    • G09G3/288Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels
    • G09G3/291Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels controlling the gas discharge to control a cell condition, e.g. by means of specific pulse shapes
    • G09G3/292Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels controlling the gas discharge to control a cell condition, e.g. by means of specific pulse shapes for reset discharge, priming discharge or erase discharge occurring in a phase other than addressing
    • G09G3/2922Details of erasing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0228Increasing the driving margin in plasma displays

Definitions

  • the present invention relates to the field of flat panel displays, and in particular to a driving method and a driving circuit for a plasma display.
  • a plasma display panel PDP
  • PDP plasma display panel
  • a plasma display generates ultraviolet light by gas discharge to excite phosphor light to display characters or images. According to the difference between the driving voltage and the display unit, the plasma display can be classified into a DC discharge type and an AC discharge type.
  • Fig. 1 shows a schematic diagram of the basic structure of a plasma display. As shown in Fig.
  • the plasma display includes a display 110, a control circuit 120, a scan electrode (Y electrode) drive circuit 130, a sustain electrode (X electrode) horse block circuit 140, and an address electrode block circuit 150.
  • the address electrode runner circuit 150 is directed to the address electrode A under the control of the control circuit 120. l A 2 , A 3 ...provide a predetermined voltage.
  • the scanning electrode (Y electrode) driving circuit 130 is controlled by the control circuit 120 to the scanning electrodes ⁇ , Y 2 , ⁇ 3 ...provide a predetermined voltage.
  • Scanning electrode Y below l ⁇ 2 , ⁇ 3 ...called the scan electrode Yj , where the subscript j l , 2 , 3 . . .
  • the sustain electrode (X electrode) drive circuit 140 is respectively directed to the sustain electrodes Xi, X 2 , X 3 ...supply voltage.
  • the scan electrode Yj and the sustain electrode Xi form rows extending in the horizontal direction, and the address electrodes Ai form columns extending in the vertical direction, and the scan electrodes Yj and the sustain electrodes Xi are alternately arranged in the vertical direction.
  • the scan electrode Yj and the address electrode Ai form a two-dimensional matrix composed of j rows and i columns.
  • Each of the intersections of the scan electrode Yj and the address electrode Ai and the sustain electrodes adjacent to the intersections form respective display units d".
  • These display units d" correspond to respective pixels, so that the display 101 can display a two-dimensional image. As shown in FIG.
  • the scan electrode (Y electrode) drive circuit 130 includes: a sustain drive circuit 1301, a reset circuit 1302, a scan control circuit 1303, a scan circuit 1304, and a ramp drive circuit 1305.
  • the sustain driving circuit 1301 mainly generates a driving waveform of a sustain period;
  • the reset circuit 1302 mainly generates a rising ramp driving waveform;
  • the ramp driving circuit 1305 mainly generates a falling ramp driving waveform;
  • the scanning control circuit 1303 is configured to control a voltage applied to the scanning circuit;
  • the scanning circuit 1304 is responsible for applying the driving voltage generated by the 4 bar scanning electrode driving circuit to the respective scanning electrodes in the scanning period.
  • the sustain electrode driving circuit 140 includes: a sustain driving circuit 1401 and a step circuit 1402.
  • the sustain driving circuit 1401 mainly generates a driving waveform of a sustain period, and the step circuit 1402 is configured to generate a DC voltage of a reset period and an address period.
  • Figure 2 shows a schematic diagram of a field of an image. For example, an image is composed of 60 fields per second, and one field is composed of a first subfield SF1, a second subfield SF2, a third subfield SF3 ..., and an nth subfield SFn. Where "n" is the number corresponding to the hue bits.
  • the subfields SF1, SF2, ... are hereinafter referred to as subfields SF.
  • Fig. 3 is a view showing a driving waveform of a driving method of a plasma display of the prior art.
  • the driving of the plasma display generally divides each subfield SF into the following periods: a reset period Tr, an address period Ta, and a sustain period (maintenance discharge period) Ts.
  • the reset period Tr the display unit returns to the initial state; in the address period Ta, each display unit is selected to emit light or not; in the sustain period Ts, the display unit selected to emit light emits light.
  • the scan electrode driving circuit 130 sequentially supplies the rising ramp pulse to the scan electrodes (Y electrodes) of each display unit under the control of the control circuit 110.
  • the ramp pulse is decreased, and a positive DC voltage is applied to the sustain electrode (X electrode) of each display unit while applying a falling ramp pulse.
  • the rising ramp pulse causes the display unit of the entire display to generate a weak discharge, accumulating wall charge on each display unit; the falling ramp pulse produces a reverse weak discharge in the display unit of the entire display screen, so that in each display unit The wall charges are relatively uniform and form a certain concentration of spatial ions in the discharge space of the display unit.
  • the scan electrode driving circuit 130 first applies a scan electrode (Y electrode) of each display unit from zero to V under the control of the control circuit 110. s Rising ramp pulse, then applying from zero to V y The falling ramp pulse applies a positive DC voltage to the sustain electrode (X electrode) of each display cell during the falling ramp.
  • FIG. 4 is a view showing driving waveforms, wall charges, and spatial ion concentrations in the reset period Tr of each subfield after the first subfield in Fig. 3.
  • a weak discharge is formed between the Y electrode to which the falling ramp pulse is applied and the X electrode to which the high voltage is applied.
  • the wall charge changes slowly, and at the end of the falling ramp, the wall charges of the respective display cells In a state of uniformity.
  • the discharge of the display unit belongs to the positive column discharge, and the generated discharge intensity is very low.
  • the scan pulse of the waveform can produce a relatively low background brightness, which can result in better image quality.
  • the inventors have found that the driving method of the conventional plasma display has a relatively small rate of voltage change due to the applied rising ramp pulse and the falling pulse, resulting in a relatively long reset period Tr and a process of applying a falling ramp.
  • a strong discharge does not occur between the scan electrode and the sustain electrode of the middle display unit, so that the spatial ion concentration has weakened to a relatively low level when entering the address period Ta, resulting in a relatively long time occupied by the address period Ta. This allows multiple reset cycles and addressing cycles to be used to display a complete image during the drive.
  • a medium reset period and an address period take too long to cause the sustain period to occupy a small proportion of time in one field and a small number of neutron fields, which seriously affects the image quality of the plasma display (balance increaser) The number of fields) and the maintenance of image brightness.
  • the present invention is directed to a driving method and a driving circuit for a plasma display, which can solve the problem that the current driving method has a small rate of voltage change due to the applied rising ramp pulse and the falling pulse, resulting in a reset period and a seek in one field.
  • a method of driving a plasma display comprising: applying a positive polarity to a scan electrode of each display unit in a reset period of at least one subfield of a field image
  • the driving pulse of the vertical falling edge applies a zero voltage to the sustain electrode, wherein the voltage difference between the scan electrode and the sustain electrode has a maximum amplitude greater than the amplitude of the sustain voltage.
  • each display cell discharge is excited to form a wall charge under the action of a drive pulse of the scan electrode.
  • each display unit performs self-erase discharge under the action of the wall voltage formed by the wall charges.
  • the driving force applied to the scanning electrodes of each display unit is obtained by superimposing two or more pulses.
  • the driving force applied to the scanning electrodes of each display unit is obtained by superimposing two pulses, one of which is a square wave, and the other pulse includes one of the following: square wave, trapezoidal wave, triangular wave, index Waves, sine waves, and multiple pulses.
  • the method further includes: applying a driving pulse having a rising ramp waveform and a falling ramp waveform to the scan electrodes of each display unit in a reset period of at least one subfield of the field; While lowering the drive pulse of the ramp waveform, a positive DC voltage is applied to the sustain electrodes of each display unit.
  • a driving circuit for a plasma display comprising: a scan electrode driving circuit for generating a scan electrode driving; a sustain electrode driving circuit for generating a sustain electrode driving pulse; An address electrode driving circuit for generating an address electrode driving; and a control circuit for controlling the scan electrode driving circuit to apply a scan electrode driving pulse to the scan electrode, and controlling the sustain electrode driving circuit to apply the sustain electrode driving pulse to the sustain The electrode, and the control address electrode driving circuit apply the address electrode driving to the address electrode; wherein the scan electrode driving pulse generated by the scan electrode driving circuit comprises: a positive driving pulse having a vertical or approximately vertical falling edge And a control circuit controlling the scan electrode driving circuit to apply a driving pulse to the scan electrodes of each display unit during a reset period of at least one subfield of the field image, for causing each display unit to discharge and generate wall charges, wherein, scanning Voltage difference between the electrode and the sustain electrode The highest amplitude is greater than the amplitude of the sustain voltage.
  • each display unit performs self-erase discharge under the action of the wall voltage formed by the wall charges.
  • the driving force applied to the scan electrodes of each display unit is obtained by superimposing two pulses, one of which is a square wave, and the other pulse includes one of the following: square wave, trapezoidal wave, triangular wave, index Waves, sine waves, and multiple pulses.
  • the scan electrode driving pulse generated by the scan electrode driving circuit further includes: a driving pulse having a rising ramp waveform and a falling ramp waveform, wherein the control circuit controls the scan electrode driving circuit to sequentially drive the driving pulse in a reset period of at least one subfield of the field Applied to the scan electrodes of each display unit.
  • the scan electrode driving circuit comprises: a sustain driving circuit for generating a driving pulse of a sustain period; a reset circuit for generating a driving pulse having a rising ramp waveform; and a ramp driving circuit for generating a driving pulse having a falling ramp waveform a scan and erase control circuit for controlling a voltage applied to the scan circuit, and a drive permanent with a vertical or approximately vertical falling edge to generate a positive polarity; and a scan circuit for driving the scan electrode drive circuit A pulse is applied to the scan electrode.
  • a positive polarity drive pulse having a vertical or approximately vertical falling edge also referred to as a self-erase pulse
  • the rate of voltage change 4 ⁇ fast, so the existing driving method is solved because the rate of voltage change of the applied rising ramp pulse and the falling pulse is small, resulting in a longer reset period and an address period in one field, and a longer proportion of the sustain period occupation time.
  • a smaller number of neutron fields which seriously affects the improvement of the image quality of the plasma display (balance increases the number of subfields) and the maintenance of image brightness, thereby effectively reducing the reset period and the address period occupied by one field.
  • the time increases the proportion of time that the sustain period occupies in one field, and increases the number of neutron fields, which is beneficial to improve the image quality of the plasma display (the balance of the number of subfields is increased) and to maintain the brightness of the image.
  • BRIEF DESCRIPTION OF THE DRAWINGS The accompanying drawings, which are set to illustrate,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
  • FIG. 3 is a schematic view showing a driving waveform of a driving method of a plasma display of the related art
  • 4 is a schematic diagram showing driving waveforms, wall charges, and spatial ion concentrations in the reset period Tr of each subfield after the first subfield in FIG. 3
  • FIG. 5 shows a driving method of the plasma display according to the embodiment of the present invention.
  • Figure 6 is a schematic diagram showing a driving circuit of a plasma display according to an embodiment of the present invention;
  • Figure 7 is a schematic view showing a driving circuit of a plasma display according to a preferred embodiment of the present invention;
  • FIG. 9 is a schematic diagram showing driving waveforms of a plasma display driving method and a driving circuit according to a preferred embodiment of the present invention
  • FIG. 10 shows a plasma display driving method according to a preferred embodiment of the present invention and A schematic diagram of wall charge and spatial ion concentration of a display unit in which a sustain discharge occurs in a previous subfield in a subsequent subfield
  • FIG. 11 shows a driving waveform and wall charge uniformity in a preferred embodiment of the present invention and the prior art.
  • FIG. 12 is a schematic diagram showing a driving method of a plasma display and a scanning electrode driving waveform of a driving circuit according to an embodiment of the present invention
  • FIG. 5 is a flow chart showing a driving method of a plasma display according to an embodiment of the present invention.
  • Step S10 Apply a positive polarity drive with a vertical or approximately vertical falling edge to the scan electrode of each display unit during a reset period of at least one subfield of an image, and apply the sustain electrode Zero voltage, wherein the voltage difference between the scan electrode and the sustain electrode has a maximum amplitude greater than a magnitude of the sustain voltage.
  • the preferred embodiment applies a positive polarity drive with a vertical or approximately vertical falling edge to the scan electrode of each display unit during a reset period of at least one subfield of a field image (also referred to as self-erase) Pulse), the rate of voltage change is very fast, which solves the problem that the existing driving method has a small rate of voltage change due to the applied rising ramp pulse and the falling pulse, resulting in a longer reset period and an address period in one field, maintaining The proportion of cycle occupation time is small, and the number of neutron fields is small, which seriously affects the improvement of image quality of plasma display (balance increases the number of subfields) and the problem of image brightness maintenance.
  • the time taken by the reset period and the address period in one field can be effectively reduced, the proportion of time occupied by the sustain period in one field is increased, and the number of neutron fields is increased, thereby facilitating the plasma increase.
  • the image quality of the display (the balance of the number of subfields is increased) and the brightness of the image is maintained.
  • a narrow high voltage pulse having a voltage amplitude greater than a sustain voltage amplitude may be applied to only the scan electrodes of each display unit, so that the highest amplitude of the voltage difference between the scan electrode and the sustain electrode of each display unit is greater than the sustain voltage amplitude. value.
  • each display cell discharge is excited to form a wall charge under the action of a drive pulse of the scan electrode.
  • a certain wall charge is accumulated on the medium on the surface of the scan electrode and the sustain electrode, and the discharge space also has a relatively large space due to the occurrence of the sustain discharge.
  • the ions, the voltage applied between the scan electrode and the sustain electrode of each display unit is a high-potential pulse that changes drastically, causing a display unit that accumulates a large amount of wall charges in the display unit to generate a strong discharge, and to generate more wall charges.
  • a certain concentration of spatial ions is formed in the discharge space of the display unit.
  • the sustain discharge display unit does not occur in the sustain period of the previous subfield, and the scan electrode and the medium on the surface of the sustain electrode do not accumulate or accumulate only a small amount of wall charges, and are applied to the scan electrodes of each display unit and maintained.
  • the voltage between the electrodes is a high-potential pulse that changes drastically, so that the display unit that does not have or has a wall charge in the display unit can only It is sufficient to generate a weak discharge and to excite a certain amount of wall charges, and at the same time, to generate a certain concentration of spatial ions in the discharge space of the display unit.
  • each display cell after the falling edge of the driving of the scan electrodes is completed, each display cell performs self-erase discharge under the action of the wall voltage of the wall charges.
  • the wall charges in each display cell are self-erased after the end of the falling edge.
  • a strong discharge occurs between the scan electrode and the sustain electrode of the display unit, and a display unit that forms a large amount of wall charges is excited, and wall charges in the display unit are on a falling edge
  • the self-erase discharge causes the wall charge of the display unit to be lowered to a relatively low state, and the space of the display unit is also self-erased. Discharge ensures that a certain concentration of space ions is present.
  • the self-erase discharge is used to uniformize the wall charge of the display unit, and the spatial ion concentration reaches a certain concentration, so that the reset period of the present invention takes much less time than the reset period of the prior art.
  • the reset period of the present invention is relatively short, the spatial ion concentration formed by the reset period is slowly attenuated and can still be at a relatively high level throughout the address period, so that the time taken between the address periods is greatly shortened.
  • the maintenance cycle increases the proportion of time spent in one field, and on the other hand, the number of neutron fields can be greatly increased, thereby solving the problem of increasing the number of subfields by high-definition PDP, full HD PDP, and higher resolution PDP balance (increasing the image) Quality) issues with maintaining a certain image brightness.
  • the driving force applied to the scanning electrodes of each display unit is obtained by superimposing two or more pulses.
  • the above-described positive polarity drive permanent with vertical or nearly vertical falling edges can be obtained by superimposing pulses of various waveforms.
  • the driving force applied to the scanning electrodes of each display unit is obtained by superimposing two pulses, one of which is a square wave, and the other pulse includes one of the following: square wave, trapezoidal wave, triangular wave, index Waves, sine waves, and multiple pulses.
  • the rising and falling edges of a square wave can be characterized by rapid changes in energy recovery characteristics.
  • the above-described example provides a waveform of various permanent impulses superimposed to form the above-described driving moon rush having a vertical or approximately vertical falling edge. These ⁇ rushes have vertical or approximately vertical falling edges.
  • the method further comprises: applying a driving pulse having a rising ramp waveform and a falling ramp waveform to the scan electrodes of each display unit in a reset period of at least one subfield of the field; Scan electrode is applied with a drive pulse having a falling ramp waveform At the same time, a positive DC voltage is applied to the sustain electrodes of each display unit.
  • the drive pulses in the preferred embodiment and the drive with vertical or approximately vertical falling edges in the preferred embodiment described above are applied to the scan electrodes of each display cell during the reset period of each subfield of a field.
  • the above preferred embodiment provides a driving method for a plasma display.
  • a high voltage having a vertical or approximately vertical falling edge is applied to the scan electrodes of each display unit, so that the discharge between the scan electrodes and the sustain electrodes excites the wall charges, so that after the end of the falling edge, each display unit is intrinsic
  • the self-erase discharge is performed under the wall voltage formed by the wall charges, so that the wall charges of each display cell are uniformized, and a certain concentration of spatial ions is formed in the discharge space.
  • the driving method provided by the present invention is compared with the prior art driving method, in that the present invention applies a positive polarity driving pulse having a vertical or approximately vertical falling edge to the scanning electrode Y electrode during the reset period, so that the display unit is in the display unit.
  • the wall charge self-erase discharge realizing the wall charge uniformity at the display unit and the spatial ion concentration at a relatively high level, is much shorter than applying a falling ramp drive pulse and a positive electrode to the scan electrode Y electrode and the sustain electrode X, respectively.
  • the high DC voltage enables the wall charge at the display unit to be in a uniform state and the spatial ion concentration is at a relatively high level, so the reset period using the self-erase discharge between the scan electrode Y electrode and the sustain electrode X electrode The time is far less than the time between the scan electrode Y electrode and the sustain electrode X electrode using the reset period of the positive column region discharge.
  • the spatial ion concentration gradually weakens from the end of the sustain period of the previous subfield, and the driving method using the self-erase discharge greatly shortens the reset period time, thereby making the spatial ion concentration weak in the reset period.
  • the spatial ion concentration is larger during the address period, causing the addressing speed to be increased and the time taken by the addressing period to be shortened.
  • FIG. 6 is a schematic diagram of a driving circuit of a plasma display according to an embodiment of the present invention, including: a scan electrode driving circuit 510 for generating a scan electrode driving; a sustain electrode driving circuit 520 for generating a sustain electrode driving ⁇
  • the address electrode driving circuit 530 is configured to generate an address electrode driving pulse
  • the control circuit 540 is configured to control the scan electrode driving circuit to apply the scanning electrode driving to the "J scan electrode, and the control sustain electrode driving circuit will be maintained.
  • the electrode driving is permanently applied to the sustain electrode, and the control address electrode driving circuit applies the address electrode driving pulse to the address electrode; wherein the scan electrode driving pulse generated by the scan electrode driving circuit comprises: a positive polarity having a vertical or approximately vertical a driving pulse of a falling edge, the control circuit controls the scan electrode driving circuit to apply a driving pulse to the scan electrode of each display unit in a reset period of at least one subfield of a field image, Each of the display cells is discharged to form a wall charge, wherein a voltage difference between the scan electrode and the sustain electrode has a maximum amplitude greater than a magnitude of the sustain voltage.
  • the preferred embodiment applies a positive polarity drive pulse having a vertical or approximately vertical falling edge to the scan electrode of each display unit by a scan electrode driving circuit during a reset period of at least one subfield of a field image.
  • Fast thus solving the existing driving method because the applied ramp pulse and the falling pulse have a small rate of voltage change, resulting in a longer reset period and an address period in one field, and a smaller proportion of the sustain period occupation time.
  • the number of neutron fields is small, which seriously affects the improvement of the image quality of the plasma display (balance increases the number of subfields) and the maintenance of image brightness.
  • each display unit performs self-erase discharge under the action of the wall voltage formed by the wall charges.
  • the wall charges in each display cell are self-erased after the end of the falling edge.
  • a strong discharge occurs between the scan electrode and the sustain electrode of the display unit, and a display unit that forms a large amount of wall charges is excited, and wall charges in the display unit are on a falling edge
  • the self-erase discharge causes the wall charge of the display unit to be lowered to a relatively low state, and the space of the display unit is also self-erased. Discharge ensures that a certain concentration of space ions is present.
  • the self-erase discharge is used to uniformize the wall charge of the display unit, and the spatial ion concentration reaches a certain concentration, so that the reset period of the present invention takes much less time than the reset period of the prior art.
  • the reset period of the present invention is relatively short, the spatial ion concentration formed by the reset period is slowly attenuated and can still be at a relatively high level throughout the address period, so that the time taken between the address periods is greatly shortened.
  • the maintenance cycle increases the proportion of time spent in one field, and on the other hand, the number of neutron fields can be greatly increased, thereby solving the problem of increasing the number of subfields by high-definition PDP, full HD PDP, and higher resolution PDP balance (increasing the image) Quality) issues with maintaining a certain image brightness.
  • the driving force applied to the scan electrodes of each display unit is obtained by superimposing two pulses, one of which is a square wave, and the other pulse includes one of the following: square wave, trapezoidal wave, triangular wave, index Waves, sine waves, and multiple pulses.
  • the rising and falling edges of the square wave can have energy The rapid change characteristics of the mass recovery characteristics.
  • the above-described example provides a waveform of various permanent impulses superimposed to form the above-described driving moon rush having a vertical or approximately vertical falling edge. These ⁇ rushes have vertical or approximately vertical falling edges.
  • the scan electrode driving pulse generated by the scan electrode driving circuit further includes: a driving pulse having a rising ramp waveform and a falling ramp waveform, wherein the control circuit controls the scan electrode driving circuit to sequentially drive the driving pulse in a reset period of at least one subfield of the field Applied to the scan electrodes of each display unit. During the reset period of each subfield of a field, the drive pulse in the preferred embodiment is applied to the scan electrodes of each display unit and the zone drive with vertical or approximately vertical falling edges in the preferred embodiment described above.
  • the scan electrode driving circuit 510 includes: a sustain driving circuit for generating a driving pulse of a sustain period; a reset circuit for generating a driving pulse having a rising ramp waveform; and a ramp driving circuit for generating a driving with a falling ramp waveform a scan and erase control circuit for controlling a voltage applied to the scan circuit, and a drive having a vertical or approximately vertical falling edge to generate a positive polarity; and a scan circuit for generating the scan electrode drive circuit The drive is applied to the scan electrode.
  • the preferred embodiment generates a wall charge by discharging between the scan electrode and the sustain electrode, wherein a voltage difference between the scan electrode and the sustain electrode has a maximum amplitude greater than a sustain voltage amplitude;
  • the wall charges in each of the display cells are subjected to self-erase discharge after the end of the falling edge.
  • the invention effectively reduces the time taken by the reset period and the address period in one field, and increases the proportion of time occupied by the sustain period in one field, thereby increasing the number of subfields in one picture.
  • the driving circuit comprising: a scan electrode driving circuit 610, a sustain electrode driving circuit 620, an address electrode cell moving circuit 630, and a control circuit 640.
  • the scan 4 horn electrode circuit 610 includes: a sustain drive circuit 6101, a reset circuit 6102, a scan and erase control circuit 6103, a scan circuit 6104, and a ramp drive circuit 6105.
  • the sustain electrode drive circuit 620 includes: a sustain drive circuit 6201, step circuit 6202.
  • the scan and erase control circuit 6103 is for controlling the voltage applied to the scan circuit and generating a drive pulse having a vertical or approximately vertical falling edge of positive polarity.
  • the scan electrode driving circuit 710 and the sustain electrode driving circuit 720 are an implementation circuit for realizing the scan electrode driving circuit 610 and the sustain electrode driving circuit 620 in Fig. 6.
  • the sustain driving circuit 7101, the reset circuit 7102, the scan and erase control circuit 7103, the scan circuit 7104, and the ramp drive circuit 7105 in FIG. 7 are respectively used to implement the sustain drive circuit 6101, the reset circuit 6102, and the scan in FIG.
  • Fig. 9 is a view showing a driving waveform of a plasma display driving method and a driving circuit according to a preferred embodiment of the present invention.
  • Fig. 10 is a view showing the wall charge and the spatial ion concentration in the reset period of the subsequent subfield of the display unit in which the sustain discharge occurs in the previous subfield according to the preferred embodiment of the present invention. As shown in the preferred embodiment of Fig.
  • a field picture includes a plurality of subfields, each of which includes a reset period Tr, an address period Ta, and a sustain period Ts.
  • the display unit is reset by the prior art: a rising ramp is generated by the reset circuit 6102 in the scan electrode driving circuit 610, and is driven by the scan electrode.
  • the ramp driving circuit 6105 in the circuit 610 generates a lower ramp pulse, and the rising ramp pulse and the falling ramp pulse generated under the control of the control circuit 640 are sequentially applied to the scan electrodes (Y electrodes) of each display unit, and the sustain electrode driving circuit 620 is passed.
  • the step circuit 6202 generates a DC voltage, and a DC voltage generated by the step circuit 6202 is applied to the sustain electrode of each display unit under the control of the control circuit 640 while the falling ramp pulse is applied to the scan electrode (Y electrode) of each display unit ( X electrode)own
  • the preferred embodiment resets the display unit in the reset period Tr period of each subfield after the first subfield as follows: For at least one subfield in a field, the reset period Tr is divided into First reset period Tr1, second reset period Tr2, first The reset period Tr3. First, in the first reset period Tr1, the voltages on the X, Y electrodes are held by the scan electrode driving circuit 610 and the sustain driving circuit 620 for a period of time.
  • the sustain driving circuit 6101 in the electrode driving circuit 610 generates a high voltage pulse having a voltage amplitude of Vs, and generates a voltage pulse of a certain shape by the scanning and erasing control circuit 6103, and The voltage is applied to each of the Y electrodes by the scanning circuit 6104, and the pulse generated by the driving circuit 6101 and the voltage pulses generated by the scanning and erasing control circuit 6103 and the scanning circuit 6104 are superimposed under the control of the control circuit 640 to form a voltage pulse.
  • the highest amplitude is Vs + Vsc and the voltage is applied to the scan electrode (Y electrode).
  • the display unit is subjected to a high voltage, and for the display unit in which the sustain discharge occurs in the sustain period Ts of the previous subfield, as shown in FIG. 10, the display unit has more wall charges after being discharged in the first reset period Tr1, and exists A relatively large amount of spatial ions, the display unit is under the action of a high voltage, and a reverse strong discharge occurs between the Y electrode and the X electrode in a short time relative to the discharge in the first reset period Tr1, and the display unit is in the display unit after the end of the strong discharge More wall charges are accumulated, resulting in a relatively high wall voltage and a higher concentration of space ions.
  • the scan electrode driving circuit 610 and the sustain electrode driving circuit 620 control the voltage holding of the Y electrode and the X electrode, respectively.
  • the display unit in which the sustain discharge occurs is caused by the higher wall voltage, and the display unit also discharges, so that the wall charges of the respective display units are in a uniform state. We call this discharge a self-erase discharge.
  • the pulse for causing the inner wall charge of the display unit to generate a self-erase discharge is a self-erase pulse, and the narrow pulse applied to the Y electrode and the zero voltage applied to the sustain electrode X electrode in the preferred embodiment are combined to cause display
  • the cell inner wall charge generates a self-erase discharge
  • the narrow pulse applied to the scan electrode Y electrode is said to be the self-erase *R rush in the preferred embodiment.
  • the medium on the surface of the scan electrode Y electrode and the sustain electrode X electrode does not accumulate or only accumulates a small amount of wall charges, and resets in the current subfield.
  • the display unit does not generate a strong discharge, only a weak discharge is generated, and the wall charges are also adjusted accordingly, and a certain concentration of spatial ions is formed in the discharge space. Therefore, no matter whether a sustain discharge has occurred in the previous subfield, after the self-erase discharge between the scan electrode and the sustain electrode, the wall charge at each display unit is in a uniform state, and the spatial ion concentration is also self-erased. Discharged at a relatively high level. The force is applied to the scan electrode Y electrode and the sustain electrode X electrode.
  • the self-erase pulse causes the self-erase discharge between the scan electrode Y electrode and the sustain electrode X electrode to achieve a state in which the wall charge at the display unit is in a uniform state and the spatial ion concentration is at a relatively high level, which is much shorter than the scan.
  • the electrode Y electrode and the sustain electrode X respectively apply a falling ramp driving pulse and a positive DC high voltage to realize a state in which the wall charges at the display unit are in a uniform state and the spatial ion concentration is at a relatively high level, so for the scanning electrode Y electrode and
  • the reset period of the sustain electrode X electrode using self-erase discharge The time of Tr is much smaller than the time between the scan electrode ⁇ electrode and the sustain electrode X electrode using the reset period Tr of the positive column region discharge.
  • Figure 11 is a graph showing a comparison of preferred embodiments of the present invention with prior art drive waveforms, wall charge homogenization, and address period spatial ion concentration.
  • the to time is the end time of the previous subfield maintenance period, and the start time of the reset period of the current subfield.
  • the self-erase discharge is used to achieve uniformization of the wall charge of the display cell, and the reset period of the current subfield ends at the time, and the address period of the current subfield is At the beginning of time at t 3 At the end of the time, the current subfield maintenance period is at t 3 The moment begins.
  • the discharge of the positive column region of the falling ramp pulse is used to achieve uniformization of the wall charge of the display cell, and the reset period of the current subfield is at t. 2
  • the current subfield's addressing period is at t 2
  • the current subfield maintenance period is at t 4 The moment begins. It can be seen that the reset period of the preferred embodiment - to be compared to the prior art reset period t 2 - To time is much shorter.
  • time to t 3 The time period between the times is the addressing period of the preferred embodiment, t 2 Time to t 4
  • the time period between the times is the prior art addressing period, and the spatial ion concentration gradually decays with time from the end time of the sustain period of the previous subfield, due to t 2 Time is later than the moment, so the time is up to t 3
  • the spatial ion concentration in the time period between times is greater than t 2 Time to t 4
  • the spatial ion concentration in the time period between the times that is, the spatial ion concentration in the address period of the preferred embodiment is greater than the spatial ion concentration in the prior art addressing period, and the higher the spatial ion concentration, the discharge delay The smaller the scan time is, the shorter the scan time is.
  • FIG. 12 is a view showing a driving method of a plasma display and a scanning electrode driving waveform of a driving circuit according to an embodiment of the present invention. As shown in FIG.
  • one of the step voltages of the self-erase pulse applied to the scan electrode Y electrode of each display unit may be a trapezoidal pulse, a triangular pulse, an exponential pulse, a sinusoidal pulse or Multi-pulse, etc., by adjusting the amplitude, duration, rising edge and falling edge of these pulse waveforms to obtain better results. Since the self-erase *R rush can be superimposed by more than two drive waveforms, and for the sake of waveform control, the time between the rising and falling edges of each waveform is not coincident. When the drive waveforms of two pulse forms are superimposed, four types of drive waveforms can be formed when the rising and falling edges of the punch are combined differently. Fig.
  • FIG. 13 is a view showing a driving method of a plasma display and a driving electrode driving waveform of a driving circuit in a reset period according to an embodiment of the present invention.
  • the self-erase pulse applied to the scan electrodes in the preferred embodiment shown in FIG. 8 is a high voltage pulse having an amplitude VS generated by the sustain driving circuit 7101 and generated by the scan and erase control circuit 7103 and the scan circuit 7104.
  • the high voltage pulse of the amplitude value Vs generated by the sustain driving circuit 7101 is resonated by the inductance of the sustain driving circuit 7101 and the screen capacitance at the rising edge and the falling edge, respectively, so that the rising edge and the falling edge have a slowly rising characteristic, and the driving waveform is similar.
  • the sine wave characteristic, and the high voltage pulse of the amplitude Vsc generated by the scan and erase control circuit 7103 is directly turned on or off by the switch of the scanning circuit 7104, and the DC voltage is switched to the capacitive load, so the rising edge and the falling edge thereof The change is faster when the self-erase pulse is a square wave.
  • the self-erase pulse is a trapezoidal pulse, a triangular pulse, an exponential pulse, a sinusoidal pulse or a multi-pulse characteristic
  • the shape of the drive waveform does not substantially change when the self-erase pulse is applied to the display by the scanning circuit.
  • Figure 13 is a self-wiping applied to the display screen by superimposing the driving pulse generated by the driving circuit to generate an amplitude of Vs and the relative relationship between the front and rear edges of the driving pulse having the amplitude Vsc generated by the scanning and erasing control circuit.
  • a schematic diagram of the pulse A schematic diagram of the pulse.
  • the strong discharge occurs during the rise of the self-erase pulse, when the drive waveforms of different shapes are applied to the display, the load currents of the sustain drive circuit 7101, the scan and erase control circuit 7103, and the scan circuit 7104 are different. Since the highest amplitude of the self-erase pulse is relatively high, reaching Vs + Vsc, after the self-erase pulse reaches the maximum amplitude, a strong discharge occurs regardless of the state of the previous sub-field display unit, and the display unit is The discharge on the high voltage has a certain delay relative to the waveform of the applied voltage.
  • the control circuit can be used to control the shape timing of each of the switches in the sustain drive circuit, the scan and erase control circuit, and the scan circuit, so that the rising edge and falling edge characteristics of the self-erase pulse can be changed. From the above description, it can be seen that the above-described embodiments of the present invention achieve the following technical effects: by applying a driving punch having a vertical or approximately vertical falling edge to each display unit, the display unit is self-reset within the reset period.
  • the erasing discharge homogenizes the wall charges in the display unit and makes the spatial ion concentration reach a certain concentration, so that the time occupied by the reset period is far less than the time taken by the reset period in the prior art;
  • the reset period of the invention is relatively short, and the spatial ion concentration formed by the reset period is slowly attenuated and can still be at a relatively high level during the entire address period, so that the time taken between the address periods is greatly shortened, so that the period is maintained on one hand.
  • the proportion of occupied time increases, and on the other hand, the number of neutron fields can be greatly increased, which in turn helps PDP balance to increase the number of subfields (improve image quality) and maintain a certain image brightness.
  • modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device, or they may be separately fabricated into individual integrated circuit modules, or they may be Multiple modules or steps are made into a single integrated circuit module.
  • the invention is not limited to any particular combination of hardware and software.
  • the above description is only the preferred embodiment of the present invention, and is not intended to limit the present invention, and various modifications and changes can be made to the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the scope of the present invention are intended to be included within the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Gas Discharge Display Tubes (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Description

等离子显示器的驱动方法和驱动电路 技术领域 本发明涉及平板显示器领域, 具体而言, 涉及一种等离子显示器的驱动 方法和驱动电路。 背景技术 随着等离子显示技术的快速发展,等离子显示器( Plasma Display Panel, PDP ) 由于其亮度高、 发光效率高、 色彩表现力强、 视角宽、 动态图像显示 特性优良、 制造工艺简单、 以及成本低等优点, 在大屏幕显示领域成为替代 阴极射线管显示器有力竟争者。 等离子显示器通过气体放电产生紫外线,以激发荧光粉发光来显示字符 或者图像。 才艮据驱动电压和显示单元的不同, 等离子显示器可以分为直流放 电型和交流放电型两类。 交流放电型等离子显示器的电极由介质层所覆盖, 电极间形成的电容可以自然地限制放电电流, 介质层还能够避免放电过程中 的离子对电极的轰击, 所以交流放电型等离子显示器具有更高的使用寿命。 等离子显示器大多釆用三电极结构,利用寻址驱动与显示驱动分离的方 法来实现全色彩显示。 目前, 三电极交流放电型等离子显示器由于具有突出 的优点而得到了广泛的应用。 下文将三电极交流放电型等离子显示器简称为 等离子显示器。 图 1示出了等离子显示器的基本结构示意图。 如图 1所示, 等离子显示 器包括显示展 110、 控制电路 120、 扫描电极(Y电极)驱动电路 130、 维持 电极 ( X电极 )马区动电路 140、 以及寻址电极马区动电路 150。 寻址电极马区动电 路 150在控制电路 120的控制下, 向寻址电极 Al A2, A3…提供预定电压。 下文将寻址电极 Al A2, A3...称为寻址电极 Ai, 其中下标 i=l , 2, 3 .·.。 扫 描电极 ( Y电极 ) 驱动电路 130在控制电路 120的控制下, 向扫描电极 Υι , Y2, Υ3…提供预定电压。 下文将扫描电极 Yl Υ2, Υ3...称为扫描电极 Yj , 其中下标 j= l , 2 , 3 .·.。 维持电极 (X电极) 驱动电路 140分别向维持电极 Xi , X2, X3…供给电压。 下文中维持电极 Xl X2, X3...称为公共电极 Xi , 其中下标 i=l , 2 , 3 .·.。 在显示屏 110内, 扫描电极 Yj与维持电极 Xi形成沿水平方向延伸的各 行, 而寻址电极 Ai形成沿垂直方向延伸的各列, 且扫描电极 Yj与维持电极 Xi延垂直方向交替布置。扫描电极 Yj与寻址电极 Ai形成一个由 j行与 i列组 成的二维矩阵。 扫描电极 Yj与寻址电极 Ai的各交叉点及与这些交叉点相邻 的各维持电极 形成各显示单元 d」。 这些显示单元 d」相当于各像素, 因而 显示展 101可以显示一个二维图像。 如图 1所示, 扫描电极 ( Y 电极) 驱动电路 130 包括: 维持驱动电路 1301、 复位电路 1302、 扫描控制电路 1303、 扫描电路 1304和斜坡驱动电路 1305。 其中, 维持驱动电路 1301 主要产生维持周期的驱动波形; 复位电路 1302主要产生上升斜坡驱动波形; 斜坡驱动电路 1305主要产生下降斜坡驱 动波形; 扫描控制电路 1303 用于控制施加在扫描电路上的电压; 扫描电路 1304 负责 4巴扫描电极驱动电路产生的驱动电压在扫描期依次施加到各个扫 描电极上。 维持电极驱动电路 140包括: 维持驱动电路 1401、 以及台阶电路 1402。 其中, 维持驱动电路 1401 主要产生维持周期的驱动波形, 台阶电路 1402用于产生复位周期和寻址周期的直流电压。 图 2示出了一个图像的一场的示意图。 例如, 一个图像由每秒 60场组 成, 一场由第一子场 SF1、 第二子场 SF2、 第三子场 SF3 ...及第 n子场 SFn 组成。 其中 "n" 为对应于色调位的数目。 下文将子场 SF1、 SF2...称为子场 SF。 图 3示出了现有技术的等离子显示器的驱动方法的驱动波形的示意图。 等离子显示器的驱动通常将各个子场 SF分为以下周期: 复位周期 Tr、 寻址 周期 Ta、 以及维持周期(维持放电周期) Ts。 在复位周期 Tr, 显示单元恢复 初始状态; 在寻址周期 Ta, 选择各显示单元发光或者不发光; 在维持周期 Ts, 被选择发光的显示单元发光。 现有的等离子显示器的驱动方法, 在第一子场的复位周期 Tr, 扫描电 极驱动电路 130在控制电路 110的控制下, 向每一显示单元的扫描电极 ( Y 电极) 先后供给上升斜坡脉冲和下降斜坡脉冲, 并在施加下降斜坡脉冲的同 时, 对每一显示单元的维持电极(X电极)施加正极性的直流电压。 上升斜 坡脉冲使得整个显示屏的显示单元产生弱放电, 在各个显示单元上积累壁电 荷( wall charge );下降斜坡脉冲在整个显示屏的显示单元中产生反向弱放电, 使得各个显示单元中的壁电荷比较均匀, 并在显示单元的放电空间形成一定 浓度的空间离子。 在第一子场之后的各子场的复位周期 Tr, 扫描电极驱动电路 130在控 制电路 110的控制下, 对每一显示单元的扫描电极(Y电极) 首先施加从零 到 Vs的上升斜坡脉冲, 然后施加从零到 Vy的下降斜坡脉冲, 在下降斜坡过 程中同时对每一显示单元的维持电极 (X电极) 施加正极性的直流电压。 图 4示出了图 3中第一子场之后的各子场的复位周期 Tr内的驱动波形、 壁电荷 以及空间离子浓度的示意图。各个显示单元施有下降斜坡脉冲的 Y电极和施 有高电压的 X电极之间形成弱放电, 在下降斜坡脉冲的后期, 壁电荷相应变 化緩慢, 在下降斜坡结束时, 各个显示单元的壁电荷处于均勾一致的状态。 现有的等离子显示器的驱动方法在复位周期 Tr, 由于施加的上升斜坡 脉冲及下降斜坡脉冲的电压变化速率较小,显示单元的放电属于正柱区放电, 产生的放电强度非常低, 这种驱动波形的扫描脉冲可以产生比较低的背景亮 度, 从而可以呈现比较优质的图像质量。 在实现本发明过程中,发明人发现现有的等离子显示器的驱动方法由于 施加的上升斜坡脉冲及下降脉冲的电压变化速率较小,导致复位周期 Tr占用 的时间比较长, 并且在施加下降斜坡过程中显示单元的扫描电极与维持电极 之间不会发生强烈的放电,使得空间离子浓度在进入寻址周期 Ta时已衰弱到 比较低的水平, 导致寻址周期 Ta占用的时间比较长。 这样在驱动过程中, 要 使用多个复位周期和寻址周期才能显示出完整的图像。 一场中复位周期和寻 址周期占用时间过长会导致维持周期在一场中占用的时间比例较少、 一场中 子场数目较少, 从而严重影响等离子显示器图像质量的提高 (平衡增加子场 数目 ) 以及图像亮度的保持。 发明内容 本发明旨在提供一种等离子显示器的驱动方法和驱动电路,能够解决现 有的驱动方法由于施加的上升斜坡脉冲及下降脉冲的电压变化速率较小, 导 致在一场中复位周期和寻址周期占用时间较长 ,维持周期占用时间比例较少、 一场中子场数目较少, 从而严重影响等离子显示器图像质量的提高 (平衡增 加子场数目 ) 以及图像亮度的保持的问题。 在本发明的实施例中, 提供了一种等离子显示器的驱动方法, 包括: 在 一场图像的至少一个子场的复位周期内, 对每一显示单元的扫描电极施加正 极性的具有垂直或近似垂直下降沿的驱动脉冲, 并对维持电极施加零电压, 其中, 扫描电极与维持电极之间的电压差最高幅值大于维持电压的幅值。 优选的, 在扫描电极的驱动脉冲的作用下, 每一显示单元放电激发形成 壁电荷。 优选的, 在扫描电极的驱动^ i冲的下降沿结束后, 每一显示单元在壁电 荷形成的壁电压的作用下, 进行自擦除放电。 优选的,对每一显示单元的扫描电极施加的驱动^ i冲通过叠加两个或两 个以上脉冲获得。 优选的,对每一显示单元的扫描电极施加的驱动^ i冲通过叠加两个^ i冲 获得, 其中一个脉冲为方波, 另一个脉冲包括以下之一: 方波、 梯形波、 三 角波、 指数波、 正弦波、 以及多脉冲。 优选的, 还包括: 在场的至少一个子场的复位周期内, 对每一显示单元 的扫描电极先后施加具有上升斜坡波形和下降斜坡波形的驱动脉冲; 在对每 一显示单元的扫描电极施加具有下降斜坡波形的驱动脉冲的同时, 对每一显 示单元的维持电极施加正极性的直流电压。 在本发明的实施例中, 还提供了一种等离子显示器的驱动电路, 包括: 扫描电极驱动电路, 用于产生扫描电极驱动^ i冲; 维持电极驱动电路, 用于产生维持电极驱动脉冲; 寻址电极驱动电路, 用于产生寻址电极驱动^ i冲; 以及 控制电路,用于控制扫描电极驱动电路将扫描电极驱动脉冲施加到扫描 电极, 控制维持电极驱动电路将维持电极驱动脉冲施加到维持电极, 以及控 制寻址电极驱动电路将寻址电极驱动^ i冲施加到寻址电极; 其中, 扫描电极驱动电路产生的扫描电极驱动脉冲包括: 正极性的具有 垂直或近似垂直下降沿的驱动脉冲, 控制电路控制扫描电极驱动电路在一场 图像的至少一个子场的复位周期内将驱动脉冲施加到每一显示单元的扫描电 极, 用于使每一显示单元放电激发形成壁电荷, 其中, 扫描电极与维持电极 之间的电压差最高幅值大于维持电压的幅值。 优选的, 在扫描电极的驱动^ i冲的下降沿结束后, 每一显示单元在壁电 荷形成的壁电压的作用下, 进行自擦除放电。 优选的,施加到每一显示单元的扫描电极的驱动^ i冲通过叠加两个^ i冲 获得, 其中一个脉冲为方波, 另一个脉冲包括以下之一: 方波、 梯形波、 三 角波、 指数波、 正弦波、 以及多脉冲。 优选的, 扫描电极驱动电路产生的扫描电极驱动脉冲还包括: 具有上升 斜坡波形和下降斜坡波形的驱动脉冲, 控制电路控制扫描电极驱动电路在场 的至少一个子场的复位周期内, 将驱动脉冲先后施加到每一显示单元的扫描 电极。 优选的, 扫描电极驱动电路包括: 维持驱动电路, 用于产生维持周期的驱动脉冲; 复位电路, 用于产生具有上升斜坡波形的驱动脉冲; 斜坡驱动电路, 用于产生具有下降斜坡波形的驱动脉冲; 扫描与擦除控制电路, 用于控制施加在扫描电路上的电压, 以及产生正 极性的具有垂直或近似垂直下降沿的驱动永冲; 以及 扫描电路, 用于将扫描电极驱动电路产生的驱动脉冲施加到扫描电极 上。 因为在一场图像的至少一个子场的复位周期内,对每一显示单元的扫描 电极施加正极性的具有垂直或近似垂直下降沿的驱动脉冲 (也称为自擦除脉 冲), 电压变化速率 4艮快,所以解决了现有的驱动方法由于施加的上升斜坡脉 冲及下降脉冲的电压变化速率较小, 导致在一场中复位周期和寻址周期占用 时间较长, 维持周期占用时间比例较少、 一场中子场数目较少, 从而严重影 响等离子显示器图像质量的提高 (平衡增加子场数目 ) 以及图像亮度的保持 的问题, 进而有效地减少了一场中复位周期和寻址周期占用的时间, 提高了 维持周期在一场中占用的时间比例, 增加了一场中子场的数目, 从而有利于 提高等离子显示器图像质量 (子场数目的平衡增加) 以及保持图像亮度。 附图说明 此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部 分, 本发明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的 不当限定。 在附图中: 图 1示出了根据相关技术的等离子显示器的基本结构示意图; 图 2示出了一个图像的一场的示意图; 图 3示出了现有技术的等离子显示器的驱动方法的驱动波形的示意图; 图 4示出了图 3中第一子场之后的各子场的复位周期 Tr内的驱动波形、 壁电荷以及空间离子浓度的示意图; 图 5示出了 居本发明实施例的等离子显示器的驱动方法的流程图; 图 6示出了根据本发明实施例的等离子显示器的驱动电路的示意图; 图 7 示出了才艮据本发明优选实施例的等离子显示器的驱动电路的示意 图; 图 8 示出了根据本发明优选实施例的等离子驱动电路的扫描电极驱动 电路和维持电极驱动电路的电路示意图; 图 9 示出了才艮据本发明优选实施例的等离子显示器驱动方法和驱动电 路的驱动波形示意图; 图 10示出了才艮据本发明优选实施例的等离子显示器驱动方法和驱动电 路的在前一子场发生维持放电的显示单元在以后子场的复位周期内壁电荷、 空间离子浓度示意图; 图 11示出了本发明优选实施例与现有技术的驱动波形、壁电荷均匀化、 以及寻址周期空间离子浓度的对比关系的示意图; 图 12示出了才艮据本发明实施例的等离子显示器的驱动方法和驱动电路 的扫描电极驱动波形的示意图; 图 13示出了才艮据本发明实施例的等离子显示器的驱动方法和驱动电路 在复位周期的扫描电极驱动波形的示意图。 具体实施方式 下面将参考附图并结合实施例, 来详细说明本发明。 图 5示出了 居本发明实施例的等离子显示器的驱动方法的流程图,包 括: 步骤 S 10, 在一场图像的至少一个子场的复位周期内, 对每一显示单元 的扫描电极施加正极性的具有垂直或近似垂直下降沿的驱动^ i冲, 并对维持 电极施加零电压, 其中, 扫描电极与维持电极之间的电压差最高幅值大于维 持电压的幅值。 该优选实施例通过在一场图像的至少一个子场的复位周期内,对每一显 示单元的扫描电极施加正极性的具有垂直或近似垂直下降沿的驱动^ i冲 (也 称为自擦除脉冲), 电压变化速率很快,从而解决了现有的驱动方法由于施加 的上升斜坡脉冲及下降脉冲的电压变化速率较小, 导致在一场中复位周期和 寻址周期占用时间较长, 维持周期占用时间比例较少、一场中子场数目较少, 从而严重影响等离子显示器图像质量的提高 (平衡增加子场数目 ) 以及图像 亮度的保持的问题。 使用本发明中的驱动方法可以有效地减少一场中复位周 期和寻址周期占用的时间, 提高维持周期在一场中占用的时间比例, 增加一 场中子场的数目, 从而有利于提高等离子显示器图像质量 (子场数目的平衡 增加) 以及保持图像亮度。 其中,可以只对每一显示单元的扫描电极施加电压幅值大于维持电压幅 值的窄高压脉冲, 使每一显示单元的扫描电极与维持电极之间的电压差的最 高幅值大于维持电压幅值。 接着, 由于对每一显示单元的扫描电极施加的驱 动月永冲具有垂直或近似垂直下降沿, 使每一显示单元的扫描电极和维持电极 之间的电压差由高电压瞬间兆变为零。 优选的, 在扫描电极的驱动脉冲的作用下, 每一显示单元放电激发形成 壁电荷。 对于在前一子场的维持周期内发生维持放电的显示单元 ,其扫描电极与 维持电极表面的介质上会积累一定的壁电荷, 放电空间也会由于刚发生了维 持放电而存在比较多的空间离子, 施加于每一显示单元的扫描电极与维持电 极之间的电压是剧烈变化的高电位脉冲, 使显示单元内积累了大量壁电荷的 显示单元产生强烈放电, 激发形成更多的壁电荷, 同时在显示单元的放电空 间形成一定浓度的空间离子。 而对于在前一子场的维持周期内没有发生维持 放电显示单元, 其扫描电极与维持电极表面的介质上不会积累或者只积累微 量的壁电荷, 施加于每一显示单元的扫描电极与维持电极之间的电压是剧烈 变化的高电位脉冲, 使显示单元内不具有或具有 ^啟量壁电荷的显示单元只能 够产生啟弱放电, 并激发一定量的壁电荷, 同时也能够在显示单元的放电空 间产生一定浓度的空间离子。 优选的, 在上述的方法中, 在扫描电极的驱动^ i冲的下降沿结束后, 每 一显示单元在壁电荷形成的壁电压的作用下, 进行自擦除放电。 每一显示单元内的壁电荷在下降沿结束后进行自擦除放电。对于在前一 子场的维持周期内发生维持放电的显示单元, 显示单元的扫描电极与维持电 极之间发生强烈放电, 激发形成大量的壁电荷的显示单元, 显示单元中的壁 电荷在下降沿结束后自擦除放电, 由于维持电极和扫描电极上的电压都为零 电压, 所以自擦除放电使得显示单元的壁电荷降低到比较低的状态, 同时显 示单元的空间也会由于自擦除放电而保证存在一定浓度的空间离子。 在复位周期内釆用自擦除放电使显示单元的壁电荷均一化,并使空间离 子浓度达到一定浓度, 使得本发明的复位周期所占用的时间远远小于现有技 术中复位周期所占用的时间; 另一方面, 由于本发明的复位周期比较短, 复 位周期形成的空间离子浓度緩慢衰减过后在整个寻址周期间仍然可以处于比 较高的水平, 使得寻址周期间占用的时间大大缩短, 使得一方面维持周期在 一场中占用时间比例增大、 另一方面一场中子场数目可以大大增加, 进而解 决高清 PDP、 全高清 PDP以及更高分辨率 PDP平衡增加子场数目 (提高图 像质量) 与保持一定的图像亮度的问题。 优选的,对每一显示单元的扫描电极施加的驱动^ i冲通过叠加两个或两 个以上脉冲获得。 这样, 可以通过叠加各种波形的脉冲得到上述的正极性的 具有垂直或近似垂直下降沿的驱动永冲。 优选的,对每一显示单元的扫描电极施加的驱动^ i冲通过叠加两个^ i冲 获得, 其中一个脉冲为方波, 另一个脉冲包括以下之一: 方波、 梯形波、 三 角波、 指数波、 正弦波、 以及多脉冲。 方波的上升沿和下降沿可以是具有能 量恢复特性的快速变化特点。 该优选上述例提供了叠加形成上述具有垂直或近似垂直下降沿的驱动 月永冲的各种永冲的波形。 这些^ t冲均具有垂直或近似垂直下降沿。 优选的, 在上述的方法中还包括: 在场的至少一个子场的复位周期内, 对每一显示单元的扫描电极先后施加具有上升斜坡波形和下降斜坡波形的驱 动脉冲; 在对每一显示单元的扫描电极施加具有下降斜坡波形的驱动脉冲的 同时, 对每一显示单元的维持电极施加正极性的直流电压。 在一场的各个子 场的复位周期内, 对每一显示单元的扫描电极施加优选实施例中的驱动脉冲 以及上述优选实施例中的具有垂直或近似垂直下降沿的驱动^ i冲。 上述优选实施例提供了一种用于等离子显示器的驱动方法。在复位周期 内, 对每一显示单元的扫描电极施加具有垂直或近似垂直下降沿的高电压, 使扫描电极与维持电极之间放电激发壁电荷, 以致在下降沿结束后, 每一显 示单元内在壁电荷形成的壁电压作用下进行自擦除放电, 使每一显示单元壁 电荷的均一化, 且在放电空间形成一定浓度的空间离子。 本发明提供的驱动方法与现有技术的驱动方法相比较,差异在于在复位 周期内, 本发明通过对扫描电极 Y电极施加正极性的具有垂直或近似垂直下 降沿的驱动脉冲, 使得显示单元中的壁电荷自擦除放电, 实现显示单元处的 壁电荷均一化、 空间离子浓度处于比较高的水平的时间, 远远短于对扫描电 极 Y电极与维持电极 X分别施加下降斜坡驱动脉冲和正极性的直流高电压实 现显示单元处的壁电荷都会处于均匀的状态、 空间离子浓度处于比较高的水 平的时间,所以对于扫描电极 Y电极与维持电极 X电极之间利用自擦除放电 的复位周期的时间,远远小于扫描电极 Y电极与维持电极 X电极之间利用正 柱区放电的复位周期的时间。 另外, 空间离子浓度从前一子场的维持周期的结束时刻开始逐渐衰弱, 由于本发明釆用自擦除放电的驱动方法大大缩短了复位周期的时间, 从而使 得在空间离子浓度在复位周期内衰弱程度较小, 进而空间离子浓度在寻址周 期内较大, 促使寻址速度加快, 寻址周期占用的时间缩短。 图 6示出了根据本发明实施例的等离子显示器的驱动电路的示意图,包 括: 扫描电极驱动电路 510 , 用于产生扫描电极驱动^ i冲; 维持电极驱动电 路 520 , 用于产生维持电极驱动^ ^冲; 寻址电极驱动电路 530 , 用于产生寻 址电极驱动脉冲; 以及控制电路 540 , 用于控制扫描电极驱动电路将扫描电 极驱动永冲施加 "J扫描电极, 控制维持电极驱动电路将维持电极驱动永冲施 加到维持电极, 以及控制寻址电极驱动电路将寻址电极驱动脉冲施加到寻址 电极; 其中, 扫描电极驱动电路产生的扫描电极驱动脉冲包括:正极性的具有垂直或 近似垂直下降沿的驱动脉冲, 控制电路控制扫描电极驱动电路在一场图像的 至少一个子场的复位周期内将驱动脉冲施加到每一显示单元的扫描电极, 用 于使每一显示单元放电激发形成壁电荷, 其中, 扫描电极与维持电极之间的 电压差最高幅值大于维持电压的幅值。 该优选实施例通过扫描电极驱动电路在一场图像的至少一个子场的复 位周期内, 对每一显示单元的扫描电极施加正极性的具有垂直或近似垂直下 降沿的驱动脉冲, 电压变化速率很快, 从而解决了现有的驱动方法由于施加 的上升斜坡脉冲及下降脉冲的电压变化速率较小, 导致在一场中复位周期和 寻址周期占用时间较长, 维持周期占用时间比例较少、一场中子场数目较少, 从而严重影响等离子显示器图像质量的提高 (平衡增加子场数目 ) 以及图像 亮度的保持的问题。 使用本发明中的驱动电路可以有效地减少一场中复位周 期和寻址周期占用的时间, 提高维持周期在一场中占用的时间比例, 增加一 场中子场的数目, 从而有利于提高等离子显示器图像质量 (子场数目的平衡 增加) 以及保持图像亮度。 优选的, 在扫描电极的驱动^ i冲的下降沿结束后, 每一显示单元在壁电 荷形成的壁电压的作用下, 进行自擦除放电。 每一显示单元内的壁电荷在下降沿结束后进行自擦除放电。对于在前一 子场的维持周期内发生维持放电的显示单元, 显示单元的扫描电极与维持电 极之间发生强烈放电, 激发形成大量的壁电荷的显示单元, 显示单元中的壁 电荷在下降沿结束后自擦除放电, 由于维持电极和扫描电极上的电压都为零 电压, 所以自擦除放电使得显示单元的壁电荷降低到比较低的状态, 同时显 示单元的空间也会由于自擦除放电而保证存在一定浓度的空间离子。 在复位周期内釆用自擦除放电使显示单元的壁电荷均一化,并使空间离 子浓度达到一定浓度, 使得本发明的复位周期所占用的时间远远小于现有技 术中复位周期所占用的时间; 另一方面, 由于本发明的复位周期比较短, 复 位周期形成的空间离子浓度緩慢衰减过后在整个寻址周期间仍然可以处于比 较高的水平, 使得寻址周期间占用的时间大大缩短, 使得一方面维持周期在 一场中占用时间比例增大、 另一方面一场中子场数目可以大大增加, 进而解 决高清 PDP、 全高清 PDP以及更高分辨率 PDP平衡增加子场数目 (提高图 像质量) 与保持一定的图像亮度的问题。 优选的,施加到每一显示单元的扫描电极的驱动^ i冲通过叠加两个^ i冲 获得, 其中一个脉冲为方波, 另一个脉冲包括以下之一: 方波、 梯形波、 三 角波、 指数波、 正弦波、 以及多脉冲。 方波的上升沿和下降沿可以是具有能 量恢复特性的快速变化特点。 该优选上述例提供了叠加形成上述具有垂直或近似垂直下降沿的驱动 月永冲的各种永冲的波形。 这些^ t冲均具有垂直或近似垂直下降沿。 优选的, 扫描电极驱动电路产生的扫描电极驱动脉冲还包括: 具有上升 斜坡波形和下降斜坡波形的驱动脉冲, 控制电路控制扫描电极驱动电路在场 的至少一个子场的复位周期内, 将驱动脉冲先后施加到每一显示单元的扫描 电极。 在一场的各个子场的复位周期内, 对每一显示单元的扫描电极施加优 选实施例中的驱动脉冲以及上述优选实施例中的具有垂直或近似垂直下降沿 的马区动^ i冲。 该优选实施例提供了扫描电极驱动电路产生的另一种扫描电极驱动脉 冲。 优选的, 扫描电极驱动电路 510包括: 维持驱动电路, 用于产生维持周 期的驱动脉冲; 复位电路, 用于产生具有上升斜坡波形的驱动脉冲; 斜坡驱 动电路, 用于产生具有下降斜坡波形的驱动脉冲; 扫描与擦除控制电路, 用 于控制施加在扫描电路上的电压, 以及产生正极性的具有垂直或近似垂直下 降沿的驱动^ i冲; 以及扫描电路, 用于将扫描电极驱动电路产生的驱动永冲 施加到扫描电极上。 该优选实施例通过在用于使所述扫描电极与所述维持电极之间放电激 发壁电荷, 其中, 所述扫描电极与所述维持电极之间的电压差最高幅值大于 维持电压幅值; 所述每一显示单元内的壁电荷在下降沿结束后进行自擦除放 电。 本发明有效减少一场中复位周期和寻址周期占用的时间, 提高维持周期 在一场中占用的时间比例, 进而可以增加一场画面中子场的数目。 图 7 示出了才艮据本发明优选实施例的等离子显示器的驱动电路的示意 图, 该驱动电路包括: 扫描电极驱动电路 610 , 维持电极驱动电路 620 , 寻 址电极马区动电路 630和控制电路 640。 其中, 扫 4笛电极马区动电路 610包括: 维持驱动电路 6101、 复位电路 6102、 扫描与擦除控制电路 6103、 扫描电路 6104、 以及斜坡驱动电路 6105; 维持电极驱动电路 620包括: 维持驱动电路 6201、 台阶电路 6202。 扫描与擦除控制电路 6103用于控制施加在扫描电路 上的电压, 以及产生正极性的具有垂直或近似垂直下降沿的驱动脉冲。 图 8 示出了根据本发明优选实施例的等离子驱动电路的扫描电极驱动 电路和维持电极驱动电路的电路示意图。 扫描电极驱动电路 710和维持电极 驱动电路 720是实现图 6中的扫描电极驱动电路 610和维持电极驱动电路 620 的一种实现电路。 图 7 中的维持驱动电路 7101、 复位电路 7102、 扫描与擦 除控制电路 7103、 扫描电路 7104、 和斜坡驱动电路 7105、 分别用于实现图 6 中的维持驱动电路 6101、 复位电路 6102、 扫描与擦除控制电路 6103、 扫 描电路 6104、 以及斜坡驱动电路 6105; 图 7中的维持驱动电路 7201、 台阶 电路 7202分别用于实现图 6中的维持驱动电路 6201、 台阶电路 6202。其中, 在扫描与擦除控制电路 6103 中, 由擦除波形产生控制电路对维持驱动电路 产生的维持电压进行叠加得到正极性的具有垂直或近似垂直下降沿的驱动脉 冲。 图 9 示出了才艮据本发明优选实施例的等离子显示器驱动方法和驱动电 路的驱动波形示意图。 图 10 示出了根据本发明优选实施例的等离子显示器 驱动方法和驱动电路的在前一子场发生维持放电的显示单元在以后子场的复 位周期内壁电荷、 空间离子浓度示意图。 如图 9所示的优选实施例, 一场画面中包括多个子场, 每个子场包括复 位周期 Tr、 寻址周期 Ta和维持周期 Ts。 本优选实施例在第一子场的复位周 期 Tr周期内, 釆用现有技术对显示单元进行复位操作: 通过扫描电极驱动电 路 610 中的复位电路 6102 电路产生上升斜坡永冲, 通过扫描电极驱动电路 610中的斜坡驱动电路 6105产生下斜坡脉冲,在控制电路 640控制下产生的 上升斜坡脉冲和下降斜坡脉冲先后施加到每一显示单元的扫描电极 ( Y 电 极), 另外维持电极驱动电路 620通过台阶电路 6202产生直流电压, 在下降 斜坡脉冲施加到每一显示单元的扫描电极 ( Y电极)的同时,在控制电路 640 控制下台阶电路 6202产生的直流电压施加到每一显示单元的维持电极( X电 极 )„ 本优选实施例在第一子场以后的各个子场的复位周期 Tr周期内, 按照 如下方法对显示单元进行复位操作: 对于一场中至少一个子场, 将复位周期 Tr分为第一复位时段 Trl、 第二复位时段 Tr2、 第三复位时段 Tr3。 首先, 在第一复位时段 Trl , 通过扫描电极驱动电路 610和维持驱动电 路 620使 X、 Y电极上的电压保持为零一段时间。然后,在第二复位时段 Tr2, 通过扫描电极驱动电路 610中的维持驱动电路 6101产生一个电压幅值为 Vs 的高压脉冲, 通过扫描与擦除控制电路 6103 产生一定形状的电压脉冲, 并 通过扫描电路 6104 4巴电压永冲施加到各个 Y电极上, 在控制电路 640的控 制下维持驱动电路 6101产生的脉冲和扫描与擦除控制电路 6103及扫描电路 6104产生的电压脉冲进行叠加,形成最高幅值为 Vs + Vsc的电压永冲施力口到 扫描电极(Y电极) 上。 显示单元受到高电压作用, 对于在前一子场的维持 周期 Ts内发生维持放电的显示单元, 如图 10所示, 在第一复位时段 Trl 内 放电后显示单元具有较多壁电荷, 并且存在比较多的空间离子, 显示单元处 在高电压作用下, 在短时间内 Y 电极与 X电极之间发生相对第一复位时段 Trl 内的放电的反向强放电, 强放电结束之后会在显示单元处积累比较多的 壁电荷, 从而形成比较高的壁电压和较高浓度的空间离子。 最后, 在第三复位时段 Tr3 内, 在控制电路 640控制下对 Y电极和 X 电极施加^ i冲结束后, 扫描电极驱动电路 610和维持电极驱动电路 620分别 控制 Y电极和 X电极的电压保持为零,但发生维持放电的显示单元在较高壁 电压的作用下, 显示单元还会发生放电, 从而使得各个显示单元的壁电荷处 于一致的状态, 我们称这种放电为自擦除放电, 称使显示单元内壁电荷产生 自擦除放电的脉冲为自擦除脉冲, 如本优选实施例中施加在 Y电极上的窄脉 冲和施加在维持电极 X电极上的零电压的共同作用, 使显示单元内壁电荷产 生自擦除放电, 则称施加在扫描电极 Y电极上的窄脉冲为本优选实施例中的 自擦除 *R冲。 对于在前一子场的维持周期 Ts 内没有发生维持放电的显示单元, 其扫 描电极 Y电极与维持电极 X电极表面的介质上不会积累或者只积累微量的壁 电荷, 在当前子场的复位周期 Tr内, 在自擦除脉冲施加到显示单元上之后, 显示单元并不会产生强放电, 只会产生啟弱放电, 壁电荷也会相应调整, 同 时在放电空间形成一定浓度的空间离子。 所以, 无论前一子场是否发生了维持放电, 扫描电极与维持电极之间经 过自擦除放电之后, 每一个显示单元处的壁电荷都会处于均匀的状态, 空间 离子浓度也会由于自擦除放电而处于比较高的水平。 由于对扫描电极 Y电极与维持电极 X电极施力。自擦除脉冲, 使扫描电 极 Y电极与维持电极 X电极之间自擦除放电实现显示单元处的壁电荷处于均 匀的状态、 空间离子浓度处于比较高的水平的时间, 远远短于对扫描电极 Y 电极与维持电极 X分别施加下降斜坡驱动脉冲和正极性的直流高电压实现显 示单元处的壁电荷处于均匀的状态、空间离子浓度处于比较高的水平的时间, 所以对于扫描电极 Y电极与维持电极 X电极之间利用自擦除放电的复位周期 Tr的时间, 远远小于扫描电极 Υ电极与维持电极 X电极之间利用正柱区放 电的复位周期 Tr的时间。 图 11示出了本发明优选实施例与现有技术的驱动波形、壁电荷均匀化、 以及寻址周期空间离子浓度的对比关系的示意图。 to时刻为前一子场维持周 期的结束时刻, 当前子场的复位周期的开始时刻。 本优选实施例在第二及以 后的子场的复位周期内, 釆用自擦除放电来实现显示单元壁电荷的均匀化, 当前子场的复位周期在 时刻结束, 当前子场的寻址周期在 时刻开始在 t3 时刻结束, 当前子场的维持周期在 t3时刻开始。 现有技术在第二及以后的子 场的复位周期内, 釆用下降斜坡脉冲的正柱区放电来实现显示单元壁电荷的 均匀化, 当前子场的复位周期在 t2时刻结束, 当前子场的寻址周期在 t2时刻 开始在 t4时刻结束, 当前子场的维持周期在 t4时刻开始。 可以看出本优选实 施例的复位周期 - to要比现有技术的复位周期 t2 - to时间短得多。 另外, 时刻到 t3时刻之间的时间段为本优选实施例的寻址周期, t2时 刻到 t4时刻之间的时间段为现有技术的寻址周期, 空间离子浓度从前一子场 的维持周期的结束时刻 to开始随时间逐渐衰减, 由于 t2时刻晚于 时刻, 所 以 时刻到 t3时刻之间的时间段内的空间离子浓度大于 t2时刻到 t4时刻之间 的时间段内的空间离子浓度, 即本优选实施例的寻址周期内的空间离子浓度 大于现有技术的寻址周期内的空间离子浓度, 空间离子浓度越高, 放电延时 就越小, 就可以釆用更短的扫描时间, 空间离子浓度越低, 放电延时就越大, 就要釆用更长的扫描时间, 所以本优选实施例完成寻址的寻址周期相对现有 技术较短。 图 11中只是说明一个子场的情况, 多个子场都具有类似的结果, 所以一场中总的寻址时间也可以更短。 图 12示出了才艮据本发明实施例的等离子显示器的驱动方法和驱动电路 的扫描电极驱动波形的示意图。 如图 12所示, 在第二复位时段 Tr2内, 对每 一显示单元的扫描电极 Y电极施加的自擦除脉冲的台阶电压之一还可以是梯 形脉冲、 三角脉冲、 指数脉冲、 正弦脉冲或多脉冲等, 通过调节这些脉冲波 形的幅值、 持续时间、 上升沿和下降沿等参数, 以获得比较好的效果。 由于自擦除 *R冲可以由两个以上的驱动波形叠加而成,同时为了波形控 制的需要, 各个波形的上升沿和下降沿之间的时间是不重合的。 在两个脉冲 形式的驱动波形进行叠加时, 冲的上升沿和下降沿进行不同的组合时就可 以形成四种形式的驱动波形。 图 13示出了才艮据本发明实施例的等离子显示器的驱动方法和驱动电路 在复位周期的扫描电极驱动波形的示意图。 根据图 8所示的优选实施例中施 加在扫描电极上的自擦除脉冲是由维持驱动电路 7101产生的幅值为 VS的高 压脉冲和由扫描与擦除控制电路 7103及扫描电路 7104产生的幅值为 Vsc的 高压^ c冲叠力。而形成。其中,维持驱动电路 7101产生的幅值为 Vs的高压脉冲 在上升沿和下降沿分别由维持驱动电路 7101 的电感与屏电容发生谐振而使 上升沿和下降沿具有緩慢上升的特性, 驱动波形类似正弦波特性, 而由扫描 与擦除控制电路 7103产生的幅值为 Vsc的高压脉冲直接由扫描电路 7104的 开关开通或者关断, 把直流电压切换到电容负载上, 所以其上升沿和下降沿 在自擦除脉冲是方波时变化比较快。如果自擦除脉冲是梯形脉冲、三角脉冲、 指数脉冲、 正弦脉冲或多脉冲特性时, 通过扫描电路把自擦除脉冲施加到显 示屏上时, 驱动波形形状基本不发生变化。 图 13 是维持驱动电路产生幅值 为 Vs的驱动脉冲和由扫描与擦除控制电路产生幅值为 Vsc的驱动脉冲的前 后沿相对关系不同时进行叠加所得到的施加到显示屏上的自擦除脉冲的示意 图。 由于强放电会发生在自擦除脉冲的上升过程中, 所以不同形状的驱动波 形施加到显示展上时, 维持驱动电路 7101、 扫描与擦除控制电路 7103、 扫 描电路 7104的负载电流就不同。 由于自擦除脉冲的最高幅值比较高, 达到 Vs + Vsc, 所以在自擦除脉冲 达到最大幅值之后, 无论前一子场显示单元处于何种状态均会发生强放电, 同时显示单元在高压上的放电相对施加电压的波形都会存在一定的延时。 所 以为了控制放电的强度以及形成壁电荷及空间离子, 可以通过控制自擦除脉 冲的上升沿特性和下降沿特性以获得最优的效果。 通过控制电路来控制维持 驱动电路、 扫描与擦除控制电路、 扫描电路中各个开关的形状时序, 就可以 使自擦除脉冲的上升沿和下降沿特性发生改变。 从以上的描述中,可以看出,本发明上述的实施例实现了如下技术效果: 通过对每一显示单元施加具有垂直或近似垂直下降沿的驱动^ t冲, 使得显示 单元在复位周期内自擦除放电使显示单元内的壁电荷均一化, 并使空间离子 浓度达到一定浓度, 使得复位周期所占用的时间在远远小于现有技术中复位 周期所占用的时间; 另一方面, 由于本发明的复位周期比较短, 复位周期形 成的空间离子浓度緩慢衰减过后在整个寻址周期间仍然可以处于比较高的水 平, 使得寻址周期间占用的时间大大缩短, 使得一方面维持周期在一场中占 用时间比例增大、 另一方面一场中子场数目可以大大增加, 进而有利于 PDP 平衡增加子场数目 (提高图像质量) 与保持一定的图像亮度。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可 以用通用的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布 在多个计算装置所组成的网络上, 可选地, 它们可以用计算装置可执行的程 序代码来实现, 从而, 可以将它们存储在存储装置中由计算装置来执行, 或 者将它们分别制作成各个集成电路模块, 或者将它们中的多个模块或步骤制 作成单个集成电路模块来实现。 这样, 本发明不限制于任何特定的硬件和软 件结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本 领域的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的 ^"神和 原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护 范围之内。

Claims

权 利 要 求 书
1. 一种等离子显示器的驱动方法, 其特征在于, 包括:
在一场图像的至少一个子场的复位周期内,对每一显示单元的扫描 电极施加正极性的具有垂直或近似垂直下降沿的驱动脉冲, 并对维持电 极施加零电压, 其中, 所述扫描电极与所述维持电极之间的电压差最高 幅值大于维持电压的幅值。
2. 根据权利要求 1所述的等离子显示器的驱动方法, 其特征在于, 在所 述扫描电极的所述驱动^ i冲的作用下, 所述每一显示单元放电激发形 成壁电荷。
3. 根据权利要求 2所述的等离子显示器的驱动方法, 其特征在于, 在所 述扫描电极的所述驱动^ i冲的下降沿结束后, 所述每一显示单元在所 述壁电荷形成的壁电压的作用下, 进行自擦除放电。
4. 根据权利要求 1所述的等离子显示器的驱动方法, 其特征在于, 所述 对每一显示单元的扫描电极施加的所述驱动^ i冲通过叠加两个或两个 以上^ i冲获得。
5. 根据权利要求 4所述的等离子显示器的驱动方法, 其特征在于, 所述 对每一显示单元的扫描电极施加的所述驱动脉冲通过叠加两个脉冲获 得, 其中一个^ c冲为方波, 另一个永冲包括以下之一: 方波、 梯形波、 三角波、 指数波、 正弦波、 以及多脉冲。
6. 根据权利要求 1所述的等离子显示器的驱动方法, 其特征在于, 还包 括:
在所述场的至少一个子场的复位周期内,对每一显示单元的扫描电 极先后施加具有上升斜坡波形和下降斜坡波形的驱动脉冲;
在对每一显示单元的所述扫描电极施加具有下降斜坡波形的驱动 脉冲的同时, 对所述每一显示单元的维持电极施加正极性的直流电压。
7. 一种等离子显示器的驱动电路, 其特征在于, 包括:
扫描电极驱动电路, 用于产生扫描电极驱动脉冲;
维持电极驱动电路, 用于产生维持电极驱动脉冲;
寻址电极驱动电路, 用于产生寻址电极驱动^ i冲; 以及 控制电路,用于控制所述扫描电极驱动电路将所述扫描电极驱动脉 冲施加到扫描电极, 控制所述维持电极驱动电路将所述维持电极驱动脉 冲施加到维持电极, 以及控制所述寻址电极驱动电路将所述寻址电极驱 动月永冲施力口到寻址电极; 其巾,
所述扫描电极驱动电路产生的所述扫描电极驱动脉冲包括: 正极性 的具有垂直或近似垂直下降沿的驱动脉冲, 所述控制电路控制所述扫描 电极驱动电路在一场图像的至少一个子场的复位周期内将所述驱动^ i冲 施加到每一显示单元的扫描电极, 用于使所述每一显示单元放电激发形 成壁电荷, 其中, 所述扫描电极与所述维持电极之间的电压差最高幅值 大于维持电压的幅值。
8. 根据权利要求 7所述的等离子显示器的驱动电路, 其特征在于, 在所 述扫描电极的所述驱动^ i冲的下降沿结束后, 所述每一显示单元在所 述壁电荷形成的壁电压的作用下, 进行自擦除放电。
9. 根据权利要求 7所述的等离子显示器的驱动电路, 其特征在于, 所述 施加到每一显示单元的扫描电极的所述驱动脉冲通过叠加两个脉冲获 得, 其中一个^ ί冲为方波, 另一个永冲包括以下之一: 方波、 梯形波、 三角波、 指数波、 正弦波、 以及多脉冲。
10. 根据权利要求 7所述的等离子显示器的驱动电路, 其特征在于, 所述 扫描电极驱动电路产生的所述扫描电极驱动脉冲还包括: 具有上升斜 坡波形和下降斜坡波形的驱动脉冲, 所述控制电路控制所述扫描电极 驱动电路在所述场的至少一个子场的复位周期内, 将所述驱动^ i冲先 后施加到每一显示单元的扫描电极。
11. 根据权利要求 10所述的等离子显示器的驱动电路, 其特征在于, 所述 扫描电极驱动电路包括:
维持驱动电路, 用于产生维持周期的驱动脉冲;
复位电路, 用于产生所述具有上升斜坡波形的驱动脉冲; 斜坡驱动电路, 用于产生所述具有下降斜坡波形的驱动脉冲; 扫描与擦除控制电路, 用于控制施加在扫描电路上的电压, 以及产 生所述正极性的具有垂直或近似垂直下降沿的驱动永冲; 以及
扫描电路,用于将所述扫描电极驱动电路产生的驱动脉冲施加到所 述扫描电极上。
PCT/CN2009/076377 2009-02-16 2009-12-31 等离子显示器的驱动方法和驱动电路 WO2010091592A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN 200910077758 CN101719349B (zh) 2009-02-16 2009-02-16 等离子显示器的驱动方法和驱动电路
CN200910077758.4 2009-02-16

Publications (1)

Publication Number Publication Date
WO2010091592A1 true WO2010091592A1 (zh) 2010-08-19

Family

ID=42433915

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/076377 WO2010091592A1 (zh) 2009-02-16 2009-12-31 等离子显示器的驱动方法和驱动电路

Country Status (2)

Country Link
CN (1) CN101719349B (zh)
WO (1) WO2010091592A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1348160A (zh) * 2001-10-18 2002-05-08 深圳大学光电子学研究所 一种交流等离子体平板显示器的驱动方法
CN1459772A (zh) * 2002-05-24 2003-12-03 富士通日立等离子显示器股份有限公司 驱动等离子体显示板的方法
CN1969311A (zh) * 2005-03-31 2007-05-23 松下电器产业株式会社 等离子显示板的驱动方法
CN101226717A (zh) * 2007-01-17 2008-07-23 三星Sdi株式会社 等离子体显示器和驱动等离子体显示面板的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2772753B2 (ja) * 1993-12-10 1998-07-09 富士通株式会社 プラズマディスプレイパネル並びにその駆動方法及び駆動回路
JP4140685B2 (ja) * 2001-12-14 2008-08-27 株式会社日立製作所 プラズマディスプレイパネル
KR100560481B1 (ko) * 2004-04-29 2006-03-13 삼성에스디아이 주식회사 플라즈마 디스플레이 패널의 구동 방법 및 플라즈마 표시장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1348160A (zh) * 2001-10-18 2002-05-08 深圳大学光电子学研究所 一种交流等离子体平板显示器的驱动方法
CN1459772A (zh) * 2002-05-24 2003-12-03 富士通日立等离子显示器股份有限公司 驱动等离子体显示板的方法
CN1969311A (zh) * 2005-03-31 2007-05-23 松下电器产业株式会社 等离子显示板的驱动方法
CN101226717A (zh) * 2007-01-17 2008-07-23 三星Sdi株式会社 等离子体显示器和驱动等离子体显示面板的方法

Also Published As

Publication number Publication date
CN101719349B (zh) 2012-12-12
CN101719349A (zh) 2010-06-02

Similar Documents

Publication Publication Date Title
US7564429B2 (en) Plasma display apparatus and driving method thereof
WO2005114626A1 (ja) プラズマディスプレイパネルの駆動方法
EP1729277B1 (en) Plasma display apparatus and driving method thereof
US7812788B2 (en) Plasma display apparatus and driving method of the same
JP4055740B2 (ja) プラズマディスプレイパネルの駆動方法
JP5131241B2 (ja) プラズマディスプレイパネルの駆動方法
JP2005321680A (ja) プラズマディスプレイパネルの駆動方法
JP5119613B2 (ja) プラズマディスプレイパネルの駆動方法
KR100493623B1 (ko) 플라즈마 디스플레이 패널의 구동장치
JP4736530B2 (ja) プラズマディスプレイパネルの駆動方法
WO2010091592A1 (zh) 等离子显示器的驱动方法和驱动电路
JP2008083137A (ja) プラズマディスプレイパネルの駆動方法
JP4802650B2 (ja) プラズマディスプレイパネルの駆動方法
WO2010146827A1 (ja) プラズマディスプレイパネルの駆動方法およびプラズマディスプレイ装置
WO2010146787A1 (ja) プラズマディスプレイパネルの駆動方法およびプラズマディスプレイ装置
JP4120594B2 (ja) プラズマディスプレイパネルの駆動方法
CN101719347B (zh) 等离子显示器驱动方法及驱动电路
JPWO2007094292A1 (ja) プラズマディスプレイ装置およびプラズマディスプレイパネルの駆動方法
JP2007133291A (ja) プラズマディスプレイパネルの駆動方法
JP2006003397A (ja) プラズマディスプレイパネルの駆動方法
KR100667239B1 (ko) 플라즈마 디스플레이 패널 구동장치 및 그의 구동방법
JP4984699B2 (ja) プラズマディスプレイパネルの駆動方法
JP2009198846A (ja) プラズマディスプレイパネルの駆動方法
WO2010137248A1 (ja) プラズマディスプレイ装置及びプラズマディスプレイパネルの駆動方法
JP2008145645A (ja) プラズマディスプレイパネルの駆動方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09839915

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09839915

Country of ref document: EP

Kind code of ref document: A1