WO2010090499A2 - 이중 평행판 형태의 내장형 칩 안테나 구조 - Google Patents

이중 평행판 형태의 내장형 칩 안테나 구조 Download PDF

Info

Publication number
WO2010090499A2
WO2010090499A2 PCT/KR2010/000797 KR2010000797W WO2010090499A2 WO 2010090499 A2 WO2010090499 A2 WO 2010090499A2 KR 2010000797 W KR2010000797 W KR 2010000797W WO 2010090499 A2 WO2010090499 A2 WO 2010090499A2
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
radiation pattern
built
chip
chip antenna
Prior art date
Application number
PCT/KR2010/000797
Other languages
English (en)
French (fr)
Other versions
WO2010090499A3 (ko
Inventor
전찬익
Original Assignee
(주)파트론
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)파트론 filed Critical (주)파트론
Publication of WO2010090499A2 publication Critical patent/WO2010090499A2/ko
Publication of WO2010090499A3 publication Critical patent/WO2010090499A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q23/00Antennas with active circuits or circuit elements integrated within them or attached to them
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/08Radiating ends of two-conductor microwave transmission lines, e.g. of coaxial lines, of microstrip lines

Definitions

  • the present invention relates to a chip antenna structure in the form of a double parallel plate, and more particularly, to form an antenna radiation pattern having a simple shape on opposite two sides of a dielectric block of a chip antenna embedded in a wireless communication device, and a separate lead. It is a built-in chip antenna structure for mounting a chip antenna on a land pad on a PCB substrate without a pattern.
  • the biggest advantage of a chip antenna embedded in a wireless communication device is that it is a surface-mounted technic (SMT) -capable component and its size is very small compared to a general antenna.
  • SMT surface-mounted technic
  • the built-in chip antenna structure can be divided into two types for realizing two purposes.
  • the first structure minimizes the size of the built-in chip antennas installed in the wireless device.
  • the second structure considers antenna performance such as the improvement of the antenna gain and the bandwidth of the antenna.
  • the antennas are designed in a spiral type or a meander type in which the physical size of the antenna can be reduced.
  • Helical structure is the most basic form of small antenna design, and the long conductor is spirally wound up to have a certain pattern to form a structure with constant frequency characteristics. It can be implemented to contribute to the miniaturization of the antenna size.
  • FIG. 1 shows a chip antenna of the related art 1 which is a general embodiment having a zigzag antenna structure, and is shown in FIG.
  • the zigzag side electrodes 11 and the upper and lower electrodes 12 are formed on the dielectric block 13, and one end thereof is connected to the ground electrode 10.
  • the antenna is designed in a state without the ground interference in all directions around the antenna.
  • the antenna of the spiral structure or the zigzag structure has a change in antenna performance as the ground approaches the antenna. There is a problem in that the gain is lowered.
  • FIG. 2 shows a prior art 2 as an embodiment of the PIFA antenna, the chip antenna 20 of the prior art 2 is opposed to each other
  • the radiation electrode 27, the ground electrode 23, and the power feeding pattern 25 are formed on the dielectric block 22 having the first main surface 22a and the second main surface 22b, respectively.
  • Such a FIPA antenna is designed in a condition close to ground from the design time, so that a good antenna gain can be obtained even in a close ground condition.
  • the FIPA antenna has a narrow bandwidth compared to a spiral or zigzag structure.
  • land pads exist for mounting surface mounted device (SMD) components on a PCB substrate.
  • SMD surface mounted device
  • a chip antenna is generally used to satisfy the characteristics of the antenna.
  • a land pad for mounting and comprises a side pattern connected to the land pad and an upper side pattern extending in connection with the side pattern to include a radiator pattern constituting an antenna on at least three of six surfaces of the rectangular parallelepiped. It is inconvenient to form a land pad having a complex pattern on a PCB substrate so as to correspond to the antenna pattern.
  • a complex pattern structure is formed in a rectangular parallelepiped space of a small chip antenna in order to achieve the purpose of the antenna. It is designed by forming a radiation pattern on almost all six sides of a rectangular parallelepiped including a pattern.
  • the internal space can be used to form a thrugth hole or via hole that connects the radiation pattern to the inside of the chip antenna even if the outer surface of the cube is not used. There is a problem in that the complexity of the design is increased, such as adding a process.
  • antennas are generally manufactured on the assumption that ground is assumed, their results will change as the assumptions change.
  • the surrounding ground conditions are often changed by various conditions of the wireless communication system. Therefore, in the case of the built-in chip antenna, even if the same antenna is changed according to the change of ground conditions, The characteristics will be different.
  • the basic antennas may consider moving to a new position having different lengths of radiation patterns or other conditions to adjust the operating frequency.
  • by changing the radiation pattern structure of the antenna in order to change the structural impedance by changing the electrical characteristics to satisfy the desired characteristics.
  • the present invention is to provide a structure of a built-in chip antenna that minimizes the size of the built-in chip antenna and at the same time implements the same performance as the existing antenna.
  • the size of the antenna radiator pattern is limited because it is located inside the device, and to solve the problem that the production process is complicated and the production cost is increased by forming a complex antenna radiator according to the characteristics of the frequency band. It is an object to provide a chip antenna of a simple structure.
  • each antenna radiation pattern electrode is formed on two opposite sides of the dielectric block formed of a rectangular parallelepiped including a dielectric is formed, each wireless communication Land pads are formed on the substrate of the device to correspond to the respective antenna radiation pattern electrodes, and each antenna radiation pattern electrode is vertically connected to each of the land pads.
  • the antenna is operated by an electromagnetic field generated between the antenna radiation pattern electrode formed on the two sides facing each other is a built-in chip antenna structure of the double parallel plate shape.
  • a surface on which the antenna radiation pattern electrode is formed may be vertically connected to a land pad on the substrate of the wireless communication device.
  • the antenna radiation pattern electrode may be formed in a symmetrical form on two opposite sides of the dielectric block.
  • the dielectric block may be mounted by forming a solder fillet in a solder paste on a portion where the antenna radiation pattern electrode and the land pad on the substrate of the wireless communication device are in contact with each other.
  • one side of the first land pad connected to any one antenna radiation pattern electrode among two antenna radiation pattern electrodes formed in a symmetrical shape on the two sides may be connected to a signal line of the wireless communication device.
  • the other side of the first land pad may be connected to the ground through the first electrode line.
  • one side of the second land pad connected to the other antenna radiation pattern electrode among the two antenna radiation pattern electrodes formed in a symmetrical shape on the two sides may be connected to the ground through the second electrode line.
  • the second electrode line may include a Lumped Element for selecting a frequency band.
  • the size of the built-in chip antenna can be further miniaturized, and the structure of the antenna radiator is simple, so that the production is easy and the production process and the unit cost are reduced.
  • the chip antenna of the dual parallel plate structure is not limited in the orientation when mounted inside the wireless communication device, there is no limitation of the mounting position, thereby facilitating the design of the wireless communication device.
  • the antenna is applied in all frequency bands of 1 GHz or more without changing the radiator pattern through the lumped constant element. It can work.
  • FIG. 1 shows a perspective view of a chip antenna perspective view and a conductor pattern of the prior art
  • Figure 2 shows a perspective view of the chip antenna of the prior art
  • FIG. 3 is a perspective view and an exploded view of one embodiment of a built-in chip antenna in the form of a double parallel plate according to the present invention
  • FIG. 4 illustrates a form in which a chip antenna according to the present invention is bonded to a land pad
  • FIG 5 illustrates a state in which a chip antenna according to the present invention is mounted on a substrate of a wireless communication device.
  • FIG. 6 shows a top view of a PCB layout according to the invention
  • FIG. 11 shows an embodiment of various PCB layouts in which a chip antenna according to the present invention is mounted.
  • 120, 120a, 120b antenna radiation pattern electrode
  • 210a first land pad
  • 210b second land pad
  • the antenna radiation pattern electrodes are formed only on two opposite sides perpendicular to the substrate among the six surfaces of the rectangular parallelepiped block, so that the shape of the chip antenna is left and right and It proposes a structure of a built-in chip antenna of a double parallel plate in which the top and bottom are symmetrical and maintain the same shape even when mounted in any direction.
  • FIG. 3 is a perspective view and an exploded view of one embodiment of a built-in chip antenna in the form of a double parallel plate according to the present invention.
  • the chip antenna 100 forms an antenna radiation pattern electrode 120 on a side on a dielectric block 110 formed of a rectangular parallelepiped, and FIG. As shown in FIG. 2, the antenna radiation pattern electrode is formed as a first antenna radiation pattern electrode 120a and a second antenna radiation pattern electrode 120b on each of two opposite sides of the dielectric block 110.
  • an electromagnetic field generated between two opposite radiation pattern electrodes 120a and 120b is formed by forming antenna radiation pattern electrodes 120a and 120b on two opposite sides on the dielectric block 110, respectively.
  • the chip antenna 100 is operated.
  • the size of the chip antenna 100 including the dielectric block on which the radiation pattern electrode is formed is a rectangular parallelepiped such as 2.0 ⁇ 1.2 ⁇ 1.2mm 3 or 3.0 ⁇ 1.2 ⁇ 1.2mm 3 , which can further reduce the size of the chip antenna. Can be.
  • FIG. 4 illustrates a form in which a chip antenna according to the present invention is bonded to a land pad.
  • the side surfaces on which the antenna radiation pattern electrode 120 is formed are land pads 210a and 210b on the substrate. It is mounted on the point 170 where the dielectric block 110 on the substrate to be perpendicular to the ().
  • the structure of the chip antenna 100 does not need to form a separate pattern for connecting with the land pad of the substrate on the bottom surface of the dielectric block 110.
  • 210a and 210b may also be formed in a simple structure without forming a complicated pattern.
  • a double parallel plate structure in which the radiation pattern electrodes 120a and 120b are formed on two opposite surfaces of the dielectric block 110, respectively, has the same shape even when the antenna is rotated 180 degrees with respect to the horizontal axis or the vertical axis. It is convenient to maintain.
  • FIG 5 illustrates a state in which a chip antenna according to the present invention is mounted on a substrate of a wireless communication device.
  • the PCB layout 200 for mounting the chip antenna 100 according to the present invention on a wireless communication device may be formed in a very simple structure, which is a plan view of the PCB layout of FIG. 6.
  • a pad 210b is formed, where one side of the first land pad 210a is connected to the signal line 220 of the wireless communication device and the other side of the first land line 210a extends from the first land pad 210a.
  • the second electrode line 260b extending from the second land pad 210b includes a Lumped Element 250 for selecting a frequency band and is connected to the ground 270 on the PCB substrate.
  • the first radiation pattern electrode 210a of the two radiation pattern electrodes 210a and 201b formed to face the radiator block 110 of the chip antenna 100 is connected to the signal line 220 and the ground 270.
  • the other second radiation pattern electrode 210b is connected only to the ground 270 to operate the antenna by an electromagnetic field formed between the first radiation pattern electrode 210a and the second radiation pattern electrode 210b. It becomes possible.
  • the chip antenna 100 may fix the antenna dielectric block 110 and simultaneously connect the antenna radiation pattern electrodes 120a and 120b to the land pads 210a and 210b on the substrate.
  • Solder Fillet FIG. 7 illustrates an embodiment of SMT using solder fillets.
  • the Ag pattern and the land of the PCB which are radiation pattern electrodes of the antenna having good thermal conductivity, are applied.
  • a solder fillet may be formed on a copper pad plated with Au, which is a pad, so that the chip antenna 100 may be SMT.
  • the solder paste may have a good thermal conductivity.
  • a solder fillet is formed by riding the Ag patterns of the side radiation pattern electrodes 120a and 120b.
  • the SMT of the chip antenna 100 does not require a separate land pattern for mounting the chip antenna 100 on the PCB substrate.
  • each of the radiation pattern electrodes 123a and 123b is formed in a square hoof shape.
  • radiation patterns may be formed on two opposite sides of the dielectric block 110 in the shape of various modified shapes as well as the pattern shapes shown in the above embodiments, and in the above embodiment, two radiation patterns may be formed.
  • the electrodes are formed in a symmetrical form with each other, but may be variously formed in asymmetrical forms with each other.
  • FIG. 11 shows an embodiment of various PCB layouts in which a chip antenna according to the present invention is mounted.
  • the land pad 210a connecting one radiation pattern electrode is connected to various types of signal lines 220a, 220b, and 220c on one side thereof. As shown in (b), the other side may be connected to the ground 270b through the extended electrode line 260a.
  • the electrode line 260b extending from the land pad 210b includes the lumped water purification element 250 and may be simultaneously connected to the ground 270 of the PCB substrate.
  • the PCB layout shown in FIG. 11 is an embodiment, and is not limited thereto, and may be modified in various forms to form an electromagnetic field between two radiation pattern electrodes facing each other according to the present invention.
  • the chip antenna structure according to the present invention can be very small in size and can operate at all frequencies of 1 GHz or more, such as GPS, PCS, DCS, WCMA, DMB, Bluetooth, W-LAN, WIFI, Wibro, etc. Applied to various single band wireless communication devices
  • the chip antenna structure according to the present invention has an antenna gain that satisfies 0dBi on average, thereby miniaturizing the size, but more effectively shows its performance.
  • the present invention can further reduce the size of the original advantages of the chip antenna, and at the same time, it is possible to implement performance equivalent to or higher than that of the existing antenna.
  • the antenna structure according to the present invention is very simple in its structure and shape through the optimization of the design it is possible to reduce the production cost and development cost during mass production of the product.

Landscapes

  • Details Of Aerials (AREA)
  • Waveguide Aerials (AREA)

Abstract

본 발명은, 이중 평행판 형태의 내장형 칩 안테나 구조에 관한 것으로서, 내장형 칩 안테나에 있어서, 유전체를 포함하여 직육면체로 형성된 유전체 블록 상의 서로 대향되는 측면상에 각각 안테나 방사 패턴 전극이 형성되어, 상기 서로 대향되는 측면상에 형성된 안테나 방사 패턴 전극 사이에서 발생되는 전자기 필드에 의해 안테나가 동작하는 것을 특징으로 하는 이중 평행판 형태의 내장형 칩 안테나 구조이며, 본 발명에 의하면, 내장형 칩 안테나의 크기를 더욱 소형화시킬 수 있으며, 안테나 방사체의 구조가 간단하므로 제작이 용이하여 생산 공정 및 단가가 줄어드는 효과를 얻는다.

Description

이중 평행판 형태의 내장형 칩 안테나 구조
본 발명은 이중 평행판 형태의 칩 안테나 구조에 관한 것으로서, 보다 상세하게는 무선통신기기에 내장되는 칩 안테나의 유전체 블록의 대향되는 두측면 상에 간단한 형태를 갖는 안테나 방사 패턴을 형성하고 별도의 리드 패턴 없이 바로 PCB 기판 상의 랜드 패드에 칩 안테나를 실장하는 내장형 칩 안테나 구조에 대한 것이다.
무선통신기기에 내장되는 칩 안테나가 가지는 가장 큰 장점은 SMT(Surface Mounted Technic)가 가능한 부품으로 일반적인 안테나와 비교하여 그 크기가 매우 소형이란 점이다.
내장형 칩 안테나 구조는 크게 두 가지의 목적을 실현시키기 위한 것으로 구분될 수 있다. 첫 번째는 무선기기에 장착되는 내장형 칩 안테나의 크기를 최소화 시키는 구조이며, 두 번째는 안타네 이득향상이나 안테나 대역폭(Bandwidth) 향상 등의 안테나 성능을 고려한 구조이다.
이와 같은 소형화와 성능향상을 위하여 종래의 칩 안테나들은 더욱더 복잡한 구조 및 형상을 가지게 되었다.
초기의 칩 안테나의 경우에 소형화의 장점을 부각시키기 위하여 안테나의 물리적 크기가 축소 가능한 나선형(Helix Type) 또는 지그재그형(Meander Type)으로 설계되었다.
나선형 구조는 소형 안테나 설계의 가장 기본적인 형태로서, 기다란 도체를 일정한 패턴을 가지도록 나선형으로 감아 올려 일정한 주파수 특성을 갖는 구조로 형성하여, 실제 물리적인 길이는 길게 펼쳐진 경우보다 줄어들지만 그 동작주파수는 유사하게 구현 가능하여 안테나 크기의 소형화에 기여할 수 있게 된다.
지그재그형의 안테나 구조의 경우도 상기 나선형 안테나 구조와 유사한 방식으로 안테나의 물리적 길이를 줄이는 방식인데, 도 1은 지그재그형 안테나 구조를 갖는 일반적인 실시예인 종래기술 1의 칩 안테나를 나타내며, 도 1에 도시된 종래기술 1은 유전체 블록(13) 상에 지그재그형의 측면전극(11)과 상,하부 전극(12)이 형성되고, 그 일단은 접지전극(10)에 연결되는데, 기본적으로 한 면의 그라운드를 기준으로 하며 안테나를 중심으로 사방이 그라운드 간섭이 없는 상태로 설계되는 것이 일반적이며, 상기 나선형 구조 또는 지그재그 구조의 안테나는, 안테나를 중심으로 그라운드가 안테나에 접근할수록 안테나의 성능변화가 심하여 안테나의 이득이 저하되는 특성을 보이는 문제점이 있다.
안테나의 성능향상을 위한 구조로, PIFA(Planar Inverted F-Type Antenna)가 있으며, 도 2는 PIFA 안테나의 실시예로 종래기술 2를 도시하는데, 종래기술 2의 칩 안테나(20)는 서로 대향되는 제1 주면(22a)과 제2 주면(22b)를 갖는 유전체 블록(22)에 각각 방사전극(27)과 접지전극(23) 및 급전패턴(25)이 형성되어 있다. 이와 같은 FIPA 안테나는 설계시부터 그라운드에 근접한 조건으로 설계되어 근접한 그라운드 조건에서도 좋은 안테나 이득을 얻을 수 있지만, 나선형 또는 지그재그형 구조와 비교하여 대역폭(Bandwidth)이 좁은 문제점을 가지고 있다.
나아가서 무선통신기기에서 일반적인 SMD(Surface Mounted device) 부품들을 PCB 기판 상에 실장하기 위하여 랜드 패드(Land Pad)가 존재하며, 직육면체의 칩 안테나의 경우에 안테나의 특성을 만족시키기 위하여 일반적으로 칩 안테나를 실장하기 위한 랜드 패드가 존재하며 상기 랜드 패드와 연결되는 측면 패턴과 측면 패턴과 연결되어 연장되는 상측면 패턴으로 구성되어 직육면체의 6개의 표면 중 적어도 3개의 표면에 안테나를 구성하는 방사체 패턴을 포함하도록 구성되고, 나아가서 안테나를 실장하기 위하여 안테나 패턴에 대응되도록 PCB 기판 상에 복잡한 형태의 패턴을 갖는 랜드 패드를 형성해야 되는 불편함이 있다.
이와 같이 종래기술에 따른 내장형 칩 안테나의 경우에 안테나 소기의 목적 달성을 위하여 소형의 칩 안테나의 직육면체 공간 안에서 칩 안테나의 소형화와 최상의 성능향상을 위하여 복잡한 패턴구조로 형성되고 있으며, SMT를 가능하도록 랜드 패턴을 포함하여 직육면체의 6개 거의 모든 면에 방사 패턴을 형성하여 설계되고 있다. 또한 LTCC(Low Temperature Co-fired Ceramics) 칩 안테나의 경우 내부 공간을 이용할 수 있는 장점을 활용하여 육면체의 겉 표면을 이용하지 않더라도 칩 안테나의 내부에 방사 패턴을 연결하는 Througth Hole 또는 Via Hole을 형성하는 공정을 추가하는 등 설계의 복잡성이 증가하는 문제점을 가지고 있다.
나아가서 일반적으로 안테나는 그라운드가 가정된 상태에서 동작을 전제로 제작되기 때문에 그 가정이 변하게 되면 결과도 변하기 마련이다. 실제로는 많은 무선통신기기에 내장되는 안테나의 경우 무선통신 시스템의 다양한 조건에 의하여 주변 그라운드 조건이 변경되는 경우가 다반사이며, 이로 인하여 내장형 칩 안테나의 경우 그라운드 조건의 변화에 따라 동일한 안테나라도 그 전기적인 특성이 달라지게 된다.
즉 동작주파수가 변화하게 되고 구조적인 임피던스가 변하게 된다. 이러한 경우 기본적인 안테나들은 동작주파수를 조절하기 위하여 방사 패턴의 길이를 달리하게 되거나 또는 다른 조건을 갖는 새로운 위치로의 이동을 고려하게 된다. 또한 구조적인 임피던스를 변화하기 위하여 안테나의 방사 패턴 구조를 변경하는 등 설계변경을 함으로써 전기적인 특성을 변화하여 원하는 특성을 만족시키고 있다.
그러나 이러한 설계 변경의 경우 반드시 원하는 성능을 만족시키지는 못하여 완전히 다른 형태를 갖는 안테나로 재설계해야 되는 번거로움이 있다.
이렇듯 다양한 무선통신 시스템에 적용하여 원하는 전기적 특성을 얻기 위해서는 다양한 무선통신 시스템마다 다른 안테나 설계를 반영해야 되는 문제점이 있다.
본 발명은 내장형 칩 안테나의 크기를 최소화시키면서 동시에 기존의 안테나와 동등이상의 성능을 구현하는 내장형 칩 안테나의 구조를 제공하는 것을 주된 목적으로 한다.
내장형 안테나의 경우에 장치의 내부에 위치하므로 안테나 방사체 패턴의 크기에 한계가 있으며, 주파수 대역의 특성에 따라 복잡한 안테나 방사체를 형성함으로 인해 생산 공정이 복잡해지고 생산 단가가 높아지는 문제점을 해결하고자 본 발명은 단순한 구조의 칩 안테나를 제공하는 것을 목적으로 한다.
또한 내장형 칩 안테나가 무선통신기기의 기판에 실장됨에 있어서 안테나와 PCB 기판을 연결하기 위한 랜드 패드가 안테나 패턴에 따라 복잡하게 형성되는 불편함을 해결하고자 한다.
상기 기술적 과제를 달성하고자 본 발명은, 내장형 칩 안테나의 구조에 있어서, 유전체를 포함하여 직육면체로 형성된 유전체 블록 상의 서로 대향되는 두 개의 측면 상에 국한되어 각각의 안테나 방사 패턴 전극이 형성되고, 무선통신기기의 기판 상에 상기 각각의 안테나 방사 패턴 전극에 대응되어 각각의 랜드 패드(Land Pad)가 형성되며, 상기 각각의 안테나 방사 패턴 전극은 상기 각각의 랜드 패드(Land Pad)와 수직으로 연결되어, 상기 서로 대향되는 두 개의 측면 상에 형성된 안테나 방사 패턴 전극 사이에서 발생되는 전자기 필드에 의해 안테나가 동작하는 것을 특징으로 하는 이중 평행판 형태의 내장형 칩 안테나 구조이다.
바람직하게는 상기 유전체 블록이 무선통신기기의 기판 상에 실장됨에 있어서, 상기 안테나 방사 패턴 전극이 형성된 면이 상기 무선통신기기의 기판 상의 랜드 패드(Land Pad)와 수직으로 연결될 수 있다.
여기서 상기 유전체 블록의 서로 대향되는 두 개의 측면 상에 서로 대칭되는 형태로 안테나 방사 패턴 전극이 형성될 수 있다.
나아가서 상기 안테나 방사 패턴 전극과 상기 무선통신기기의 기판 상의 랜드 패드가 서로 접하는 부분에 솔더 패이스트(Solder Paste)로 납땜 필렛을 형성하여 상기 유전체 블록이 실장될 수 있다.
바람직하게는 상기 두 개의 측면 상에 서로 대칭되는 형태로 형성된 두 개의 안테나 방사 패턴 전극 중 어느 하나의 안테나 방사 패턴 전극과 연결된 제1 랜드 패드의 일측은 상기 무선통신기기의 신호선에 연결될 수 있으며, 상기 제1 랜드 패드의 타측은, 제1 전극라인을 통해 그라운드에 연결될 수 있다.
또한 상기 두 개의 측면 상에 서로 대칭되는 형태로 형성된 두 개의 안테나 방사 패턴 전극 중 다른 하나의 안테나 방사 패턴 전극과 연결된 제2 랜드 패드의 일측은, 제2 전극 라인을 통해 그라운드에 연결될 수 있다.
나아가서 상기 제2 전극 라인은, 주파수 대역 선택을 위한 집중정수소자(Lumped Element)를 포함할 수 있다.
이와 같은 본 발명에 따르면, 내장형 칩 안테나의 크기를 더욱 소형화시킬 수 있으며, 안테나 방사체의 구조가 간단하므로 제작이 용이하여 생산 공정 및 단가가 줄어드는 효과를 얻는다.
또한 이중 평행판 구조의 칩 안테나로서 무선통신기기의 내부에 실장시에 방향성에 제한 없어지므로 장착 위치의 제한이 없고, 이로 인해 무선통신기기의 설계가 용이해진다.
나아가서 무선통신기기의 기판 상에 칩 안테나의 장착을 위한 안테나 방사체 패턴에 대응되는 랜드 패드의 패턴을 형성할 필요가 없어지며, 집중정수소자를 통해 방사체 패턴의 변경 없이 1GHz이상의 모든 주파수 대역에서 안테나가 동작할 수 있다.
도 1은 종래기술 1의 칩 안테나 사시도 및 도체 패턴의 사시도를 나타내며,
도 2는 종래기술 2의 칩 안테나 사시도를 나타내며,
도 3은 본 발명에 따른 이중 평행판 형태의 내장형 칩 안테나에 대한 하나의 실시예의 사시도와 분리도를 나타내며,
도 4는 본 발명에 따른 칩 안테나를 랜드 패드에 접합시키는 형태를 도시하며,
도 5는 본 발명에 따른 칩 안테나가 무선통신기기의 기판 상에 실장된 모습을 도시하며,
도 6은 본 발명에 따른 PCB 레이아웃의 평면도를 나타내며,
도 7은 솔더 필렛을 이용한 SMT의 실시예를 도시하며,
도 8 내지 도 10은 본 발명에 따른 칩 안테나의 다양한 방사 패턴의 실시예를 도시하며,
도 11은 본 발명에 따른 칩 안테나가 실장되는 다양한 PCB 레이아웃의 실시예를 나타낸다.
<도면의 주요부호에 대한 설명>
100 : 칩 안테나, 110 : 유전체 블록,
120, 120a, 120b : 안테나 방사 패턴 전극,
150 : 솔더 필렛, 200 : PCB 레이아웃,
210a : 제1 랜드 패드, 210b : 제2 랜드 패드,
220 : 신호선, 270 : 그라운드.
본 발명과 본 발명의 동작상의 이점 및 본 발명의 실시에 의하여 달성되는 목적을 설명하기 위하여 이하에서는 본 발명의 바람직한 실시예를 예시하고 이를 참조하여 살펴본다.
본 발명은 무선통신기기의 기판에 칩 안테나를 실장시에 직육면체 유전체 블록의 6개의 표면 중에 기판과 수직을 이루는 서로 대향되는 2개의 측면에만 안테나 방사 패턴 전극을 형성하여, 칩 안테나의 모양이 좌우 및 상하가 모두 대칭을 이루어 어떠한 방향으로 실장하여도 동일한 형상을 유지하는 이중 평행판 형태의 내장형 칩 안테나의 구조를 제시한다.
도 3은 본 발명에 따른 이중 평행판 형태의 내장형 칩 안테나에 대한 하나의 실시예의 사시도와 분리도를 나타낸다.
도 3의 (a)에 도시된 바와 같이, 본 발명에 따른 칩 안테나(100)는 직육면체로 형성된 유전체 블록(110) 상의 측면 상에 안테나 방사 패턴 전극(120)을 형성하는데, 도 3의 (b)에서 보는 바와 같이 안테나 방사 패턴 전극을 유전체 블록(110) 상의 서로 대향되는 2개의 각 측면 상에 제1 안테나 방사 패턴 전극(120a)과 제2 안테나 방사 패턴 전극(120b)으로 형성한다.
유전체 블록(110) 상의 서로 대향되는 두 개의 측면에 각각 안테나 방사 패턴 전극(120a, 120b)을 형성함으로서 대향되는 두 개의 방사 패턴 전극(120a, 120b) 사이에서 발생되는 전자기 필드에 의해 본 발명에 따른 칩 안테나(100)가 동작하게 된다.
여기서 방사 패턴 전극이 형성된 유전체 블록을 포함하는 칩 안테나(100)의 크기는 2.0×1.2×1.2mm3 이나 3.0×1.2×1.2mm3 등의 직육면체로 기존의 칩 안테나의 크기와 비교하여 더욱 소형화시킬 수 있다.
도 4는 본 발명에 따른 칩 안테나를 랜드 패드에 접합시키는 형태를 도시한다.
본 발명에 따른 안테나 방사 패턴 전극(120)이 형성된 유전체 블록(110)을 무선통신기기의 기판 상에 실장함에 있어서, 안테나 방사 패턴 전극(120)이 형성된 측면이 상기 기판 상의 랜드 패드(210a, 210b)와 수직을 이루도록 상기 기판 상의 유전체 블록(110)이 위치할 지점(170)위에 실장시키게 된다.
도 4에 도시된 바와 같이 본 발명에서는 칩 안테나(100) 구조는 유전체 블록(110)의 밑면 상에 기판의 랜드 패드와 연결하기 위한 별도의 패턴을 형성할 필요가 없으며, 또한 기판 상의 랜드 패드(210a, 210b)도 복잡한 패턴을 형성할 필요 없이 단순한 구조로 형성할 수 있게 된다.
또한 유전체 블록(110)의 서로 대향되는 2면 상에 각각 방사 패턴 전극(120a, 120b)이 형성되는 이중 평행판 구조로서 수평축 또는 수직축을 기준으로 안테나를 180도 회전시켜도 동일한 형상을 가지므로 설계 구조를 유지하는데 편리하게 된다.
도 5는 본 발명에 따른 칩 안테나가 무선통신기기의 기판 상에 실장된 모습을 도시한다.
도 5에 도시된 바와 같이 본 발명에 따른 칩 안테나(100)를 무선통신 기기에 실장하기 위한 PCB 레이아웃(Layout)(200)은 매우 간단한 구조로 형성될 수 있는데, 이를 도 6의 PCB 레이아웃의 평면도를 참조하여 살펴보면, 칩 안테나(100)의 유전체 블록(110)의 대향되는 두 측면상에 형성된 두 개의 방사 패턴 전극(120a, 120b)을 각각 연결하기 위한 제1 랜드 패드(210a)와 제2 랜드 패드(210b)가 형성되며, 여기서 제1 랜드 패드(210a)의 일측은 무선통신기기의 신호선(220)에 연결되고 다른 타측은 제1 랜드 패드(210a)로부터 연장된 제1 전극라인(260a)를 통해 PCB 기판 상의 그라운드(270)에 연결된다.
또한 제2 랜드 패드(210b)로부터 연장된 제2 전극라인(260b)은 주파수 대역의 선택을 위한 집중정수소자(Lumped Element)(250)를 포함하며 PCB 기판 상의 그라운드(270)에 연결된다.
이와 같이 칩 안테나(100)의 방사체 블록(110)에 서로 대향되어 형성된 두 개의 방사 패턴 전극(210a, 201b) 중 제1 방사 패턴 전극(210a)은 신호선(220)과 그라운드(270)에 연결되고, 다른 하나의 제2 방사 패턴 전극(210b)은 그라운드(270)에만 연결되어, 제1 방사 패턴 전극(210a)과 제2 방사 패턴 전극(210b) 사이에 형성되는 전자기 필드에 의하여 안테나가 동작할 수 있게 된다.
나아가서 본 발명에 따른 칩 안테나(100)는 안테나 유전체 블록(110)을 고정시키는 동시에 안테나 방사 패턴 전극(120a, 120b)과 상기 기판 상의 랜드 패드(210a, 210b)를 더욱 효과적으로 연결시키기 위하여 솔더 필렛(Solder Fillet)을 이용할 수 있는데, 도 7은 솔더 필렛을 이용한 SMT의 실시예를 도시한다.
무선통신 기기의 PCB 랜드 패드(210a, 210b)에 칩 안테나(100)의 방사 패턴 전극(120a, 120b)을 밀착시키고 일정한 온도를 가하면 열전도도율이 좋은 안테나의 방사 패턴 전극인 Ag 패턴과 PCB의 랜드 패드인 Au로 도금된 구리(Cooper) 패드에 솔더 필렛이 형성되어 칩 안테나(100)가 SMT될 수 있는데, PCB 기판에 소정 온도를 가하면 솔더 페이스트(Solder Paste)가 열전도율이 좋은 칩 안테나(100)의 측면 방사 패턴 전극(120a, 120b)의 Ag 패턴을 타고 올라와 납땜 필렛이 형성되는 것이다.
이와 같이 본 발명에 따른 칩 안테나(100)를 SMT하므로 칩 안테나(100)를 PCB 기판에 실장하기 위한 별도의 랜드 패턴은 필요하지 않게 된다.
나아가서 도 8 내지 도 10은 본 발명에 따른 칩 안테나의 다양한 실시예를 도시한다.
도 8의 실시예에서는 유전체 블록(110)의 대향되는 양 측면 상에 방사 패턴 전극(121)을 형성함에 있어서, 각각의 방사 패턴 전극(121a, 121b)의 중심이 뚫린 사각 링 형태를 가지며, 도 9의 실시예에서는 각각의 방사 패턴 전극(122a, 122b)의 안쪽이 지그재그로 개방된 형태를 가지며, 도 10의 실시예에서는 각각의 방사 패턴 전극(123a, 123b)이 사각의 발굽형태로 형성되어 있다.
나아가서 상기 여러 실시예에 도시된 패턴 형상뿐만 아니라 여러 가지 변형된 형태의 형상으로 유전체 블록(110)의 서로 대향되는 두 측면 상에 방사 패턴이 형성될 수 있으며, 또한 상기 실시예에서는 2개의 방사 패턴 전극이 서로 대칭되는 형태로 형성되어 있으나, 서로 대칭된 형태뿐만 아니라 서로 비대칭 형태로 다양하게 형성될 수도 있다.
도 11은 본 발명에 따른 칩 안테나가 실장되는 다양한 PCB 레이아웃의 실시예를 나타낸다.
도 11의 (a) 내지 (c)에 도시된 바와 같이 하나의 방사 패턴 전극을 연결하는 랜드 패드(210a)는 그 일측이 여러 가지 형태의 신호선(220a, 220b, 220c)과 연결되며 또한 도 11의 (b)와 같이 그 타측은 연장된 전극 라인(260a)을 통해 그라운드(270b)와 연결될 수 있다.
그리고 다른 하나의 방사 패턴 전극을 연결하는 랜드 패드(210b)는 그 연장되는 전극 라인(260b)이 집중정수소자(250)를 포함하며 동시에 PCB 기판의 그라운드(270)에 연결될 수 있다.
도 11에 도시된 PCB 레이 아웃은 실시예로서, 이에 국한되지 않고 본 발명에 따른 서로 대향되는 두 개의 방사 패턴 전극 사이에 전자기 필드를 형성시킬 수 있는 다양한 형태로 변형될 수도 있다.
본 발명에 다른 칩 안테나 구조는 그 크기를 매우 소형화시킬 수 있는 동시에 1GHz 이상의 모든 주파수에서 동작이 가능하여 GPS, PCS, DCS, WCMA, DMB, 블루투스(Bluetooth), W-LAN, WIFI, Wibro 등의 다양한 단일대역 무선통신기기에 적용
이 가능하다. 또한 본 발명에 따른 칩 안테나 구조는 안테나 이득이 평균적으로 0dBi를 만족하여 크기는 소형화되지만 그 성능은 보다 효과적으로 나타난다.
이와 같이 본 발명은 칩 안테나가 가지는 본래의 장점인 크기를 더욱 소형화시킬 수 있으면서 동시에 기존 안테나와 비교하여 동등이상의 성능을 구현 가능하게 된다.
나아가서 본 발명에 따른 안테나 구조는 설계의 최적화를 통하여 그 구조 및 형상이 매우 단순하므로 제품의 대량 생산시에 생산비용 및 개발비용을 절감할 수 있게 된다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서 본 발명에 기재된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상이 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의해서 해석되어야하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (7)

  1. 내장형 칩 안테나의 구조에 있어서,
    유전체를 포함하여 직육면체로 형성된 유전체 블록 상의 서로 대향되는 두 개의 측면 상에 국한되어 각각의 안테나 방사 패턴 전극이 형성되고, 무선통신기기의 기판 상에 상기 각각의 안테나 방사 패턴 전극에 대응되어 각각의 랜드 패드(Land Pad)가 형성되며,
    상기 각각의 안테나 방사 패턴 전극은 상기 각각의 랜드 패드(Land Pad)와 수직으로 연결되어, 상기 서로 대향되는 두 개의 측면 상에 형성된 안테나 방사 패턴 전극 사이에서 발생되는 전자기 필드에 의해 안테나가 동작하는 것을 특징으로 하는 이중 평행판 형태의 내장형 칩 안테나 구조.
  2. 제 1 항에 있어서,
    상기 유전체 블록의 서로 대향되는 두 개의 측면 상에 서로 대칭되는 형태로 안테나 방사 패턴 전극이 형성된 것을 특징으로 하는 이중 평행판 형태의 내장형 칩 안테나 구조.
  3. 제 1 항에 있어서,
    상기 안테나 방사 패턴 전극과 상기 무선통신기기의 기판 상의 랜드 패드가 서로 접하는 부분에 솔더 패이스트(Solder Paste)로 납땜 필렛을 형성하여 상기 유전체 블록이 실장되는 것을 특징으로 하는 이중 평행판 형태의 내장형 칩 안테나 구조.
  4. 제 2 항에 있어서,
    상기 두 개의 측면 상에 서로 대칭되는 형태로 형성된 두 개의 안테나 방사 패턴 전극 중 어느 하나의 안테나 방사 패턴 전극과 연결된 제1 랜드 패드의 일측은 상기 무선통신기기의 신호선에 연결된 것을 특징으로 하는 이중 평행판 형태의 내장형 칩 안테나 구조.
  5. 제 4 항에 있어서,
    상기 제1 랜드 패드의 타측은, 제1 전극라인을 통해 그라운드에 연결된 것을 특징으로 하는 이중 평행판 형태의 내장형 칩 안테나 구조.
  6. 제 4 항에 있어서,
    상기 두 개의 측면 상에 서로 대칭되는 형태로 형성된 두 개의 안테나 방사 패턴 전극 중 다른 하나의 안테나 방사 패턴 전극과 연결된 제2 랜드 패드의 일측은, 제2 전극 라인을 통해 그라운드에 연결된 것을 특징으로 하는 이중 평행판 형태의 내장형 칩 안테나 구조.
  7. 제 6 항에 있어서,
    상기 제2 전극 라인은, 주파수 대역 선택을 위한 집중정수소자(Lumped Element)를 포함하는 것을 특징으로 하는 이중 평행판 형태의 내장형 칩 안테나 구조.
PCT/KR2010/000797 2009-02-09 2010-02-09 이중 평행판 형태의 내장형 칩 안테나 구조 WO2010090499A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020090010187A KR100930618B1 (ko) 2009-02-09 2009-02-09 이중 평행판 형태의 내장형 칩 안테나 구조
KR10-2009-0010187 2009-02-09

Publications (2)

Publication Number Publication Date
WO2010090499A2 true WO2010090499A2 (ko) 2010-08-12
WO2010090499A3 WO2010090499A3 (ko) 2010-11-18

Family

ID=41683995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/000797 WO2010090499A2 (ko) 2009-02-09 2010-02-09 이중 평행판 형태의 내장형 칩 안테나 구조

Country Status (2)

Country Link
KR (1) KR100930618B1 (ko)
WO (1) WO2010090499A2 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109428169A (zh) * 2017-08-29 2019-03-05 三星电机株式会社 片式天线及该片式天线的制造方法
CN111211398A (zh) * 2018-11-21 2020-05-29 三星电机株式会社 片式天线
US20210175612A1 (en) * 2017-12-14 2021-06-10 Samsung Electro-Mechanics Co., Ltd. Antenna module

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102254877B1 (ko) 2018-01-18 2021-05-24 삼성전기주식회사 안테나 모듈
KR102022353B1 (ko) 2018-01-18 2019-09-18 삼성전기주식회사 안테나 모듈
US11018418B2 (en) * 2018-01-31 2021-05-25 Samsung Electro-Mechanics Co., Ltd. Chip antenna and chip antenna module including the same
KR102500007B1 (ko) * 2018-09-10 2023-02-15 삼성전기주식회사 칩 안테나 모듈

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030088984A (ko) * 2002-05-15 2003-11-21 (주) 코산아이엔티 마이크로 칩 듀얼밴드 안테나
KR20030092874A (ko) * 2002-05-31 2003-12-06 삼성전기주식회사 광대역 칩 안테나
KR100799875B1 (ko) * 2006-11-22 2008-01-30 삼성전기주식회사 칩 안테나 및 이를 포함하는 이동통신 단말기
JP2008252517A (ja) * 2007-03-30 2008-10-16 Tdk Corp アンテナ装置及びこれを用いた無線通信機器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3286884B2 (ja) * 1995-09-29 2002-05-27 株式会社村田製作所 表面実装型アンテナ
JP3262002B2 (ja) * 1996-12-12 2002-03-04 松下電器産業株式会社 表面実装アンテナ
JP2005123852A (ja) 2003-10-16 2005-05-12 Matsushita Electric Ind Co Ltd アンテナモジュール

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030088984A (ko) * 2002-05-15 2003-11-21 (주) 코산아이엔티 마이크로 칩 듀얼밴드 안테나
KR20030092874A (ko) * 2002-05-31 2003-12-06 삼성전기주식회사 광대역 칩 안테나
KR100799875B1 (ko) * 2006-11-22 2008-01-30 삼성전기주식회사 칩 안테나 및 이를 포함하는 이동통신 단말기
JP2008252517A (ja) * 2007-03-30 2008-10-16 Tdk Corp アンテナ装置及びこれを用いた無線通信機器

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109428169A (zh) * 2017-08-29 2019-03-05 三星电机株式会社 片式天线及该片式天线的制造方法
US20210175612A1 (en) * 2017-12-14 2021-06-10 Samsung Electro-Mechanics Co., Ltd. Antenna module
US11637362B2 (en) * 2017-12-14 2023-04-25 Samsung Electro-Mechanics Co., Ltd. Antenna module
CN111211398A (zh) * 2018-11-21 2020-05-29 三星电机株式会社 片式天线
US11050154B2 (en) * 2018-11-21 2021-06-29 Samsung Electro-Mechanics Co., Ltd. Chip antenna

Also Published As

Publication number Publication date
KR100930618B1 (ko) 2009-12-09
WO2010090499A3 (ko) 2010-11-18

Similar Documents

Publication Publication Date Title
WO2010090499A2 (ko) 이중 평행판 형태의 내장형 칩 안테나 구조
CN210443665U (zh) 一种880-960MHz带滤波特性的辐射单元及基站天线
WO2011087177A1 (ko) 아이솔레이션 에이드를 구비한 내장형 mimo 안테나
CN102593565A (zh) 电介质波导管的输入输出连接构造
WO2021261923A1 (ko) 무선 통신 시스템에서 안테나 필터 및 이를 포함하는 전자 장치
WO2011037303A1 (ko) 칩 안테나를 위한 pcb 레이아웃 구조 및 이를 이용한 칩 안테나 장치
WO2016148378A1 (ko) 이동통신 기지국의 안테나 장치 내의 신호 분배/결합 장치
WO2016089015A1 (ko) 필터 패키지
WO2012002718A2 (ko) 표면실장형 안테나부를 포함한 기판형 내장 안테나 및 그 제조방법
JP7237161B2 (ja) 無線装置の放射増強器、放射システム及び無線装置
WO2010101398A2 (ko) 휴대 단말기용 안테나 및 이를 구비한 휴대용 단말기
WO2012015131A1 (ko) 멀티밴드 칩 안테나 실장용 기판 및 이를 포함하는 멀티밴드 칩 안테나 장치
WO2016076605A2 (ko) 휴대용 단말기의 안테나 장치 및 이를 포함하는 휴대용 단말기
CN111010798A (zh) 电路板及电子装置
TWI769107B (zh) 柔性天線結構及電子設備
CN114497998B (zh) 一种天线系统及摄像设备
CN214227139U (zh) 用于天线的辐射元件和包括该辐射元件的天线
EP3916912A1 (en) Antenna design on printed circuit board
JPH07249927A (ja) 表面実装型アンテナ
US6636180B2 (en) Printed circuit board antenna
CN113644421A (zh) 一种高增益的多频小型化全向天线
TWI793867B (zh) 通訊裝置
CN112201951B (zh) 一种天线支架的多天线布局结构及移动终端
WO2011115404A2 (ko) 내장형 복합구조 안테나
CN216565797U (zh) 通信模组安装结构以及通信设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10738783

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10738783

Country of ref document: EP

Kind code of ref document: A2