WO2010090235A1 - 染色プラスチックレンズの製造方法 - Google Patents

染色プラスチックレンズの製造方法 Download PDF

Info

Publication number
WO2010090235A1
WO2010090235A1 PCT/JP2010/051538 JP2010051538W WO2010090235A1 WO 2010090235 A1 WO2010090235 A1 WO 2010090235A1 JP 2010051538 W JP2010051538 W JP 2010051538W WO 2010090235 A1 WO2010090235 A1 WO 2010090235A1
Authority
WO
WIPO (PCT)
Prior art keywords
plastic lens
dyed
dye
lens
substrate
Prior art date
Application number
PCT/JP2010/051538
Other languages
English (en)
French (fr)
Inventor
三科 美佐
窪寺 能哲
信也 宮島
陽子 酒井
新一 山下
Original Assignee
Hoya株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya株式会社 filed Critical Hoya株式会社
Priority to CN2010800069717A priority Critical patent/CN102308245A/zh
Priority to US13/148,140 priority patent/US20120015111A1/en
Priority to EP10738566.8A priority patent/EP2395387A4/en
Publication of WO2010090235A1 publication Critical patent/WO2010090235A1/ja

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P5/00Other features in dyeing or printing textiles, or dyeing leather, furs, or solid macromolecular substances in any form
    • D06P5/003Transfer printing
    • D06P5/004Transfer printing using subliming dyes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00865Applying coatings; tinting; colouring
    • B29D11/00894Applying coatings; tinting; colouring colouring or tinting
    • B29D11/00903Applying coatings; tinting; colouring colouring or tinting on the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00865Applying coatings; tinting; colouring
    • B29D11/00894Applying coatings; tinting; colouring colouring or tinting
    • B29D11/00913Applying coatings; tinting; colouring colouring or tinting full body; edge-to-edge
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06PDYEING OR PRINTING TEXTILES; DYEING LEATHER, FURS OR SOLID MACROMOLECULAR SUBSTANCES IN ANY FORM
    • D06P5/00Other features in dyeing or printing textiles, or dyeing leather, furs, or solid macromolecular substances in any form
    • D06P5/20Physical treatments affecting dyeing, e.g. ultrasonic or electric
    • D06P5/2011Application of vibrations, pulses or waves for non-thermic purposes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses
    • G02B1/043Contact lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/12Optical coatings produced by application to, or surface treatment of, optical elements by surface treatment, e.g. by irradiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • G02B5/223Absorbing filters containing organic substances, e.g. dyes, inks or pigments

Definitions

  • the present invention relates to a method for producing a dyed plastic lens by a sublimation dyeing method, and more particularly, to a method for producing a dyed plastic lens divided into two steps of adhesion of a sublimable dye to the plastic lens and penetration into the lens.
  • a method of dyeing plastic lenses using the sublimation dyeing method for example, a method of heating a printing substrate in which a dye is applied to a white paper by a printer to sublimate the dye (see Patent Document 1), every predetermined interval on the substrate A method of applying a sublimation dye to a material and interspersing it, followed by sublimation dyeing, wherein the range of the sublimation dye to be interspersed is larger than the range to be colored in a plastic lens (see Patent Document 2) And a method of sublimating a sublimable dye using a cooler while suppressing the temperature rise of the plastic lens to adhere to the lens, and further dyeing the lens by heat treatment (see Patent Document 3), etc. Yes.
  • chemical treatment, physical treatment, cleaning treatment, primer treatment, and coating treatment are disclosed as methods for treating the lens surface (see Patent Document 4).
  • the lens since the lens needs to be exposed to a high temperature for a long time in order to dye the plastic lens at a high density, the lens may be deformed or the lens itself may be discolored. Further, since the dye sublimation process (attachment process to the plastic lens) and the dye penetration process to the plastic lens are performed at the same place, the production efficiency of the lens is low. In the method described in Patent Document 3, the vicinity of the cooler is excessively cooled, and thus the sublimated dye may not adhere uniformly to the plastic lens. Further, when the cooler is brought close to the lens in order to suppress the temperature rise of the plastic lens, the sublimated dye tends to hardly adhere to the lens.
  • Patent Document 4 is not a sublimation dyeing method but a method of providing a colored layer on a lens using an ink discharge mechanism of an ink jet printer. In the first place, the dye hardly penetrates into the lens. Further, as a method for treating the lens surface, plasma treatment as well as various treatment methods are exemplified, but this treatment only teaches to improve the adhesion between the lens and the colored layer, and sublimation. The effect of plasma treatment of the lens in the staining method is unknown.
  • the present invention suppresses deformation and discoloration of the plastic lens, and is uniform and uniform with high concentration even for a plastic lens preferably having a refractive index of 1.7 or higher, particularly a refractive index of 1.7 to 1.8. It is an object of the present invention to provide a method for producing a dyed plastic lens that can be dyed quickly.
  • the present inventors have a step of applying a sublimable dye on a substrate made of glass in the sublimation dyeing method, and in the dyeing step, the dye is added under specific conditions.
  • the above problem can be solved by separately providing a step of attaching the dyed surface of the lens and a step of permeating the sublimable dye attached to the plastic lens into the lens. It came. It has also been found that by using a plastic lens whose surface to be dyed is plasma-treated, the plastic lens can be easily dyed uniformly with high density and without unevenness.
  • the present invention relates to the following [1] to [9].
  • a step (1) of applying a sublimable dye on a glass substrate After the plastic lens was installed so that the surface to be dyed of the plastic lens faced the surface of the substrate coated with the sublimable dye, it was obtained in the step (1) at a vacuum degree of 1 ⁇ 10 4 Pa or less.
  • a method for producing a dyed plastic lens A method for producing a dyed plastic lens.
  • the plastic lens used in the step (2) is a homopolymer of a monomer having a sulfide bond, or a copolymer of a monomer having a sulfide bond and one or more other monomers.
  • a method for producing a dyed plastic lens according to any one of [9] The method for producing a dyed plastic lens according to any one of the above [1] to [8], wherein the plastic lens used in the step (2) has a refractive index of 1.7 or more.
  • a plastic lens having a refractive index of 1.7 or higher, particularly a refractive index of 1.7 to 1.8 is uniformly dyed uniformly at a high density. It is possible to provide a method for producing a dyed plastic lens that can be used.
  • the dyed plastic lens obtained by the production method is not deformed or discolored, and is evenly dyed at a high concentration even if the refractive index is 1.7 or more.
  • the present invention is a method for producing a dyed plastic lens having the following steps (1) to (3).
  • Step (1) A step of applying a sublimable dye on a substrate made of glass.
  • Step (2) After placing the plastic lens so that the dyed surface of the plastic lens faces the surface of the substrate coated with the sublimable dye, the step (1) is performed at a vacuum degree of 1 ⁇ 10 4 Pa or less.
  • the sublimation dye applied on the substrate is sublimated by heating the substrate obtained in (1), and the sublimated dye is adhered to the dyed surface of the lens without penetrating into the plastic lens.
  • Step (3) a step of allowing the sublimable dye attached to the plastic lens to permeate into the lens by heat-treating the plastic lens attached with the sublimable dye obtained in the step (2).
  • Step (1) (Substrate made of glass)
  • a sublimation dye for dyeing a plastic lens is applied on a substrate made of glass.
  • a substrate made of glass has low thermal conductivity, hardly causes a temperature gradient, and is hardly deformed by heat.
  • substrate There is no restriction
  • substrate for example, the well-known glass containing components, such as a silicic acid, soda ash, lime, potassium carbonate, lead oxide, boric acid, can be used.
  • a substrate made of glass a temperature gradient does not occur in the entire substrate when the operation of heating the substrate in step (2) described later is performed, and the substrate temperature is not increased more than necessary.
  • the thickness of the substrate is not particularly limited as long as heat is transmitted to the sublimable dye and the dye can be sublimated, but usually from the viewpoint of sufficiently sublimating the sublimation dye, 0.5 mm to 5 mm is preferable, and 1 mm to 3 mm is more preferable.
  • the substrate may have a curved surface with a small error when a surface (application surface) facing the plastic lens is overlapped with a curved surface of the plastic lens to be stained.
  • the distance between the substrate and the plastic lens is substantially constant over the entire curved surface of the lens, and the sublimated dye diffuses uniformly on the lens, making it easier to dye the plastic lens uniformly and without unevenness.
  • substrate is smooth from a viewpoint which dye
  • the sublimation dye used in step (1) is not particularly limited as long as it is a dye that has the property of sublimation by heating.
  • Sublimation dyes are easily available industrially. Examples of commercially available products include Kayaset Blue 906 (manufactured by Nippon Kayaku Co., Ltd.), Kayaset Brown 939 (manufactured by Nippon Kayaku Co., Ltd.), and Kayaset.
  • the sublimable dye When the sublimable dye is applied to a substrate made of glass, the sublimable dye is dispersed in an aqueous medium to prepare an ink.
  • the aqueous medium water is preferable.
  • the concentration of water in the ink of the sublimable dye is preferably 2 to 10% by mass, more preferably 2.5 to 7% by mass, and 4 to 7% by mass. More preferably, it is more preferably 4 to 6% by mass.
  • the concentration of the sublimation dye in the ink is within the above range, the plastic lens can be dyed at a high concentration.
  • the ink may contain a surfactant, a humectant, an organic solvent, a viscosity adjuster, a pH adjuster, a binder and the like from the viewpoint of uniformly dyeing the plastic lens at a high concentration.
  • the surfactant include an anionic surfactant and a nonionic surfactant.
  • anionic surfactant When the surfactant is included in the ink, it is preferable to use an anionic surfactant and a nonionic surfactant in combination. Known anionic surfactants can be used.
  • anionic surfactant examples include sodium alkyl sulfonate, sodium alkyl benzene sulfonate, sodium ⁇ -olein sulfonate, sodium dodecylphenyl oxide disulfonate, sodium lauryl sulfate, and the like. You may use these individually by 1 type or in combination of 2 or more types. A known nonionic surfactant can be used.
  • nonionic surfactant examples include ether-based nonionic surfactants such as polyoxyethylene cetyl ether and polyoxyethylene oleyl ether; ester-based nonionic surfactants such as sorbitan stearate and propylene glycol stearate; Examples thereof include ether / ester nonionic surfactants such as polyoxyethylene glyceryl stearate and polyoxyethylene sorbate oleate; water-soluble polymer nonionic surfactants such as polyvinyl alcohol and methylcellulose. You may use these individually by 1 type or in combination of 2 or more types. Among these, a water-soluble polymer-based nonionic surfactant is preferable, and methylcellulose is more preferable.
  • the content of the anionic surfactant is preferably 0.1 to 10% by mass, more preferably 0.2 to 5% by mass, and still more preferably 0, in the ink. 2 to 1% by mass.
  • the content of the nonionic surfactant is preferably 0.1 to 10% by mass, more preferably 0.2 to 5% by mass, and further preferably 0.2 to 1% by mass in the ink. Like that.
  • the plastic lens can be uniformly dyed at a higher concentration.
  • humectant examples include pyrrolidone humectants such as 2-pyrrolidone and N-methyl-2-pyrrolidone; amide humectants such as dimethyl sulfoxide and imidazolidinone; ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, Polyhydric alcohol humectants such as dipropylene glycol, D-sorbitol and glycerin; and trimethylolmethane. You may use these individually by 1 type or in combination of 2 or more types. Of these, polyhydric alcohol humectants are preferred, and glycerin is more preferred.
  • the content thereof is preferably 5 to 30% by mass, more preferably 10 to 25% by mass in the ink.
  • the plastic lens can be uniformly dyed at a higher concentration.
  • substrate which consists of glass.
  • spray coating method, bar coating method, roll coating method, spin coating method, ink dot coating method, inkjet method etc. are mentioned. .
  • step (2) first, the plastic lens is placed so that the dyed surface of the lens faces the surface of the substrate coated with the sublimable dye.
  • the plastic lens and the substrate may be installed in accordance with a normal sublimation dyeing method. For example, see FIGS. 1 and 2 of JP-A-2005-156630.
  • the distance between the substrate and the central portion of the plastic lens is preferably 5 mm to 120 mm, more preferably 10 mm to 80 mm, and still more preferably 15 mm to 30 mm, from the viewpoint of dyeing the plastic lens at a high concentration.
  • the shape of the plastic lens is not particularly limited.
  • a plastic lens having various curved surfaces such as a spherical surface, a rotationally symmetric aspheric surface, a multifocal lens, an aspheric surface such as a toric surface, a convex surface, and a concave surface can be used.
  • the plasma processing may be performed using a known plasma processing apparatus.
  • the plasma output during the plasma treatment is preferably 40 to 500 W, more preferably 50 to 500 W, more preferably 50 to 300 W, more preferably 100 to 300 W, and still more preferably, from the viewpoint of suppression of uneven dyeing and transmittance. 200 to 300 W, and the degree of vacuum is 1 ⁇ 10 4 Pa or less, preferably substantially under vacuum (1 ⁇ 10 ⁇ 3 to 1 ⁇ 10 4 Pa), more preferably from the viewpoint of suppression of uneven dyeing and transmittance. 1 ⁇ 10 ⁇ 3 to 1 ⁇ 10 3 Pa, more preferably 1 ⁇ 10 ⁇ 2 to 2 ⁇ 10 2 Pa.
  • the plasma output and the degree of vacuum are in this range, the surface treatment will be performed sufficiently, effectively suppressing the phenomenon unique to the sublimation dyeing method in which the dye crystallizes on the lens surface when the sublimation dye is sublimated. This makes it difficult to check the unevenness even with a microscope (for example, 2000 times magnification). At the same time, since the load on the lens can be minimized, deformation and discoloration of the lens itself can be suppressed.
  • the present invention is useful because a plastic lens having a refractive index of 1.7 or more (preferably 1.7 to 1.8, more preferably 1.70 to 1.76) can be used.
  • the substrate coated with the sublimable dye is subjected to a vacuum degree of 1 ⁇ 10 4 Pa.
  • the sublimable dye applied on the substrate is sublimated, and the sublimated dye is adhered to the surface to be dyed of the plastic lens without penetrating into the plastic lens.
  • “without penetrating into the plastic lens” means that the dye preferably penetrates 90% by mass or more, more preferably 95% by mass or more, and still more preferably substantially 100% by mass penetrates into the plastic lens. It means not letting.
  • a method of heating with a heater from the surface side not coated with the sublimable dye is preferably exemplified.
  • the heating temperature of the substrate is adjusted so that the substrate is preferably 120 to 250 ° C., more preferably 130 to 240 ° C., more preferably 140 to 230 ° C., and further preferably 140 to 200 ° C.
  • the sublimable dye can be sufficiently sublimated, the deformation and discoloration of the opposing plastic lens due to heat can be suppressed, and the dye adhering to the plastic lens is further removed. It is possible to suppress penetration into the lens.
  • the speed at which the sublimable dye adheres to the lens is higher than the speed at which it penetrates into the lens, particularly in a plastic lens having a refractive index of 1.7 or more which is difficult to dye.
  • the dye in the sublimation dye may crystallize on the lens surface, which causes uneven dyeing (unevenness). In the present invention, unevenness was successfully suppressed by dividing the dyeing process into the step (2) and the step (3) while using a substrate made of glass.
  • the degree of vacuum at the time of heating the substrate is 1 ⁇ 10 4 Pa or less, but from the viewpoint of suppressing crystallization of the dye in the sublimable dye on the lens surface, preferably under a substantially vacuum pressure (vacuum) 1 ⁇ 10 ⁇ 3 to 1 ⁇ 10 4 Pa), more preferably 1 ⁇ 10 ⁇ 2 to 1 ⁇ 10 3 Pa, and still more preferably 1 ⁇ 10 ⁇ 2 to 5 ⁇ 10 2 Pa.
  • the pressure is less than 1 ⁇ 10 ⁇ 3 Pa, it is necessary to improve the performance of the apparatus.
  • the lens surface to which the sublimable dye is attached is in a state as shown in FIG.
  • Step (3) (Penetration of sublimation dye into plastic lens)
  • the plastic lens attached with the sublimable dye obtained in the step (2) is subjected to a heat treatment so that the sublimable dye attached to the lens surface penetrates into the plastic lens.
  • the heat treatment temperature varies depending on the type of plastic lens from the viewpoint of sufficiently allowing the sublimable dye to penetrate into the plastic lens and suppressing deformation and discoloration of the plastic lens, but usually 70 to 160 ° C. is preferable. 80 to 160 ° C is preferable, 100 to 160 ° C is more preferable, 120 to 160 ° C is more preferable, and 135 to 160 ° C is still more preferable.
  • the sublimation dye can be sufficiently permeated into the plastic lens by heat treatment particularly at 100 to 160 ° C., preferably 120 to 160 ° C.
  • the lens surface after the sublimation dye has permeated into the plastic lens is in a state as shown in FIG.
  • the heat treatment may be performed under reduced pressure or under pressure, but is preferably performed under normal pressure.
  • the heat treatment time varies depending on the type of plastic lens as in the previous case, but from the viewpoint of dyeing the plastic lens at a high concentration and suppressing deformation and discoloration of the plastic lens, it is preferably 30 seconds to 150 minutes. 1 minute to 150 minutes is more preferred, 15 minutes to 150 minutes is more preferred, 20 minutes to 120 minutes is more preferred, and 40 minutes to 120 minutes is even more preferred.
  • the heat treatment in the step (3) is obtained in the step (2) in a furnace (for example, an oven or the like) that has been heated to the above temperature range in advance in order to allow the sublimable dye to uniformly penetrate into the plastic lens. It is preferable to adopt a method in which a plastic lens with a sublimable dye attached is put.
  • the transmittance of the dyed plastic lens dyed as described above is 86% or less, and depending on the production conditions, it is 80% or less, 55% or less, 45% or less, and further 35% or less.
  • the refractive index is 1.7.
  • Even the plastic lens described above contains a sublimable dye at a high concentration.
  • the dyed plastic lens obtained by the production method of the present invention is dyed at a high concentration and is uniformly dyed without unevenness.
  • -Evaluation criteria- ⁇ It is difficult to visually find uneven dyeing.
  • X Dyeing unevenness can be visually confirmed in the lens surface.
  • Appearance Deformation of lens It was visually confirmed whether or not the lens was deformed, and evaluated according to the following criteria.
  • -Evaluation criteria- ⁇ No deformation (the deformation of the lens cannot be confirmed at all)
  • X Deformed (Slight lens deformation can be confirmed)
  • Transmittance The visible light transmittance at a wavelength of 585 nm was measured using a spectrophotometer “U3410” (manufactured by Hitachi, Ltd.). The smaller the transmittance, the higher the density.
  • plastic lenses used in each example are as follows.
  • ⁇ Preparation Example 1> (Preparation of sublimable dye-containing ink) “Dianix Blue AC-E” (produced by Dystar Japan Co., Ltd.) as a sublimation dye is dispersed in water and mixed with an anionic surfactant, a nonionic surfactant and a moisturizing agent to contain a sublimation dye-containing ink. It was.
  • Plasma treatment The stained surface of the plastic lens was plasma-treated under the following conditions. -Plasma treatment conditions- Plasma processing apparatus: PC101A (manufactured by Yamato Science Co., Ltd.) Degree of vacuum: 1 ⁇ 10 2 Pa Plasma output: 130W Treatment time: 120 seconds When the state of the surface of the plastic lens after the plasma treatment was confirmed with an optical microscope (magnification: 2000 times), as shown in FIG. 1, the plasma-treated surface has a fine and uniform pattern. I was able to confirm. Step (1): The sublimable dye-containing ink obtained in Preparation Example 1 was applied in a grid pattern on a glass substrate using a dispenser.
  • Step (2) The obtained glass substrate is placed facing the inside of the sublimation dyeing machine so as to be 20 mm away from the center of the plastic lens, and the degree of vacuum is set to 2 ⁇ 10 2 Pa and the temperature of the glass substrate is heated to 155 ° C. Then, the sublimable dye was sublimated over 10 minutes to adhere to the plastic lens.
  • Step (3) Further, the obtained plastic lens was placed in an oven heated to 130 ° C., and the plastic lens was heated for 1 hour to allow the sublimation dye to penetrate into the plastic lens. Tables 1 and 2 show the appearance evaluation and transmittance measurement results of the obtained stained plastic lens.
  • Example 2 In Example 1, the experiment was performed in the same manner as in Example 1 except that the degree of vacuum during the plasma treatment was changed to 2 ⁇ 10 2 Pa. Table 1 shows the appearance evaluation and transmittance measurement results of the obtained stained plastic lens.
  • Example 3 In Example 1, the experiment was performed in the same manner as in Example 1 except that the plasma output during the plasma treatment was changed to 50 W. Table 1 shows the appearance evaluation and transmittance measurement results of the obtained stained plastic lens.
  • Example 4 In Example 1, the experiment was performed in the same manner as in Example 1 except that the plasma output during plasma processing was changed to 260 W. Table 1 shows the appearance evaluation and transmittance measurement results of the obtained stained plastic lens.
  • Example 5 In Example 1, the experiment was performed in the same manner as in Example 1 except that the degree of vacuum in the step (2) was changed to 5 ⁇ 10 2 Pa. Table 1 shows the appearance evaluation and transmittance measurement results of the obtained stained plastic lens.
  • Example 1 Polishing treatment
  • a polishing treatment with an abrasive “POLIPLA203H” (trade name, manufactured by Fujimi Incorporated) with an average particle diameter of 1 to 3 ⁇ m was used.
  • the experiment was performed in the same manner as in Example 1.
  • the obtained stained plastic lens had uneven dyeing due to crystallization of the dye in the sublimable dye, and was not dyed uniformly. The results are shown in Table 1.
  • Example 2 Alkaline treatment
  • Example 1 instead of plasma treatment, an experiment was conducted in the same manner as in Example 1 except that the treatment was immersed in a 10% sodium hydroxide aqueous solution and treated at 60 ° C for 5 minutes. Was done.
  • the obtained stained plastic lens had uneven dyeing due to crystallization of the dye in the sublimable dye, and was not dyed uniformly. The results are shown in Table 1.
  • Example 3 Organic solvent treatment
  • Example 1 an experiment was conducted in the same manner as in Example 1 except that instead of the plasma treatment, the organic solvent treatment was immersed in acetone for 5 minutes.
  • the obtained stained plastic lens had uneven dyeing due to crystallization of the dye in the sublimable dye, and was not dyed uniformly. The results are shown in Table 1.
  • Example 4 UV ozone treatment
  • Example 1 instead of plasma treatment, an experiment was conducted in the same manner as in Example 1 except that UV ozone treatment was performed under the following conditions.
  • -UV ozone treatment conditions UV ozone treatment device: Eye UV-ozone cleaning device “OC-250315-D + A” (model number, manufactured by Iwasaki Electric Co., Ltd.) Output: 75W Treatment time: 60 seconds
  • the obtained stained plastic lens had uneven dyeing due to crystallization of the dye in the sublimable dye, and was not dyed uniformly. The results are shown in Table 1.
  • the dyed plastic lens having a refractive index of 1.70 produced according to the present invention was uniformly dyed at a high concentration.
  • uniform dyeing could not be performed due to crystallization of the pigment in the sublimable dye on the plastic lens surface (Comparative Examples 1 to 4).
  • Example 6 In Example 1, the experiment was performed in the same manner as in Example 1 except that the temperature of the glass substrate in step (2) was adjusted to 127 ° C. Table 2 shows the appearance evaluation and transmittance measurement results of the obtained stained plastic lens.
  • Example 7 In Example 1, the experiment was performed in the same manner as in Example 1 except that the temperature of the glass substrate in Step (2) was adjusted to 190 ° C. Table 2 shows the appearance evaluation and transmittance measurement results of the obtained stained plastic lens.
  • Example 8 In Example 1, the experiment was performed in the same manner as in Example 1 except that the temperature of the oven in step (3) was changed to 80 ° C. Table 2 shows the appearance evaluation and transmittance measurement results of the obtained stained plastic lens.
  • Example 9 In Example 1, the experiment was performed in the same manner as in Example 1 except that the temperature of the oven in step (3) was changed to 140 ° C. Table 2 shows the appearance evaluation and transmittance measurement of the dyed plastic lens obtained.
  • Example 10 In Example 1, the experiment was performed in the same manner as in Example 1 except that the heat treatment time in step (3) was changed to 1 minute. Table 2 shows the appearance evaluation and transmittance measurement of the dyed plastic lens obtained.
  • Example 11 In Example 1, the experiment was performed in the same manner as in Example 1 except that the temperature of the glass substrate in step (2) was adjusted to 230 ° C. Table 2 shows the appearance evaluation and transmittance measurement results of the obtained stained plastic lens.
  • Example 5 ⁇ Comparative Example 5>
  • the substrate made of glass was changed to an aluminum substrate, and the experiment was performed in the same manner as in Example 1 except that the sublimable dye was sublimated over 10 minutes in the step (2).
  • Table 2 shows the appearance evaluation results of the obtained stained plastic lens.
  • Example 7 the glass substrate is changed to an aluminum substrate, and after the adhesion of the sublimable dye is completed in the step (2), the aluminum substrate is further heated to give heat to the plastic lens so as to be sublimable.
  • the experiment was performed in the same manner as in Example 7 except that the dye was infiltrated into the lens (total heating time: 30 minutes) and step (3) was not performed.
  • Table 2 shows the appearance evaluation results of the obtained stained plastic lens.
  • the dyed plastic lens having a refractive index of 1.70 manufactured according to the present invention was uniformly dyed at a high concentration, and the lens was not deformed.
  • the sublimation dyeing method was carried out using a metal substrate as in the case of Comparative Examples 5 and 6, a part of the dye penetrated into the lens, and uniform dyeing could not be performed.
  • Comparative Example 6 when the penetration of the sublimable dye into the plastic lens was attempted by the operation of the step (2) without providing the step (3), a high refractive index plastic lens that was difficult to dye was used. In addition, crystallization of the pigment in the dye occurred, and uniform dyeing was not possible, and the lens was deformed due to the fact that heating for a long time was required for dyeing.
  • the dyed plastic lens obtained by the production method of the present invention is widely used for spectacles, sunglasses, goggles and the like, and is particularly useful as a plastic lens for spectacles having a refractive index of 1.7 or more.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Textile Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ophthalmology & Optometry (AREA)
  • Mechanical Engineering (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Coloring (AREA)
  • Eyeglasses (AREA)

Abstract

 プラスチックレンズの変形及び変色を抑制し、且つ、好ましくは屈折率1.7以上、特に屈折率1.7~1.8のプラスチックレンズに対しても高濃度でムラ無く均一に染色することが可能な染色プラスチックレンズの製造方法である。具体的には、ガラスからなる基板上に昇華性染料を塗布する工程(1)、プラスチックレンズの被染色面が前記基板の昇華性染料が塗布された面と対向するようにプラスチックレンズを設置した後、真空度1×104Pa以下にて、前記工程(1)で得られた基板を加熱することにより基板上に塗布された昇華性染料を昇華させ、昇華した該染料を前記プラスチックレンズ内に浸透させずに該レンズの被染色面に付着させる工程(2)、及び前記工程(2)で得られた昇華性染料が付着したプラスチックレンズを加熱処理することにより、該プラスチックレンズに付着した昇華性染料をレンズ内に浸透させる工程(3)、を有する染色プラスチックレンズの製造方法である。なお、被染色面がプラズマ処理されたプラスチックレンズを用いることにより、プラスチックレンズを高濃度でムラ無く均一に染色し易くなる。

Description

染色プラスチックレンズの製造方法
 本発明は、昇華染色法による染色プラスチックレンズの製造方法、さらに詳しくは、昇華性染料のプラスチックレンズへの付着とレンズ内部への浸透の2工程に分けた染色プラスチックレンズの製造方法に関する。
 従来、眼鏡用のプラスチックレンズの染色には、浸漬染色法、加圧染色法、染料膜加熱法等が利用されてきた。しかし、これらの染色方法では、高屈折率(屈折率1.7以上)のプラスチックレンズに対して高濃度でムラ無く均一に染色することが困難であった。
 そこで、高屈折率(屈折率1.7以上)のプラスチックレンズに対しても、高濃度でムラ無く均一に染色するため、現在は、昇華性染料を用いてプラスチックレンズを染色する昇華染色法を始めとする、様々な試みがなされている。該昇華染色法を用いてプラスチックレンズを染色する方法としては、例えば、白紙にプリンタにより染料を塗布した印刷基体を加熱して染料を昇華させる方法(特許文献1参照)、基板上に所定間隔ごとに昇華性染料を塗布して点在させてから昇華染色させる方法であって、点在させる昇華性染料の範囲をプラスチックレンズにおける着色予定の範囲以上の大きさにする方法(特許文献2参照)、及び冷却器を用いてプラスチックレンズの温度上昇を抑制しながら昇華性染料を昇華させて該レンズに付着させ、さらに加熱処理により該レンズを染色する方法(特許文献3参照)等が知られている。
 一方で、レンズの表面を処理する方法として、化学的処理、物理的処理、洗浄処理、プライマー処理及びコーティング処理が開示されている(特許文献4参照)。
特開2001-59950号公報 特開2002-82204号公報 特開2004-69905号公報 特開2000-111701号公報
 特許文献1に記載された方法では、本発明者等の検討によると、ヒーターからの熱がプラスチックレンズに伝わり、ヒーターにおける熱の温度分布がそのままプラスチックレンズにおける染料の濃度分布に反映されてしまい、高濃度且つ均一に染色されたプラスチックレンズが得られないという問題があることが判明した。また、そもそも白紙を用いることによる環境負荷があるため、好ましくない。特許文献2に記載された方法では、染料のプラスチックレンズへの付着及び浸透を同時進行させている。この方法では、特に高屈折率のプラスチックレンズを用いた場合、染料のプラスチックレンズへの付着速度が浸透速度よりも大きくなることに起因して、染料中の色素がレンズ表面で結晶化してしまい、染色が不均一となる。さらに、プラスチックレンズを高濃度に染色するために該レンズを長時間高温にさらす必要があるため、レンズが変形したり、レンズ自体が変色することがある。また、染料の昇華工程(プラスチックレンズへの付着工程)と染料のプラスチックレンズへの浸透工程を同一の場所で実施することになるため、レンズの生産効率が低い。特許文献3に記載された方法では、冷却器付近が過度に冷却されるため、昇華した染料がプラスチックレンズに均一に付着しないことがある。また、プラスチックレンズの温度上昇を抑制するために冷却器を該レンズに近づけると、昇華した染料がレンズに付着し難くなる傾向にある。
 また、特許文献4に記載された方法は昇華染色法ではなく、インクジェットプリンタのインク吐出機構を利用してレンズに着色層を設ける方法であり、そもそも染料がレンズ内部に浸透し難い方法である。また、レンズ表面を処理する方法として、種々の処理方法と共にプラズマ処理についても例示されているが、この処理はレンズと着色層との密着性を向上させるためと教示しているのみであり、昇華染色法においてレンズにプラズマ処理をした場合の効果は不明である。
 そこで、本発明は、プラスチックレンズの変形及び変色を抑制し、且つ、好ましくは屈折率1.7以上、特に屈折率1.7~1.8のプラスチックレンズに対しても高濃度でムラ無く均一に染色することが可能な染色プラスチックレンズの製造方法を提供することを課題とする。
 本発明者等は、上記課題について鋭意検討を行った結果、昇華染色法において、ガラスからなる基板上に昇華性染料を塗布する工程を有すること、及び、染色工程において、特定条件下で染料を該レンズの被染色面に付着させる工程とプラスチックレンズに付着した昇華性染料をレンズ内に浸透させる工程とを分けて設けることにより、上記課題を解決し得ることを見出し、本発明を完成するに至った。また、被染色面がプラズマ処理されたプラスチックレンズを用いることにより、プラスチックレンズを高濃度でムラ無く均一に染色し易くなることを見出した。
 すなわち、本発明は、下記[1]~[9]に関する。
[1]ガラスからなる基板上に昇華性染料を塗布する工程(1)、
 プラスチックレンズの被染色面が前記基板の昇華性染料が塗布された面と対向するようにプラスチックレンズを設置した後、真空度1×104Pa以下にて、前記工程(1)で得られた基板を加熱することにより基板上に塗布された昇華性染料を昇華させ、昇華した該染料を前記プラスチックレンズ内に浸透させずに該レンズの被染色面に付着させる工程(2)、及び
 前記工程(2)で得られた昇華性染料が付着したプラスチックレンズを加熱処理することにより、該プラスチックレンズに付着した昇華性染料をレンズ内に浸透させる工程(3)、
を有する染色プラスチックレンズの製造方法。
[2]前記工程(2)において、ガラスからなる基板とプラスチックレンズの中心部との距離が15mm~120mmである、上記[1]に記載の染色プラスチックレンズの製造方法。
[3]前記工程(2)において、ガラスからなる基板を加熱する温度を該基板が120~250℃になるように設定する、上記[1]又は[2]に記載の染色プラスチックレンズの製造方法。
[4]前記工程(3)において、常圧下、加熱温度70~160℃及び加熱時間30秒~150分の条件にて加熱処理を行なう、上記[1]~[3]のいずれかに記載の染色プラスチックレンズの製造方法。
[5]前記工程(3)において、予め前記温度に加熱してある炉を用いて加熱処理を行なう、上記[4]に記載の染色プラスチックレンズの製造方法。
[6]前記工程(2)において、被染色面がプラズマ処理されたプラスチックレンズを用いる、上記[1]~[5]のいずれかに記載の染色プラスチックレンズの製造方法。
[7]前記プラズマ処理の条件が、真空度1×104Pa以下及びプラズマ出力40~500Wである、上記[6]に記載の染色プラスチックレンズの製造方法。
[8]前記工程(2)で使用するプラスチックレンズが、スルフィド結合を有するモノマーの単独重合体、又はスルフィド結合を有するモノマーと1種以上の他のモノマーとの共重合体である、上記[1]~[7]のいずれかに記載の染色プラスチックレンズの製造方法、
[9]前記工程(2)で使用するプラスチックレンズの屈折率が1.7以上である、上記[1]~[8]のいずれかに記載の染色プラスチックレンズの製造方法。
 本発明により、プラスチックレンズの変形及び変色を抑制し、且つ、好ましくは屈折率1.7以上、特に屈折率1.7~1.8のプラスチックレンズに対しても高濃度でムラ無く均一に染色することが可能な染色プラスチックレンズの製造方法を提供することができる。該製造方法により得られた染色プラスチックレンズは、変形及び変色が無く、たとえ屈折率が1.7以上であっても高濃度で均一に染色されている。
プラズマ処理後のプラスチックレンズの表面(処理面)の光学顕微鏡写真(倍率:2000倍)である。 工程(2)で得られたプラスチックレンズの表面(昇華性染料付着面)の光学顕微鏡写真(倍率:2000倍)である。 工程(3)で得られたプラスチックレンズの表面(昇華性染料が付着していた面)の光学顕微鏡写真(倍率:2000倍)である。
 上記の通り、本発明は、下記工程(1)~(3)を有する染色プラスチックレンズの製造方法である。
 工程(1):ガラスからなる基板上に昇華性染料を塗布する工程。
 工程(2):プラスチックレンズの被染色面が前記基板の昇華性染料が塗布された面と対向するようにプラスチックレンズを設置した後、真空度1×104Pa以下にて、前記工程(1)で得られた基板を加熱することにより基板上に塗布された昇華性染料を昇華させ、昇華した該染料を前記プラスチックレンズ内に浸透させずに該レンズの被染色面に付着させる工程。
 工程(3):前記工程(2)で得られた昇華性染料が付着したプラスチックレンズを加熱処理することにより、該プラスチックレンズに付着した昇華性染料をレンズ内に浸透させる工程。
 以下、上記工程(1)~(3)について順に説明する。
[工程(1)]
(ガラスからなる基板)
 工程(1)では、ガラスからなる基板上に、プラスチックレンズを染色するための昇華性染料を塗布する。ガラスからなる基板は、熱伝導性が低くて温度勾配が生じ難く、また熱による変形が起こり難い。該基板用のガラスの種類に特に制限は無く、例えば珪酸、ソーダ灰、石灰、炭酸カリウム、酸化鉛、ホウ酸等の成分を含有する公知のガラスを使用できる。
 ガラスからなる基板を使用することにより、後述する工程(2)で基板を加熱する操作を行なう際に基板全体に温度勾配が生じることがなく、且つ必要以上に基板温度を上昇させることがないため、対向するプラスチックレンズへ余計な熱が伝導することを抑制でき、熱によるプラスチックレンズの変形及び変色を抑制できると共に、該レンズに付着した昇華性染料がレンズ内部へ浸透するのを抑制できる。
 上記基板の厚さは、昇華性染料に熱が伝わり、該染料を昇華させることができる厚さであれば特に制限は無いが、通常、昇華染料を十分に昇華する観点から、0.5mm~5mmが好ましく、1mm~3mmがより好ましい。
 上記基板は、プラスチックレンズと対向する側の面(塗布面)が、プラスチックレンズの被染色面側の曲面と重ねたときの誤差が少ない曲面を有していてもよい。この場合、基板とプラスチックレンズの間隔がレンズの曲面全体でほぼ一定になり、昇華した染料がレンズ上に均一に拡散し、プラスチックレンズを均一にムラなく染色し易くなる。
 また、基板の昇華性染料を塗布する面は、プラスチックレンズを均一に染色する観点から、平滑であることが好ましい。
(昇華性染料)
 工程(1)で使用する昇華性染料は、加熱により昇華する性質を有する染料であれば特に制限は無い。昇華性染料は工業的に容易に入手可能であり、市販品としては、例えばカヤセットブルー906(日本化薬(株)製)、カヤセットブラウン939(日本化薬(株)製)、カヤセットレッド130(日本化薬(株)製)、Kayalon Microester Red C-LS conc(日本化薬(株)製)、Kayalon Microester Red AQ-LE(日本化薬(株)製)、Kayalon Microester Red DX-LS(日本化薬(株)製)、Dianix Blue AC-E(ダイスタージャパン(株)製)、Dianix Red AC-E 01、(ダイスタージャパン(株)製)、Dianix Yellow AC-E new(ダイスタージャパン(株)製)、Kayalon Microester Blue C-LS conc(日本化薬(株)製)、Kayalon Microester Blue AQ-LE(日本化薬(株)製)、Kayalon Microester Yellow AQ-LE(日本化薬(株)製)、Kayalon Microester Yellow C-LS(日本化薬(株)製)、Kayalon Microester Blue DX-LS conc(日本化薬(株)製)等がある。
 昇華性染料をガラスからなる基板に塗布する際、該昇華性染料は水系媒体に分散させてインクを調製する。該水系媒体としては、水が好ましい。水は、昇華性染料のインク中における濃度が2~10質量%となるようにすることが好ましく、2.5~7質量%となるようにすることがより好ましく、4~7質量%となるようにすることがさらに好ましく、4~6質量%となるようにすることが特に好ましい。昇華性染料のインク中における濃度が上記範囲内であると、プラスチックレンズを高濃度に染色することができる。
 また、該インクには、プラスチックレンズを高濃度で均一に染色する観点から、界面活性剤、保湿剤、有機溶媒、粘度調整剤、pH調整剤、バインダー等を含有させてもよい。
 上記界面活性剤としては、アニオン系界面活性剤、ノニオン性界面活性剤等が挙げられる。界面活性剤をインクに含有させる場合、アニオン系界面活性剤及びノニオン系界面活性剤を併用することが好ましい。
 アニオン系界面活性剤は公知のものを使用できる。該アニオン系界面活性剤としては、例えば、アルキルスルホン酸ナトリウム、アルキルベンゼンスルホン酸ナトリウム、α-オレインスルホン酸ナトリウム、ドデシルフェニルオキサイドジスルホン酸ナトリウム、ラウリル硫酸ナトリウム等が挙げられる。これらは1種を単独で又は2種以上を組み合わせて用いてもよい。
 ノニオン性界面活性剤は公知のものを使用できる。該ノニオン系界面活性剤としては、例えばポリオキシエチレンセチルエーテル、ポリオキシエチレンオレイルエーテル等のエーテル系ノニオン性界面活性剤;ステアリン酸ソルビタン、ステアリン酸プロピレングリコール等のエステル系ノニオン性界面活性剤;モノステアリン酸ポリオキシエチレングリセリル、オレイン酸ポリオキシエチレンソルビタン等のエーテル・エステル系ノニオン性界面活性剤;ポリビニルアルコール、メチルセルロース等の水溶性ポリマー系ノニオン性界面活性剤等が挙げられる。これらは1種を単独で又は2種以上を組み合わせて用いてもよい。これらの中でも、水溶性ポリマー系ノニオン性界面活性剤が好ましく、メチルセルロースがより好ましい。
 界面活性剤をインクに含有させる場合、アニオン系界面活性剤の含有量は、インク中における濃度が好ましくは0.1~10質量%、より好ましくは0.2~5質量%、さらに好ましくは0.2~1質量%となるようにする。また、ノニオン性界面活性剤の含有量は、インク中における濃度が好ましくは0.1~10質量%、より好ましくは0.2~5質量%、さらに好ましくは0.2~1質量%となるようにする。界面活性剤の含有量がそれぞれ上記範囲内であると、プラスチックレンズをより高濃度で均一に染色することができる。
 上記保湿剤としては、例えば2-ピロリドン、N-メチル-2-ピロリドン等のピロリドン系保湿剤;ジメチルスルホキシド、イミダゾリジノン等のアミド系保湿剤;エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコール、D-ソルビトール、グリセリン等の多価アルコール系保湿剤;トリメチロールメタン等が挙げられる。これらは1種を単独で又は2種以上を組み合わせて用いてもよい。これらの中でも多価アルコール系保湿剤が好ましく、グリセリンがより好ましい。保湿剤をインクに含有させる場合、その含有量は、インク中における濃度が好ましくは5~30質量%、より好ましくは10~25質量%となるようにする。保湿剤の含有量が上記範囲内であると、プラスチックレンズをより高濃度で均一に染色することができる。
 なお、昇華性染料をガラスからなる基板上に塗布する方法としては特に制限は無く、例えばスプレーコーティング法、バーコーティング法、ロールコーティング法、スピンコーティング法、インクドットコーティング法、インクジェット法等が挙げられる。
[工程(2)]
 工程(2)では、まず、プラスチックレンズを、該レンズの被染色面が前記基板の昇華性染料が塗布された面と対向するように設置する。かかるプラスチックレンズと基板の設置の仕方については、通常の昇華染色法に従えばよく、例えば特開2005-156630号公報の図1及び図2を参照できる。基板とプラスチックレンズの中心部との距離は、高濃度でプラスチックレンズを染色する観点から、好ましくは5mm~120mm、より好ましくは10mm~80mm、さらに好ましくは15mm~30mmである。
(プラスチックレンズ)
 工程(2)で使用するプラスチックレンズの素材としては特に制限は無く、例えばスルフィド結合を有するモノマーの単独重合体;スルフィド結合を有するモノマーと1種以上の他のモノマーとの共重合体;メチルメタクリレート単独重合体;メチルメタクリレートと1種類以上の他のモノマーとの共重合体;ジエチレングリコールビスアリルカーボネート単独重合体;ジエチレングリコールビスアリルカーボネートと1種類以上の他のモノマーとの共重合体;アクリロニトリル-スチレン共重合体;ハロゲン含有共重合体;ポリカーボネート;ポリスチレン;ポリ塩化ビニル;不飽和ポリエステル;ポリエチレンテレフタレート;ポリウレタン;ポリチオウレタン;エポキシ樹脂等が挙げられる。これらの中でも、1.7以上の屈折率を得ることができるという観点から、スルフィド結合を有するモノマーの単独重合体、又はスルフィド結合を有するモノマーと1種以上の他のモノマーとの共重合体が好ましい。
 また、プラスチックレンズの形状に特に制限はなく、例えば、球面、回転対称非球面、多焦点レンズ、トーリック面等の非球面、凸面、凹面等の多様な曲面を有するプラスチックレンズを利用可能である。
(プラズマ処理)
 プラスチックレンズの被染色面にはプラズマ処理を施すことで、レンズ表面に付着する昇華性染料中の色素の結晶化を更に抑制することができる。この効果が得られるのは、プラズマ処理により、レンズ表面に付着している有機物が取り去られ(図1参照)、レンズ表面と色素の親和性が良くなったためと考えられる。
 ところで、従来から使用されているレンズ表面への処理方法として、アルミナ等の研磨剤による研磨処理や苛性ソーダ等によるアルカリ処理等がある。被膜と基材の密着を出すという観点で考えると、これらの処理方法でもプラズマ処理と同様の効果を期待できるはずであるが、現実的には、研磨剤やアルカリ液そのものを完全に除去することができない。そのため、本発明において、レンズの被染色面をプラズマ処理する代わりに上記研磨処理やアルカリ処理等を適用すると、レンズに残留物が付着し、結果的に昇華性染料中の色素の結晶化に起因した染色ムラが発生してしまい、均一に染色することができないことが判明した(本明細書の比較例1~3参照)。さらに、本発明者らは、表面処理後にプラスチックレンズ上に残留物が付着しない方法であれば問題無いものと考え、UVオゾン処理等の別の表面処理方法を試みたが、レンズ表面を均一に処理できず、結果的に染色したときに濃淡ムラが発生してしまうことが判明した(本明細書の比較例4参照)。また、当該処理において出力を上げていくと、UV照射が影響し、プラスチックレンズが黄色くなってしまうといった問題が発生した。
 前記プラズマ処理は、公知のプラズマ処理装置を利用して実施すればよい。プラズマ処理の際のプラズマ出力は、染色ムラの抑制及び透過率の観点から、好ましくは40~500W、より好ましくは50~500W、より好ましくは50~300W、より好ましくは100~300W、さらに好ましくは200~300Wであり、真空度は、染色ムラの抑制及び透過率の観点から、1×104Pa以下、好ましくは略真空圧下(1×10-3~1×104Pa)、より好ましくは1×10-3~1×103Pa、さらに好ましくは1×10-2~2×102Paである。プラズマ出力及び真空度がこの範囲であれば、十分に表面処理が行なわれるため、昇華性染料を昇華した際にレンズ表面で色素が結晶化するという昇華染色法に特有の現象を効果的に抑制でき、顕微鏡(例えば倍率2000倍)によってもムラの確認が困難となる。また、同時にレンズに対する負荷も最小限に抑えられることから、レンズ自体の変形及び変色を抑制できる。
 なお、本発明は、屈折率1.7以上(好ましくは1.7~1.8、より好ましくは1.70~1.76)のプラスチックレンズを用いることもできるため有用である。
(昇華性染料の昇華及びプラスチックレンズへの付着)
 上記の通り、プラスチックレンズを該レンズの被染色面が前記基板の昇華性染料が塗布された面と対向するように設置した後、昇華性染料が塗布された基板を真空度1×104Pa以下にて加熱することにより、基板上に塗布された昇華性染料を昇華させ、昇華した該染料を前記プラスチックレンズ内に浸透させずにプラスチックレンズの被染色面へ付着させる。ここで、「プラスチックレンズ内に浸透させずに」とは、該染料の好ましくは90質量%以上、より好ましくは95質量%以上、さらに好ましくは実質的に100質量%を前記プラスチックレンズ内に浸透させないことを意味する。
 昇華性染料が塗布された基板を加熱する方法としては、昇華性染料が塗布されていない面側からヒーターにて加熱する方法が好ましく挙げられる。基板の加熱温度は、基板が好ましくは120~250℃、より好ましくは130~240℃、より好ましくは140~230℃、さらに好ましくは140~200℃になるように調整する。
 基板の加熱温度を上記範囲内とすることにより、昇華性染料を十分に昇華させることができ、且つ対向するプラスチックレンズの熱による変形及び変色を抑制でき、さらに、プラスチックレンズに付着した前記染料を該レンズの内部にまで浸透することを抑制できる。プラスチックレンズに付着した前記染料が該レンズの内部に浸透する条件の場合、特に染色し難い屈折率1.7以上のプラスチックレンズでは昇華性染料がレンズに付着する速度がレンズ内に浸透する速度よりも大きくなる傾向にあり、レンズ表面にて昇華性染料中の色素が結晶化することがあり、これが不均一な染色(ムラ)の原因となる。本発明では、ガラスからなる基板を用いながら、染色工程を工程(2)と工程(3)に分けることにより、ムラの抑制に成功した。なお、基板の加熱の際の真空度は、1×104Pa以下であるが、レンズ表面にて昇華性染料中の色素が結晶化するのを抑制する観点から、好ましくは略真空圧下(真空度1×10-3~1×104Pa)、より好ましくは1×10-2~1×103Pa、さらに好ましくは1×10-2~5×102Paである。圧力を1×10-3Pa未満にする場合、装置の高性能化が必要である。
 なお、昇華性染料が付着したレンズ表面は、図2に示されるような状態になっている。
[工程(3)]
(昇華性染料のプラスチックレンズ内への浸透)
 工程(3)では、前記工程(2)で得られた昇華性染料が付着したプラスチックレンズを加熱処理することにより、レンズ表面に付着した昇華性染料をプラスチックレンズ内へ浸透させる。
 加熱処理温度は、昇華性染料をプラスチックレンズ内へ十分に浸透させる観点及びプラスチックレンズの変形及び変色を抑制する観点から、プラスチックレンズの種類によっても条件が異なるが、通常70~160℃が好ましく、80~160℃が好ましく、100~160℃がより好ましく、120~160℃がより好ましく、135~160℃がさらに好ましい。特に、屈折率1.7以上のプラスチックレンズの場合、特に100~160℃、好ましくは120~160℃で加熱処理することにより、昇華性染料をプラスチックレンズ内へ十分に浸透させることができる。なお、昇華性染料がプラスチックレンズ内へ浸透した後のレンズ表面は、図3に示されるような状態になっている。
 加熱処理は減圧下又は加圧下に実施してもよいが、常圧下に実施することが好ましい。加熱処理時間は、先程と同様にプラスチックレンズの種類によっても条件が異なるが、プラスチックレンズを高濃度に染色する観点及びプラスチックレンズの変形及び変色を抑制する観点から、30秒~150分が好ましく、1分~150分がより好ましく、15分~150分がより好ましく、20分~120分がより好ましく、40分~120分がさらに好ましい。
 また、工程(3)における加熱処理は、昇華性染料をプラスチックレンズに均一に浸透させていくために、予め上記温度範囲に加熱してある炉(例えばオーブン等)に工程(2)で得られた昇華性染料が付着したプラスチックレンズを入れる方法を採ることが好ましい。
(染色プラスチックレンズの特性)
 以上の様にして染色された染色プラスチックレンズの透過率は86%以下、製造条件によっては80%以下、55%以下、45%以下、さらには35%以下であり、例え屈折率が1.7以上のプラスチックレンズであっても、昇華性染料を高濃度で含有している。さらに、本発明の製造方法により得られる染色プラスチックレンズは、高濃度で染色されているとともに、ムラが無く均一に染色されている。
 以下、実施例により本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。なお、得られた染色プラスチックレンズの外観評価及び透過率測定は以下の通りに行なった。
(i)外観(光学顕微鏡):染色ムラ
 光学顕微鏡を用い、倍率2000倍にて染色の不均一や昇華性染料中の色素の結晶化に起因する染色ムラがあるか否かを確認し、下記評価基準に従って評価した。
 -評価基準-
 ○:光学顕微鏡によっても染色ムラを確認できない。
 △:光学顕微鏡にて若干の染色ムラが確認される。
 ×:光学顕微鏡にて多くの染色ムラが確認される。
(ii)外観(目視):染色ムラ
 目視にて、染色の不均一や昇華性染料中の色素の結晶化に起因する染色ムラがあるか否かを蛍光灯下で確認し、以下の基準に従って評価した。
 -評価基準-
 ○:染色ムラを目視にて見つけるのが困難である。
 ×:レンズ面内に染色ムラを目視で確認できる。
(iii)外観:レンズの変形
 目視にて、レンズの変形が生じたか否かを確認し、以下の基準に従って評価した。
 -評価基準-
 ○:変形なし(レンズの変形を全く確認できない。)
 ×:変形あり(若干、レンズの変形を確認できる。)
(iv)透過率
 分光光度計「U3410」(日立製作所(株)製)を用いて、波長585nmにおける可視光線透過率を測定した。透過率が小さいほど、高濃度で染色されていることを示す。
 また、各例で使用するプラスチックレンズは以下の通りである。
(プラスチックレンズ)
 「EYRY(アイリー)」(商品名、HOYA(株)製);屈折率1.70、中心厚1.8mm、レンズ度数0.00、直径80mmの、ポリスルフィド結合を有するプラスチックレンズ
<調製例1>
(昇華性染料含有インクの調製)
 昇華性染料として「Dianix Blue AC-E」(ダイスタージャパン(株)製)を水に分散させ、さらにアニオン系界面活性剤、ノニオン性界面活性剤及び保湿剤を混合して昇華性染料含有インキとした。各成分の組成比は以下の通りである。
 昇華性染料/水/アニオン系界面活性剤/ノニオン系界面活性剤/保湿剤=5/74.55/0.25/0.2/20(質量比)
<実施例1>
プラズマ処理:
 プラスチックレンズの被染色面を以下の条件にてプラズマ処理した。
 -プラズマ処理条件-
 プラズマ処理装置:PC101A(ヤマト科学(株)製)
 真空度:1×102Pa
 プラズマ出力:130W
 処理時間:120秒
 プラズマ処理後のプラスチックレンズの表面の様子を光学顕微鏡(倍率;2000倍)で確認したところ、図1に示す様に、プラズマ処理した面が微細で均一な模様を呈していることが確認できた。
工程(1):
 ガラスからなる基板上に調製例1で得られた昇華性染料含有インクをディスペンサーによって碁盤目状に塗布した。
工程(2):
 得られたガラス基板を、プラスチックレンズの中心部と20mm離れるように昇華染色機内に対向して設置し、真空度を2×102Paとし、ガラス基板の温度が155℃になるように加熱して昇華性染料を10分かけて昇華させてプラスチックレンズに付着させた。
工程(3):
 さらに、得られたプラスチックレンズを130℃に加熱したオーブン内に置き、プラスチックレンズを1時間加熱することにより、昇華性染料をプラスチックレンズ内に浸透させた。
 得られた染色プラスチックレンズの外観評価及び透過率測定結果を表1及び表2に示す。
<実施例2>
 実施例1において、プラズマ処理時の真空度を2×102Paに変更したこと以外は実施例1と同様にして実験を行なった。得られた染色プラスチックレンズの外観評価及び透過率測定結果を表1に示す。
<実施例3>
 実施例1において、プラズマ処理時のプラズマ出力を50Wに変更したこと以外は実施例1と同様にして実験を行なった。得られた染色プラスチックレンズの外観評価及び透過率測定結果を表1に示す。
<実施例4>
 実施例1において、プラズマ処理時のプラズマ出力を260Wに変更したこと以外は実施例1と同様にして実験を行なった。得られた染色プラスチックレンズの外観評価及び透過率測定結果を表1に示す。
<実施例5>
 実施例1において、工程(2)における真空度を5×102Paに変更したこと以外は実施例1と同様にして実験を行なった。得られた染色プラスチックレンズの外観評価及び透過率測定結果を表1に示す。
<比較例1>研磨処理
 実施例1において、プラズマ処理の代わりに、平均粒径1~3μmの研磨剤「POLIPLA203H」(商品名、株式会社フジミインコーポレーテッド製)による研磨処理に変更したこと以外は実施例1と同様にして実験を行なった。
 得られた染色プラスチックレンズは、昇華性染料中の色素の結晶化に起因した染色ムラがあり、均一に染色されていなかった。結果を表1に示す。
<比較例2>アルカリ処理
 実施例1において、プラズマ処理の代わりに、10%苛性ソーダ水溶液中に浸漬させ、60℃で5分処理するアルカリ処理に変更したこと以外は実施例1と同様にして実験を行なった。
 得られた染色プラスチックレンズは、昇華性染料中の色素の結晶化に起因した染色ムラがあり、均一に染色されていなかった。結果を表1に示す。
<比較例3>有機溶剤処理
 実施例1において、プラズマ処理の代わりに、アセトン中に5分間浸漬する有機溶剤処理に変更したこと以外は実施例1と同様にして実験を行なった。
 得られた染色プラスチックレンズは、昇華性染料中の色素の結晶化に起因した染色ムラがあり、均一に染色されていなかった。結果を表1に示す。
<比較例4>UVオゾン処理
 実施例1において、プラズマ処理の代わりに、以下に示す条件でのUVオゾン処理に変更したこと以外は実施例1と同様にして実験を行なった。
-UVオゾン処理条件-
 UVオゾン処理装置:アイUV-オゾン洗浄装置「OC-250315-D+A」(型番、岩崎電気(株)製)
 出力:75W
 処理時間:60秒
 得られた染色プラスチックレンズは、昇華性染料中の色素の結晶化に起因した染色ムラがあり、均一に染色されていなかった。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1より、本発明に従って製造した屈折率1.70の染色プラスチックレンズは、高濃度で均一に染色されていた。
 一方、プラスチックレンズの表面を他の手段により処理した場合、プラスチックレンズ表面において昇華性染料中の色素の結晶化が起こるなどの原因により、均一な染色ができなかった(比較例1~4)。
<実施例6>
 実施例1において、工程(2)におけるガラス基板の温度を127℃に調整したこと以外は実施例1と同様にして実験を行なった。得られた染色プラスチックレンズの外観評価及び透過率測定結果を表2に示す。
<実施例7>
 実施例1において、工程(2)におけるガラス基板の温度を190℃に調整したこと以外は実施例1と同様にして実験を行なった。得られた染色プラスチックレンズの外観評価及び透過率測定結果を表2に示す。
<実施例8>
 実施例1において、工程(3)におけるオーブンの温度を80℃に変更したこと以外は実施例1と同様にして実験を行なった。得られた染色プラスチックレンズの外観評価及び透過率測定結果を表2に示す。
<実施例9>
 実施例1において、工程(3)におけるオーブンの温度を140℃に変更したこと以外は実施例1と同様にして実験を行なった。得られた染色プラスチックレンズの外観評価及び透過率測定を表2に示す。
<実施例10>
 実施例1において、工程(3)における加熱処理時間を1分に変更したこと以外は実施例1と同様にして実験を行なった。得られた染色プラスチックレンズの外観評価及び透過率測定を表2に示す。
<実施例11>
 実施例1において、工程(2)におけるガラス基板の温度を230℃に調整したこと以外は実施例1と同様にして実験を行なった。得られた染色プラスチックレンズの外観評価及び透過率測定結果を表2に示す。
<比較例5>
 実施例1において、ガラスからなる基板をアルミニウム基板に変更し、工程(2)において昇華性染料を10分かけて昇華させたこと以外は実施例1と同様にして実験を行なった。
 得られた染色プラスチックレンズの外観評価結果を表2に示す。
<比較例6>
 実施例7において、ガラスからなる基板をアルミニウム基板に変更し、且つ工程(2)において昇華性染料の付着が完了した後にもさらにアルミニウム基板の加熱を続けることによりプラスチックレンズへ熱を与えて昇華性染料の該レンズ内部へ浸透させ(加熱時間の合計30分)、工程(3)を実施しなかったこと以外は、実施例7と同様にして実験を行なった。
 得られた染色プラスチックレンズの外観評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2より、本発明に従って製造した屈折率1.70の染色プラスチックレンズは、高濃度で均一に染色されており、レンズの変形も無かった。
 一方、比較例5及び6の様に、従来通り、金属基板を用いて昇華染色法を実施すると、色素が一部レンズ中に浸透してしまい、均一な染色ができなかった。また、比較例6の様に、工程(3)を設けずに工程(2)の操作によって昇華性染料のプラスチックレンズへの浸透も試みた場合、染色し難い高屈折率のプラスチックレンズを使用したため、染料中の色素の結晶化が起こり、均一な染色ができなかったうえに、染色に長時間の加熱を要したことに起因するレンズの変形も生じた。
 本発明の製造方法により得られる染色プラスチックレンズは、眼鏡、サングラス、ゴーグル等に広く用いられ、特に、屈折率1.7以上の高屈折率の眼鏡用のプラスチックレンズとして有用である。

Claims (9)

  1.  ガラスからなる基板上に昇華性染料を塗布する工程(1)、
     プラスチックレンズの被染色面が前記基板の昇華性染料が塗布された面と対向するようにプラスチックレンズを設置した後、真空度1×104Pa以下にて、前記工程(1)で得られた基板を加熱することにより基板上に塗布された昇華性染料を昇華させ、昇華した該染料を前記プラスチックレンズ内に浸透させずに該レンズの被染色面に付着させる工程(2)、及び
     前記工程(2)で得られた昇華性染料が付着したプラスチックレンズを加熱処理することにより、該プラスチックレンズに付着した昇華性染料をレンズ内に浸透させる工程(3)、
    を有する染色プラスチックレンズの製造方法。
  2.  前記工程(2)において、ガラスからなる基板とプラスチックレンズの中心部との距離が15mm~120mmである、請求項1に記載の染色プラスチックレンズの製造方法。
  3.  前記工程(2)において、ガラスからなる基板を加熱する温度を該基板が120~250℃になるように設定する、請求項1又は2に記載の染色プラスチックレンズの製造方法。
  4.  前記工程(3)において、常圧下、加熱温度70~160℃及び加熱時間30秒~150分の条件にて加熱処理を行なう、請求項1~3のいずれかに記載の染色プラスチックレンズの製造方法。
  5.  前記工程(3)において、予め前記温度に加熱してある炉を用いて加熱処理を行なう、請求項4に記載の染色プラスチックレンズの製造方法。
  6.  前記工程(2)において、被染色面がプラズマ処理されたプラスチックレンズを用いる、請求項1~5のいずれかに記載の染色プラスチックレンズの製造方法。
  7.  前記プラズマ処理の条件が、真空度1×104Pa以下及びプラズマ出力40~500Wである、請求項6に記載の染色プラスチックレンズの製造方法。
  8.  前記工程(2)で使用するプラスチックレンズが、スルフィド結合を有するモノマーの単独重合体、又はスルフィド結合を有するモノマーと1種以上の他のモノマーとの共重合体である、請求項1~7のいずれかに記載の染色プラスチックレンズの製造方法。
  9.  前記工程(2)で使用するプラスチックレンズの屈折率が1.7以上である、請求項1~8のいずれかに記載の染色プラスチックレンズの製造方法。
PCT/JP2010/051538 2009-02-09 2010-02-03 染色プラスチックレンズの製造方法 WO2010090235A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2010800069717A CN102308245A (zh) 2009-02-09 2010-02-03 染色塑料透镜的制造方法
US13/148,140 US20120015111A1 (en) 2009-02-09 2010-02-03 Dyed plastic lens fabrication method
EP10738566.8A EP2395387A4 (en) 2009-02-09 2010-02-03 METHOD FOR THE PRODUCTION OF DYED PLASTIC LENSES

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009027779 2009-02-09
JP2009-027783 2009-02-09
JP2009-027779 2009-02-09
JP2009027783 2009-02-09

Publications (1)

Publication Number Publication Date
WO2010090235A1 true WO2010090235A1 (ja) 2010-08-12

Family

ID=42542128

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/051538 WO2010090235A1 (ja) 2009-02-09 2010-02-03 染色プラスチックレンズの製造方法

Country Status (4)

Country Link
US (1) US20120015111A1 (ja)
EP (1) EP2395387A4 (ja)
CN (1) CN102308245A (ja)
WO (1) WO2010090235A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012215652A (ja) * 2011-03-31 2012-11-08 Tokai Kogaku Kk 眼鏡用プラスチックレンズの染色方法
JP2019148044A (ja) * 2018-02-28 2019-09-05 株式会社ニデック 機能付き染色樹脂体の製造方法
WO2022163295A1 (ja) * 2021-01-29 2022-08-04 株式会社ニデック 染色システム

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8770749B2 (en) 2010-04-15 2014-07-08 Oakley, Inc. Eyewear with chroma enhancement
JP6165749B2 (ja) 2011-10-20 2017-07-19 オークリー インコーポレイテッド 彩度強調を伴う眼鏡
WO2013169987A1 (en) 2012-05-10 2013-11-14 Oakley, Inc. Eyewear with laminated functional layers
US9575335B1 (en) 2014-01-10 2017-02-21 Oakley, Inc. Eyewear with chroma enhancement for specific activities
CN207752263U (zh) * 2014-10-03 2018-08-21 陆逊梯卡有限公司 层叠反射镜式镜片和眼睛佩戴件
CN207704150U (zh) 2014-11-13 2018-08-07 奥克利有限公司 具有颜色增强的可变光衰减眼睛佩戴件
US11112622B2 (en) 2018-02-01 2021-09-07 Luxottica S.R.L. Eyewear and lenses with multiple molded lens components
KR102287990B1 (ko) * 2019-12-19 2021-08-10 주식회사 세코닉스 내면 반사를 개선한 소형 카메라용 렌즈
CN112946919A (zh) * 2021-04-22 2021-06-11 上海康耐特光学有限公司 一种贴合式功能性树脂镜片及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01277814A (ja) * 1988-04-30 1989-11-08 Hoya Corp プラスチックレンズの染色方法
JPH0999494A (ja) * 1995-10-06 1997-04-15 Hoya Corp 着色眼鏡レンズの製造方法
JP2000111701A (ja) 1999-10-26 2000-04-21 Hoya Corp 光学レンズ着色システム
JP2001059950A (ja) 1998-08-27 2001-03-06 Nidek Co Ltd プラスチックレンズの染色方法、染色装置及び染色レンズ
JP2002082204A (ja) 2000-09-07 2002-03-22 Hoya Corp プラスチックレンズの着色方法及び着色装置
JP2004069905A (ja) 2002-08-05 2004-03-04 Nidek Co Ltd プラスチックレンズの染色方法、染色装置及び染色レンズ
JP2005156630A (ja) 2003-11-20 2005-06-16 Pentax Corp プラスチックレンズの染色方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2001246900A1 (en) * 2000-04-11 2001-10-23 Showa Denko K K Plastic lens material, production process of the material, composition for plastic lens, plastic lens obtained by curing the composition, and production processof the plastic lens
WO2002033447A1 (fr) * 2000-10-13 2002-04-25 Nof Corporation Composition pour materiau optique, materiau optique, et lentilles en plastique
US20020133889A1 (en) * 2001-02-23 2002-09-26 Molock Frank F. Colorants for use in tinted contact lenses and methods for their production
US7410691B2 (en) * 2001-12-27 2008-08-12 Ppg Industries Ohio, Inc. Photochromic optical article
KR100638123B1 (ko) * 2002-07-22 2006-10-24 미쓰이 가가쿠 가부시키가이샤 무기 초미립자를 함유하는 수지 조성물
US7014664B2 (en) * 2002-08-05 2006-03-21 Nidek Co., Ltd. Dyeing method of dyeing plastic lens and dyeing device
JP4988404B2 (ja) * 2006-09-29 2012-08-01 株式会社ニデック プラスチックレンズの染色方法及びプラスチックレンズ染色用基体作成装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01277814A (ja) * 1988-04-30 1989-11-08 Hoya Corp プラスチックレンズの染色方法
JPH0999494A (ja) * 1995-10-06 1997-04-15 Hoya Corp 着色眼鏡レンズの製造方法
JP2001059950A (ja) 1998-08-27 2001-03-06 Nidek Co Ltd プラスチックレンズの染色方法、染色装置及び染色レンズ
JP2000111701A (ja) 1999-10-26 2000-04-21 Hoya Corp 光学レンズ着色システム
JP2002082204A (ja) 2000-09-07 2002-03-22 Hoya Corp プラスチックレンズの着色方法及び着色装置
JP2004069905A (ja) 2002-08-05 2004-03-04 Nidek Co Ltd プラスチックレンズの染色方法、染色装置及び染色レンズ
JP2005156630A (ja) 2003-11-20 2005-06-16 Pentax Corp プラスチックレンズの染色方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2395387A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012215652A (ja) * 2011-03-31 2012-11-08 Tokai Kogaku Kk 眼鏡用プラスチックレンズの染色方法
JP2019148044A (ja) * 2018-02-28 2019-09-05 株式会社ニデック 機能付き染色樹脂体の製造方法
WO2019167388A1 (ja) * 2018-02-28 2019-09-06 株式会社ニデック 機能付き染色樹脂体の製造方法
WO2022163295A1 (ja) * 2021-01-29 2022-08-04 株式会社ニデック 染色システム

Also Published As

Publication number Publication date
EP2395387A4 (en) 2014-10-01
US20120015111A1 (en) 2012-01-19
EP2395387A1 (en) 2011-12-14
CN102308245A (zh) 2012-01-04

Similar Documents

Publication Publication Date Title
WO2010090235A1 (ja) 染色プラスチックレンズの製造方法
CN101119852B (zh) 光学透镜着色的方法
JP3075403B1 (ja) 着色光学用プラスチックレンズの製造方法
JP3349116B2 (ja) 着色光学用プラスチックレンズの製造方法
EP1117866B1 (en) Tinting plastic optical lenses
CN116145441A (zh) 对用于护目镜和眼镜的镜片进行颜色染色的方法
JP6259856B2 (ja) 染色プラスチックレンズの製造方法
JP2010204640A (ja) 染色プラスチックレンズの製造方法
JP5963495B2 (ja) プラスチックレンズの昇華染色方法
JP2010204641A (ja) 染色プラスチックレンズの製造方法
JP5914104B2 (ja) 染色プラスチックレンズ及びその製造方法
JP5841881B2 (ja) 染色プラスチックレンズの製造方法及び染色プラスチックレンズの製造装置
JP4263432B2 (ja) プラスチックレンズの染色方法
JP5417202B2 (ja) 染色プラスチックレンズの製造方法
JP3874569B2 (ja) 光学用プラスチックレンズの着色システム
JP2011064954A (ja) 染色プラスチックレンズの製造方法
JP2012177909A (ja) 染色プラスチックレンズ
JP2005156629A (ja) プラスチックレンズの染色方法
JP5897342B2 (ja) 装飾された染色プラスチックレンズ
JP2004286873A (ja) プラスチックレンズの染色方法
JP2004286875A (ja) プラスチックレンズの染色方法
JP2005156630A (ja) プラスチックレンズの染色方法
JP3095074B2 (ja) 着色光学用プラスチックレンズの製造方法
JPS5887377A (ja) 表面硬化合成樹脂成形物の乾式染色法
JP2004285489A (ja) プラスチックレンズの染色方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080006971.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10738566

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010738566

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13148140

Country of ref document: US