WO2010090227A1 - ガラス板の品質検査方法及び品質検査プログラム - Google Patents

ガラス板の品質検査方法及び品質検査プログラム Download PDF

Info

Publication number
WO2010090227A1
WO2010090227A1 PCT/JP2010/051528 JP2010051528W WO2010090227A1 WO 2010090227 A1 WO2010090227 A1 WO 2010090227A1 JP 2010051528 W JP2010051528 W JP 2010051528W WO 2010090227 A1 WO2010090227 A1 WO 2010090227A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass plate
load
data
shape
pattern
Prior art date
Application number
PCT/JP2010/051528
Other languages
English (en)
French (fr)
Inventor
嘉之 尊田
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP2010549494A priority Critical patent/JP5403375B2/ja
Priority to CN201080006557.6A priority patent/CN102308181B/zh
Priority to EP10738558.5A priority patent/EP2400262B1/en
Publication of WO2010090227A1 publication Critical patent/WO2010090227A1/ja
Priority to US13/197,298 priority patent/US8793089B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/20Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring contours or curvatures, e.g. determining profile
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/2509Color coding
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object

Definitions

  • the present invention relates to a glass plate quality inspection method, and more particularly to a quality inspection method and a quality inspection program suitable for shape inspection of automobile window glass.
  • window glass for automobiles is used in various curved shapes according to the design of the automobile.
  • These window glasses are formed by bending a flat glass plate made by a float method or the like into a desired shape, heat-softening, and bending by press molding or the like. Since tempered glass is generally used for the side glass and the rear glass, so-called tempered glass is produced by immediately air-cooling a glass plate in a heated state after bending.
  • the laminated glass used for the windshield is a laminated body in which a resin intermediate film is sandwiched between two glass plates cut into almost the same shape.
  • the laminated glass is placed in a state where two pieces of glass are stacked on a ring-shaped jig and heated in a furnace to be bent by its own weight into a desired curved shape. After bending, it is gradually cooled and not air-cooled and strengthened like tempered glass. Thereafter, a transparent resin intermediate film (polyvinyl butyral or the like) is sandwiched between the two glass plates formed by bending, and a pre-compression treatment in a vacuum bag and further a heating / pressurizing treatment in an autoclave are performed thereafter.
  • a laminated glass in which the glass plate and the interlayer film are integrated is produced.
  • the curved glass made in this way is required to have a highly accurate shape reproducibility when assembled in an automobile. Since the door glass is opened and closed by sliding up and down by a passenger's operation, reproduction of a desired design shape is required. This is because if the reproducibility of the shape is poor, it may be damaged by colliding with or rubbing with a surrounding metal member or the like when sliding. In addition, even in a fixed window such as a windshield or rear glass, if the reproducibility of the shape is poor, it is difficult to assemble it into the opening. As a result, there is a risk of causing problems peculiar to window glass such as perspective distortion (a phenomenon in which an image through the glass is distorted) and reflection distortion (a phenomenon in which an image reflected on the glass surface is distorted).
  • perspective distortion a phenomenon in which an image through the glass is distorted
  • reflection distortion a phenomenon in which an image reflected on the glass surface is distorted
  • a glass plate after bending is mounted on an actual inspection table called a gauge (for example, see Patent Document 1) to perform shape inspection, and only those having a predetermined shape accuracy are used for manufacturing automobiles. It was.
  • the gauge is an inspection mold made in conformity with the shape assembled in a use state, and a plurality of distance sensors are embedded in an inspection surface formed by the gauge. By measuring the distance from the mold surface to the back surface of the glass plate, the dissociation from the designed shape is measured, and the accuracy of the shape is evaluated. Conventionally, such a gauge has been inspected for the total number of molded glass plates or a part of the glass plates extracted.
  • gauge has a size equal to or larger than that of the window glass, and there is a problem that a large space is required to store a large number of gauges prepared for each model. Considering future repair applications, there is also the problem that these gauges must be stored for long periods of time.
  • the shape data of the glass plate in the weightless state based on the actual measurement data of the glass plate placed on a general purpose inspection table (see FIG. 3: general purpose inspection table 110) having three general-purpose support points.
  • the virtual shape of the glass plate in a state where the glass plate is virtually placed on the actual inspection table see FIG. 6: default inspection table 130
  • a second step of calculating data a third step of placing the glass plate on the actual inspection table, a fourth step of acquiring information on the actual shape data on the actual inspection table of the glass plate, and actual measurement Judging the quality of the glass plate based on the virtual shape data of the glass plate placed on the inspection table and information on the actual shape data on the actual inspection table of the glass plate And a fifth step.
  • the shape quality of the glass plate can be determined without being affected by the bending caused by gravity by reproducing the shape in the weightless state from the measured shape of the glass plate.
  • the inspection when using these actual inspection tables can be reproduced without actually preparing multiple actual inspection tables. it can.
  • the general purpose scissors inspection table provided with the first, second and third support portions for supporting the glass plate is a three-point support inspection table, this glass plate must be used regardless of the shape of the glass plate. Since it can be supported, it can be used for general purposes.
  • an object of the present invention is to predict shape data on an actual inspection table from shape data on a general-purpose inspection table without performing shape simulation during the inspection, thereby enabling inspection of the shape quality of the glass plate.
  • the present invention is a method for inspecting the shape quality of a glass plate, which can easily predict the shape of a glass plate on such a four-point supported measurement inspection table from the shape of a glass plate on a three-point supported general-purpose inspection table. And to provide a quality inspection program.
  • the present invention provides virtual design data on an actual inspection table calculated from design data of a glass plate assembled in a state of being used as glass, and a glass plate measured on the actual inspection table.
  • a quality inspection method for determining the quality of an object to be measured in comparison with the shape data of the first design data A representing the shape of the assembled glass plate and the assembled glass plate A first load pattern which is a positive load pattern and a second load pattern which is a sub load pattern and a third load pattern to four actually measured load support points corresponding to the load support points of the actually measured inspection table selected for the shape.
  • a sixth step of measuring the first actual measurement data Y1 representing the shape of the glass plate to be inspected placed on the general-purpose inspection table, and four actual measurement support point positions in the first actual measurement data Y1 a seventh step of calculating the position data Y1 1 ⁇ Y1 4, an eighth step of calculating a position vector ⁇ Y1 Y1 X -C1 X from the position data C1 X, and Y1 X, and ⁇ Y, ⁇
  • shape correction amounts R r (C2-C1), r () for obtaining position data other than the measurement points when the glass plate to be inspected is virtually placed on the actual inspection table, based on the inherent load pattern.
  • the present invention is a glass plate quality inspection method in the case of having a first load pattern which is one positive load pattern and a second load pattern and a third load pattern which are sub load patterns.
  • the present invention measures the virtual design data on the actual inspection table calculated from the design data of the glass plate assembled to be used as the window glass, and the actual inspection table.
  • a quality inspection method for a glass plate for determining the quality of an object to be measured by comparing with the shape data of the glass plate, the first design data A representing the shape of the assembled glass plate and the assembled data First to set one positive first load pattern and two second load patterns to four actually measured load support points corresponding to the load support points of the actually measured inspection table selected for the shape of the glass plate And, based on the first design data A and the two load patterns, the second design data B representing the shape of the glass plate in a weightless state in which the influence of bending due to gravity is eliminated is obtained as the two loads.
  • the second step represents the shape of the glass plate virtually placed on a general-purpose examination table having three general-purpose support points.
  • a third step of calculating C1 and C2 for three design data C for each of the two load patterns, and position data C1 1 to C1 for each load pattern at the four actually measured support point positions in the third design data C 4 , a second step of calculating C2 1 to C2 4 and a fifth step of calculating a position vector ⁇ C2 C2 X ⁇ C1 X from the position data C1 X and C2 X ,
  • a glass plate quality inspection method characterized by comprising:
  • the present invention is a quality inspection method for a glass plate having one positive first load pattern and one sub second load pattern.
  • the positive first load pattern is used, and at least one load distribution in which the load is applied to only three support points among the four support points. Is preferably the sub-load pattern.
  • the said glass plate is a window glass for motor vehicles.
  • the inspection method of this application can be suitably implemented using a computer by the quality inspection program of the glass plate provided with the above-mentioned step.
  • the virtual design data can be calculated from the design data of the glass plate from the calculation result to calculate the shape.
  • a glass plate shape measurement program for calculating virtual design data on an actual inspection table calculated from design data of a glass plate assembled in a state of being used as a window glass,
  • the first design data A representing the shape of the glass plate and one positive load on the four actual load support points corresponding to the load support points of the actual inspection table selected for the shape of the assembled glass plate
  • the second design data B representing the shape of the glass plate in the weightless state excluding the influence of the bending due to gravity is expressed as B1, B for each of the first to third load patterns.
  • the third design data representing the shape of the glass plate virtually placed on a general-purpose examination table having three general-purpose support points based on the second step calculated as B3 and the second design data B
  • a glass plate shape measuring program for calculating virtual design data on an actual inspection table calculated from design data of a glass plate assembled in a state of being used as a window glass, wherein the assembled glass plate One positive first to four actual load support points corresponding to the load support points of the actual inspection table selected for the first design data A representing the shape of the glass plate and the shape of the assembled glass plate A first step of setting a load pattern and a secondary second load pattern, and based on the first design data A and the two load patterns, the glass plate in a weightless state in which the influence of bending due to gravity is eliminated.
  • a third step of calculating C1 and C2 for each of the two load patterns, the third design data C representing the shape of the glass plate virtually placed on a general-purpose inspection table comprising: the third design data
  • Measuring shape correction amount for obtaining the position data other than the point R r (C2-C1), providing a seventh glass plate quality measuring program, characterized in that it comprises a step of seeking.
  • the first design data A is one pattern and numerical data such as CAD, and is design shape data of a glass plate assembled in a use state.
  • the second design data B is design shape data in a weightless state.
  • the third design data C is design shape data when virtually placed on a four-point actual inspection table.
  • the quality standard is a standard for determining pass / fail with respect to the product shape quality standard, and in the present invention, it refers to a standard for determining the quality standard for the product shape on the four-point measurement inspection table. This quality standard can also be applied to an actual inspection table that has been used conventionally. It is also possible to measure the shape of a plurality of glass plates whose design shape is unknown, and to newly set a quality standard from the result and use it for judgment.
  • the first actual measurement data Y1 is actual measurement shape data when an actual glass plate to be inspected is placed on a general-purpose inspection table supported by three points.
  • the second actual measurement data Y2 is shape data at the inspection position when the glass plate to be inspected is virtually placed on the actual inspection table supported by four points.
  • the positive load saddle pattern is a load pattern in which loads are applied to four points of the glass plate.
  • the first sub load pattern is a load pattern in which one of the four points is in contact.
  • the second sub load pattern is a load pattern in which another one of the four points is in contact.
  • the general-purpose inspection table with three points is a three-point inspection table that can be used for all glass plates.
  • Measured inspection table with 4-point support is a type of inspection table that is actually used in the field with 4-point support, and is an inspection table that can accurately measure a specific shape.
  • the glass plate shape on the four-point supported actual inspection table can be changed from the glass plate shape on the three-point supported general-purpose actual inspection table for a short time without performing the shape simulation every time during the inspection. Can be predicted.
  • the inspection method of the product shape quality of the glass plate using the shape prediction result is realizable.
  • the inspection method can be preferably performed using a computer.
  • the concept of predicting the glass plate shape on a four-point supported actual inspection table from the glass plate shape on a three-point supported general-purpose inspection table will be described.
  • the support position determined by the spacer of the actually inspected inspection table of four-point support is arranged in a substantially square shape, and the position can be changed by the supporting glass.
  • the support position determined by the spacer of the general-purpose inspection table with three-point support does not move regardless of the shape and type of the glass plate.
  • FIG. 1 (a) schematically shows the shape of a glass plate having a desired shape as shown in the first design data A, that is, a glass plate having a design shape supported on a desired actual measurement inspection table supported by four points. Show.
  • Fig. 1 (b) shows three typical load patterns in a four-point supported inspection table.
  • the shape of the glass plate C1 is when a glass plate A having a desired shape as the first design data A, which is a positive load pattern (first load pattern), is supported on a three-point supported general-purpose inspection table. Was obtained by simulation. At this time, the glass plate A is evenly supported by all four support points when placed on a four-point supported measurement inspection table.
  • the shape of the glass plate C2 is such that the shape of the glass plate A obtained with a load pattern (second load pattern) supported by only three points out of the four-point support is supported on a three-point support general-purpose inspection table. The shape was obtained by simulation.
  • the shape deviates from a desired shape as in the first design data A, and one of two points in one diagonal direction and one of two points in the other diagonal direction among the four points. Supported by dots.
  • the shape of the glass plate C3 is the same as the shape of the glass plate A obtained by a load pattern (third load pattern) supported by only three points in another combination of the four-point supports. The shape when supported on top is obtained by simulation. At this time, the shape is similarly deviated from the desired shape as in the first design data A, and two of the four points in the other diagonal direction and one of the two points in the other diagonal. Supported by dots.
  • FIG. 1 (c) shows a shape when the actual glass plate Y2 is supported on a desired actual measurement inspection table supported by four points.
  • FIG.1 (d) has shown the shape of the glass plate Y1 at the time of making the actual glass plate Y2 supported on the general purpose inspection stand of 3 point
  • the shape of the glass plates C1, C2, and C3 shown in FIG. 1 (b) is the design of the glass plate in a state of being supported on a desired four-point supported measurement inspection table as shown in the flowchart of FIG.
  • the design shape data (second design data B1, B2, B3) of the glass plate A in the weightless state is calculated ( Step (S) 402), based on the design shape data of the glass plate A in the weightless state, the design shape data (third design) of the glass plate A in a state where the glass plate is placed on a general-purpose inspection table supported by three points.
  • Data C1, C2, C3) can be calculated (step (S) 403).
  • the current shape inspection is performed by the difference between (glass plate) Y2 and (glass plate) A shown in FIG. (Glass plate) Y1 and (glass plate) C1 only need to be able to perform the same inspection, but it is not preferable because an error is included due to the influence of load distribution on the four-point support. Therefore, by offsetting the error, the glass plate shape on the four-point supported actual inspection table can be predicted from the glass plate shape on the three-point supported general-purpose inspection table. Moreover, the said error can be calculated
  • Y1 is the glass plate Y1
  • C1 is the glass plate C1
  • Y2 is the glass plate Y2
  • A is the glass plate A.
  • Y1-C1 Y2-A + E E: Inspection error when the load distribution of the glass moves in the direction (C2 or C3) where the load is applied to three points.
  • position data C1 1 to C1 4 , C2 1 to C2 4 , C3 1 to C3 4 are acquired in advance.
  • This position data is obtained by supporting the product glass plate on a three-point supported general-purpose inspection table (step (S) 406), digitizing the image data (step (S) 407), and virtual. It can be acquired by a step (step (S) 408) of acquiring position data on the four support positions by the spacers.
  • FIG. 3 is an explanatory view showing an embodiment of an inspection apparatus.
  • the general-purpose inspection table 110 is attached to a rectangular frame 111 in a top view so that three rods 112 for supporting the back surface of the glass plate 1 protrude upward (FIG. 4). reference).
  • the three rods 112 are arranged on the upper surface of the gantry 111 so as to be positioned at the apexes of the triangle.
  • a pad made of resin or the like is attached to the tip of each rod 112, and the glass plate 1 is placed thereon.
  • a camera 121 that images the surface of the glass plate 1 is installed above the glass plate 1.
  • the inspection apparatus includes a computer 120 configured by a personal computer or a workstation for capturing an image captured by the camera 121 and performing image processing on the captured image.
  • Various input / output devices are connected to the computer 120, and include, for example, a keyboard 122, a display 123 such as an LCD, and a storage device 124 such as a hard disk drive.
  • the storage device 124 stores captured image data, a program for performing image processing, camera drive control, and the like.
  • the surface shape can be measured by a known method according to the object to be measured.
  • the surface shape of the object to be measured is measured by coordinate imaging using the XYZ coordinate system for the optical system and the object to be measured.
  • a method for measuring the surface shape will be described with reference to an example of a method for actually measuring the angle.
  • FIG. 5 is an explanatory diagram showing the basic configuration of the shape inspection apparatus.
  • a surface light source 2 is installed above a glass plate 1 having a mirror surface such as glass for automobiles.
  • a color pattern 3 is attached to the light emitting surface of the surface light source 2.
  • one main color camera and at least one sub color camera are arranged. These color cameras correspond to the camera 121 of FIG.
  • the number of color cameras is not limited, but here, a total of three color cameras, that is, the main color camera 5 and the sub color cameras 6 and 7 are used.
  • the main color camera 5 is disposed inside the surface light source 2 and captures a reflected image reflected on the glass plate 1 through holes 4 formed in the color pattern 3.
  • the secondary color cameras 6 and 7 are arranged outside the surface light source 2 and capture a reflected image reflected on the glass plate 1.
  • a computer 8 such as a personal computer is connected to the color cameras 5, 6, and 7, and analyzes the reflected images captured by these cameras using a known image processing technique to obtain the shape of the glass plate 1.
  • the optical system and the object to be measured are assumed to be placed in the XYZ coordinate system, and the Z axis is taken in the vertical direction.
  • the side of the surface light source 2 is assumed to be parallel to the X axis and the Y axis.
  • an XYZ coordinate system that describes the arrangement of the entire optical system is called a global coordinate system, and coordinates in the global coordinate system are called global coordinates.
  • a plurality of fluorescent lamps are arranged inside the housing and the light emitting surface is covered with a glass plate.
  • a color pattern 3 attached to the light emitting surface a color pattern printed on a transparent or light diffusing resin film (for example, inkjet printing) can be used.
  • the color pattern 3 may be affixed to the surface of one cover glass, or may be sandwiched between two cover glasses. It is desirable to make the brightness of the surface light source 2 as uniform as possible.
  • the arrangement position of the fluorescent lamp arranged inside the housing is devised.
  • the resin film used for the color pattern 3 is preferably made of a material that diffuses and transmits light instead of being transparent. Thereby, uneven brightness of the surface light source 2 is reduced.
  • the color cameras 5, 6 and 7 are not particularly limited as long as they are area camera systems.
  • FIG. 6 is a partially broken side view of the optical system on the YZ plane, showing the relationship between the position and field of view of the three color cameras.
  • the posture of the main color camera 5 is vertically downward, and a reflected image is captured in the range of the visual field 9.
  • the secondary color camera 6 captures a reflected image in the range of the visual field 10 and takes a posture such that a part of the visual field 10 overlaps a part of the visual field 9 on the glass plate 1.
  • the secondary color camera 7 captures a reflected image in the range of the field of view 11 and takes a posture such that a part of the field of view 11 overlaps a part of the field of view 9 on the glass plate 1.
  • These three color cameras are fixed in the global coordinate system, and thus the position and orientation are obtained as known information.
  • FIG. 7 is an explanatory diagram of the color pattern 3.
  • the color pattern 3 is a pattern in which a plurality of basic patterns are arranged closely without overlapping each other with the basic pattern 12 as a unit. Therefore, the color pattern 3 is a pattern in which the basic pattern 12 appears periodically in both the vertical and horizontal directions.
  • FIG. 8 is a detailed explanatory diagram of the basic pattern 12.
  • the basic pattern 12 is constituted by a 6 ⁇ 6 minute rectangular pattern, and each minute rectangular pattern is colored in any one of a total of eight colors from the color 12a to the color 12h.
  • the basic pattern 12 is accompanied by a local coordinate system composed of horizontal and vertical directions.
  • the coordinates indicating the position of the point inside the basic pattern 12 are referred to as local coordinates.
  • the components of the local coordinates take dimensionless values from 0 to 6.
  • An arbitrary position inside the basic pattern 12 can be described by these local coordinates.
  • the lower left point represents (0, 0)
  • the middle point represents (3, 3)
  • the upper right point represents (6, 6).
  • Each component of the local coordinates is not limited to an integer, and for example, (2.5, 3.3) can be described.
  • the position of the point inside the basic pattern 12 is referred to as local coordinates.
  • the colors are adjusted in advance as follows.
  • FIG. 9 shows a red component, a green component, and a blue component of an image obtained when the eight colors constituting the basic pattern are picked up by a color camera.
  • the vertical axis of the graph indicates the strength of each color component.
  • the color 12a, the color 12b, and the color 12c do not include a blue component, and the red component has the same strength.
  • the difference between the color 12a, the color 12b, and the color 12c is in the strength of the green component.
  • the color 12d, the color 12e, and the color 12f do not include a red component, and the blue component has the same strength.
  • the difference between the color 12d, the color 12e, and the color 12f is in the strength of the green component.
  • the color 12g has the same intensity for all of the red component, the green component, and the blue component, and the color 12h has no red, green, and blue components.
  • the strengths of the red component and the blue component of the color 12g are the same as the red component of the color 12a, the color 12b, and the color 12c, and the blue component of the color 12d, the color 12e, and the color 12f, respectively.
  • the stripe pattern 13 corresponds to local coordinates in the H direction
  • the stripe pattern 14 corresponds to local coordinates in the V direction.
  • the stripe patterns 13 and 14 are preferably orthogonal, but other angles may be used, and an inclination angle in a range that is not parallel can be selected.
  • the shape data of the glass plate 1 can be acquired by the above method.
  • ⁇ Y1 Y1 X -C1 X at the point support position is calculated (step (S) 405).
  • Y1 is The sign of the vector is determined by judging whether the pattern is closer to either C2 or C3, that is, the inherent load pattern (step (S) 409).
  • step (S) 409) it can be seen that Y1 is closer to the pattern of C2.
  • Y1 is closer to the pattern of C2.
  • the ratio of ⁇ Y1 ( ⁇ Y1 1 to Y1 4 ) and ⁇ C2 ( ⁇ C2 1 to C2 4 ) is used, and when Y1 is close to the C3 pattern, ⁇ Y1 ( ⁇ Y1 1 to Y1 4 ) and ⁇ C3 ( ⁇ C3 1 to C3 4 ), the degree of movement of the load distribution can be obtained. That is, the average r of the ratios of the virtual four-point support positions to the respective positions is obtained (step (S) 410). In the table of FIG. 15, the ratio of four points of ⁇ Y1 and ⁇ C3 is shown, and the average r of the ratio is 53.1%.
  • the correction amount R at each virtual support position is obtained using the average r of the ratio obtained above (step (S) 411).
  • the actual measurement data Y2 on the desired actual inspection table (current inspection table) supported by four points is calculated from the actual measurement data Y1 (step (S) 412).
  • the glass plate shape on the four-point supported actual inspection table can be predicted from the glass plate shape on the three-point supported general-purpose inspection table.
  • the position and number of the inspection positions can be appropriately determined in consideration of the characteristics of the product shape of the glass plate to be inspected and quality standards.
  • the correction amount R can take both positive and negative values at these inspection positions.
  • the quality standard in the present invention can be defined as an allowable range of a numerical value indicating the shape at a predetermined inspection position, particularly the thickness direction of the glass plate.
  • the shape quality is determined from the result of comparing the actually measured data Y2 at the inspection position thus obtained and the quality standard, and the inspection result is output.
  • the measurement result obtained by measuring the shape of the glass plate placed on a three-point type general-purpose inspection table is fitted with the quality standard on the conventional four-point type actual inspection table to determine the quality. It becomes possible to do.
  • general-purpose inspection with 3-point support that can be applied to various types from a 4-point support measurement inspection table for each product type without changing the conventional quality standards or quality agreement values with customers. It becomes possible to replace it with a stand. The same applies to the following quality inspection method.
  • the glass plate quality inspection method described above is an inspection method based on the premise that the glass plate has one positive load pattern and two sub load patterns. Depending on the shape of the glass plate, there may be one positive load pattern (first load pattern) and one subload pattern (second load pattern).
  • the quality inspection method for a glass plate having such a load pattern is the first of the glass plate design (CAD) data in a state where the glass plate is supported on a desired four-point supported actual inspection table.
  • the design shape data (second design data B1, B2) of the glass plate A in the weightless state is calculated (step (S) 502), and this weightless state
  • the design shape data (third design data C1, C2) of the glass plate A in a state where the glass plate is placed on a general-purpose inspection table supported by three points is calculated (step 3). (S) 503).
  • position data (position data C1 1 to C1 4 , C2 1 to C2 4 , C3 1 to C3 4 ) on the virtual four support positions are acquired in advance.
  • the position data is obtained by supporting the product glass plate on a three-point supported general-purpose inspection table (step (S) 506), digitizing the image data (step (S) 507), and virtual. It is possible to acquire the position data on the four support positions (step (S) 508).
  • Step (S) 509) by calculating the degree of movement of the load distribution from the ratio of ⁇ Y1 ( ⁇ Y1 1 to Y1 4 ) and ⁇ C2 ( ⁇ C2 1 to C2 4 ), the average r of the four ratios of the virtual four-point support positions is obtained.
  • Step (S) 509) The table of FIG. 19 and FIG. 20 show the ratio of four points of ⁇ Y1 and ⁇ C2, and the average r of the ratio is 0.505109.
  • a correction amount r (C2-C1) whose load distribution is close to the C2 pattern is obtained according to the degree of movement of the load distribution (step (S) 510).
  • correction amount r (C2-C1) is added to Y1-C1 to calculate shape data Y2 on a desired actual inspection table (current inspection table) supported by four points (step (S) 511). .
  • the glass plate shape on the four-point supported actual inspection table can be predicted from the glass plate shape on the three-point supported general-purpose inspection table.
  • Step (S) 511) the glass plate shape data Y2 obtained in (Step (S) 511) is compared with the quality standard at a predetermined inspection position. (Step (S) 512).
  • the shape quality is determined from the result of comparing the actual measurement data Y2 and the quality standard, and the inspection result is output.
  • FIG. 19 shows that Y1 is always close to the C2 pattern at the four support positions 1 to 4 by the spacer. In the case of this glass plate, it can be seen that the load distribution moves in the direction of the C2 pattern, and the degree is 50.5%.
  • the present invention provides a quality inspection method, inspection apparatus, and inspection program suitable for shape inspection of window glass for automobiles.
  • the shape of the glass plate can be calculated by calculating the virtual design data on the actual measurement inspection table from the design data of the glass plate. It is apparent that the present invention is applicable not only to automobile applications but also to inspection of window glass used in railway vehicles, aircraft, ships, buildings, and the like. Further, it can be applied not only to inspection of glass plates but also to inspection of other specular bodies, plate-like bodies and lenses.
  • the entire contents of the specification, claims, drawings, and abstract of Japanese Patent Application No. 2009-022839 filed on February 3, 2009 are cited herein as disclosure of the specification of the present invention. Incorporated.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

本発明は、4点支持の実測検査台上のガラス板形状を3点支持の汎用的な実測検査台上のガラス板形状から予測することができるガラス板の品質検査方法を提供する。 ガラス板が3点支持の実測検査台に載置された状態におけるガラス板の3種類の設計形状データと、実測検査台に載置された状態におけるガラス板の実測形状データに基づいてガラス板の仮想の4点支持の位置データを算出し、さらに荷重分布の移動の程度に応じて荷重分布の補正量を用いて所望の実測検査台上の形状データを算出し、所望の実測検査台上の形状データと所望の実測検査台に載置された状態におけるガラス板の形状データと品質基準に基づいて前記ガラス板の品質を判定する。

Description

ガラス板の品質検査方法及び品質検査プログラム
 本発明はガラス板の品質検査方法に係り、特に自動車用窓ガラスの形状検査に好適な品質検査方法及び品質検査プログラムに関する。
 従来、自動車用窓ガラスには、自動車のデザインに合わせた様々な湾曲形状のものが用いられている。これらの窓ガラスは、フロート法等で作られた平板状のガラス板を所望形状に切り出して加熱軟化し、プレス成形等により曲げ成形される。サイドガラスやリアガラスには、一般的に強化ガラスが用いられているため、曲げ成形後の加熱状態にあるガラス板を直ちに風冷することで、いわゆる強化ガラスが作られる。
 一方、ウインドシールドに用いられる合わせガラスは、ほぼ同一形状に切り出された2枚のガラス板で樹脂製の中間膜を挟持した積層体である。一般に、合わせガラスは、リング状の治具の上にガラスを2枚重ねた状態で載置し、炉内で加熱することで所望の湾曲形状に自重曲げ成形される。曲げ成形後は徐冷され、強化ガラスのように風冷強化されることはない。その後、曲げ成形された2枚のガラス板の間に透明樹脂製の中間膜(ポリビニルブチラール等)を挟み込み、真空バッグ内での予備圧着処理、およびさらにその後オートクレーブ内での加熱・加圧処理を実施することで、ガラス板と中間膜とが一体となった合わせガラスが作られる。
 このようにして作られた湾曲ガラスは、自動車に組み付ける際に高精度の形状再現性が要求される。ドアガラスは、搭乗者の操作によって上下に摺動して開閉されるため、所望のデザイン形状の再現が要求される。これは、形状の再現性が悪いと摺動させた際に周辺の金属部材等と衝突したり擦れたりして破損することがあるためである。また、ウインドシールドやリアガラス等の固定窓においても、形状の再現性が悪ければ開口部への組付けが困難となる。その結果、また透視歪(ガラス越しの像が歪む現象)や反射歪(ガラス面に映りこんだ像が歪む現象)といった窓ガラス特有の不具合を生じるおそれがある。
 そこで、従来においては、曲げ成形後のガラス板をゲージと呼ばれる実測検査台(例えば特許文献1を参照)に搭載して形状検査を行い、所定の形状精度を有するもののみ自動車の製造に用いられていた。ゲージは、使用される状態に組みつけられた形状に一致させて作られた検査型であり、このゲージが形成する検査面に複数の距離センサが埋め込まれている。型の表面からガラス板の裏面までの距離を測定することで、デザインされた形状からの解離を測定し、形状の精度が評価される。従来においては、成形されたガラス板の全数または抜き取られた一部のものに対し、このようなゲージによる検査が行われていた。
 しかしながら、ゲージを用いた検査では、1枚ずつガラス板をゲージに搭載する作業を必要とし、生産性の向上に限界がある。また、最終製品の型式毎にゲージを用意する必要があるため、昨今の多種多様の自動車生産に対応するには膨大な個数のゲージが必要となる。また、ゲージは窓ガラスと同程度以上の大きさを有し、型式毎に用意された多数のゲージを保管するには、広大な場所を要するといった問題もある。将来的な補修用途を考慮すると、長期間にわたってこれらのゲージを保管しなければならないという問題もある。
 そこで、本願出願人は特許文献2において、上記不具合を解消する形状検査方法を提供している。
 この形状検査方法は、3つの汎用支持点を備える汎用検査台(図3参照 :汎用の検査台110)に載置された状態におけるガラス板の実測データに基づいて無重力状態におけるガラス板の形状データを算出する第1のステップと、無重力状態におけるガラス板の形状データに基づいてガラス板が実測検査台(図6参照 :既定の検査台130)に仮想載置された状態におけるガラス板の仮想形状データを算出する第2のステップと、実測検査台にガラス板を載置する第3のステップと、このガラス板の実測検査台上の実測形状データに関する情報を取得する第4のステップと、実測検査台に載置された状態におけるガラス板の仮想形状データとガラス板の実測検査台上の実測形状データに関する情 報とに基づいてガラス板の品質を判定する第5のステップとを有している。
 特許文献2の発明によれば、測定されたガラス板の形状から無重力状態における形状を再現することにより、重力によって生じる撓みの影響を受けることなく、ガラス板の形状品質を判定することができる。また、この無重力状態のガラス板を所定の実測検査台に載置した状態を求めることにより、複数の実測検査台を実際に用意することなく、これらの実測検査台を用いた場合における検査を再現できる。さらに、ガラス板を支持する第1、第2および第3の支持部を備えた汎用 検査台は、3点支持の検査台である ことからガラス板の形状等に拘らず、このガラス板を必ず支持できるため、汎用的に使用できる。 
特開平4-242103号公報 WO2007/010875 A1
 ところで、前述の形状検査方法では、汎用検査台における実測データから実測検査台における仮想形状データを得る際に、都度、形状のシミュレーション計算を行うことを前提としている。しかしながら、この形状のシミュレーションは計算負荷が大きく、検査時間が長くなるという問題があった。よって、本発明は、検査中に形状のシミュレーションを行うことなく汎用検査台における形状データから実測検査台における形状データを予測し、ガラス板の形状品質を検査可能にすることを目的とする。
 また、従来からガラス板の検査工程に用いられている実測検査台は、原則として製品形状毎に準備されており、製品形状によっては支持点が3点のものばかりでなく、4点のものもある。本発明は、このような4点支持の実測検査台上のガラス板形状を、3点支持の汎用的検査台上のガラス板形状から簡便に予測することがでるガラス板の形状品質の検査方法及び品質検査プログラムを提供することを目的とする。
 本発明は、前記目的を達成するために、ガラスとして使用される状態に組み付けられたガラス板の設計データから算出される実測検査台上での仮想設計データと、実測検査台で測定したガラス板の形状データとを対比して被測定物の品質を判定するガラス板の品質検査方法であって、前記組み付けられたガラス板の形状を表す第1の設計データA及び前記組み付けられたガラス板の形状に対して選択された実測検査台の荷重支持点に相当する4つの実測荷重支持点への1つの正荷重パターンである第1荷重パターンと副荷重パターンである第2の荷重パターン及び第3の荷重パターンを設定する第1のステップと、前記第1の設計データAと前記第1から第3の荷重パターンとに基づいて、重力による撓みの影響を排除した無重力状態におけるガラス板の形状を表す第2の設計データBを、前記第1から第3の荷重パターン毎にB1、B2、B3として算出する第2のステップと、前記第2の設計データBに基づいて、3つの汎用支持点を備える汎用検査台に仮想載置した状態のガラス板の形状を表す第3の設計データCを、前記第1から第3の荷重パターン毎にC1、C2、C3として算出する第3のステップと、前記第3の設計データCにおける4つの実測支持点位置における荷重パターン毎の位置データC1~C1、C2~C2、C3~C3を算出する第4のステップと、前記位置データC1、C2、C3から2個の位置ベクトル△C2=C2―C1、△C3=C3―C1を算出する第5のステップと、一方で、3つの汎用支持点を備える汎用検査台に載置した検査対象の被検査ガラス板の形状を表す第1の実測データY1を測定する第6のステップと、前記第1の実測データY1における4つの実測支持点位置における位置データY1~Y1を算出する第7のステップと、前記位置データC1、及びY1から位置ベクトル△Y1=Y1―C1を 算出する第8のステップと、△Yと、△C2及び△C3とを対比して、ベクトルの符号の合致度から、Y1の加重パターンが第2の加重パターン又は第3の加重パターンのいずれかのパターンよりか判断してベクトルの符号を決定する第9のステップと、前記二種類の荷重パターンによって定まる位置ベクトル△C2、△C3との比率rを算出する第10のステップと、前記の比率rから前記被検査ガラス板を前記実測検査台に載置した場合の、被検査ガラス板に固有の荷重パターンを決定し、4つの支持点における固有荷重分布を算出する第11のステップと、前記第1の実測データY1と前記固有荷重パターンをもとに、被検査ガラス板を実測検査台に仮想載置した場合の測定点以外での位置データを求めるための形状補正量R=r(C2-C1)、r(C3-C1)を求める第12のステップと、
 実測検査台に載置された被検査ガラス板の所望の検査位置における第2の実測データY2を、第1の実測データY1から正の第1の荷重分布パターンで仮想載置した第3の設計データC1を引いた差Y1-C1に前記補正量Rを加算して 算出する第13のステップと、
 前記算出された前記検査位置における第2の実測データY2と品質基準に基づいてガラス板の品質を判定する第14のステップと、
を有することを特徴とするガラス板の品質検査方法を提供する。
 本発明は、1つの正荷重パターンである第1荷重パターンと副荷重パターンである第2の荷重パターン及び第3の荷重パターンとを有する場合のガラス板の品質検査方法である。
 また、本発明は、前記目的を達成するために、窓ガラスとして使用される状態に組み付けられたガラス板の設計データから算出される実測検査台上での仮想設計データと、実測検査台で測定したガラス板の形状データとを対比して被測定物の品質を判定するガラス板の品質検査方法であって、前記組み付けられたガラス板の形状を表す第1の設計データA及び前記組み付けられたガラス板の形状に対して選択された実測検査台の荷重支持点に相当する4つの実測荷重支持点への1つの正の第1の荷重パターンと副の第2の荷重パターンを設定する第1のステップと、前記第1の設計データAと前記2つの荷重パターンに基づいて、重力による撓みの影響を排除した無重力状態におけるガラス板の形状を表す第2の設計データBを前記2つの荷重パターン毎にB1、B2を算出する第2のステップと、前記第2の設計データBに基づいて、3つの汎用支持点を備える汎用検査台に仮想載置した状態のガラス板の形状を表す第3の設計データCを前記2つの荷重パターン毎にC1、C2を算出する第3のステップと、前記第3の設計データCにおける4つの実測支持点位置における荷重パターン毎の位置データC1~C1、C2~C2を算出する第4のステップと、前記位置データC1、C2から位置ベクトル△C2=C2―C1、を算出する第5のステップと、一方で、3つの汎用支持点を備える汎用検査台に載置した検査対象の被検査ガラス板の形状を表す第1の実測データY1を測定する第6のステップと、前記第1の実測データY1における4つの実測支持点位置における位置データY1~Y1を算出する第7のステップと、前記位置データC1、及びY1から位置ベクトル△Y1=Y1―C1を算出する第8のステップと、前記荷重パターンによって定まる位置ベクトル△C1と△Yから荷重パターンの比率rを算出し固有荷重パターンを算出する第9のステップと、前記第1の実測データY1と前記固有荷重パターンをもとに、被検査ガラス板を実測検査台に仮想載置した場合の測定点以外での位置データを求めるための形状補正量R=r(C2-C1)、を求める第10のステップと、
実測検査台に載置された被検査ガラス板の所望の検査位置における第2の実測データY2を、第1の実測データY1から正の第1の荷重分布パターンで仮想載置した第3の設計データC1を引いた差Y1-C1に前記補正量Rを加算して算出する第11のステップと、前記算出された前記検査位置における第2の実測データY2と品質基準に基づいてガラス板の品質を判定する第12のステップと、を有することを特徴とするガラス板の品質検査方法を提供する。
 本発明は、1つの正の第1の荷重パターンと1つの副の第2の荷重パターンとを有する場合のガラス板の品質検査方法である。
 また、本発明は、実測検査の4つの支持点全てに荷重がかかる場合を前記正の第1の荷重パターンとし、4つの支持点のうち3つの支持点だけに荷重がかかる少なくとも1つの荷重分布を前記副荷重パターンとすることが好ましい。
 また、本発明によれば、前記ガラス板は、自動車用窓ガラスであることが好ましい。また、前述のステップを備えるガラス板の品質検査プログラムにより本願の検査方法は好適にコンピュータを用いて実施することが可能になる。
 また、前述のステップのうち次のステップのみを用い、その演算結果からガラス板の設計データから仮想設計データを算出し形状を算出することが可能になる。
 具体的には、窓ガラスとして使用される状態に組み付けられたガラス板の設計データから算出される実測検査台上での仮想設計データを算出するガラス板の形状測定プログラムであって、前記組み付けられたガラス板の形状を表す第1の設計データA及び前記組み付けられたガラス板の形状に対して選択された実測検査台の荷重支持点に相当する4つの実測荷重支持点への1つの正荷重パターンである第1荷重パターンと副荷重パターンである第2の荷重パターン及び第3の荷重パターンを設定する第1のステップと、前記第1の設計データAと前記第1から第3の荷重パターンとに基づいて、重力による撓みの影響を排除した無重力状態におけるガラス板の形状を表す第2の設計データBを、前記第1から第3の荷重パターン毎にB1、B2、B3として算出する第2のステップと、前記第2の設計データBに基づいて、3つの汎用支持点を備える汎用検査台に仮想載置した状態のガラス板の形状を表す第3の設計データCを、前記第1から第3の荷重パターン毎にC1、C2、C3として算出する第3のステップと、前記第3の設計データCにおける4つの実測支持点位置における荷重パターン毎の位置データC1~C1、C2~C2、C3~C3を算出する第4のステップと、前記位置データC1、C2、C3から2個の位置ベクトル△C2=C2―C1、△C3=C3―C1を算出する第5のステップと、△C2及び△C3とを対比して、ベクトルの符号の合致度から、Y1の加重パターンが第2の加重パターン又は第3の加重パターンのいずれかのパターンよりか判断してベクトルの符号を決定する第6のステップと、前記二種類の荷重パターンによって定まる位置ベクトル△C2、△C3との比率rを算出する第7のステップと、前記の比率rから前記被検査ガラス板を前記実測検査台に載置した場合の、被検査ガラス板に固有の荷重パターンを決定し、4つの支持点における固有荷重分布を算出する第8のステップと、を有することを特徴とするガラス板の形状測定プログラムを提供する。
 また、窓ガラスとして使用される状態に組み付けられたガラス板の設計データから算出される実測検査台上での仮想設計データを算出するガラス板の形状測定プログラムであって、前記組み付けられたガラス板の形状を表す第1の設計データA及び前記組み付けられたガラス板の形状に対して選択された実測検査台の荷重支持点に相当する4つの実測荷重支持点への1つの正の第1の荷重パターンと副の第2の荷重パターンを設定する第1のステップと、前記第1の設計データAと前記2つの荷重パターンに基づいて、重力による撓みの影響を排除した無重力状態におけるガラス板の形状を表す第2の設計データBを前記2つの荷重パターン毎にB1、B2を算出する第2のステップと、前記第2の設計データBに基づいて、3つの汎用支持点を備える汎用検査台に仮想載置した状態のガラス板の形状を表す第3の設計データCを前記2つの荷重パターン毎にC1、C2を算出する第3のステップと、前記第3の設計データCにおける4つの実測支持点位置における荷重パターン毎の位置データC1~C1、C2~C2を算出する第4のステップと、前記位置データC1、C2から位置ベクトル△C2=C2―C1、(ここでxは、支持位置を表す添字であって、x=1,2,3,4である。以下同様。)を算出する第5のステップと、前記荷重パターンによって定まる位置ベクトル△C1から荷重パターンの比率rを算出し固有荷重パターンを算出する第6のステップと、前記固有荷重パターンをもとに、被検査ガラス板を実測検査台に仮想載置した場合の測定点以外での位置データを求めるための形状補正量R=r(C2-C1)、を求める第7のステップと、を有することを特徴とするガラス板の品質測定プログラムを提供する。
 ここで、請求項に記載された構成要件を下記の如く定義する。
 第1の設計データAとは、1パターンであってCAD等の数値データであり、使用される状態に組み付けられたガラス板の設計形状データである。
 第2の設計データBとは、無重力状態での設計形状データである。
 第3の設計データCとは、4点実測検査台に仮想載置した時の設計形状データである。また、品質基準とは、製品形状の品質規格に対する合否を判定する基準であり、本発明では4点実測検査台における製品形状の品質規格の判定基準を指すものとする。この品質基準は、従来から用いられてきた実測検査台の適用することもできる。また、設計形状の分からないガラス板の複数枚の形状を測定し、その結果から新たに品質基準を設定し判断に用いることも可能である。
 第1の実測データY1とは、実物の被検査ガラス板を3点支持の汎用検査台に載置した時の実測形状データである。
 第2の実測データY2とは、被検査ガラス板を4点支持の実測検査台に仮想載置した時の検査位置での形状データである。
 正荷重 パターンとは、ガラス板の4点に荷重がかかっている荷重パターンである。
 第1の副荷重パターンとは、4点のうちの1点は接触しているだけの荷重パターンである。
 第2の副荷重パターンとは、4点のうちのもう1つの1点は接触しているだけの荷重パターンである。
 3点支持の汎用検査台とは、すべてのガラス板に使用可能なタイプの3点支持の検査台である。
 4点支持の実測検査台とは、4点支持の実際に現場で使われているタイプの検査台であり、特定の形状を的確に測定できる検査台である。
 本発明によれば、検査中に都度、形状のシミュレーションを行うことなく3点支持の汎用的な実測検査台上のガラス板形状から、4点支持の実測検査台上のガラス板形状を短時間で予測することができる。また、その形状予測結果を用いたガラス板の製品形状品質の検査方法を実現することができる。また、その検査方法は、好適にコンピュータを用いて実施することが可能になる。
ガラス板の形状形態の例を示した説明図 実施の形態の品質検査方法の手順を示したフローチャート 形状検査装置の一実施形態を示す説明図 実測検査台を示す平面図(図3のII-II’線矢視図) 本発明に係る形状測定システムの一実施形態を示す説明図 形状測定をするための光学系を示す断面図 カラーパターンの概略を示す説明図 基本パターンを示す平面図 基本パターンを構成する8色について、カラーカメラで撮像した際の赤成分、緑成分および青成分の強さを示すグラフ (a)赤成分に着目した場合に現れるストライプパターン、(b)青成分に着目した場合に現れるストライプパターンを示す平面図 ベクトルΔY1の符号の合致度とC2又はC3のいずれかのパターン寄りかを判断する説明図 4点支持位置におけるΔC2値及びΔC3値を示した表図 4点支持位置におけるΔY1値を示した表図 Y1がC3のパターン寄りであることを示した表図 ΔY1におけるΔC3の比率の平均を示した表図 評価点1~23における補正量を示した表図 評価点1~23における形状データを示した表図 実施の形態の品質検査方法の手順を示したフローチャート 4点支持位置におけるΔC2におけるY1値の比率の平均を示した表図 Y1がC2のパターン寄りであることを示した説明図
 以下、添付図面に従って本発明に係るガラス板の品質検査方法及び品質検査プログラムの好ましい実施の形態について自動車用窓ガラスを例に説明する。
 まず、4点支持の実測検査台上のガラス板形状を、3点支持の汎用検査台上のガラス板形状から予測する考え方について説明する。ここで、4点支持の実測検査台のスペーサによって定まる支持位置は略四角形状なすように配置され、支持するガラスによって位置を変更することが可能である。一方で、三点支持の汎用検査台のスペーサによって定まる支持位置は、ガラス板の形状や種類によらず不動である。
 図1(a)は、所望の4点支持の実測検査台上に支持されたデザイン形状のガラス板即ち第1の設計データAの通りの、所望の形状を有するガラス板の形状を模式的に示している。
 また、図1(b)は、4点支持の検査台における典型的な荷重パターンを3つに分類して示したものである。ガラス板C1の形状は、正荷重パターン(第1の荷重パターン)となる第1の設計データAの通りの所望の形状を有するガラス板Aを3点支持の汎用検査台上に支持させた際の形状をシミュレーションにより得たものである。このとき、4点支持の実測検査台上に載置するとガラス板Aは、4つの支持点全てに均等に支持される。ガラス板C2の形状は、4点支持のうち3点のみで支持される荷重パターン(第2の荷重パターン)で得られたガラス板Aの形状を、3点支持の汎用検査台上に支持させた際の形状をシミュレーションにより得たものである。このとき、該形状が、第1の設計データAの通りの所望の形状からずれており、4点のうち一方の対角方向にある2点と他方の対角方向にある2点のうち1点とで支持される。ガラス板C3の形状は、4点支持のうち別の組み合わせの3点のみで支持される荷重パターン(第3の荷重パターン)で得られたガラス板Aの形状を、3点支持の汎用検査台上に支持させた際の形状をシミュレーションにより得たものである。このとき、同じく該形状が、第1の設計データAの通りの所望の形状からずれており、4点のうち他方の対角方向にある2点と一方の対角にある2点のうち1点とで支持される。
 更に、図1(c)は、現物のガラス板Y2を所望の4点支持の実測検査台上に支持させた際の形状を示している。
 更にまた、図1(d)は、現物のガラス板Y2を、3点支持の汎用検査台上に支持させた際のガラス板Y1の形状を示している。
 なお、図1(b)で示したガラス板C1、C2、C3の形状は、図2のフローチャートに示すように、所望の4点支持の実測検査台上に支持された状態におけるガラス板の設計(CAD)データの第1から第3の荷重パターンに基づいて(ステップ(S)401)、無重力状態におけるガラス板Aの設計形状データ(第2の設計データB1、B2、B3)を算出し(ステップ(S)402)、この無重力状態におけるガラス板Aの設計形状データに基づいてガラス板が3点支持の汎用検査台に載置された状態におけるガラス板Aの設計形状データ(第3の設計データC1、C2、C3)を算出する(ステップ(S)403)ことにより得ることができる。
 ところで、現行の形状検査では、図1に示した(ガラス板)Y2と(ガラス板)Aの差により行っている。(ガラス板)Y1と(ガラス板)C1とで同じ検査ができればよいが、4点支持への荷重分布の影響で誤差が含まれているから好ましくない。したがって、前記誤差を相殺することにより、4点支持の実測検査台上のガラス板形状を、3点支持の汎用検査台上のガラス板形状から予測することができる。また、前記誤差は、ガラス板Y1自身の形状情報から求めることができる。
 誤差相殺方法の考え方について説明する。ここでY1とはガラス板Y1であり、C1とはガラス板C1であり、Y2とはガラス板Y2であり、Aとはガラス板Aである。
 Y1-C1=Y2-A+E
 E:ガラスの荷重分布が、3点に荷重がかかっている状態(C2又はC3)の方向に移動した場合の検査誤差
 ここで、誤差を知るための情報として、図2の(ステップ(S)404)の如く、スペーサによる4点の支持位置における仮想のΔC2=C2-C1、ΔC3=C3-C1を求め、この後、(ステップ(S)405)の如く、スペーサによる4点の支持位置における仮想のΔY1=Y1-C1を求めることが必要となる。
 図12は4本のスペーサ(=1~4)におけるΔC2、ΔC3の値の一例が示され、図13は4本のスペーサ(=1~4)による支持位置におけるΔY1の値の一例がそれぞれ示されている。
 また、ここでは事前に、仮想のスペーサによる支持位置4点のデータ(位置データC1~C1、C2~C2、C3~C3)が取得されている。この位置データは、製品のガラス板を3点支持の汎用検査台上に支持させて撮像する工程(ステップ(S)406)、撮像データを数値化する工程(ステップ(S)407)、及び仮想のスペーサによる4点の支持位置上の位置データを取得する工程(ステップ(S)408)によって取得することができる。
 次に、前記位置データの取得方法の一例を説明する。
 図3は、検査装置の一実施形態を示す説明図である。
 同図に示すように、汎用検査台110は、上面視で矩形状の架台111に、ガラス板1の裏面を支持するための3本のロッド112が上方に突出して取り付けられている(図4参照)。3本のロッド112はそれぞれ三角形の頂点に位置するように、架台111の上面に配設されている。各ロッド112の先端には樹脂等で作られたパッドが取り付けられ、その上にガラス板1が載置される。3本のロッド112を用いることにより、各ロッド112の配置および長さを適宜調整すれば、ガラス板1の形状に拘らず、必ずガラス板1の裏面を支持できる。
 ガラス板1の上方には、ガラス板1の表面を撮像するカメラ121が設置されている。また、カメラ121によって撮像された画像を取り込み、取り込んだ画像の画像処理等を行うためのパーソナルコンピュータまたはワークステーション等で構成された計算機120を検査装置は備えている。計算機120には、各種入出力機器が接続されており、例えばキーボード122、LCD等のディスプレイ123およびハードディスク駆動装置等の記憶装置124等を備えている。記憶装置124には、撮像された画像のデータ、画像処理やカメラの駆動制御等を実施するためのプログラム等が格納されている。
 本発明では、被測定物に合わせた公知の方法により表面形状を測定することが可能であるが、ここでは光学系および被測定物はXYZ座標系を用いて座標撮像により被測定物の表面形状を実測する手法を例に表面形状の測定方法を説明する。
 図5は、形状検査装置の基本的構成を示す説明図である。同図に示すように、自動車用ガラス等の鏡面を有するガラス板1の上方に、面光源2を設置する。面光源2の発光面にはカラーパターン3が取り付けられている。カラーパターン3のガラス板1に映る反射像を撮像するために、主となるカラーカメラ1台と、少なくとも1台の副となるカラーカメラを配置する。これらのカラーカメラは、図3のカメラ121に相当する。カラーカメラの台数に制限はないが、ここでは主となるカラーカメラ5と、副となるカラーカメラ6および7の合計3台のカラーカメラを使用する。主となるカラーカメラ5は面光源2の内部に配置され、カラーパターン3に開けられた穴4を通じてガラス板1に映る反射像を撮像する。副となるカラーカメラ6および7は、面光源2の外側に配置され、ガラス板1に映る反射像を撮像する。パーソナルコンピュータ等の計算機8は、カラーカメラ5、6、7と接続されており、これらのカメラにより撮像された反射像を公知の画像処理技術を用いて解析し、ガラス板1の形状を求める。光学系および被測定物はXYZ座標系に置かれているものとし、Z軸を鉛直方向にとる。面光源2の辺はX軸、Y軸に平行であるものとする。以下においては光学系全体の配置を記述するXYZ座標系をグローバル座標系と呼び、グローバル座標系における座標をグローバル座標と呼ぶ。
 面光源2としては、筐体内部に複数の蛍光灯が配置され、発光面をガラス板でカバーしたものが用いられている。この発光面に貼付されるカラーパターン3としては、透明または光拡散性の樹脂フィルムにカラーパターンを印刷(例えばインクジェット・プリント)したものを使用できる。カラーパターン3は1枚のカバーガラスの表面に貼付してもよいし、2枚のカバーガラスで挟むようにしてもよい。面光源2の明るさは可能な限り均一にすることが望ましく、このために筐体内部に配置された蛍光灯の配置位置を工夫する。また、カラーパターン3に使用される樹脂フィルムは、透明ではなく光を拡散透過させる材質のものが望ましい。これにより面光源2の明るさのむらが軽減される。カラーカメラ5、6および7は、エリアカメラ方式であれば特に制限はない。
 図6は、光学系のYZ平面での一部破断側面図であり、3台のカラーカメラの位置、視野の関係を示している。主となるカラーカメラ5の姿勢は鉛直下向きであり、視野9の範囲で反射像を撮像する。副となるカラーカメラ6は視野10の範囲で反射像を撮像し、ガラス板1上において視野10の一部が視野9の一部と重なるような姿勢をとっている。同様に副となるカラーカメラ7も視野11の範囲で反射像を撮像し、ガラス板1上において視野11の一部が視野9の一部と重なるような姿勢をとっている。これら3台のカラーカメラは、グローバル座標系において固定されており、よって位置および姿勢は既知情報として得られる。
 図7は、カラーパターン3の説明図である。カラーパターン3は、基本パターン12を一単位として、複数の基本パターンを互いに重複することなく密に並べたものである。よって、カラーパターン3は縦および横の何れの方向においても、基本パターン12が周期的に現れるパターンである。
 図8は、基本パターン12の詳細説明図である。基本パターン12は、6×6の微小矩形パターンによって構成され、各微小矩形パターンは色12aから色12hまでの計8色のうちの何れかの彩色が施されている。そして、図8に示すように基本パターン12には、水平および垂直方向からなる局所座標系が付随している。以下、基本パターン12内部の点の位置を示す座標を局所座標と呼ぶ。図8に示す基本パターンの場合、局所座標の成分は0から6までの無次元化された値をとる。これらの局所座標により、基本パターン12の内部の任意の位置を記述することができる。例えば図8の基本パターン12においては、左下の点は(0,0)、中央の点は(3,3)、右上の点は(6,6)を表す。局所座標の各成分は整数に限られず例えば(2.5,3.3)といった記述もできる。以下、基本パターン12内部の点の位置を局所座標と呼ぶ。
 基本パターン12を構成する8色については、あらかじめ次のように色を調整する。
 図9は、基本パターンを構成する8色をカラーカメラで撮像した際に得られる画像の赤成分、緑成分、青成分を示す。グラフの縦軸が各色成分の強さを示す。色12a、色12b、色12cには青成分を含まないようにし、赤成分についてはいずれも同じ強さとなるようにしている。色12a、色12b、色12cの違いは、緑成分の強さにある。同様に色12d、色12e、色12fは赤成分を含まないようにし、青成分については何れも同じ強さとしている。色12d、色12e、色12fの違いは、緑成分の強さにある。色12gは赤成分、緑成分および青成分が何れも同じ強さであり、色12hは赤成分、緑成分および青成分のいずれも無いようにしている。なお、色12gの赤成分、青成分の強さは、それぞれ色12a、色12b、色12cの赤成分、および色12d、色12e、色12fの青成分と同じとする。
 基本パターン12を構成する8色を上記のように調整することにより、基本パターン12の中に、互いに直交する2つのストライプパターンを内在させることができる。基本パターン12をカラーカメラで撮像して赤成分だけに着目すると図10(a)のようにストライプパターン13が現れる。同様に青成分だけに着目すると図10(b)のようにストライプパターン14が現れる。このように実施の形態によれば、使用するカラーパターンは1つであるが、着目する色成分を変えることにより、互いに直交する2つのストライプパターンを得ることができる。図10からも明らかなように、ストライプパターン13はH方向の局所座標に、ストライプパターン14はV方向の局所座標に、それぞれ対応している。ストライプパターン13と14は直交していることが好ましいが、その他の角度でもよく、平行とならない範囲の傾斜角度を選択することができる。 
 以上の手法によりガラス板1の形状データを取得することができる。
 そして次に、上述したガラス板1の形状データに基づき、すなわち、ガラス板1の実測形状データY1に基づいて、図2の如く仮想のスペーサによる4点の支持位置上の位置データを取得する(ステップ(S)408)。
 そして次に、前述の如く仮想の4点支持位置におけるΔC2=C2-C1、ΔC3=C3-C1を算出し(ステップ(S)404)し、次に、前述の如く仮想の4点支持位置におけるΔY1=Y1-C1を算出する(ステップ(S)405)。ここでxは、支持位置を表す添字であって、x=1,2,3,4である。
 そして次に、図11の如く、ベクトルΔY1(ΔY1~Y1)と、ΔC2(ΔC2~C2)若しくは△C3(ΔC3~C3)との符号の合致度を評価し、Y1がC2又はC3のいずれかのパターン寄りかすなわち、固有荷重パターンを判断してベクトルの符号を決定する(ステップ(S)409)。図11では、Y1がC2のパターン寄りであることが分かる。また、図14の表では、ΔY1とΔC3との符号が一致しているので、Y1がC2のパターン寄りであることが分かる。
 Y1がC2のパターン寄りである場合にはΔY1(ΔY1~Y1)とΔC2(ΔC2~C2)との比率により、Y1がC3のパターン寄りである場合にはΔY1(ΔY1~Y1)とΔC3(ΔC3~C3)との比率により、荷重分布の移動の程度を求めることができる。すなわち、仮想の4点支持位置のそれぞれの位置に対する比率の平均rを求める(ステップ(S)410)。図15の表では、ΔY1とΔC3との4点の比率が示され、その比率の平均rが53.1%であることが示されている。
 次に、上記で求められた比率の平均rを用いて、仮想の支持位置のそれぞれにおける補正量Rを求める(ステップ(S)411)。補正量Rは、荷重分布がC3パターン寄りの場合はR=r・(C3-C1)であり、荷重分布がC2パターン寄りの場合は補正量R=r・(C2-C1)である。図16には、荷重分布がC2パターン寄りである被検査ガラス板上の品質を判定するのに利用可能な検査位置を含んだ評価点1~23の補正量R=r・(C2-C1)が示されている。
 次に、Y1がC2又はC3のいずれかのパターン寄りか、すなわち、固有荷重パターンにより選ばれたr・(C3-C1)およびr・(C2-C1)のいずれかである補正量Rと、実測データY1とから、4点支持の所望の実測検査台(現行検査台)上の実測データY2を算出する(ステップ(S)412)。
 これにより、実施の形態のガラス板の形状測定方法及びプログラムによれば、4点支持の実測検査台上のガラス板形状を3点支持の汎用検査台上のガラス板形状から予測することができる。なお、検査位置は、検査を行うガラス板の製品形状における特徴や品質上の規格を考慮して、適宜その位置及び数が定めることができる。また、それらの検査位置において補正量Rは正負両方の値を取りうる。例えば、図17には、Y1-C1から補正量R=r(C3-C1)を加算したときの、4点支持の実測検査台上における評価点1~23の実測データY2が示されている。
 次に、(ステップ(S)412)で得られたガラス板の実測データY2と
所定の検査位置における品質基準とを対比する。(ステップ(S)413)。なお、本発明における品質基準は、所定の検査位置における形状を示す数値、特にガラス板の厚さ方向、の許容範囲として定めることができる。
 このようにして得られた検査位置における実測データY2と品質基準とを対比した結果から形状品質の判定を行い、検査結果を出力する。本発明では、3点式の汎用検査台上に載せてガラス板の形状を測定した測定結果に対して、従来用いていた4点式の実測検査台上の品質基準と当て嵌めて品質の判定することか可能になる。これにより、従来の品質基準やお客様との品質の取り決め数値などを変更することなく、形状検査方法を品種ごとの4点支持の実測検査台から様々な品種に適用可能な3点支持の汎用検査台に置き換えることが可能になる。これは以下の品質検査方法においても同様である。
 上述したガラス板の品質検査方法は、1つの正荷重パターンと2つの副荷重パターンとを有することが前提の検査方法である。ガラス板の形状によっては、正荷重パターン(第1の荷重パターン)が1つで副荷重パターン(第2の荷重パターン)も1つの場合がある。
 このような荷重パターンを持つガラス板の品質検査方法は、図18のフローチャートの如く、所望の4点支持の実測検査台上に支持された状態におけるガラス板の設計(CAD)データの第1、第2の荷重パターンに基づいて(ステップ(S)501)、無重力状態におけるガラス板Aの設計形状データ(第2の設計データB1、B2)を算出し(ステップ(S)502)、この無重力状態におけるガラス板Aの設計形状データに基づいてガラス板が3点支持の汎用検査台に載置された状態におけるガラス板Aの設計形状データ(第3の設計データC1、C2)を算出する(ステップ(S)503)。
 次に、(ステップ(S)504)の如く、スペーサによる4点の支持位置における仮想のΔC2=C2-C1を求め、この後、(ステップ(S)505)の如く、4点の支持位置における仮想のΔY1=Y1-C1を求める。
 また、ここでは事前に、仮想の4点の支持位置上の位置データ(位置データC1~C1、C2~C2、C3~C3)が取得されている。この位置データは、製品のガラス板を3点支持の汎用検査台上に支持させて撮像する工程(ステップ(S)506)、撮像データを数値化する工程(ステップ(S)507)、及び仮想の4点の支持位置上の位置データを取得する工程(ステップ(S)508)によって取得することができる。
 次に、ΔY1(ΔY1~Y1)と、ΔC2(ΔC2~C2)との比率により荷重分布の移動の程度を求めることによって、仮想の4点支持位置の4つの比率の平均rを求める(ステップ(S)509)。図19の表及び図20には、ΔY1とΔC2との4点の比率が示され、その比率の平均rが0.505109であることが示されている。
 次に、荷重分布の移動の程度に応じて荷重分布がC2パターン寄りの補正量r(C2-C1)を求める(ステップ(S)510)。
 次に、Y1-C1に上記補正量r(C2-C1)を加算して、4点支持の所望の実測検査台(現行検査台)上の形状データY2を算出する(ステップ(S)511)。
 これにより、実施の形態のガラス板の形状測定方法によれば、4点支持の実測検査台上のガラス板形状を3点支持の汎用検査台上のガラス板形状から予測することができる。
 次に、(ステップ(S)511)で得られたガラス板の形状データY2と所定の検査位置における品質基準とを対比する。(ステップ(S)512)。
 次に、実測データY2と品質基準とを対比した結果から形状品質の判定を行い、検査結果を出力する。
 図19では、スペーサによる4点の支持位置1~4の位置においてY1が常にC2のパターン寄りであることが示されている。
 このガラス板の場合、荷重分布がC2のパターンの方向へ移動しており、その程度は50.5%であることが分かる。
 以上説明したとおり、本発明は、自動車用窓ガラスの形状検査に好適な品質検査方法、検査装置および検査プログラムを提供する。また、ガラス板の設計データから実測検査台上での仮想設計データを算出することにより、ガラス板の形状を算出することが可能になる。
 本発明は、自動車用途に限らず、鉄道車両、航空機、船舶、建築物等で使用される窓ガラスの検査にも適用できることは明らかである。また、ガラス板の検査のみならずその他の鏡面体、板状体およびレンズ等の検査にも適用できる。
 なお、2009年2月3日に出願された日本特許出願2009-022839号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
 1:ガラス板
 2:面光源
 3:カラーパターン
 4:カラーパターンに空けられた穴
 5:主となるカラーカメラ
 6、7:副となるカラーカメラ
 8:計算機
 9:主となるカラーカメラの視野
 10、11:副となるカラーカメラの視野
 12:カラーパターンを構成する基本パターン
 13:基本パターンに内在する第1のストライプパターン
 14:基本パターンに内在する第2のストライプパターン
 110:実測検査台
 111:架台
 112:ロッド
 120:計算機
 121:カメラ
 122:キーボード
 123:ディスプレイ
 124:記憶装置

Claims (9)

  1.  窓ガラスとして使用される状態に組み付けられたガラス板の設計データから算出される実測検査台上での仮想設計データと、実測検査台で測定したガラス板の形状データとを対比して被測定物の品質を判定するガラス板の品質検査方法であって、
     前記組み付けられたガラス板の形状を表す第1の設計データA及び前記組み付けられたガラス板の形状に対して選択された実測検査台の荷重支持点に相当する4つの実測荷重支持点への1つの正荷重パターンである第1荷重パターンと副荷重パターンである第2の荷重パターン及び第3の荷重パターンを設定する第1のステップと、
     前記第1の設計データAと前記第1から第3の荷重パターンとに基づいて、重力による撓みの影響を排除した無重力状態におけるガラス板の形状を表す第2の設計データBを、前記第1から第3の荷重パターン毎にB1、B2、B3として算出する第2のステップと、
     前記第2の設計データBに基づいて、3つの汎用支持点を備える汎用検査台に仮想載置した状態のガラス板の形状を表す第3の設計データCを、前記第1から第3の荷重パターン毎にC1、C2、C3として算出する第3のステップと、
     前記第3の設計データCにおける4つの実測支持点位置における荷重パターン毎の位置データC1~C1、C2~C2、C3~C3を算出する第4のステップと、 前記位置データC1、C2、C3から2個の位置ベクトル△C2=C2―C1、△C3=C3―C1を算出する第5のステップと、
     一方で、3つの汎用支持点を備える汎用検査台に載置した検査対象の被検査ガラス板の形状を表す第1の実測データY1を測定する第6のステップと、
     前記第1の実測データY1における4つの実測支持点位置における位置データY1~Y1を算出する第7のステップと、
     前記位置データC1、及びY1から位置ベクトル△Y1 = Y1―C1を算出する第8のステップと、
     △Y1と、△C2及び△C3とを対比して、ベクトルの符号の合致度から、Y1の加重パターンが第2の加重パターン又は第3の加重パターンのいずれかのパターンよりか判断してベクトルの符号を決定する第9のステップと、
     前記二種類の荷重パターンによって定まる位置ベクトル△C2、△C3との比率rを算出する第10のステップと、
     前記の比率rから前記被検査ガラス板を前記実測検査台に載置した場合の、被検査ガラス板に固有の荷重パターンを決定し、4つの支持点における固有荷重分布を算出する第11のステップと、
     前記第1の実測データY1と前記固有荷重パターンをもとに、被検査ガラス板を実測検査台に仮想載置した場合の測定点以外での位置データを求めるための形状補正量R=r(C2-C1)、r(C3-C1)を求める第12のステップと、
     実測検査台に載置された被検査ガラス板の所望の検査位置における第2の実測データY2を、第1の実測データY1から正の第1の荷重分布パターンで仮想載置した第3の設計データC1を引いた差Y1-C1に前記補正量Rを加算して 算出する第13のステップと、
     前記算出された前記検査位置における第2の実測データY2と品質基準に基づいてガラス板の品質を判定する第14のステップと、
     を有することを特徴とするガラス板の品質検査方法。
  2.  窓ガラスとして使用される状態に組み付けられたガラス板の設計データから算出される実測検査台上での仮想設計データと、実測検査台で測定したガラス板の形状データとを対比して被測定物の品質を判定するガラス板の品質検査方法であって、
     前記組み付けられたガラス板の形状を表す第1の設計データA及び前記組み付けられたガラス板の形状に対して選択された実測検査台の荷重支持点に相当する4つの実測荷重支持点への1つの正の第1の荷重パターンと副の第2の荷重パターンを設定する第1のステップと、
     前記第1の設計データAと前記2つの荷重パターンに基づいて、重力による撓みの影響を排除した無重力状態におけるガラス板の形状を表す第2の設計データBを前記2つの荷重パターン毎にB1、B2を算出する第2のステップと、
     前記第2の設計データBに基づいて、3つの汎用支持点を備える汎用検査台に仮想載置した状態のガラス板の形状を表す第3の設計データCを前記2つの荷重パターン毎にC1、C2を算出する第3のステップと、
     前記第3の設計データCにおける4つの実測支持点位置における荷重パターン毎の位置データC1~C1、C2~C2を算出する第4のステップと、
     前記位置データC1、C2から位置ベクトル△C2=C2―C1、(ここでxは、支持位置を表す添字であって、x=1,2,3,4である。以下同様。)を算出する第5のステップと、
     一方で、3つの汎用支持点を備える汎用検査台に載置した検査対象の被検査ガラス板の形状を表す第1の実測データY1を測定する第6のステップと、
     前記第1の実測データY1における4つの実測支持点位置における位置データY1~Y1を算出する第7のステップと、
     前記位置データC1、及びY1から位置ベクトル△Y1=Y1―C1を算出する第8のステップと、
     前記荷重パターンによって定まる位置ベクトル△C1と△Yから荷重パターンの比率rを算出し固有荷重パターンを算出する第9のステップと、
     前記第1の実測データY1と前記固有荷重パターンをもとに、被検査ガラス板を実測検査台に仮想載置した場合の測定点以外での位置データを求めるための形状補正量R=r(C2-C1)、を求める第10のステップと、
     実測検査台に載置された被検査ガラス板の所望の検査位置における第2の実測データY2を、第1の実測データY1から正の第1の荷重分布パターンで仮想載置した第3の設計データC1を引いた差Y1-C1に前記補正量Rを加算して 算出する第11のステップと、
     前記算出された前記検査位置における第2の実測データY2と品質基準に基づいてガラス板の品質を判定する第12のステップと、 
     を有することを特徴とするガラス板の品質検査方法。
  3.  実測検査台の4つの支持点全てに荷重がかかる場合を前記正の第1の荷重パターンとし、4つの支持点のうち3つの支持点だけに荷重がかかる少なくとも1つの荷重分布を前記副荷重パターンとする請求項1、又は2に記載のガラス板の品質検査方法。
  4.  前記ガラス板は、自動車用窓ガラスである請求項1~3のいずれかに記載のガラス板の品質検査方法。
  5.  窓ガラスとして使用される状態に組み付けられたガラス板の設計データから算出される実測検査台上での仮想設計データと、実測検査台で測定したガラス板の形状データとを対比して被測定物の品質を判定するガラス板の品質検査プログラムであって、
     前記組み付けられたガラス板の形状を表す第1の設計データA及び前記組み付けられたガラス板の形状に対して選択された実測検査台の荷重支持点に相当する4つの実測荷重支持点への1つの正荷重パターンである第1荷重パターンと副荷重パターンである第2の荷重パターン及び第3の荷重パターンを設定する第1のステップと、
     前記第1の設計データAと前記第1から第3の荷重パターンとに基づいて、重力による撓みの影響を排除した無重力状態におけるガラス板の形状を表す第2の設計データBを、前記第1から第3の荷重パターン毎にB1、B2、B3として算出する第2のステップと、
     前記第2の設計データBに基づいて、3つの汎用支持点を備える汎用検査台に仮想載置した状態のガラス板の形状を表す第3の設計データCを、前記第1から第3の荷重パターン毎にC1、C2、C3として算出する第3のステップと、
     前記第3の設計データCにおける4つの実測支持点位置における荷重パターン毎の位置データC1~C1、C2~C2、C3~C3を算出する第4のステップと、 前記位置データC1、C2、C3から2個の位置ベクトル△C2=C2―C1、△C3=C3―C1を算出する第5のステップと、
     一方で、3つの汎用支持点を備える汎用検査台に載置した検査対象の被検査ガラス板の形状を表す第1の実測データY1を測定する第6のステップと、
     前記第1の実測データY1における4つの実測支持点位置における位置データY1~Y1を算出する第7のステップと、
     前記位置データC1、及びY1から位置ベクトル△Y1 = Y1―C1を算出する第8のステップと、
     △Y1と、△C2及び△C3とを対比して、ベクトルの符号の合致度から、Y1の加重パターンが第2の加重パターン又は第3の加重パターンのいずれかのパターンよりか判断してベクトルの符号を決定する第9のステップと、
     前記二種類の荷重パターンによって定まる位置ベクトル△C2、△C3との比率rを算出する第10のステップと、
     前記の比率rから前記被検査ガラス板を前記実測検査台に載置した場合の、被検査ガラス板に固有の荷重パターンを決定し、4つの支持点における固有荷重分布を算出する第11のステップと、
     前記第1の実測データY1と前記固有荷重パターンをもとに、被検査ガラス板を実測検査台に仮想載置した場合の測定点以外での位置データを求めるための形状補正量R=r(C2-C1)、r(C3-C1)を求める第12のステップと、
     実測検査台に載置された被検査ガラス板の所望の検査位置における第2の実測データY2を、第1の実測データY1から正の第1の荷重分布パターンで仮想載置した第3の設計データC1を引いた差Y1-C1に前記補正量Rを加算して 算出する第13のステップと、
     前記算出された前記検査位置における第2の実測データY2と品質基準に基づいてガラス板の品質を判定する第14のステップと
     を有することを特徴とするガラス板の品質検査プログラム。
  6.  窓ガラスとして使用される状態に組み付けられたガラス板の設計データから算出される実測検査台上での仮想設計データと、実測検査台で測定したガラス板の形状データとを対比して被測定物の品質を判定するガラス板の品質検査プログラムであって、
     前記組み付けられたガラス板の形状を表す第1の設計データA及び前記組み付けられたガラス板の形状に対して選択された実測検査台の荷重支持点に相当する4つの実測荷重支持点への1つの正の第1の荷重パターンと副の第2の荷重パターンを設定する第1のステップと、
     前記第1の設計データAと前記2つの荷重パターンに基づいて、重力による撓みの影響を排除した無重力状態におけるガラス板の形状を表す第2の設計データBを前記2つの荷重パターン毎にB1、B2を算出する第2のステップと、
     前記第2の設計データBに基づいて、3つの汎用支持点を備える汎用検査台に仮想載置した状態のガラス板の形状を表す第3の設計データCを前記2つの荷重パターン毎にC1、C2を算出する第3のステップと、
     前記第3の設計データCにおける4つの実測支持点位置における荷重パターン毎の位置データC1~C1、C2~C2を算出する第4のステップと、
     前記位置データC1、C2から位置ベクトル△C2=C2―C1、(ここでxは、支持位置を表す添字であって、x=1,2,3,4である。以下同様。)を算出する第5のステップと、
     一方で、3つの汎用支持点を備える汎用検査台に載置した検査対象の被検査ガラス板の形状を表す第1の実測データY1を測定する第6のステップと、
     前記第1の実測データY1における4つの実測支持点位置における位置データY1~Y1を算出する第7のステップと、
     前記位置データC1、及びY1から位置ベクトル△Y1=Y1―C1を算出する第8のステップと、
     前記荷重パターンによって定まる位置ベクトル△C1と△Yから荷重パターンの比率rを算出し固有荷重パターンを算出する第9のステップと、
     前記第1の実測データY1と前記固有荷重パターンをもとに、被検査ガラス板を実測検査台に仮想載置した場合の測定点以外での位置データを求めるための形状補正量R=r(C2-C1)、を求める第10のステップと、
     実測検査台に載置された被検査ガラス板の所望の検査位置における第2の実測データY2を、第1の実測データY1から正の第1の荷重分布パターンで仮想載置した第3の設計データC1を引いた差Y1-C1に前記補正量Rを加算して 算出する第11のステップと、
     前記算出された前記検査位置における第2の実測データY2と品質基準に基づいてガラス板の品質を判定する第12のステップと、 
     を有することを特徴とするガラス板の品質検査プログラム。
  7.  窓ガラスとして使用される状態に組み付けられたガラス板の設計データから実測検査台上での仮想設計データを算出するガラス板の形状測定プログラムであって、
     前記組み付けられたガラス板の形状を表す第1の設計データA及び前記組み付けられたガラス板の形状に対して選択された実測検査台の荷重支持点に相当する4つの実測荷重支持点への1つの正荷重パターンである第1荷重パターンと副荷重パターンである第2の荷重パターン及び第3の荷重パターンを設定する第1のステップと、
     前記第1の設計データAと前記第1から第3の荷重パターンとに基づいて、重力による撓みの影響を排除した無重力状態におけるガラス板の形状を表す第2の設計データBを、前記第1から第3の荷重パターン毎にB1、B2、B3として算出する第2のステップと、
     前記第2の設計データBに基づいて、3つの汎用支持点を備える汎用検査台に仮想載置した状態のガラス板の形状を表す第3の設計データCを、前記第1から第3の荷重パターン毎にC1、C2、C3として算出する第3のステップと、
     前記第3の設計データCにおける4つの実測支持点位置における荷重パターン毎の位置データC1~C1、C2~C2、C3~C3を算出する第4のステップと、 前記位置データC1、C2、C3から2個の位置ベクトル△C2=C2―C1、△C3=C3―C1を算出する第5のステップと、
     △C2及び△C3とを対比して、ベクトルの符号の合致度から、Y1の加重パターンが第2の加重パターン又は第3の加重パターンのいずれかのパターンよりか判断してベクトルの符号を決定する第6のステップと、
     前記二種類の荷重パターンによって定まる位置ベクトル△C2、△C3との比率rを算出する第7のステップと、
     前記の比率rから前記被検査ガラス板を前記実測検査台に載置した場合の、被検査ガラス板に固有の荷重パターンを決定し、4つの支持点における固有荷重分布を算出する第8のステップと、
     を有することを特徴とするガラス板の形状測定プログラム。
  8.  窓ガラスとして使用される状態に組み付けられたガラス板の設計データから実測検査台上での仮想設計データを算出するガラス板の形状測定プログラムであって、
     前記組み付けられたガラス板の形状を表す第1の設計データA及び前記組み付けられたガラス板の形状に対して選択された実測検査台の荷重支持点に相当する4つの実測荷重支持点への1つの正の第1の荷重パターンと副の第2の荷重パターンを設定する第1のステップと、
     前記第1の設計データAと前記2つの荷重パターンに基づいて、重力による撓みの影響を排除した無重力状態におけるガラス板の形状を表す第2の設計データBを前記2つの荷重パターン毎にB1、B2を算出する第2のステップと、
     前記第2の設計データBに基づいて、3つの汎用支持点を備える汎用検査台に仮想載置した状態のガラス板の形状を表す第3の設計データCを前記2つの荷重パターン毎にC1、C2を算出する第3のステップと、
     前記第3の設計データCにおける4つの実測支持点位置における荷重パターン毎の位置データC1~C1、C2~C2を算出する第4のステップと、
     前記位置データC1、C2から位置ベクトル△C2=C2―C1、(ここでxは、支持位置を表す添字であって、x=1,2,3,4である。以下同様。)を算出する第5のステップと、
     前記荷重パターンによって定まる位置ベクトル△C1から荷重パターンの比率rを算出し固有荷重パターンを算出する第6のステップと、
     前記固有荷重パターンをもとに、被検査ガラス板を実測検査台に仮想載置した場合の測定点以外での位置データを求めるための形状補正量R=r(C2-C1)、を求める第7のステップと、
     を有することを特徴とするガラス板の形状測定プログラム。
  9.  請求項5または6のいずれかに記載のガラス板の品質検査プログラムの判定結果を用いてフィードバック制御を行うガラス板の製造方法。
PCT/JP2010/051528 2009-02-03 2010-02-03 ガラス板の品質検査方法及び品質検査プログラム WO2010090227A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010549494A JP5403375B2 (ja) 2009-02-03 2010-02-03 ガラス板の品質検査方法及びガラス板の形状測定方法
CN201080006557.6A CN102308181B (zh) 2009-02-03 2010-02-03 玻璃板的质量检查方法、形状测量方法以及制造方法
EP10738558.5A EP2400262B1 (en) 2009-02-03 2010-02-03 Method for inspecting quality of a glass plate, method for measuring the shape of a glass plate and process for producing a glass plate
US13/197,298 US8793089B2 (en) 2009-02-03 2011-08-03 Method for inspecting quality of glass plate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-022839 2009-02-03
JP2009022839 2009-02-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/197,298 Continuation US8793089B2 (en) 2009-02-03 2011-08-03 Method for inspecting quality of glass plate

Publications (1)

Publication Number Publication Date
WO2010090227A1 true WO2010090227A1 (ja) 2010-08-12

Family

ID=42542120

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/051528 WO2010090227A1 (ja) 2009-02-03 2010-02-03 ガラス板の品質検査方法及び品質検査プログラム

Country Status (6)

Country Link
US (1) US8793089B2 (ja)
EP (1) EP2400262B1 (ja)
JP (1) JP5403375B2 (ja)
KR (1) KR20110126583A (ja)
CN (1) CN102308181B (ja)
WO (1) WO2010090227A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8783066B2 (en) * 2011-05-27 2014-07-22 Corning Incorporated Glass molding system and related apparatus and method
JP6325896B2 (ja) * 2014-03-28 2018-05-16 株式会社キーエンス 光学式座標測定装置
CN109238118B (zh) * 2018-11-06 2024-02-27 桂林电子科技大学 一种检测玻璃可装配性的检测系统及方法
CN110006850B (zh) * 2019-05-06 2019-11-15 金华东阳玖润信息科技有限公司 一种鉴别钢化玻璃真假的分析仪器
JP7434686B2 (ja) * 2019-12-27 2024-02-21 川崎重工業株式会社 シート層の検査装置及び検査方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04242103A (ja) 1991-01-16 1992-08-28 Asahi Glass Co Ltd 板状材の曲率検査装置及び曲率検査方法
JPH10279323A (ja) * 1997-04-04 1998-10-20 Asahi Glass Co Ltd 板ガラスの曲げ量算出方法、その算出装置及び板ガラスの曲げ成形方法
JPH1163906A (ja) * 1997-08-11 1999-03-05 Asahi Glass Co Ltd ガラス製品の基準面出し装置
JP2003344041A (ja) * 2002-05-27 2003-12-03 Nissan Motor Co Ltd ワーク形状評価装置およびその方法ならびにそのプログラム
WO2007010875A1 (ja) 2005-07-15 2007-01-25 Asahi Glass Company, Limited 形状検査方法および装置
JP2009022839A (ja) 2007-07-17 2009-02-05 Kunio Sasaki 砕砂製造装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7589844B2 (en) * 2005-07-15 2009-09-15 Asahi Glass Company, Limited Shape inspection method and apparatus
DE102005050882B4 (de) * 2005-10-21 2008-04-30 Isra Vision Systems Ag System und Verfahren zur optischen Inspektion von Glasscheiben

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04242103A (ja) 1991-01-16 1992-08-28 Asahi Glass Co Ltd 板状材の曲率検査装置及び曲率検査方法
JPH10279323A (ja) * 1997-04-04 1998-10-20 Asahi Glass Co Ltd 板ガラスの曲げ量算出方法、その算出装置及び板ガラスの曲げ成形方法
JPH1163906A (ja) * 1997-08-11 1999-03-05 Asahi Glass Co Ltd ガラス製品の基準面出し装置
JP2003344041A (ja) * 2002-05-27 2003-12-03 Nissan Motor Co Ltd ワーク形状評価装置およびその方法ならびにそのプログラム
WO2007010875A1 (ja) 2005-07-15 2007-01-25 Asahi Glass Company, Limited 形状検査方法および装置
JP2009022839A (ja) 2007-07-17 2009-02-05 Kunio Sasaki 砕砂製造装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2400262A4

Also Published As

Publication number Publication date
CN102308181B (zh) 2014-04-09
KR20110126583A (ko) 2011-11-23
EP2400262B1 (en) 2019-04-03
CN102308181A (zh) 2012-01-04
US20110288803A1 (en) 2011-11-24
EP2400262A1 (en) 2011-12-28
JPWO2010090227A1 (ja) 2012-08-09
JP5403375B2 (ja) 2014-01-29
US8793089B2 (en) 2014-07-29
EP2400262A4 (en) 2015-11-11

Similar Documents

Publication Publication Date Title
JP4924426B2 (ja) 形状検査方法および装置
US7589844B2 (en) Shape inspection method and apparatus
JP5403375B2 (ja) ガラス板の品質検査方法及びガラス板の形状測定方法
CA2781289C (en) Projection aided feature measurement using uncalibrated camera
KR101004473B1 (ko) 면왜곡의 측정장치 및 방법
KR101595547B1 (ko) 검사방법
KR102406558B1 (ko) 금형 표면검사장치를 이용한 표면검사방법
CN112505663B (zh) 用于多线激光雷达与相机联合标定的标定方法
JP2010510519A (ja) ガラスシートの歪を測定するためのゲージ
CN210953862U (zh) 一种液晶屏划痕检测装置
KR101642897B1 (ko) 검사방법
CN113478418B (zh) 一种基于投影仪的零件装夹拆卸方法
CN113857652A (zh) 一种伪同轴视觉激光修复设备
CN212482419U (zh) 一种玻璃检测设备
CN112927305B (zh) 一种基于远心度补偿的几何尺寸精密测量方法
CN110336997B (zh) 一种相机功率校准平台
CN117949383A (zh) 一种全适用视觉检测平台及检测方法
WO2022115928A1 (pt) Métodos e sistemas para a inspeção de qualidade de materiais e de superfícies tridimensionais em ambiente virtual
CN115791785A (zh) 表面检查装置、存储介质及表面检查方法
CN115249265A (zh) 一种升降式钢材秤秤台水平度检测装置和方法
CN113446951A (zh) 一种测量扫面电子显微镜电子束斑尺寸的方法
KR20160084345A (ko) 검사방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080006557.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10738558

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010549494

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20117010040

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 5953/DELNP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2010738558

Country of ref document: EP