KR20160084345A - 검사방법 - Google Patents

검사방법 Download PDF

Info

Publication number
KR20160084345A
KR20160084345A KR1020160082495A KR20160082495A KR20160084345A KR 20160084345 A KR20160084345 A KR 20160084345A KR 1020160082495 A KR1020160082495 A KR 1020160082495A KR 20160082495 A KR20160082495 A KR 20160082495A KR 20160084345 A KR20160084345 A KR 20160084345A
Authority
KR
South Korea
Prior art keywords
measurement
color
area
data
reference data
Prior art date
Application number
KR1020160082495A
Other languages
English (en)
Other versions
KR101736060B1 (ko
Inventor
조수용
Original Assignee
주식회사 고영테크놀러지
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 고영테크놀러지 filed Critical 주식회사 고영테크놀러지
Priority to KR1020160082495A priority Critical patent/KR101736060B1/ko
Publication of KR20160084345A publication Critical patent/KR20160084345A/ko
Application granted granted Critical
Publication of KR101736060B1 publication Critical patent/KR101736060B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/08Monitoring manufacture of assemblages
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/08Monitoring manufacture of assemblages
    • H05K13/081Integration of optical monitoring devices in assembly lines; Processes using optical monitoring devices specially adapted for controlling devices or machines in assembly lines
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Operations Research (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Image Processing (AREA)

Abstract

기판을 검사하기 위하여, 먼저 기판 상에 측정영역을 설정하고, 측정영역에 대한 기준 데이터를 획득한다. 이어서, 측정영역에 대한 측정 데이터를 컬러별로 획득하고, 측정영역에 대하여 획득된 기준 데이터 및 컬러별 측정 데이터를 이용하여 조명조건을 설정한다. 다음으로, 측정영역에 대하여 특징객체를 설정하고, 특징객체에 대응하는 기준 데이터와 설정된 조명조건에 따른 특징객체에 대응하는 측정 데이터를 비교하여, 기준 데이터와 측정 데이터 사이의 왜곡량을 획득한다. 이어서, 왜곡량을 보상하여 측정영역 내의 검사영역을 설정한다. 이에 따라, 왜곡을 보상한 정확한 검사영역을 설정할 수 있다.

Description

검사방법{INSPECTION METHOD}
본 발명은 검사방법에 관한 것으로, 더욱 상세하게는 기판의 검사방법에 관한 것이다.
일반적으로, 전자장치 내에는 적어도 하나의 인쇄회로기판(printed circuit board; PCB)이 구비되며, 이러한 인쇄회로기판 상에는 회로 패턴, 연결 패드부, 상기 연결 패드부와 전기적으로 연결된 구동칩 등 다양한 회로 소자들이 실장되어 있다.
일반적으로, 상기와 같은 다양한 회로 소자들이 상기 인쇄회로기판에 제대로 형성 또는 배치되었는지 확인하기 위하여 형상 측정장치가 사용된다.
종래의 형상 측정장치는 소정의 측정영역을 설정하여, 상기 측정영역 내에서 소정의 회로 소자가 제대로 형성되어 있는지를 검사한다. 종래의 측정영역 설정방법에서는, 단순히 이론적으로 회로 소자가 존재하여야 할 영역을 측정영역으로 설정한다.
측정영역은 측정을 원하는 위치에 정확히 설정되어야 측정을 요하는 회로 소자의 측정이 제대로 수행될 수 있지만, 인쇄회로기판과 같은 측정 대상물은 베이스 기판의 휨(warp), 뒤틀림(distortion) 등의 왜곡이 발생할 수 있으므로, 종래의 측정영역은 측정을 원하는 위치에 정확히 설정되지 못하고, 촬영부의 카메라에서 획득하는 이미지는 이론적으로 회로 소자가 존재하는 위치와 일정한 차이가 발생하는 문제점이 있다.
따라서, 상기와 같은 측정 대상물의 왜곡을 적절히 보상한 측정영역을 설정할 필요성이 요청된다.
따라서, 본 발명이 해결하고자 하는 과제는 양질의 특징객체를 획득하기 위한 최적의 조명조건을 획득할 수 있으며, 이에 따라 보다 정확하게 검사영역을 설정할 수 있는 검사방법을 제공하는 것이다.
본 발명의 예시적인 일 실시예에 따라 기판을 검사하기 위하여, 먼저 기판 상에 측정영역을 설정한다. 이어서, 상기 측정영역에 대한 기준 데이터를 획득한다. 다음으로, 상기 측정영역에 대한 측정 데이터를 컬러별로 획득한다. 이어서, 상기 측정영역에 대하여 획득된 상기 기준 데이터 및 상기 컬러별 측정 데이터를 이용하여 조명조건을 설정한다. 다음으로, 상기 측정영역에 대하여 특징객체를 설정한다. 이어서, 상기 특징객체에 대응하는 기준 데이터와 상기 설정된 조명조건에 따른 상기 특징객체에 대응하는 측정 데이터를 비교하여, 상기 기준 데이터와 상기 측정 데이터 사이의 왜곡량을 획득한다. 다음으로, 상기 왜곡량을 보상하여 상기 측정영역 내의 검사영역을 설정한다.
상기 측정영역에 대하여 획득된 상기 기준 데이터 및 상기 컬러별 측정 데이터를 이용하여 조명조건을 설정하는 단계는, 상기 기준 데이터 내에서 도전패턴을 포함하는 기준 마스크(mask) 영역 및 상기 도전패턴을 포함하지 않는 기준 비마스크(no mask) 영역을 설정하는 단계, 상기 컬러별 측정 데이터 내에서 상기 기준 마스크 영역에 대응하는 측정 마스크 영역 및 상기 기준 비마스크 영역에 대응하는 측정 비마스크 영역을 설정하는 단계 및 상기 측정 마스크 영역 및 상기 측정 비마스크 영역 사이의 그레이값(gray scale) 차이를 크게 하는 조명을 상기 조명조건으로 설정하는 단계를 포함할 수 있다.
상기 기준 마스크 영역은 상기 기판을 구성하는 신호라인 배선용 기판층(signal layer)에 대응할 수 있다.
일 실시예로, 상기 측정 마스크 영역 및 상기 측정 비마스크 영역 사이의 그레이값 차이는, 상기 측정영역 내에 존재하는 상기 측정 마스크 영역의 그레이값의 대표값 및 상기 측정영역 내에 존재하는 상기 측정 비마스크 영역의 그레이값의 대표값 사이의 차이에 의하여 정의될 수 있다.
다른 실시예로, 상기 특징객체는 상기 측정영역 내의 소정의 형상을 포함하도록 블록(block) 단위의 특징블록으로 설정되며, 상기 측정영역에 대하여 특징객체를 설정하는 단계는 상기 측정영역에 대하여 획득된 상기 기준 데이터 및 상기 컬러별 측정 데이터를 비교하여 조명조건을 설정하는 단계 이전에 수행될 수 있다. 상기 측정 마스크 영역 및 상기 측정 비마스크 영역 사이의 그레이값 차이는, 상기 특징블록 내에 존재하는 상기 측정 마스크 영역의 그레이값의 대표값 및 상기 특징블록 내에 존재하는 상기 측정 비마스크 영역의 그레이값의 대표값 사이의 차이에 의하여 정의될 수 있다.
상기 컬러는 서로 상이한 제1 컬러, 제2 컬러 및 제3 컬러를 포함할 수 있다. 상기 제1 컬러, 상기 제2 컬러 및 상기 제3 컬러는 측정장치에 의하여 직접 획득될 수 있다. 또한, 상기 컬러는, 상기 제1 컬러 및 상기 제2 컬러를 조합한 제4 컬러, 상기 제1 컬러 및 상기 제3 컬러를 조합한 제5 컬러, 상기 제2 컬러 및 상기 제3 컬러를 조합한 제6 컬러, 상기 제1 컬러, 상기 제2 컬러 및 상기 제3 컬러를 조합한 제7 컬러 중 적어도 하나를 더 포함할 수 있다.
상기 왜곡량은 상기 기준 데이터 및 상기 측정 데이터 사이의 정량화된 변환 공식으로 획득될 수 있으며, 상기 정량화된 변환 공식은, 상기 기준 데이터와 상기 측정 데이터를 비교하여 획득된 위치 변화, 기울기 변화, 크기 변화 및 변형도 중 적어도 하나 이상을 이용하여 정의될 수 있다.
상기 특징객체는 상기 측정영역 내의 소정의 형상을 포함하도록 블록(block) 단위의 특징블록으로 설정될 수 있으며, 상기 특징블록의 상기 소정의 형상은 주변의 형상에 의한 오인 가능성이 제거되도록 2차원 구분자를 가질 수 있다.
본 발명에 따르면, 측정영역에 대한 측정 데이터를 컬러별로 획득된 정보를 이용하여 그레이값 차이를 크게 하도록 조명조건을 설정함으로써 양질의 특징객체를 획득하기 위한 최적의 조명조건을 획득할 수 있으며, 이에 따라 보다 정확하게 검사영역을 설정할 수 있다.
또한, 상기와 같이 설정된 검사영역을 기초로 부품의 불량 검사 등의 작업을 수행할 수 있으므로, 보다 정확히 상기 기판의 불량 여부 등을 판단할 수 있다.
도 1은 본 발명의 일 실시예에 의한 검사방법을 나타낸 흐름도이다.
도 2는 도 1의 검사방법에서 기준 데이터의 일 예를 나타낸 평면도이다.
도 3은 도 1의 검사방법에서 측정 데이터의 일 예를 나타낸 평면도이다.
도 4는 도 1의 조명조건을 설정하는 일 실시예를 나타낸 흐름도이다.
도 5는 도 4의 그레이값 차이를 크게 하는 조명을 찾는 과정을 설명하기 위한 일 실시예를 나타낸 그래프이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
제1, 제2 등의 용어는 다양한 구성 요소들을 설명하는데 사용될 수 있지만, 상기 구성 요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성 요소를 다른 구성 요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성 요소는 제2 구성 요소로 명명될 수 있고, 유사하게 제2 구성 요소도 제1 구성 요소로 명명될 수 있다.
본 출원에서 사용한 용어는 단지 특정한 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서에 기재된 특징, 숫자, 단계, 동작, 구성 요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성 요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 갖는다.
일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 갖는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
이하, 첨부한 도면들을 참조하여, 본 발명의 바람직한 실시예들을 보다 상세하게 설명한다.
도 1은 본 발명의 일 실시예에 의한 검사방법을 나타낸 흐름도이고, 도 2는 도 1의 검사방법에서 기준 데이터의 일 예를 나타낸 평면도이며, 도 3은 도 1의 검사방법에서 측정 데이터의 일 예를 나타낸 평면도이다.
도 1 내지 도 3을 참조하면, 본 발명의 일 실시예에 따라 왜곡이 보상된 검사영역을 설정하기 위하여, 먼저 기판 상에 측정영역(FOV)을 설정한다(S110).
상기 측정영역(FOV)은 상기 기판을 불량 여부를 검사하기 위하여 상기 기판 상에 설정된 소정의 영역을 의미하며, 예를 들어, 3차원 형상 측정장치와 같은 검사장비에 장착된 카메라의 촬영 범위(field of view)를 기준으로 설정될 수 있다.
이어서, 상기 측정영역(FOV)에 대한 기준 데이터(RI)를 획득한다(S120).
상기 기준 데이터(RI)는, 예를 들면 도 2에 도시된 바와 같이, 상기 기판(100)에 대한 이론적인 평면 이미지일 수 있다.
일 실시예로, 상기 기준 데이터(RI)는 상기 기판에 대한 형상을 기록한 캐드(CAD)정보나 거버(gerber)정보로부터 획득될 수 있다. 상기 캐드정보나 거버정보는 상기 기판의 설계 기준정보를 포함하며, 일반적으로 패드, 회로 패턴, 홀 패턴 등에 관한 배치정보를 포함한다.
다른 실시예로, 상기 기준 데이터(RI)는 학습모드에 의해 얻어진 학습정보로부터 획득될 수 있다. 상기 학습모드는 예를 들면 데이터베이스에서 기판정보를 검색하여 상기 데이터베이스 검색 결과 기판정보가 없으면 베어기판의 학습을 실시하고, 이어서 상기 베어기판의 학습이 완료되어 베어기판의 패드 및 배선정보 등과 같은 기판정보가 산출되면 상기 기판정보를 상기 데이터베이스에 저장하는 방식 등과 같이 구현될 수 있다. 즉, 상기 학습모드에서 인쇄회로기판의 베어기판을 학습하여 인쇄회로기판의 설계 기준정보가 획득되며, 상기 학습모드를 통하여 학습정보를 획득함으로써 상기 기준 데이터(RI)를 획득할 수 있다.
다음으로, 상기 측정영역(FOV)에 대한 측정 데이터(PI)를 컬러(color)별로 획득한다(S130).
상기 측정 데이터(PI)는, 예를 들면 도 3에 도시된 바와 같이, 상기 기준 데이터(RI)에 대응하는 상기 기판을 3차원 형상 측정장치와 같은 검사장비로 실제 촬영한 이미지일 수 있다. 상기 측정 데이터(PI)는 도 2에 도시된 상기 기준 데이터(RI)와 유사하지만, 상기 기판(100)의 휨, 뒤틀림 등에 의하여 상기 기준 데이터(RI)에 비하여 다소 왜곡되어 있다.
일 실시예로, 상기 측정 데이터(PI)는 상기 검사장비의 조명부를 이용하여 상기 측정영역(FOV)에 광을 조사하고, 상기 조사된 광의 반사 이미지를 상기 검사장비에 장착된 카메라를 이용하여 촬영함으로써 획득될 수 있다.
일 실시예로, 상기 컬러는 서로 상이한 제1 컬러, 제2 컬러 및 제3 컬러를 포함할 수 있다. 즉, 상기 조명부는 상기 제1 컬러의 광을 생성하는 제1 조명원, 상기 제2 컬러의 광을 생성하는 제2 조명원 및 상기 제3 컬러의 광을 생성하는 제3 조명원을 포함할 수 있다. 이에 따라, 상기 제1 컬러, 상기 제2 컬러 및 상기 제3 컬러는 상기 검사장비의 조명부에 의하여 직접 획득된다. 예를 들면, 상기 제1 컬러, 상기 제2 컬러 및 상기 제3 컬러는 각각 적색(red), 녹색(green) 및 청색(blue)일 수 있다.
상기 제1 컬러, 상기 제2 컬러 및 상기 제3 컬러와 다른 컬러에 따른 측정 데이터(PI)도 획득될 수 있다. 예를 들면, 상기 컬러는, 상기 제1 컬러 및 상기 제2 컬러를 조합한 제4 컬러, 상기 제1 컬러 및 상기 제3 컬러를 조합한 제5 컬러, 상기 제2 컬러 및 상기 제3 컬러를 조합한 제6 컬러, 상기 제1 컬러, 상기 제2 컬러 및 상기 제3 컬러를 조합한 제7 컬러 중 적어도 하나를 더 포함할 수 있다. 상기 조합된 컬러들은 상기 제1 컬러, 상기 제2 컬러 및 상기 제3 컬러에 따른 측정 데이터(PI)를 조합하여 생성할 수 있다. 예를 들면, 상기 제4 컬러, 상기 제5 컬러, 상기 제6 컬러 및 상기 제7 컬러는 각각 황색(yellow), 붉은 보라색(magenta), 청록색(cyan) 및 백색(white)일 수 있다.
이와 같이, 상기 측정 데이터(PI)는 컬러별로 획득되므로, 상기 컬러의 개수만큼 서로 상이한 측정 데이터들이 획득된다.
이어서, 상기 측정영역(FOV)에 대하여 획득된 상기 기준 데이터(RI) 및 상기 컬러별 측정 데이터(PI)를 비교하여 조명조건을 설정하고(S140), 상기 측정영역에 대하여 특징객체를 설정한다(S150).
상기 조명조건의 설정(S140)은 상기 특징객체의 설정(S150) 보다 먼저 이루어질 수도 있고, 나중에 이루어질 수도 있다.
도 4는 도 1의 조명조건을 설정하는 일 실시예를 나타낸 흐름도이다.
도 4를 참조하면, 조명조건 설정을 위하여 먼저
상기 기준 데이터(RI) 내에서 도전패턴을 포함하는 기준 마스크(mask) 영역 및 상기 도전패턴을 포함하지 않는 기준 비마스크(no mask) 영역을 설정한다. (S142).
상기 도전패턴은 예를 들면, 회로 패턴, 홀(hole) 패턴 등을 포함하며, 특징객체에 대응되거나 포함되는 형상을 갖는다. 상기 특징객체는 후술되는 상기 기준 데이터(RI)와 상기 측정 데이터(PI) 사이의 왜곡량 또는 상기 기준 데이터(RI)와 상기 기판에 부품이 형성된 후의 측정 데이터 사이의 왜곡량을 획득하기 위한 비교의 기준으로 활용된다.
상기 특징객체는 상기 기준 데이터(RI)와 상기 측정 데이터 내의 소정의 좌표 상에 위치하는 소정의 형상을 갖는 객체를 포함할 수 있으며, 상기 도전패턴에 직접 대응될 수 있다. 예를 들면, 상기 특징객체는 상기 기판에 형성된 홀 패턴, 굽은 회로 패턴의 코너(corner) 부분 등을 포함할 수 있으며, 상기 홀 패턴의 중심점의 좌표나 굽은 회로 패턴의 코너 포인트의 좌표를 기준으로 상기 기준 데이터(RI)와 상기 측정 데이터를 비교함으로써 후술되는 왜곡량을 획득할 수 있다.
이와는 다르게, 상기 특징객체는 소정의 형상을 포함하도록 블록(block)을 단위로 한 특징블록(feature block)일 수도 있으며, 상기 도전패턴은 상기 특징블록 내의 상기 소정의 형상에 대응될 수 있다. 이 경우, 상기 특징블록 내에 포함된 다양한 형상의 특징객체를 기준으로 상기 기준 데이터(RI) 및 상기 측정 데이터(PI)를 서로 비교하므로, 비교적 정확한 비교가 가능할 수 있다.
상기 블록 단위의 복수의 특징블록들의 상기 소정의 형상은 주변의 형상에 의한 오인 가능성이 제거되도록 2차원 평면을 정의할 수 있는 2차원 구분자를 가질 수 있다. 예를 들면, 상기 특징블록 내에는 꺾인 선, 사각형, 원형 및 이들의 조합 등이 다양하게 포함될 수 있으며, 직선은 2차원 평면을 정의할 수 없어 상기 특징블록 내에 포함될 수 없다.
상기 기준 데이터(RI)는, 도 2에 도시된 바와 같이, 특징객체가 존재하는 기준 마스크 영역(RM)과 특징객체가 존재하지 않는 기준 비마스크 영역(RNM)으로 구분될 수 있다.
도 2에서, 상기 특징객체가 존재하는 기준 마스크 영역은(RM) 회색으로 표시되고, 상기 특징객체가 존재하지 않는 기준 비마스크 영역(RNM)은 검정색으로 표시되도록 구분할 수 있다. 상기 구분은 기 설정된 상기 특징객체의 유형 등을 기초로 자동으로 이루어질 수도 있고, 작업자가 직접 선택함에 의하여 수동으로 이루어질 수도 있다.
예를 들면, 상기 기준 마스크 영역(RM)은 상기 기판을 구성하는 신호라인 배선용 기판층(signal layer)에 대응할 수 있고, 상기 기준 비마스크 영역(RNM)은 그 이외의 영역일 수 있다.
이어서, 상기 컬러별 측정 데이터(PI) 내에서 측정 마스크 영역(MM) 및 측정 비마스크 영역(MNM)을 설정한다(S144). 상기 측정 마스크 영역(MM)은 상기 기준 마스크 영역(RM)에 대응하고, 상기 측정 비마스크 영역(MNM)은 상기 기준 비마스크 영역(RNM)에 대응한다.
일 실시예로, 도 3에 도시된 바와 같이, 상기 컬러별 측정 데이터(PI) 각각을 상기 측정 마스크 영역(MM) 및 상기 측정 비마스크 영역(MNM)으로 구분할 수 있다.
다음으로, 상기 측정 마스크 영역(MM) 및 상기 측정 비마스크 영역(MNM) 사이의 그레이값(gray scale) 차이를 크게 하는 조명을 상기 조명조건으로 설정한다(S146).
상기 특징객체는 상기 기준 데이터(RI)와 상기 측정 데이터(PI) 사이의 변환 관계를 획득하기 위한 비교 기준으로 활용되므로, 상기 기준 데이터(RI)와 상기 측정 데이터(PI)에서 정확히 특정되어야 한다. 상기 특징객체에 대응하는 영역과 상기 특징객체와 인접하며 상기 특징객체에 대응하지 않는 영역 사이의 구별이 명확한 경우, 정확한 특정이 용이할 수 있다. 따라서, 상기 특징객체에 대응하는 영역과 상기 특징객체에 대응하지 않는 영역 사이의 구별이 명확하도록 하는 조명조건을 찾는 것이 중요하다.
예를 들어, 상기 컬러별로 획득된 측정 데이터(PI) 중에서 상기 측정 마스크 영역(MM) 및 상기 측정 비마스크 영역(MNM) 사이의 그레이값 차이를 크게 하는 조명을 찾아서 상기 조명조건으로 설정한다.
일 실시예로, 상기 그레이값 차이는 상기 측정영역(FOV) 내에 존재하는 상기 측정 마스크 영역(MM)의 그레이값의 대표값 및 상기 측정영역(FOV) 내에 존재하는 상기 측정 비마스크 영역(MNM)의 그레이값의 대표값 사이의 차이에 의하여 정의될 수 있다. 예를 들면, 상기 대표값은 평균값, 중앙값, 최빈값 등을 포함할 수 있다.
다른 실시예로, 상기 특징객체가 블록 단위의 특징블록인 경우, 상기 그레이값 차이는 상기 특징블록 내에 존재하는 상기 측정 마스크 영역의 그레이값의 대표값 및 상기 특징블록 내에 존재하는 상기 측정 비마스크 영역의 그레이값의 대표값 사이의 차이에 의하여 정의될 수 있다. 예를 들면, 상기 대표값은 평균값, 중앙값, 최빈값 등을 포함할 수 있다.
이 경우, 상기 특징객체는 상기 조명조건을 설정하는 단계(S140) 이전에 미리 설정될 수 있다.
도 5는 도 4의 그레이값 차이를 크게 하는 조명을 찾는 과정을 설명하기 위한 일 실시예를 나타낸 그래프이다.
도 5를 참조하면, 상기 컬러별로 획득된 측정 데이터(PI) 중에서 상기 측정 마스크 영역(MM)의 그레이값과 상기 측정 비마스크 영역(MNM)의 그레이값이 히스토그램(histogram)으로 나타나 있다.
상기 히스토그램에서, 두 개의 위로 볼록한 형태가 나타나는데, 상기 측정 비마스크 영역(MNM)이 좌측에 해당하고, 상기 측정 마스크 영역(MM)이 우측에 해당한다.
예를 들면, 상기 측정 비마스크 영역(MNM)의 그레이값의 대표값은 제1 최빈값(Max1)일 수 있으며, 상기 측정 마스크 영역(MM)의 그레이값의 대표값은 제2 최빈값(Max2)일 수 있다. 물론 상기 측정 비마스크 영역(MNM)의 그레이값의 대표값과 상기 측정 마스크 영역(MM)의 그레이값의 대표값은 평균값, 중앙값 등이 될 수도 있다.
이어서, 상기 특징객체에 대응하는 기준 데이터와 상기 설정된 조명조건에 따른 상기 특징객체에 대응하는 측정 데이터를 비교하여, 상기 기준 데이터와 상기 측정 데이터 사이의 왜곡량을 획득한다(S160).
상기 왜곡량은 상기 비교용 블록에 대응하는 상기 기준 데이터(RI) 및 상기 측정 데이터(PI) 사이의 정량화된 변환 공식으로 획득될 수 있다.
상기 측정 데이터(PI)는 상기 기판의 휨, 뒤틀림 등으로 인하여 이론적인 기준 정보에 해당하는 상기 기준 데이터(RI)에 비하여 왜곡되어 있으므로, 상기 기준 데이터(RI) 및 상기 측정 데이터(PI) 사이의 관계는 상기 왜곡량에 따라 정의된 변환 공식에 의해 정의될 수 있다.
상기 정량화된 변환 공식은, 상기 비교용 블록에 대한 상기 기준 데이터(RI) 및 상기 측정 데이터(PI)를 비교하여 획득된 위치 변화, 기울기 변화, 크기 변화 및 변형도 중 적어도 하나 이상을 이용하여 정의될 수 있다.
한편, 일 예로 상기 변환 공식은 수학식 1과 같이 표현될 수 있다.
Figure pat00001
상기 수학식 1에서, PCAD는 CAD정보나 거버정보에 따른 타겟(target)의 좌표, 즉 상기 기준 데이터(RI)에서의 좌표이고, f(tm)은 변환 행렬(transfer matrix)로서 상기 변환 공식에 해당하며, Preal은 카메라에 의하여 획득된 상기 측정 데이터(PI)에서의 상기 타겟의 좌표이다. 상기 기준 데이터(RI)에서의 이론 좌표 PCAD와 상기 측정 데이터(PI)에서의 실제 좌표 Preal을 구하면, 상기 변환 행렬을 알 수 있다.
예를 들면, 상기 변환 행렬은 n차원 공간 상의 점대응 관계가 1차식에 의해 표현되는 아핀(affine) 변환 또는 퍼스펙티브(perspective) 변환에 따른 좌표변환 행렬을 포함할 수 있다. 상기 좌표변환 행렬을 정의하기 위하여, 상기 특징객체들의 개수를 적절히 설할 수 있으며, 일 예로 아핀 변환의 경우 3개 이상의 특징객체들을, 퍼스펙티브 변환의 경우 4개 이상의 특징객체들을 설정할 수 있다.
한편, 상기 측정 데이터(PI)는, 예를 들면 도 3에 도시된 바와 같이, 상기 기판에 부품을 실장하기 전에 측정된 데이터(혹은 촬영된 이미지)일 수도 있고, 상기 기판에 부품을 실장한 후에 측정된 데이터(혹은 촬영된 이미지)일 수도 있다.
이어서, 상기 왜곡량을 보상하여 상기 측정영역 내의 검사영역을 설정한다(S170).
상기 왜곡량은 상기 기준 데이터(RI)와 비교하여 상기 측정 데이터(PI)에서 발생된 왜곡의 정도를 나타내므로, 이를 보상하면 상기 검사영역은 최초의 측정영역(FOV)에 대하여 실제의 기판에 대한 형상에 보다 근접할 수 있다. 상기 검사영역의 설정은 상기 측정영역(FOV)의 전부 또는 일부에 대하여 이루어질 수 있다.
상기 왜곡량을 보상하여 상기 측정 데이터(PI) 내에서의 검사영역을 설정하면, 상기 검사영역 내의 부품의 불량 여부 등을 보다 정확히 검사할 수 있다. 이때, 상기 측정 데이터(PI)가 도 3에 도시된 바와 같은 부품을 실장하기 전에 측정된 데이터인 경우, 부품 실장 후의 측정 데이터를 별도로 획득한 후 검사를 수행한다. 이와는 다르게, 상기 측정 데이터(PI)가 부품을 실장한 후에 측정된 데이터인 경우, 이를 이용하여 검사를 수행한다.
다음으로, 선택적으로 상기 설정된 검사영역이 유효한지 여부를 검증할 수도 있다. 이때, 상기 검증은 상기 왜곡량 획득을 위한 특징객체를 직접 활용하거나, 검증을 위한 특징객체를 별도로 활용하여 수행될 수 있다.
상기와 같은 본 발명에 따르면, 측정영역(FOV)에 대한 측정 데이터(PI)를 컬러별로 획득된 정보를 이용하여 그레이값 차이를 크게 하도록 조명조건을 설정함으로써 양질의 특징객체를 획득하기 위한 최적의 조명조건을 획득할 수 있으며, 이에 따라 보다 정확하게 검사영역을 설정할 수 있다.
또한, 상기와 같이 설정된 검사영역을 기초로 부품의 불량 검사 등의 작업을 수행할 수 있으므로, 보다 정확히 상기 기판의 불량 여부 등을 판단할 수 있다.
앞서 설명한 본 발명의 상세한 설명에서는 본 발명의 바람직한 실시예들을 참조하여 설명하였지만, 해당 기술분야의 숙련된 당업자 또는 해당 기술분야에 통상의 지식을 갖는 자라면 후술될 특허청구범위에 기재된 본 발명의 사상 및 기술 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있을 것이다.  따라서, 전술한 설명 및 아래의 도면은 본 발명의 기술사상을 한정하는 것이 아닌 본 발명을 예시하는 것으로 해석되어야 한다.
10 : 패드 20 : 부품
22 : 터미널 30 : 회로 패턴
40 : 서클 42 : 홀
FB1 : 제1 특징블록 FB2 : 제2 특징블록
MB1 : 제1 병합블록 MB2 : 제2 병합블록
PI : 측정 데이터 RI : 기준 데이터

Claims (1)

  1. 기판 상에 측정영역을 설정하는 단계;
    상기 측정영역에 대한 기준 데이터를 획득하는 단계;
    상기 측정영역에 대한 측정 데이터를 컬러별로 획득하는 단계;
    상기 측정영역에 대하여 획득된 상기 기준 데이터 및 상기 컬러별 측정 데이터를 이용하여 조명조건을 설정하는 단계;
    상기 측정영역에 대하여 특징객체를 설정하는 단계;
    상기 특징객체에 대응하는 기준 데이터와 상기 설정된 조명조건에 따른 상기 특징객체에 대응하는 측정 데이터를 비교하여, 상기 기준 데이터와 상기 측정 데이터 사이의 왜곡량을 획득하는 단계; 및
    상기 왜곡량을 보상하여 상기 측정영역 내의 검사영역을 설정하는 단계를 포함하는 검사방법.


KR1020160082495A 2016-06-30 2016-06-30 검사방법 KR101736060B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160082495A KR101736060B1 (ko) 2016-06-30 2016-06-30 검사방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160082495A KR101736060B1 (ko) 2016-06-30 2016-06-30 검사방법

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020110069301A Division KR101642897B1 (ko) 2011-07-13 2011-07-13 검사방법

Publications (2)

Publication Number Publication Date
KR20160084345A true KR20160084345A (ko) 2016-07-13
KR101736060B1 KR101736060B1 (ko) 2017-05-16

Family

ID=56505676

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160082495A KR101736060B1 (ko) 2016-06-30 2016-06-30 검사방법

Country Status (1)

Country Link
KR (1) KR101736060B1 (ko)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5085517A (en) * 1989-10-31 1992-02-04 Chadwick Curt H Automatic high speed optical inspection system
US8260030B2 (en) * 2009-03-30 2012-09-04 Koh Young Technology Inc. Inspection method

Also Published As

Publication number Publication date
KR101736060B1 (ko) 2017-05-16

Similar Documents

Publication Publication Date Title
KR101595547B1 (ko) 검사방법
KR101692277B1 (ko) 검사방법
CN107945184B (zh) 一种基于彩色图像分割和梯度投影定位的贴装元件检测方法
US20060140471A1 (en) Image processing method, substrate inspection method, substrate inspection apparatus and method of generating substrate inspection data
JP5307876B2 (ja) 検査方法
JP2012198229A (ja) 検査方法
US20080062266A1 (en) Image test board
KR101132779B1 (ko) 검사방법
KR20010040998A (ko) 입체 영상에 의한 자동 검사 시스템 및 그 검사 방법
JP2008185514A (ja) 基板外観検査装置
KR101642897B1 (ko) 검사방법
CN108596829A (zh) 一种pcb裸板图片配准方法和装置
JP5045591B2 (ja) 検査領域の領域設定データの作成方法および基板外観検査装置
CN111402343A (zh) 高精度标定板及标定方法
CN109804730B (zh) 基板检查装置及利用其的基板歪曲补偿方法
KR101736060B1 (ko) 검사방법
KR101657949B1 (ko) 검사방법
KR20120069646A (ko) 검사방법
TWI674048B (zh) 位置偏移量取得裝置、檢查裝置、位置偏移量取得方法及檢查方法
JP4814116B2 (ja) 実装基板外観検査方法
CN216621463U (zh) 一种led发光颜色测试用数据采集装置
KR101799840B1 (ko) 검사방법
KR20130098221A (ko) 기판 검사방법
JP2006284543A (ja) 実装回路基板検査方法および実装回路基板検査装置
CN114324405B (zh) 基于菲林检测的数据标注系统

Legal Events

Date Code Title Description
A107 Divisional application of patent
AMND Amendment
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20200309

Year of fee payment: 4