WO2010090050A1 - 光通信システム及び光通信方法 - Google Patents

光通信システム及び光通信方法 Download PDF

Info

Publication number
WO2010090050A1
WO2010090050A1 PCT/JP2010/050136 JP2010050136W WO2010090050A1 WO 2010090050 A1 WO2010090050 A1 WO 2010090050A1 JP 2010050136 W JP2010050136 W JP 2010050136W WO 2010090050 A1 WO2010090050 A1 WO 2010090050A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
reception
amount
signal
compensation amount
Prior art date
Application number
PCT/JP2010/050136
Other languages
English (en)
French (fr)
Inventor
清 福知
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US13/147,079 priority Critical patent/US8909060B2/en
Priority to CN201080006672.3A priority patent/CN102308499B/zh
Priority to JP2010549416A priority patent/JP5522056B2/ja
Priority to EP10738389.5A priority patent/EP2395683A4/en
Publication of WO2010090050A1 publication Critical patent/WO2010090050A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • H04B10/2513Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion
    • H04B10/25133Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion including a lumped electrical or optical dispersion compensator
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2210/00Indexing scheme relating to optical transmission systems
    • H04B2210/25Distortion or dispersion compensation
    • H04B2210/252Distortion or dispersion compensation after the transmission line, i.e. post-compensation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2210/00Indexing scheme relating to optical transmission systems
    • H04B2210/25Distortion or dispersion compensation
    • H04B2210/254Distortion or dispersion compensation before the transmission line, i.e. pre-compensation

Definitions

  • the present invention relates to an optical communication system and an optical communication method for compensating for the amount of chromatic dispersion that occurs in a transmission line.
  • Chromatic dispersion is a property that the group delay of light differs depending on the wavelength, and has a value of 16 to 17 ps / nm / km in a single mode fiber of 1.5 micron band.
  • This wavelength dispersion spreads the optical transmission pulse, making it difficult to transmit optical signals over long distances.
  • an optical signal can be transmitted only up to a distance of about 50 to 80 km. Since the transmission distance is shortened in inverse proportion to the square of the bit rate due to chromatic dispersion, the transmission distance of the optical signal when there is chromatic dispersion is 1 km or less at a higher bit rate, for example, 100 Gbps.
  • a dispersion compensating device such as a dispersion compensating fiber is used in the current optical communication system.
  • the dispersion compensation device has a dispersion compensation amount that is almost equal in absolute value and opposite in sign to the dispersion amount of chromatic dispersion that occurs in the transmission line.
  • the transfer function of the dispersion compensation device is an inverse function of the transfer function of the transmission line.
  • the dispersion amount of chromatic dispersion is simply referred to as the dispersion amount.
  • the amount of dispersion generated in the transmission line is the dispersion compensation amount provided by the dispersion compensation device. Compensated. As a result, the waveform of the optical signal is restored at the output of the dispersion compensation device. This realizes long-distance transmission of an optical signal with a high bit rate even on a transmission path in which chromatic dispersion occurs.
  • the route is switched by an optical switch or the like.
  • the amount of dispersion also changes as the path is switched.
  • a VIPA Virtually-Imaged Phase Phase
  • a signal of 10 Gbps is as short as about several tens of kilometers, and cannot cope with switching of a route accompanied by a large change in distance.
  • Non-Patent Document 1 discloses a technique for compensating for the amount of chromatic dispersion by processing an electrical signal in a device on the optical signal transmission side.
  • the process in which waveform distortion is caused by chromatic dispersion is a linear process. Therefore, the dispersion compensation device that compensates for the amount of dispersion generated in the transmission path may be before or after the transmission path.
  • a dispersion compensation device is provided in an apparatus on the transmission side of an optical signal before a transmission path.
  • An example of a dispersion compensation device is a transversal filter configured as shown in FIG.
  • the transversal filter 10 shown in FIG. 1 includes a plurality of delay elements 11, a plurality of multipliers 12, and an adder 13.
  • Non-Patent Document 1 the amount of dispersion of an electrical signal input to a device on the optical signal transmission side is compensated by, for example, a transversal filter shown in FIG.
  • a transversal filter shown in FIG. 1 an operation in which the dispersion amount is compensated by the transversal filter shown in FIG. 1 will be described.
  • the electrical signal 20 input to the device on the fluorescent signal transmission side is given different delays by a plurality of delay elements 11 as shown in FIG.
  • the output signal from each delay element 11 is input to the delay element 11 and the multiplier 12 in the next stage.
  • the signal input to the multiplier 12 is referred to as a branch signal.
  • the signal input to the delay element 11 in the next stage is further delayed by the delay element 11.
  • the branch signal input to the multiplier 12 is multiplied by the tap coefficient output from the circuit coefficient control device 14.
  • the signal multiplied by the tap coefficient by each multiplier 12 is input to the adder 13, and the sum is obtained by the adder 13.
  • a value of half the symbol time of a signal to be transmitted is used as the delay interval of the delay given by each delay element 11.
  • the tap coefficient supplied from the circuit coefficient control device 14 is a value obtained by the impulse response of the transfer function. Since the transfer function by chromatic dispersion is a complex function, this tap coefficient is a complex number. Therefore, the output after compensating for the dispersion amount also becomes a complex signal.
  • an IQ converter built in the transmission side device applies the real part of the complex signal 21 to the in-phase component (cos component) of the optical signal, and the imaginary part of the complex signal to the quadrature component (sin component) of the optical signal. ).
  • An IQ modulator is a device that divides an input signal into an in-phase (I) signal and a quadrature (Q) signal.
  • Non-Patent Document 1 the technique disclosed in Non-Patent Document 1 described above can be applied to a device on the optical signal receiving side.
  • complex signal information is lost by square detection when an optical signal is converted into an electric signal by a photodiode.
  • Non-Patent Document 2 by performing coherent light reception and adopting a phase diversity reception configuration, information on the in-phase component (cos component) of the electric field of the received optical signal and a quadrature component ( sin component) information is extracted.
  • a complex electric field signal of an optical electric field of the received optical signal is obtained, and the dispersion amount can be compensated by processing the complex electric field signal with a transversal filter.
  • the ability to compensate for the dispersion amount is almost the same between the case where it is performed on the transmission side and the case where it is performed on the reception side within a range where deterioration due to the nonlinear effect of the system can be ignored.
  • the waveform distortion caused by the change in the amount of dispersion can be detected only on the receiving side. Waveform distortion cannot be detected on the side.
  • the amount of dispersion is compensated on the receiving side, since the waveform distortion state can always be confirmed on the receiving side, the receiving state can be quickly optimized by adaptive equalization.
  • the number of delay elements required to compensate for the same dispersion amount and the branch signal output from the delay element are increased.
  • the number (hereinafter referred to as the number of taps) increases significantly. For this reason, the scale of the circuit for compensating the dispersion amount becomes very large.
  • Non-Patent Document 3 As a method for avoiding an extremely large circuit for compensating the dispersion amount, there is a method in which dispersion amount compensation is performed separately for the transmission side and the reception side. A technique for this is disclosed in Non-Patent Document 3, for example.
  • Non-Patent Document 3 discloses a system that compensates for dispersion in an optical transmitter and an optical receiver by using an optical fiber. Dispersion compensation fibers in each of the optical transmitter and the optical receiver are arranged to reduce the amount of dispersion compensation in each of the optical transmitter and the optical receiver. This avoids an increase in the scale of the circuit that compensates for the dispersion amount.
  • Non-Patent Document 3 since the optical transmitter does not know the dispersion compensation amount in the optical receiver, the dispersion compensation amount in the optical transmitter cannot be changed according to the change in the dispersion amount. .
  • An object of the present invention is to provide an optical communication system and an optical communication method that solve the above-described problems.
  • the present invention provides: An optical communication system in which an optical transmitter that modulates an electrical signal into an optical signal and transmits the optical transmitter and an optical receiver that receives the optical signal are connected by a first transmission line, The optical transmitter and the optical receiver compensate for the dispersion amount by the optical transmitter when there is almost no change in the dispersion amount of chromatic dispersion caused by the optical signal passing through the first transmission path. And reducing the absolute value of the reception-side dispersion compensation amount while keeping the total value of the transmission-side dispersion compensation amount for receiving and the reception-side dispersion compensation amount for compensating the dispersion amount by the optical receiver substantially constant .
  • optical communication in an optical communication system in which an optical transmitter that modulates an electrical signal into an optical signal and transmits the optical transmitter and an optical receiver that receives the optical signal is connected by a first transmission path and a second transmission path.
  • a method When there is almost no change in the amount of dispersion of chromatic dispersion caused by the optical signal passing through the first transmission path, a transmission-side dispersion compensation amount for compensating the dispersion amount by the optical transmitter;
  • the receiver has a process of reducing the absolute value of the reception-side dispersion compensation amount while keeping the total value with the reception-side dispersion compensation amount for compensating the dispersion amount substantially constant.
  • a transmission-side dispersion compensation amount for compensating the dispersion amount by the optical transmitter, and the optical receiver When there is almost no change in the amount of dispersion of chromatic dispersion caused by the optical signal passing through the transmission line, a transmission-side dispersion compensation amount for compensating the dispersion amount by the optical transmitter, and the optical receiver
  • the absolute value of the reception-side dispersion compensation amount is reduced while keeping the total value with the reception-side dispersion compensation amount for compensating the dispersion amount substantially constant.
  • the range in which the reception-side dispersion compensation amount can be changed is ensured to the maximum. Therefore, it is possible to avoid that the size of the network that can optimize the dispersion compensation amount is limited by the range of the dispersion compensation amount that can be compensated by the optical receiver without increasing the scale of the circuit that compensates the dispersion amount.
  • FIG. 3 is a time chart showing a change in the amount of dispersion of chromatic dispersion that occurs in a transmission line by switching the path of the transmission line shown in FIG. 2.
  • FIG. 4 is a time chart showing changes in dispersion compensation amounts in the transmission filter unit and the reception filter unit shown in FIG. 2 corresponding to changes in the dispersion amount shown in FIG. 3.
  • 3 is a flowchart for explaining an operation for compensating for the amount of dispersion in the optical communication system shown in FIG. 2.
  • FIG. 2 is a block diagram showing the configuration of the first embodiment of the optical communication system of the present invention.
  • the optical communication system includes an optical transmitter 101 and an optical receiver 108, and the optical transmitter 101 and the optical receiver 108 transmit a first data signal.
  • a transmission line 107 which is a transmission line
  • a control signal transmission line 112 which is a second transmission line.
  • the fluorescent transmitter 101 includes a signal source 102, a circuit coefficient control unit 103 which is a first circuit coefficient control unit, a transmission filter unit 104, a light source 105, and an optical modulation unit 106.
  • the saddle signal source 102 outputs a digital data signal that is an electrical signal.
  • bit rate of the digital data signal is 10 Gbps, this is an example, and the present invention is not limited to this bit rate.
  • Transmission filter unit 104 is a transversal filter as shown in FIG.
  • the transmission filter unit 104 linearly processes the digital data signal output from the signal source 102 by a transfer function controlled by the circuit coefficient control unit 103. Then, a signal corresponding to a variable dispersion compensation amount of ⁇ 10000 ps / nm to +10000 ps / nm is added to the digital data signal and output as a transmission signal.
  • the delay interval by the delay elements (see FIG. 1) constituting the transversal filter is 50 ps, which is half of 100 ps, which is the data symbol time. This delay interval of 50 ps is an example, and can take any value other than a natural fraction of the symbol time.
  • the dispersion compensation amount provided by the transmission filter unit 104 is referred to as a transmission-side dispersion compensation amount.
  • the circuit coefficient control unit 103 controls a transfer function used when the transmission filter unit 104 performs linear processing on the digital data signal output from the signal source 102. Specifically, the control means that the transversal filter that constitutes the transmission filter unit 104 sets and outputs a tap coefficient that multiplies the branch signal of the signal output from each delay element (see FIG. 1). It is to be.
  • the predetermined dispersion amount is compensated by setting the tap coefficient to a value corresponding to the predetermined dispersion amount to be compensated. By changing the tap coefficient, the transmission side dispersion compensation amount can be changed.
  • circuit coefficient control unit 103 receives a first start instruction for starting the change of the transmission side dispersion compensation amount from the optical receiver 108 via the control signal transmission path 112, the first start instruction is received.
  • the transmission side dispersion compensation amount is changed in the direction shown.
  • the light source 105 outputs light having a constant intensity by a DFB (DistributedrFeedBack) laser.
  • the light output from the light source 105 is not limited to the DFB laser as long as it has a quality necessary for optical communication.
  • the fluorescent light modulator 106 is an IQ modulator, and divides the optical signal output from the light source 105 into an in-phase component and a quadrature component. Then, the in-phase component information included in the transmission signal output from the transmission filter unit 104 is applied to the divided in-phase component, and the quadrature component information included in the transmission signal output from the transmission filter unit 104 is divided. Apply to orthogonal component. Then, the optical signal to which the information of the in-phase component and the quadrature component is applied is transmitted to the optical receiver 108 via the transmission path 107.
  • the light modulation unit 106 is a modulator called an IQ modulator (or vector modulator).
  • the IQ modulator is a general modulator that is widely used in a four-phase phase shift keying (QPSK) modulation method and the like, and thus detailed description thereof is omitted here.
  • the optical receiver 108 shown in FIG. 2 includes a circuit coefficient control unit 109, which is a second circuit coefficient control unit, a receiving unit 110, and a reception filter unit 111.
  • Receiving section 110 receives an optical signal transmitted from optical transmitter 101 via transmission path 107 using a coherent light receiving method, and detects an in-phase component signal and a quadrature component signal. Then, the detected in-phase component signal and quadrature component signal are output to the reception filter unit 111 as reception signals.
  • Reception filter unit 111 is a transversal filter as shown in FIG.
  • the reception filter unit 111 linearly processes the reception signal output from the reception unit 110 by a transfer function controlled by the circuit coefficient control unit 109. Then, a signal corresponding to a variable dispersion compensation amount of ⁇ 10000 ps / nm to +10000 ps / nm is added to the received signal and output.
  • the delay interval by the delay elements (see FIG. 1) constituting the transversal filter is 50 ps, which is half of the data symbol time of 100 ps. This delay interval of 50 ps is an example, and can take any value other than a natural fraction of the symbol time.
  • the reception filter unit 111 detects the amount of dispersion of the reception signal output from the reception unit 110, and performs adaptive equalization so that the amount of dispersion is minimized according to an instruction from the circuit coefficient control unit 109.
  • the dispersion compensation amount provided by the reception filter unit 111 is referred to as a reception-side dispersion compensation amount.
  • the circuit coefficient control unit 109 controls the transfer function used when the reception filter unit 111 performs linear processing on the reception signal output from the reception unit 110, as with the circuit coefficient control unit 103. Specifically, the control means that the transversal filter that constitutes the reception filter unit 111 sets and outputs a tap coefficient that multiplies the branch signal of the signal output from each delay element (see FIG. 1). It is to be.
  • the predetermined dispersion amount is compensated by setting the tap coefficient to a value corresponding to the predetermined dispersion amount to be compensated. By changing the tap coefficient, the reception-side dispersion compensation amount can be changed.
  • the circuit coefficient control unit 109 monitors the amount of dispersion detected by the reception filter unit 111.
  • the circuit coefficient control unit 109 minimizes the amount of change in the dispersion amount. Adaptive equalization. Further, the circuit coefficient control unit 109 transmits a first start instruction to the circuit coefficient control unit 103 via the control signal transmission path 112.
  • FIG. 3 is a time chart showing changes in the amount of dispersion of chromatic dispersion that occurs in the transmission path 107 by switching the path of the transmission path 107 shown in FIG.
  • FIG. 4 is a time chart showing changes in dispersion compensation amounts in the transmission filter unit 104 and the reception filter unit 111 shown in FIG. 2 corresponding to changes in the dispersion amount shown in FIG. 3, and (a) is a reception filter unit.
  • 111 is a time chart showing a change in the reception-side dispersion compensation amount at 111
  • (b) is a time chart showing a change in the transmission-side dispersion compensation amount in the transmission filter unit 104
  • (c) is a transmission-side dispersion compensation amount and a reception-side dispersion compensation amount. It is a time chart which shows the change of the total value of.
  • FIG. 5 is a flowchart for explaining the operation of compensating for the dispersion amount in the optical communication system shown in FIG.
  • step S1 switching of the path is generated at time t 1 shown in FIGS. 3 and 4 (step S1).
  • the amount of dispersion generated in the transmission line 107 shown in FIG. 2 increases to 10,000 ps / nm.
  • Circuit coefficient control unit 109 when detecting the change in the dispersion amount, causes reception filter unit 111 to start adaptive equalization for minimizing the change amount of the dispersion amount (step S2).
  • the circuit coefficient control unit 109 completes the adaptive equalization in the reception filter unit 111 when the reception side dispersion compensation amount becomes ⁇ 10000 ps / nm as shown in FIG. 4A (step S3).
  • the total value of the transmission side dispersion compensation amount and the reception side dispersion compensation amount becomes stable at ⁇ 10000 ps / nm.
  • the circuit coefficient control unit 109 for reducing the transmission side dispersion compensation amount (increasing the absolute value with a negative dispersion compensation amount)
  • a first start instruction is transmitted to the circuit coefficient control unit 103 via the control signal transmission path 112 (step S4).
  • the circuit coefficient control unit 103 decreases the transmission side dispersion compensation amount in the transmission filter unit 104 (step S5). Thereby, as shown in FIG. 4B, the transmission side dispersion compensation amount becomes ⁇ 10000 ps.
  • the circuit coefficient control unit 109 decreases the absolute value of the reception side dispersion compensation amount in the reception filter unit 111 (step S6). Specifically, as shown in FIG. 4A, the dispersion compensation amount in the reception filter unit 111 is increased to ⁇ 0 ps / nm.
  • the transmission-side dispersion compensation amount and the reception-side dispersion compensation amount change while the total value of the transmission-side dispersion compensation amount and the reception-side dispersion compensation amount is kept substantially constant.
  • the circuit coefficient control unit 109 changes the reception-side dispersion compensation amount in the reception filter unit 111 according to the dispersion amount detected by the reception filter unit 111.
  • the circuit coefficient control unit 109 determines whether or not the absolute value of the reception side dispersion compensation amount is minimized (step S7).
  • step S7 when the absolute value of the reception side dispersion compensation amount is not the minimum, the operation proceeds to step S5, and the circuit coefficient control unit 103 causes the transmission filter unit 104 to reduce the transmission side dispersion compensation amount.
  • the circuit coefficient control unit 109 causes the reception filter unit 111 to continue increasing the reception side dispersion compensation amount.
  • the circuit coefficient control unit 109 controls a stop instruction for stopping changing the transmission side dispersion compensation amount.
  • the signal is transmitted to the circuit coefficient control unit 103 via the signal transmission path 112 (step S8).
  • the circuit coefficient control unit 103 When receiving the stop instruction transmitted from the circuit coefficient control unit 109, the circuit coefficient control unit 103 stops the decrease of the transmission side dispersion compensation amount in the transmission filter unit 104 (step S9).
  • the circuit coefficient control unit 109 stops increasing the reception side dispersion compensation amount in the reception filter unit 111 (step S10).
  • the dispersion amount of the transmission line 107 shown in FIG. 2 is increased to 20000ps / nm.
  • the circuit coefficient control unit 109 adaptively equalizes the reception filter unit 111 and changes the reception-side dispersion compensation amount to ⁇ 10000 ps / nm as shown in FIG. As a result, the communication state becomes normal.
  • the circuit coefficient control unit 109 transmits a first start instruction to the circuit coefficient control unit 103 so as to decrease the transmission side dispersion compensation amount in order to reduce the absolute value of the reception side dispersion compensation amount. Since the transmission filter unit 104 cannot further reduce the transmission side dispersion compensation amount, the transmission side dispersion compensation amount does not change. As a result, as shown in FIGS. 4A and 4B, the transmission side dispersion compensation amount and the reception side dispersion compensation amount are equal and stable at ⁇ 10000 ps / nm.
  • the transmission side dispersion compensation amount in the transmission filter unit 104 is already ⁇ 10000 ps / nm. Therefore, the reception filter unit 111 sets the reception side dispersion compensation amount to +10000 ps / nm by adaptive equalization as shown in FIG. As a result, the communication state becomes normal.
  • the circuit coefficient control unit 109 transmits a first start instruction to the circuit coefficient control unit 103 so as to increase the transmission side dispersion compensation amount in order to decrease the absolute value of the reception side dispersion compensation amount.
  • the circuit coefficient control unit 103 that has received the first start instruction transmitted from the circuit coefficient control unit 109 increases the transmission-side dispersion compensation amount to ⁇ 0 ps / nm, as shown in FIG. At this time, the circuit coefficient control unit 109 decreases the absolute value of the reception-side dispersion compensation amount. Specifically, as shown in FIG. 4A, the dispersion compensation amount of the reception filter unit 111 is reduced to ⁇ 0 ps / nm. At this time, the transmission side dispersion compensation amount and the reception side dispersion compensation amount change while the total value of the transmission side dispersion compensation amount and the reception side dispersion compensation amount is kept substantially constant.
  • the transmission-side dispersion compensation amount for compensating the dispersion amount by the optical transmitter 101 The absolute value of the reception-side dispersion compensation amount is reduced while keeping the total value of the reception-side dispersion compensation amount for compensating the dispersion amount by the optical receiver 108 substantially constant.
  • the range in which the reception-side dispersion compensation amount can be changed is ensured to the maximum. Therefore, it is possible to avoid that the size of the network that can optimize the dispersion compensation amount is limited by the range of the dispersion compensation amount that can be compensated by the optical receiver 108 without increasing the scale of the circuit that compensates the dispersion amount. .
  • the range of dispersion compensation amount is limited to ⁇ 10000 ps / nm to +10000 ps / nm which is the range of dispersion compensation amount on the receiving side.
  • the dispersion of the path is increased 20000ps / nm.
  • the dispersion compensation amount on the transmission side is ⁇ 0 ps / nm, an attempt is made to reduce chromatic dispersion by adaptive equalization on the reception side.
  • the dispersion compensation amount on the reception side is already the limit value of ⁇ 10000 ps / nm. Since it is nm, the dispersion compensation amount cannot be increased.
  • the entire optical communication system falls within the range of ⁇ 10000 to +10000 ps / nm which is the dispersion compensation amount that can be compensated on the reception side.
  • the amount of dispersion compensation is limited.
  • adaptive equalization in the optical receiver 108 is used to change the reception-side dispersion compensation amount in response to the change in dispersion amount due to the switching of the transmission path 107.
  • the configuration of the optical communication system can be simplified.
  • the dispersion amount of the transmission path 107 has already changed, and the communication quality is likely to deteriorate with respect to fluctuations in other deterioration factors such as polarization dispersion fluctuations.
  • a control start frame for instructing a change in the reception side dispersion compensation amount is embedded in the transmission signal and transmitted to the optical receiver.
  • a change in the dispersion amount of the transmission path 107 is dealt with.
  • FIG. 6 is a block diagram showing the configuration of the second embodiment of the optical communication system of the present invention.
  • the optical communication system of this embodiment is provided with a control start frame insertion unit 207 in the optical transmitter 201 as compared with the optical communication system of the first embodiment shown in FIG. The difference is that 208 includes a control start frame detection unit 212.
  • the control start frame insertion unit 207 inserts a control start frame into the digital data signal output from the signal source 202 when the circuit coefficient control unit 203 changes the transmission side dispersion compensation amount. Then, a digital data signal in which the control start frame is inserted and insertion information indicating that the control start frame has been inserted are output.
  • Circuit coefficient control unit 203 changes the transmission-side dispersion compensation amount in transmission filter unit 204 when a predetermined time has elapsed since the insertion information output from control start frame insertion unit 207 was received.
  • control start frame detection unit 212 When the control start frame detection unit 212 detects the control start frame in the reception signal output from the reception filter unit 211, the control start frame detection unit 212 outputs detection information for notifying that the control start frame has been detected to the circuit coefficient control unit 209. To do.
  • Circuit coefficient control unit 209 changes the reception-side dispersion compensation amount in reception filter unit 211 when a predetermined time has elapsed since the detection information output from control start frame detection unit 212 was received.
  • the dispersion amount of the transmission path 107 is completely compensated by using the control start frame to change the transmission side dispersion compensation amount and the reception side dispersion compensation amount synchronously, the above-described first As described in the embodiment, an operation is performed in which the reception-side dispersion compensation amount and the transmission-side dispersion compensation amount are changed synchronously so that the absolute value of the reception-side dispersion compensation amount decreases.
  • the optical transmitter 201 transmits a control start frame for instructing to change the reception side dispersion compensation amount to the optical receiver 208. Therefore, the dispersion amount of the transmission path 107 can be compensated promptly and at a more accurate timing.
  • the circuit coefficient control unit 203 receives the insertion information from the control start frame insertion unit 207, and changes the transmission-side dispersion compensation amount when a predetermined time elapses after the insertion information is received.
  • the circuit coefficient control unit 203 instructs the control start frame insertion unit 207 to insert a control start frame, and when a predetermined time has elapsed since the instruction is given, the transmission side dispersion compensation amount is set It may be changed.
  • the timing for changing the transmission-side dispersion compensation amount and the reception-side dispersion compensation amount is controlled by using the control start frame between the optical transmitter and the optical receiver.
  • the control start frame since the control start frame is inserted into the transmission signal, the bit rate of the transmission path 107 changes, and there is a possibility that the existing transmission rate component cannot be used.
  • the optical transmitter uses the control signal transmission path 112 to instruct the optical receiver to start changing the reception-side dispersion compensation amount.
  • FIG. 7 is a block diagram showing the configuration of the third embodiment of the optical communication system of the present invention.
  • the circuit coefficient control unit 303 When changing the transmission-side dispersion compensation amount, the circuit coefficient control unit 303 sends a second start instruction for instructing the start of change of the reception-side dispersion compensation amount via the control signal transmission path 112. To 309. Then, when a predetermined time has elapsed since the transmission of the second start instruction, the transmission-side dispersion compensation amount in the transmission filter unit 304 is changed.
  • the circuit coefficient control unit 309 that has received the second start instruction transmitted from the circuit coefficient control unit 303 receives reception side dispersion compensation in the reception filter unit 311 when a predetermined time has elapsed after receiving the second start instruction. Change the amount.
  • the dispersion amount of the transmission path 107 is compensated by using the second start instruction to change the transmission side dispersion compensation amount and the reception side dispersion compensation amount in synchronization with each other, as described above.
  • an operation is performed in which the reception-side dispersion compensation amount and the transmission-side dispersion compensation amount are changed synchronously so that the absolute value of the reception-side dispersion compensation amount decreases.
  • the optical transmitter 201 instructs the optical receiver 208 to change the reception-side dispersion compensation amount by using the control signal transmission path 112. Therefore, the dispersion amount of the transmission path 107 can be compensated promptly and with more accurate timing without changing the bit rate of the transmission path 107.
  • the timing at which the transmission-side dispersion compensation amount in the transmission filter section 304 is changed, and the reception filter section 311 There may be a deviation from the timing of changing the reception-side dispersion compensation amount.
  • signal quality degradation may be reduced by, for example, performing changes in the transmission side dispersion compensation amount and reception side dispersion compensation amount in small increments. Must be kept to a minimum.
  • the change in the reception-side dispersion compensation amount in the reception filter and the change in the transmission-side dispersion compensation amount in the transmission filter are simultaneously performed.
  • both the transmission filter unit and the reception filter unit need to perform filter processing on the in-phase component and the quadrature component of signals input to them, the set amount of each tap coefficient becomes enormous.
  • even a small change in dispersion compensation amount due to the filter processing is accompanied by a large change in filter coefficient, it is difficult to stably change the dispersion compensation amount unless high-precision control is performed.
  • the tap filter is updated by dividing the transmission filter unit and the reception filter unit into two, and dividing the dispersion compensation amount to be compensated in the transmission filter unit and the reception filter unit into two. Reduce the amount to do.
  • the transversal filter that constitutes the transmission filter unit and the reception filter unit performs inverse function processing of the transfer function of the transmission path 107.
  • the value of the impulse response coefficient obtained by the inverse Fourier transform of the inverse function may be multiplied as the tap coefficient value in the multiplier of the output of each delay element.
  • K is a constant depending on the wavelength of the optical signal, and is approximately 62500 at the wavelength of 1500 nm.
  • FIG. 8 is a diagram illustrating an example of coefficient values of real and imaginary parts of an impulse response in each tap when the bit rate is 10 Gbps and the delay interval of the transversal filter is 50 ps.
  • the vertical axis indicates the coefficient values of the real part and the imaginary part of the impulse response at each tap, which are indicated as tap coefficient values in the figure.
  • the coefficient value of the real part is almost 0 after the 12th tap from the center.
  • the coefficient value of the real part is almost 0 after the 14th tap from the center.
  • the coefficient value of the real part has a value larger than 0 even after the 20th tap from the center.
  • the transmission filter unit and the reception filter unit are each divided into two, and in one transmission filter unit and the reception filter unit, 2K calculated by changing the value of n in the above equation (1). / dispersion amount of a constant multiple of B 2 the steps compensated.
  • a small dispersion amount other than a dispersion amount that is a constant multiple of 2K / B 2 calculated by changing the value of n in the above equation (1) is fixed. Compensate. Thereby, the amount of updating the tap coefficient can be reduced.
  • FIG. 9 is a block diagram showing the configuration of the fourth embodiment of the optical communication system of the present invention.
  • the optical communication system according to the present embodiment is different from the optical communication systems according to the first to third embodiments shown in FIG. 2, FIG. 6 and FIG.
  • a transmission filter unit 404-1 as a first transmission filter unit and a transmission filter unit 404-2 as a second transmission filter unit
  • a circuit coefficient setting unit 407 is provided.
  • the reception filter unit is divided into a reception filter unit 411-1 that is a first reception filter unit and a reception filter unit 411-2 that is a second reception filter unit, Further, the circuit coefficient setting unit 412 is provided.
  • Circuit coefficient setting section 407 outputs tap coefficients used when transmission filter sections 404-1 and 404-2 perform compensation to circuit coefficient control section 403 and transmission filter section 404-2.
  • the transmission filter unit 404-1 performs first transmission side dispersion for stepwise compensating for a dispersion amount that is a constant multiple of 2K / B 2 calculated by changing the value of n in the above equation (1).
  • a signal corresponding to the compensation amount is added to the digital data signal output from the signal source 402. Then, the digital data signal to which the first transmission side dispersion compensation amount is added is output to the transmission filter unit 404-2 as the first transmission side compensated signal.
  • the transmission filter unit 404-2 is configured to fixedly compensate for a minute dispersion amount other than a dispersion amount that is a constant multiple of 2K / B 2 calculated by changing the value of n in the above equation (1).
  • a signal corresponding to the second transmission-side dispersion compensation amount is added to the first transmission-side compensated signal output from the transmission filter unit 404-1.
  • the first transmission side compensated signal to which the second transmission side dispersion compensation amount is added is output to the optical modulation unit 406 as a transmission signal.
  • the transmission filter unit 404-2 only compensates for a small amount of dispersion, so the circuit scale is small.
  • the circuit coefficient setting unit 412 outputs the tap coefficients used when the reception filter units 411-1 and 411-2 perform compensation to the circuit coefficient control unit 409 and the reception filter unit 411-2.
  • the reception filter unit 411-1 includes a first reception-side dispersion for compensating stepwise for a dispersion amount that is a constant multiple of 2K / B 2 calculated by changing the value of n in the above equation (1).
  • a signal corresponding to the compensation amount is added to the reception signal output from the reception unit 410.
  • the reception signal to which the first reception-side dispersion compensation amount is added is output to the reception filter unit 411-2 as the first reception-side compensated signal.
  • the reception filter unit 411-2 fixedly compensates for a minute dispersion amount other than a dispersion amount that is a constant multiple of 2K / B 2 calculated by changing the value of n in the above equation (1).
  • a signal corresponding to the second reception-side dispersion compensation amount is added to the first reception-side compensated signal output from the reception filter unit 411-1 and output. Since the reception filter unit 411-2 only compensates for a small amount of dispersion, the circuit scale is small.
  • the transmission filter unit and the reception filter unit are each divided into two, and the transmission filter unit 404-1 and the reception filter unit 411-1 compensate for a dispersion amount that is a constant multiple of a predetermined dispersion amount.
  • the transmission filter unit 404-2 and the reception filter unit 411-2 fixedly compensate for a dispersion amount other than a constant multiple of the predetermined dispersion amount. Therefore, the amount of updating the tap coefficient can be reduced.
  • FIG. 10 is a diagram illustrating another example of the coefficient values of the real part and the imaginary part of the impulse response in each tap when the delay rate of the transversal filter is 50 ps with respect to the bit rate of 10 Gbps.
  • N 5
  • the vertical axis indicates the values of the coefficients of the real part and the imaginary part of the impulse response at each tap, which are indicated as tap coefficient values in the figure.
  • the coefficient value of the imaginary part is almost 0 after the 11th tap from the center.
  • the coefficient value of the imaginary part is almost 0 after the 13th tap from the center.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Abstract

電気信号を光信号に変調して送信する光送信機101と、光信号を受信する光受信機108とが伝送路107によって接続された光通信システムであって、光送信機101及び光受信機108は、光信号が伝送路107を通ることによって発生する波長分散の分散量の変化がほぼ無くなると、光送信機101によって分散量を補償するための送信側分散補償量と、光受信機108によって分散量を補償するための受信側分散補償量との合計値をほぼ一定に保ちながら、受信側分散補償量の絶対値を減少させる。

Description

光通信システム及び光通信方法
 本発明は、伝送路で生じる波長分散の分散量を補償する光通信システム及び光通信方法に関する。
 光ファイバによる通信システムは、長距離かつ大容量の通信を実現するための重要な技術となっている。この長距離かつ大容量の通信は、送受信に用いられる変復調用のデバイス及び伝送路となる光ファイバの広帯域な特性によって実現されている。
 この特性を生かして近年では、ビットレートが100Gbpsという高速のインターフェース容量を有する光通信システムを可能とする多数の技術が実現されている。
 100Gbpsという高速のビットレートの光信号を光ファイバの伝送路によって長距離の伝送を行うためには、光ファイバの持つ波長分散による波形歪が問題となる。波長分散とは、光の群遅延が波長によって異なるという性質であり、1.5ミクロン帯のシングルモードファイバでは16~17ps/nm/kmという値を有する。
 この波長分散があることにより、光伝送パルスが広がってしまうため、光信号の長距離伝送が困難になる。例えば10GbpsのNRZ(Non Return to Zero)信号の場合、50~80km程度の距離までしか光信号を伝送できない。伝送距離は、波長分散によってビットレートの2乗に反比例して短くなるため、より高速なビットレート、例えば100Gbpsの場合、波長分散がある場合の光信号の伝送距離は1km以下となる。
 高速のビットレートの光信号を長距離伝送するためには、この波長分散による光伝送パルスの広がり、より正確には波長分散によって生じる光信号の波形歪を補正する必要がある。波形歪を補正するために、現在の光通信システムでは、分散補償ファイバ等の分散補償デバイスが用いられている。
 分散補償デバイスには、伝送路で生じる波長分散の分散量と絶対値がほぼ等しく符号が逆の分散補償量を持たせる。この結果、分散補償デバイスの伝達関数は、伝送路の伝達関数の逆関数となる。なお、以降、波長分散の分散量のことを単に分散量という。
 波長分散によって波形歪が生じるプロセスは線形なプロセスであるので、伝送路と分散補償デバイスとを直列に接続することにより、伝送路で生じた分散量が分散補償デバイスによって付与される分散補償量で補償される。その結果、分散補償デバイスの出力において光信号の波形が復元される。これにより、波長分散が生じる伝送路においても高速のビットレートの光信号の長距離伝送を実現している。
 一方、今後広く展開される波長多重光ネットワークでは、柔軟な経路設定を実現するため、光スイッチなどによる経路の切り替えが行われる。このような波長多重光ネットワークでは、経路の切り替えに伴って分散量も変化する。
 分散量の変化に対し、分散補償量を可変とすることができるVIPA(Virtually-Imaged Phase Array)というデバイスが実用化されているが、分散補償量を可変とすることのできる伝送距離がビットレート10Gbpsの信号で数10km程度までと短く、大きな距離の変動を伴う経路の切り替えには対応できない。
 ここで、光信号の送信側の装置内における電気信号の処理により、波長分散の分散量を補償するための技術が例えば、非特許文献1に開示されている。上述したように波長分散によって波形歪が生じるプロセスは線形なプロセスである。そのため、伝送路で生じる分散量を補償する分散補償デバイスは、その伝送路の前にあっても後にあってもよい。非特許文献1に開示されている技術では、伝送路の前となる光信号の送信側の装置内に分散補償デバイスを設ける。
 分散補償デバイスの例としては、図1に示すように構成されたトランスバーサルフィルタが挙げられる。
 図1に示すトランスバーサルフィルタ10は、複数の遅延素子11と、複数の乗算器12と、加算器13とを備えている。
 非特許文献1に開示されている技術において、光信号の送信側の装置に入力された電気信号は例えば、図1に示すトランスバーサルフィルタによって分散量が補償される。以下に、図1に示すトランスバーサルフィルタによって分散量が補償される動作について説明する。
 光信号の送信側の装置に入力された電気信号20は、図1に示すような複数の遅延素子11によって異なる遅延を与えられる。
 そして、各遅延素子11からの出力信号は、次段の遅延素子11と、乗算器12とへ入力される。なお、乗算器12へ入力される信号は分岐信号という。
 次段の遅延素子11に入力された信号は、その遅延素子11によってさらに遅延を与えられる。一方、乗算器12に入力された分岐信号には、回路係数制御装置14から出力されるタップ係数が乗算される。
 そして、各乗算器12によってタップ係数が乗算された信号が加算器13に入力され、加算器13によって総和が求められる。なお、各遅延素子11によって与えられる遅延の遅延間隔は例えば、伝送させたい信号のシンボル時間の半分という値が用いられる。
 ここで、回路係数制御装置14から供給されるタップ係数は、伝達関数のインパルス応答によって求められる値となる。なお、波長分散による伝達関数は、複素関数となるため、このタップ係数は複素数となる。そのため、分散量を補償した後の出力も複素信号となる。
 そして、分散量を補償した後の複素信号21を用いて光信号が変調される。実際には、送信側の装置に内蔵されるIQ変換器が複素信号21の実部を光信号の同相成分(cos成分)に印加し、複素信号の虚部を光信号の直交成分(sin成分)に印加する。なお、IQ変調器とは、入力された信号を同相(I)の信号と、それに直角の位相(Q)の信号とに分割する機器である。
 非特許文献1に開示されている技術では、回路係数制御装置14からトランスバーサルフィルタ10へ出力するタップ係数を変化させることにより、伝達関数を自由に変更することができるので、広い範囲の分散量の補償を可変的に行うことができる。
 上述した非特許文献1に開示されている技術を光信号の受信側の装置に適用することも原理的には可能である。しかしながら、現在広く使われている光受信機では、フォトダイオードによって光信号を電気信号に変換する際、二乗検波によって複素信号の情報が失われてしまう。
 これに対し、非特許文献2に開示されている技術では、コヒーレント光受信を行い、位相ダイバーシチ受信構成をとることによって、受信した光信号の電界の同相成分(cos成分)の情報と直交成分(sin成分)の情報とをそれぞれ抽出している。
 これらの情報から、受信した光信号の光電界の複素電界信号を得て、この複素電界信号をトランスバーサルフィルタで処理することによって分散量の補償を可能としている。
 なお、分散量の補償を行う能力は、システムの非線形な効果による劣化が無視できる範囲においては、送信側で行う場合と受信側で行う場合とではほぼ同じとなる。しかし、波長多重光ネットワークにおいて、光スイッチなどによる経路の切り替えによって伝送路の分散量が変化する場合、その分散量の変化によって生じる波形歪は、受信側でのみ検出することが可能であり、送信側で波形歪を検出することはできない。受信側において分散量を補償する場合、受信側で常に波形歪の状態を確認できるため、適応等化によって速やかに受信状態を最適化できる。
 ここで、トランスバーサルフィルタによる分散量の補償では、光信号のビットレートの高速化が進むと、同じ分散量を補償するのに必要な遅延素子数と、その遅延素子から出力される分岐信号の数(以降、タップ数という)とが大幅に増加する。このため、分散量を補償する回路の規模が非常に大きくなる。
 分散量を補償する回路の規模が非常に大きくなることを回避する方法として、分散量の補償を送信側と受信側とに分けて行う方法がある。そのための技術が例えば、非特許文献3に開示されている。
 非特許文献3には、光ファイバを利用することによって光送信機及び光受信機において分散量を補償するシステムが開示されている。光送信機及び光受信機のそれぞれに分散補償ファイバを配置することにより、光送信機及び光受信機のそれぞれにおける分散補償量を減少させている。これにより、分散量を補償する回路の規模が大きくなることを回避している。
D. McGhan,"Electronic Dispersion Compensation", optical fiber communication conference OFC2006,paper OWK1, 2006 MauriceO’Sullivan, "Expanding network applications with coherent detection", optical fibercommunication conference OFC2008, paper NWC3, 2008 T. Naito,et al., "Four 5-Gbit/s WDM transmission over 4760-km straight-line using pre- andpost-dispersion compensation and FWM cross talk reduction", Optical Fiber CommunicationConference, OFC96, paper WM3, 1996
 しかし、非特許文献3に開示されているシステムでは、光送信機は、光受信機における分散補償量がわからないため、分散量の変化に応じて光送信機における分散補償量を変化させることができない。
 その結果、分散補償量を最適化できるネットワークの大きさが受信側で補償可能な分散補償量の範囲によって限定されるという課題がある。
 本発明の目的は、上述した課題を解決する光通信システム及び光通信方法を提供することにある。
 上記目的を達成するために本発明は、
 電気信号を光信号に変調して送信する光送信機と、前記光信号を受信する光受信機とが第1の伝送路によって接続された光通信システムであって、
 前記光送信機及び前記光受信機は、前記光信号が前記第1の伝送路を通ることによって発生する波長分散の分散量の変化がほぼ無くなると、前記光送信機によって前記分散量を補償するための送信側分散補償量と、前記光受信機によって前記分散量を補償するための受信側分散補償量との合計値をほぼ一定に保ちながら、前記受信側分散補償量の絶対値を減少させる。
 また、電気信号を光信号に変調して送信する光送信機と、前記光信号を受信する光受信機とが第1の伝送路及び第2の伝送路によって接続された光通信システムにおける光通信方法であって、
 前記光信号が前記第1の伝送路を通ることによって発生する波長分散の分散量の変化がほぼ無くなると、前記光送信機によって前記分散量を補償するための送信側分散補償量と、前記光受信機によって前記分散量を補償するための受信側分散補償量との合計値をほぼ一定に保ちながら、前記受信側分散補償量の絶対値を減少させる処理を有する。
 本発明によれば、光信号が伝送路を通ることによって発生する波長分散の分散量の変化がほぼ無くなると、光送信機によって分散量を補償するための送信側分散補償量と、光受信機によって分散量を補償するための受信側分散補償量との合計値をほぼ一定に保ちながら、受信側分散補償量の絶対値を減少させる。これにより、受信側分散補償量を変化させることのできる範囲を最大限に確保する。そのため、分散量を補償する回路の規模を大きくすることなく、分散補償量を最適化できるネットワークの大きさが、光受信機で補償可能な分散補償量の範囲によって限定されることを回避できる。
トランスバーサルフィルタの構成の一例を示すブロック図である。 本発明の光通信システムの第1の実施形態の構成を示すブロック図である。 図2に示した伝送路の経路を切り替えることによって伝送路で生じる波長分散の分散量の変化を示すタイムチャートである。 図3に示した分散量の変化に対応する図2に示した送信フィルタ部及び受信フィルタ部における分散補償量の変化を示すタイムチャートである。 図2に示した光通信システムにおいて分散量を補償する動作を説明するためのフローチャートである。 本発明の光通信システムの第2の実施形態の構成を示すブロック図である。 本発明の光通信システムの第3の実施形態の構成を示すブロック図である。 ビットレートが10Gbpsに対してトランスバーサルフィルタの遅延間隔が50psである場合の各タップにおけるインパルス応答の実部及び虚部の係数の値の一例を示す図である。 本発明の光通信システムの第4の実施形態の構成を示すブロック図である。 ビットレートが10Gbpsに対してトランスバーサルフィルタの遅延間隔が50psである場合の各タップにおけるインパルス応答の実部及び虚部の係数の値の他の例を示す図である。
 以下に、本発明の実施の形態について図面を参照して説明する。
 (第1の実施形態)
 図2は、本発明の光通信システムの第1の実施形態の構成を示すブロック図である。
 本実施形態の光通信システムは図2に示すように、光送信機101と光受信機108とを備えており、光送信機101と光受信機108とはデータ信号を送信するための第1の伝送路である伝送路107及び第2の伝送路である制御信号用伝送路112で接続されている。
 光送信機101は、信号源102と、第1の回路係数制御部である回路係数制御部103と、送信フィルタ部104と、光源105と、光変調部106とを備えている。
 信号源102は、電気信号であるデジタルデータ信号を出力する。なお、ここではデジタルデータ信号のビットレートを10Gbpsとするが、これは一例であり、このビットレートに限定されるものではない。
 送信フィルタ部104は、図1に示すようなトランスバーサルフィルタである。送信フィルタ部104は、回路係数制御部103が制御する伝達関数により、信号源102から出力されたデジタルデータ信号を線形処理する。そして、-10000ps/nm~+10000ps/nmの可変な分散補償量に相当する信号をデジタルデータ信号に付与して送信信号として出力する。なお、トランスバーサルフィルタを構成する遅延素子(図1参照)による遅延間隔は、データのシンボル時間である100psの半分の50psである。この遅延間隔の50psは一例であり、シンボル時間の自然数分の1の他、自由な値を取りうる。以降、送信フィルタ部104が付与する分散補償量を送信側分散補償量という。
 回路係数制御部103は、信号源102から出力されたデジタルデータ信号を送信フィルタ部104が線形処理する際に使用する伝達関数を制御する。なお、制御とは具体的には、送信フィルタ部104を構成するトランスバーサルフィルタにおいて、各遅延素子(図1参照)から出力される信号の分岐信号に対して乗算するタップ係数を設定して出力することである。補償したい所定の分散量に相当する値にタップ係数を設定することにより、その所定の分散量が補償される。このタップ係数を変化させることにより、送信側分散補償量を変化させることができる。また、回路係数制御部103は、送信側分散補償量の変化を開始させるための第1の開始指示を制御信号用伝送路112を介して光受信機108から受信すると、第1の開始指示が示す方向に送信側分散補償量を変化させる。
 光源105は、DFB(Distributed FeedBack)レーザで強度が一定の光を出力する。なお、光源105が出力する光は、光通信に必要な品質を有していればよく、DFBレーザに限定されない。
 光変調部106は、IQ変調器であり、光源105から出力される光信号を同相成分と直交成分とに分割する。そして、送信フィルタ部104から出力される送信信号に含まれる同相成分の情報を分割された同相成分に印加し、送信フィルタ部104から出力される送信信号に含まれる直交成分の情報を分割された直交成分に印加する。そして、同相成分及び直交成分の情報が印加された光信号を伝送路107を介して光受信機108へ送信する。なお、上述したように光変調部106は、IQ変調器(またはベクトル変調器)と呼ばれる変調器である。IQ変調器は、4相位相シフトキーイング(QPSK)変調方式等に広く用いられている一般的な変調器であるため、ここでは詳細な説明は省略する。
 図2に示す光受信機108は、第2の回路係数制御部である回路係数制御部109と、受信部110と、受信フィルタ部111とを備えている。
 受信部110は、コヒーレント光受信方式を用い、光送信機101から伝送路107を介して送信される光信号を受信して同相成分信号及び直交成分信号を検出する。そして、検出した同相成分信号及び直交成分信号を受信信号として受信フィルタ部111へ出力する。
 受信フィルタ部111は、送信フィルタ部104と同様に図1に示すようなトランスバーサルフィルタである。受信フィルタ部111は、回路係数制御部109が制御する伝達関数により、受信部110から出力された受信信号を線形処理する。そして、-10000ps/nm~+10000ps/nmの可変な分散補償量に相当する信号を受信信号に付与して出力する。なお、トランスバーサルフィルタを構成する遅延素子(図1参照)による遅延間隔は、データのシンボル時間100psの半分の50psである。この遅延間隔の50psは一例であり、シンボル時間の自然数分の1の他、自由な値を取りうる。また、受信フィルタ部111は、受信部110から出力された受信信号の分散量を検出し、回路係数制御部109からの指示により、その分散量が最小となるように適応等化する。以降、受信フィルタ部111が付与する分散補償量を受信側分散補償量という。
 回路係数制御部109は、回路係数制御部103と同様に、受信部110から出力された受信信号を受信フィルタ部111が線形処理する際に使用する伝達関数を制御する。なお、制御とは具体的には、受信フィルタ部111を構成するトランスバーサルフィルタにおいて、各遅延素子(図1参照)から出力される信号の分岐信号に対して乗算するタップ係数を設定して出力することである。補償したい所定の分散量に相当する値にタップ係数を設定することにより、その所定の分散量が補償される。このタップ係数を変化させることにより、受信側分散補償量を変化させることができる。また、回路係数制御部109は、受信フィルタ部111が検出する分散量を監視しており、分散量の変化を検知すると、その分散量の変化の変化量を最小にするため、受信フィルタ部111に適応等化させる。また、回路係数制御部109は、第1の開始指示を制御信号用伝送路112を介して回路係数制御部103へ送信する。
 以下に、上記のように構成された光通信システムにおいて波長分散の分散量を補償する動作について説明する。
 図3は、図2に示した伝送路107の経路を切り替えることによって伝送路107で生じる波長分散の分散量の変化を示すタイムチャートである。
 図4は、図3に示した分散量の変化に対応する図2に示した送信フィルタ部104及び受信フィルタ部111における分散補償量の変化を示すタイムチャートであり、(a)は受信フィルタ部111における受信側分散補償量の変化を示すタイムチャート、(b)は送信フィルタ部104における送信側分散補償量の変化を示すタイムチャート、(c)は送信側分散補償量と受信側分散補償量の合計値の変化を示すタイムチャートである。
 図5は、図2に示した光通信システムにおいて分散量を補償する動作を説明するためのフローチャートである。
 まず、図3及び図4に示す時刻tにおいて経路の切り替えが発生する(ステップS1)。
 このとき、図3に示すように図2に示した伝送路107で生じる分散量は、10000ps/nmへ増加する。
 回路係数制御部109は、この分散量の変化を検知すると、この分散量の変化の変化量を最小にするための適応等化を受信フィルタ部111に開始させる(ステップS2)。
 そして、回路係数制御部109は、図4(a)に示すように受信側分散補償量が-10000ps/nmとなったところで受信フィルタ部111における適応等化を完了させる(ステップS3)。その結果、図4(c)に示すように送信側分散補償量と受信側分散補償量との合計値が-10000ps/nmで安定する。
 この安定状態において通信が再開された後の適切な時刻である時刻t11において、回路係数制御部109は、送信側分散補償量を減少(負の分散補償量で絶対値を増加)させるための第1の開始指示を制御信号用伝送路112を介して回路係数制御部103へ送信する(ステップS4)。
 回路係数制御部103は、回路係数制御部109から送信された第1の開始指示を受信すると、送信フィルタ部104における送信側分散補償量を減少させる(ステップS5)。これにより、図4(b)に示すように送信側分散補償量は、-10000psとなる。また、これと同時に、回路係数制御部109は、受信フィルタ部111における受信側分散補償量の絶対値を減少させる(ステップS6)。具体的には、図4(a)に示すように受信フィルタ部111における分散補償量を±0ps/nmに増加させる。
 このとき、送信側分散補償量と受信側分散補償量との合計値がほぼ一定に保たれながら、送信側分散補償量及び受信側分散補償量がそれぞれ変化する。具体的には、回路係数制御部109が、受信フィルタ部111が検出する分散量に応じ、受信フィルタ部111における受信側分散補償量を変化させる。
 これにより、光送信機101と光受信機108とでそれぞれ分散補償量を変化させている間も、伝送路107に波長分散が生じることなく通信が継続できる。
 次に、回路係数制御部109は、受信側分散補償量の絶対値が最小となったかどうかを判定する(ステップS7)。
 ステップS7における判定の結果、受信側分散補償量の絶対値が最小となっていない場合、ステップS5の動作に遷移し、回路係数制御部103は送信フィルタ部104に送信側分散補償量の減少を継続させ、回路係数制御部109は受信フィルタ部111に受信側分散補償量の増加を継続させる。
 一方、ステップS7における判定の結果、受信側分散補償量の絶対値が最小となっていた場合、回路係数制御部109は、送信側分散補償量を変化させるのを停止させるための停止指示を制御信号用伝送路112を介して回路係数制御部103へ送信する(ステップS8)。
 回路係数制御部103は、回路係数制御部109から送信された停止指示を受信すると、送信フィルタ部104における送信側分散補償量の減少を停止させる(ステップS9)。
 そして、回路係数制御部109は、受信フィルタ部111における受信側分散補償量の増加を停止させる(ステップS10)。
 以上が図2に示した光通信システムにおいて、図3に示した時刻tにおいて発生した経路の切り替えによって伝送路107で生じる波長分散の分散量を補償する動作である。
 以下に、図3に示すt以降の分散量の変化における波長分散を補償する動作を説明するが、基本的に上述した動作と同様なのでフローチャートは省略する。
 図3に示すように次の経路の切り替え時刻である時刻tにおいて、図2に示した伝送路107の分散量は、20000ps/nmへ増加する。
 このとき、図4(b)に示すように送信側分散補償量は既に、-10000ps/nmとなっており、これ以上送信側分散補償量を減少させることはできない。そのため、回路係数制御部109は、受信フィルタ部111に適応等化させ、図4(a)に示すように受信側分散補償量を-10000ps/nmに変化させる。これにより、通信状態が正常となる。
 そして、この後、回路係数制御部109は、受信側分散補償量の絶対値を減少させるため、送信側分散補償量を減少させるように回路係数制御部103へ第1の開始指示を送信するが、送信フィルタ部104ではこれ以上の送信側分散補償量の減少ができないため、送信側分散補償量は変化しない。この結果、図4(a),(b)に示すように、送信側分散補償量と受信側分散補償量とが等しく-10000ps/nmで安定する。
 次に、図3に示すように次の経路切り替え時刻である時刻tにおいて、図2に示した伝送路107の分散量が0ps/nmへ減少する。
 このとき、図4(b)に示すように、既に送信フィルタ部104における送信側分散補償量が-10000ps/nmとなっている。そのため、受信フィルタ部111は、適応等化により、図4(a)に示すように受信側分散補償量を+10000ps/nmとする。これにより、通信状態が正常となる。
 また、このとき、回路係数制御部109は、受信側分散補償量の絶対値を減少させるために、送信側分散補償量を増加させるように回路係数制御部103へ第1の開始指示を送信する。
 回路係数制御部109から送信された第1の開始指示を受信した回路係数制御部103は、図4(b)に示すように、送信側分散補償量を±0ps/nmへ増加させる。また、このとき、回路係数制御部109は、受信側分散補償量の絶対値を減少させる。具体的には、図4(a)に示すように、受信フィルタ部111の分散補償量を±0ps/nmに減少させる。このとき、送信側分散補償量と受信側分散補償量との合計値がほぼ一定に保たれながら、送信側分散補償量及び受信側分散補償量がそれぞれ変化する。
 以下、図3に示した時刻tにおいて分散量が-10000ps/nmへ変化する場合、時刻tにおいて分散量が-20000ps/nmへ変化する場合、及び時刻tにおいて分散量が0ps/nmへ変化する場合も、それぞれ同様の動作が行われる。
 このように本実施形態においては、光信号が伝送路を通ることによって発生する波長分散の分散量の変化がほぼ無くなると、光送信機101によって分散量を補償するための送信側分散補償量と、光受信機108によって分散量を補償するための受信側分散補償量との合計値をほぼ一定に保ちながら、受信側分散補償量の絶対値を減少させる。これにより、受信側分散補償量を変化させることのできる範囲を最大限に確保する。そのため、分散量を補償する回路の規模を大きくすることなく、分散補償量を最適化できるネットワークの大きさが、光受信機108で補償可能な分散補償量の範囲によって限定されることを回避できる。
 ここで、経路の切り替えによる分散補償が受信側でのみ行われるとした場合、分散補償量の範囲は受信側の分散補償量の範囲である-10000ps/nm~+10000ps/nmに限定される。
 以下にこの場合の動作を、図3に示した波長分散の分散量の変化が起こった場合を一例として説明する。
 まず、時刻tにおける経路切り替え後に波長分散が10000ps/nm増加すると、受信側が適応等化することにより、受信側の分散補償量が-10000ps/nmとなったところで安定して通信が再開される。この後、送信側と受信側との間で分散補償量の移動が行われないため、送信側の分散補償量は0ps/nmのままで変化せず、受信側の分散補償量は-10000ps/nmのままで変化しない。
 この状態で、図3に示すように次の経路切り替え時刻tにおいて、経路の分散が20000ps/nmに増加する。このとき、送信側の分散補償量は±0ps/nmなので、受信側で適応等化によって波長分散を減少させようとするが、受信側の分散補償量は、既にその限界値である-10000ps/nmとなっているため、分散補償量を増加させることができない。
 このように、送信側と受信側とで分散補償量の移動が行われない場合、受信側で補償することが可能な分散補償量である-10000~+10000ps/nmの範囲に光通信システム全体の分散補償量が限定されてしまう。
 (第2の実施形態)
 上述した第1の実施形態では、伝送路107の経路の切り替えによる分散量の変化に対応して受信側分散補償量を変化させるために、光受信機108における適応等化を利用した。これにより、第1の実施形態では光通信システムの構成をシンプルな構成にすることができた。しかし、適応等化が開始される時点では、伝送路107の分散量が既に変化しており、偏波分散変動等の他の劣化要因の変動に対して通信品質が劣化しやすい状況となる。
 また、適応等化自体に時間がかかってしまうことから、経路の切り替えが短時間で頻繁に生じる場合、送信側分散補償量及び受信側分散補償量を大きく変化させることが難しい。
 以下に説明する第2の実施形態では、光受信機における適応等化ではなく、受信側分散補償量の変化を指示するための制御開始フレームを送信信号に埋め込んで光受信機へ送信し、光送信機と光受信機とで同期して分散補償量を変化させることによって伝送路107の分散量の変化への対応を行う。
 図6は、本発明の光通信システムの第2の実施形態の構成を示すブロック図である。
 図6に示すように本実施形態の光通信システムは、図2に示した第1の実施形態の光通信システムと比べ、光送信機201に制御開始フレーム挿入部207が備えられ、光受信機208に制御開始フレーム検出部212が備えられている点が異なる。
 制御開始フレーム挿入部207は、回路係数制御部203が送信側分散補償量を変化させる際、信号源202から出力されたデジタルデータ信号に制御開始フレームを挿入する。そして、制御開始フレームが挿入されたデジタルデータ信号と、制御開始フレームを挿入したことを示す挿入情報を出力する。
 回路係数制御部203は、制御開始フレーム挿入部207から出力された挿入情報を受け付けてから所定の時間が経過すると、送信フィルタ部204における送信側分散補償量を変化させる。
 制御開始フレーム検出部212は、受信フィルタ部211から出力された受信信号の中に制御開始フレームを検出すると、制御開始フレームを検出したことを通知するための検出情報を回路係数制御部209へ出力する。
 回路係数制御部209は、制御開始フレーム検出部212から出力された検出情報を受け付けてから所定の時間が経過すると、受信フィルタ部211における受信側分散補償量を変化させる。
 なお、本実施形態において、制御開始フレームを利用して送信側分散補償量及び受信側分散補償量を同期して変化させることにより、伝送路107の分散量を補償し終わると、上述した第1の実施形態で説明したように、受信側分散補償量の絶対値が減少するように受信側分散補償量と送信側分散補償量とを同期して変化させる動作が行われる。
 このように本実施形態においては、光送信機201は、受信側分散補償量を変化させることを指示するための制御開始フレームを光受信機208へ送信する。そのため、速やかに、かつ、より正確なタイミングで伝送路107の分散量を補償することができる。
 なお、本実施形態において回路係数制御部203は、制御開始フレーム挿入部207から挿入情報を受け付け、挿入情報を受け付けてから所定の時間が経過すると、送信側分散補償量を変化させた。このような方法ではなく、例えば、回路係数制御部203が制御開始フレーム挿入部207へ制御開始フレームの挿入を指示し、この指示を行ってから所定の時間が経過すると、送信側分散補償量を変化させるようにしてもよい。
 (第3の実施形態)
 上述した第2の実施形態では、光送信機と光受信機との間で制御開始フレームを利用することにより、送信側分散補償量及び受信側分散補償量を変化させるタイミングを制御した。この場合、送信信号に制御開始フレームを挿入するため、伝送路107のビットレートが変化してしまい、既存の伝送速度のコンポーネントを用いることができなくなる可能性がある。
 以下に説明する第3の実施形態においては、光送信機が制御信号用伝送路112を用いて受信側分散補償量の変化の開始を光受信機へ指示する。
 図7は、本発明の光通信システムの第3の実施形態の構成を示すブロック図である。
 回路係数制御部303は、送信側分散補償量を変化させる際、受信側分散補償量の変化の開始を指示するための第2の開始指示を制御信号用伝送路112を介して回路係数制御部309へ送信する。そして、第2の開始指示を送信してから所定の時間が経過すると、送信フィルタ部304における送信側分散補償量を変化させる。
 回路係数制御部303から送信された第2の開始指示を受信した回路係数制御部309は、第2の開始指示を受信してから所定の時間が経過すると、受信フィルタ部311における受信側分散補償量を変化させる。
 なお、本実施形態において、第2の開始指示を利用して送信側分散補償量及び受信側分散補償量を同期して変化させることにより、伝送路107の分散量を補償し終わると、上述した第1の実施形態で説明したように、受信側分散補償量の絶対値が減少するように受信側分散補償量と送信側分散補償量とを同期して変化させる動作が行われる。
 このように本実施形態においては、光送信機201は、制御信号用伝送路112を利用して受信側分散補償量を変化させることを光受信機208へ指示する。そのため、伝送路107のビットレートを変化させることなく、速やかに、かつ、より正確なタイミングで伝送路107の分散量を補償することができる。
 ただし、本実施形態においては、制御信号用伝送路112と伝送路107との伝送遅延がゆらぎ等によって異なる場合、送信フィルタ部304における送信側分散補償量を変化させるタイミングと、受信フィルタ部311における受信側分散補償量を変化させるタイミングとの間にずれが生じる可能性がある。このずれが生じた場合にも信号の品質の劣化を生じさせないため、例えば、送信側分散補償量及び受信側分散補償量の変化を少しずつ複数に分けて行う等により、信号の品質の劣化を最小に抑える必要がある。
 (第4の実施形態)
 上述した第1~第3の実施形態では、受信フィルタにおける受信側分散補償量の変化と、送信フィルタにおける送信側分散補償量の変化とを同時に行っている。この場合、送信フィルタ部と受信フィルタ部を構成するトランスバーサルフィルタのフィルタ係数を同時に変更する必要がある。しかし、送信フィルタ部及び受信フィルタ部のいずれにおいても、それらに入力される信号の同相成分及び直交成分に対するフィルタ処理が必要なため、それぞれのタップ係数の設定量が膨大となる。特に、フィルタ処理による微小な分散補償量の変化に対しても、大きなフィルタ係数の変化が伴う場合、精度の高い制御を行わないと安定して分散補償量を変化させることが難しい。
 以下に説明する第4の実施形態では、送信フィルタ部及び受信フィルタ部をそれぞれ2つに分け、送信フィルタ部及び受信フィルタ部において補償する分散補償量を2つに分けることにより、タップ係数を更新する量を削減する。
 送信フィルタ部及び受信フィルタ部を構成するトランスバーサルフィルタでは、伝送路107の伝達関数の逆関数処理を行う。具体的には、逆関数の逆フーリエ変換で得られるインパルス応答の係数の値を各遅延素子の出力の乗算器においてタップ係数値として乗ずればよい。
 このとき、波長分散の分散量D(ps/nm)が伝送信号のビットレートB(Gbps)に対して以下に示す式(1)で表される関係となる場合、逆伝達関数のインパルス応答の実部の多くの部分が0となる。
Figure JPOXMLDOC01-appb-M000001
 上記の式(1)においてKは、光信号の波長に依存する定数であり、波長1500nmではおよそ62500となる。
 図8は、ビットレートが10Gbpsに対してトランスバーサルフィルタの遅延間隔が50psである場合の各タップにおけるインパルス応答の実部及び虚部の係数の値の一例を示す図であり、(a)は分散量が5000ps/nm(n=4)の場合の各タップにおけるインパルス応答の実部及び虚部の係数の値を示す図、(b)は分散量が6250ps/nm(n=5)の場合の各タップにおけるインパルス応答の実部及び虚部の係数の値を示す図、(c)は分散量が5350ps/nmの場合の各タップにおけるインパルス応答の実部及び虚部の係数の値を示す図である。なお、図8において、縦軸が各タップにおけるインパルス応答の実部及び虚部の係数の値を示すが、図中ではそれをタップ係数値と表記している。
 図8(a)に示す例において実部の係数値は、中心から12タップ目以降でほぼ0となっている。また、図8(b)に示す例において実部の係数値は、中心から14タップ目以降でほぼ0となっている。
 一方、図8(c)に示す例において実部の係数値は、中心から20タップ目以降でも0よりも大きな値がある。
 このように、トランスバーサルフィルタを上記の式(1)に従う間隔で変化させることにより、タップ係数値が0であるタップを増やすことが可能となる。この性質を用いて、送信フィルタ部及び受信フィルタ部をそれぞれ2つに分け、一方の送信フィルタ部及び受信フィルタ部では、上記の式(1)においてnの値を変化させることによって算出される2K/Bの定数倍の分散量をステップ的に補償する。そして、もう一方の送信フィルタ部及び受信フィルタ部では、上記の式(1)においてnの値を変化させることによって算出される2K/Bの定数倍の分散量以外の微小な分散量を固定的に補償する。これにより、タップ係数を更新する量を削減することができる。
 図9は、本発明の光通信システムの第4の実施形態の構成を示すブロック図である。
 図9に示すように本実施形態の光通信システムは、図2、図6及び図7に示した第1~第3の実施形態の光通信システムと比べると、光送信機401において、送信フィルタ部が、第1の送信フィルタ部である送信フィルタ部404-1と、第2の送信フィルタ部である送信フィルタ部404-2とに分割されており、また、回路係数設定部407が備えられている点が異なる。また、光受信機408において、受信フィルタ部が、第1の受信フィルタ部である受信フィルタ部411-1と、第2の受信フィルタ部である受信フィルタ部411-2とに分割されており、また、回路係数設定部412が備えられている点が異なる。
 回路係数設定部407は、送信フィルタ部404-1,404-2が補償を行う際に利用するタップ係数を回路係数制御部403及び送信フィルタ部404-2へ出力する。
 送信フィルタ部404-1は、上記の式(1)においてnの値を変化させることによって算出される2K/Bの定数倍の分散量をステップ的に補償するための第1の送信側分散補償量に相当する信号を信号源402から出力されるデジタルデータ信号に付与する。そして、第1の送信側分散補償量が付与されたデジタルデータ信号を第1の送信側補償済信号として送信フィルタ部404-2へ出力する。
 送信フィルタ部404-2は、上記の式(1)においてnの値を変化させることによって算出される2K/Bの定数倍の分散量以外の微小な分散量を固定的に補償するための第2の送信側分散補償量に相当する信号を、送信フィルタ部404-1から出力された第1の送信側補償済信号に付与する。そして、第2の送信側分散補償量を付与した第1の送信側補償済信号を送信信号として光変調部406へ出力する。なお、送信フィルタ部404-2は、微小な分散量を補償するだけなので回路規模は小さい。
 回路係数設定部412は、受信フィルタ部411-1,411-2が補償を行う際に利用するタップ係数を回路係数制御部409及び受信フィルタ部411-2へ出力する。
 受信フィルタ部411-1は、上記の式(1)においてnの値を変化させることによって算出される2K/Bの定数倍の分散量をステップ的に補償するための第1の受信側分散補償量に相当する信号を受信部410から出力される受信信号に付与する。そして、第1の受信側分散補償量が付与された受信信号を第1の受信側補償済信号として受信フィルタ部411-2へ出力する。
 受信フィルタ部411-2は、上記の式(1)においてnの値を変化させることによって算出される2K/Bの定数倍の分散量以外の微小な分散量を固定的に補償するための第2の受信側分散補償量に相当する信号を、受信フィルタ部411-1から出力された第1の受信側補償済信号に付与して出力する。なお、受信フィルタ部411-2は、微小な分散量を補償するだけなので回路規模は小さい。
 このように本実施形態においては、送信フィルタ部及び受信フィルタ部をそれぞれ2つに分け、送信フィルタ部404-1及び受信フィルタ部411-1では所定の分散量の定数倍の分散量を補償し、送信フィルタ部404-2及び受信フィルタ部411-2では所定の分散量の定数倍以外の分散量を固定的に補償する。そのため、タップ係数を更新する量を削減することができる。
 なお、本実施形態においては、式(1)においてnの値を変化させることによって算出される2K/Bの定数倍の分散量をステップ的に補償することにより、実部の係数値の多くを0とできた。
 ここで、以下に示す式(2)のにおいてnの値を変化させることによって算出される2K/Bの定数倍の分散量をステップ的に補償することにより、上述した場合とは逆に、虚部の係数値の多くを0とすることができる。
Figure JPOXMLDOC01-appb-M000002
 図10は、ビットレートが10Gbpsに対してトランスバーサルフィルタの遅延間隔が50psである場合の各タップにおけるインパルス応答の実部及び虚部の係数の値の他の例を示す図であり、(a)は分散量が4375(ps/nm)(n=4)の場合の各タップにおけるインパルス応答の実部及び虚部の係数の値を示す図、(b)は分散量が5675(ps/nm)(n=5)の場合の各タップにおけるインパルス応答の実部及び虚部の係数の値を示す図である。なお、図10において、縦軸が各タップにおけるインパルス応答の実部及び虚部の係数の値を示すが、図中ではそれをタップ係数値と表記している。
 図10(a)に示す例では、中心から11タップ目以降で虚部の係数値がほぼ0となっている。また、図10(b)に示す例では、中心から13タップ目以降で虚部の係数値がほぼ0となっている。
 この特性を利用して、上述した場合と同様の効果が得られることは明らかである。
 この出願は、2009年2月4日に出願された日本出願特願2009-023703を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 

Claims (18)

  1.  電気信号を光信号に変調して送信する光送信機と、前記光信号を受信する光受信機とが第1の伝送路によって接続された光通信システムであって、
     前記光送信機及び前記光受信機は、前記光信号が前記第1の伝送路を通ることによって発生する波長分散の分散量の変化がほぼ無くなると、前記光送信機によって前記分散量を補償するための送信側分散補償量と、前記光受信機によって前記分散量を補償するための受信側分散補償量との合計値をほぼ一定に保ちながら、前記受信側分散補償量の絶対値を減少させる光通信システム。
  2.  請求項1に記載の光通信システムにおいて、
     前記光送信機と前記光受信機との間を接続する第2の伝送路を有し、
     前記光送信機は、
     前記送信側分散補償量に相当する信号を前記電気信号に付与して送信信号として出力する送信フィルタ部と、
     前記送信側分散補償量を変化させる第1の回路係数制御部と、
     前記送信フィルタ部から出力された前記送信信号を変調して前記光信号として前記光受信機へ送信する光変調部と、を有し、
     前記光受信機は、
     前記光変調部から送信された前記光信号を受信し、該受信した前記光信号を電気信号に変換した受信信号を出力する受信部と、
     前記受信部から出力された前記受信信号の前記分散量を検出し、該検出された前記分散量に応じ、前記受信側分散補償量に相当する信号を前記受信信号に付与して出力する受信フィルタ部と、
     前記受信フィルタ部が検出する前記分散量を監視し、前記受信側分散補償量を変化させる第2の回路係数制御部と、を有し、
     前記第2の回路係数制御部は、前記分散量の変化がほぼ無くなると、前記受信側分散補償量の絶対値を減少させる方向に前記送信側分散補償量を変化させるための第1の開始指示を前記第2の伝送路を介して前記第1の回路係数制御部へ送信し、前記受信側分散補償量と前記送信側分散補償量との合計値をほぼ一定に保ちながら、前記受信側分散補償量の絶対値を減少させる方向に前記受信側分散補償量を変化させ、
     前記第1の回路係数制御部は、前記第2の回路係数制御部から送信された前記第1の開始指示を受信すると、該第1の開始指示が示す方向に前記送信側分散補償量を変化させる光通信システム。
  3.  請求項2に記載の光通信システムにおいて、
     前記第2の回路係数制御部は、前記受信側分散補償量の絶対値が最小となったことを検知すると、前記送信側分散補償量を変化させるのを停止させるための停止指示を前記第2の伝送路を介して前記第1の回路係数制御部へ送信するとともに、前記受信側分散補償量を変化させるのを停止し、
     前記第1の回路係数制御部は、前記第2の回路係数制御部から送信された前記停止指示を受信すると、前記送信側分散補償量を変化させるのを停止する光通信システム。
  4.  請求項2または請求項3に記載の光通信システムにおいて、
     前記第2の回路係数制御部は、前記受信フィルタ部が検出する前記分散量の変化を検知すると、該変化の変化量が最小となるように前記受信側分散補償量を変化させる光通信システム。
  5.  請求項2または請求項3に記載の光通信システムにおいて、
     前記光送信機は、前記送信側分散補償量の変化を開始する際、前記受信側分散補償量の変化を開始させるための制御開始フレームを前記電気信号に挿入し、該制御開始フレームを挿入した前記電気信号と、前記制御開始フレームを挿入したことを示す挿入情報を出力する制御開始フレーム挿入部を有し、
     前記光受信機は、前記受信部から出力された受信信号から前記制御開始フレームを検出し、該制御開始フレームを検出したことを示す検出情報を出力する制御開始フレーム検出部を有し、
     前記第1の回路係数制御部は、前記制御開始フレーム挿入部から出力された前記挿入情報を受け付けてから所定の時間が経過すると、前記送信側分散補償量を変化させ、
     前記第2の回路係数制御部は、前記制御開始フレーム検出部から出力された前記検出情報を受け付けてから所定の時間が経過すると、前記受信側分散補償量を変化させる光通信システム。
  6.  請求項2または請求項3に記載の光通信システムにおいて、
     前記光送信機は、前記受信側分散補償量の変化を開始させるための制御開始フレームを前記電気信号に挿入して出力する制御開始フレーム挿入部を有し、
     前記光受信機は、前記受信部から出力された受信信号から前記制御開始フレームを検出し、該制御開始フレームを検出したことを示す検出情報を出力する制御開始フレーム検出部を有し、
     前記第1の回路係数制御部は、前記送信側分散補償量の変化を開始する際、前記制御開始フレーム挿入部に対し、前記制御開始フレームを前記電気信号に挿入する指示をし、該指示をしてから所定の時間が経過すると、前記送信側分散補償量を変化させ、
     前記第2の回路係数制御部は、前記制御開始フレーム検出部から出力された前記検出情報を受け付けてから所定の時間が経過すると、前記受信側分散補償量を変化させる光通信システム。
  7.  請求項2または請求項3に記載の光通信システムにおいて、
     前記第1の回路係数制御部は、前記送信側分散補償量の変化を開始する際、前記受信側分散補償量の変化を開始させるための第2の開始指示を前記第2の伝送路を介して前記第2の回路係数制御部へ送信し、前記第2の開始指示を送信してから所定の時間が経過すると、前記送信側分散補償量を変化させ、
     前記第2の回路係数制御部は、前記第1の回路係数制御部から送信された前記第2の開始指示を受信してから所定の時間が経過すると、前記受信側分散補償量を変化させる光通信システム。
  8.  請求項2乃至7のいずれか1項に記載の光通信システムにおいて、
     前記送信フィルタ部は、
     所定の分散量の定数倍の前記分散量を補償するための第1の送信側分散補償量に相当する信号を前記電気信号に付与して第1の送信側補償済信号として出力する第1の送信フィルタ部と、
     前記所定の分散量の定数倍以外の前記分散量を補償するための第2の送信側分散補償量に相当する信号を前記第1の送信フィルタ部から出力された前記第1の送信側補償済信号に付与して前記送信信号として出力する第2の送信フィルタ部と、に分割され、
     前記受信フィルタ部は、
     所定の分散量の定数倍の前記分散量を補償するための第1の受信側分散補償量に相当する信号を前記受信信号に付与して第1の受信側補償済信号として出力する第1の受信フィルタ部と、
     前記所定の分散量の定数倍以外の前記分散量を補償するための第2の受信側分散補償量に相当する信号を前記第1の受信フィルタ部から出力された前記第1の受信側補償済信号に付与して出力する第2の受信フィルタ部と、に分割された光通信システム。
  9.  請求項2乃至7のいずれか1項に記載の光通信システムにおいて、
     前記送信フィルタ部は、
     所定の値以上の前記分散量を補償するための第1の送信側分散補償量に相当する信号を前記電気信号に付与して第1の送信側補償済信号として出力する第1の送信フィルタ部と、
     前記所定の値よりも小さな値の前記分散量を補償するための第2の送信側分散補償量に相当する信号を前記第1の送信フィルタ部から出力された前記第1の送信側補償済信号に付与して前記送信信号として出力する第2の送信フィルタ部と、に分割され、
     前記受信フィルタ部は、
     所定の値以上の前記分散量を補償するための第1の受信側分散補償量に相当する信号を前記受信信号に付与して第1の受信側補償済信号として出力する第1の受信フィルタ部と、
     前記所定の値よりも小さな値の前記分散量を補償するための第2の受信側分散補償量に相当する信号を前記第1の受信フィルタ部から出力された前記第1の受信側補償済信号に付与して出力する第2の受信フィルタ部と、に分割された光通信システム。
  10.  電気信号を光信号に変調して送信する光送信機と、前記光信号を受信する光受信機とが第1の伝送路及び第2の伝送路によって接続された光通信システムにおける光通信方法であって、
     前記光信号が前記第1の伝送路を通ることによって発生する波長分散の分散量の変化がほぼ無くなると、前記光送信機によって前記分散量を補償するための送信側分散補償量と、前記光受信機によって前記分散量を補償するための受信側分散補償量との合計値をほぼ一定に保ちながら、前記受信側分散補償量の絶対値を減少させる処理を有する光通信方法。
  11.  請求項10に記載の光通信方法において、
     前記光送信機が、
     前記送信側分散補償量に相当する信号を前記電気信号に付与して送信信号とする送信側補償処理と、
     前記送信信号を変調して前記光信号として前記光受信機へ送信する処理と、
     前記光受信機が、
     前記光信号を受信し、該受信した前記光信号を電気信号に変換して受信信号とする処理と、
     前記受信信号の前記分散量を検出する処理と、
     前記検出された前記分散量に応じ、前記受信側分散補償量に相当する信号を前記受信信号に付与する受信側補償処理と、
     前記分散量の変化がほぼ無くなると、前記受信側分散補償量の絶対値を減少させる方向に前記送信側分散補償量を変化させるための第1の開始指示を前記第2の伝送路を介して前記光送信機へ送信し、前記受信側分散補償量と前記送信側分散補償量との合計値をほぼ一定に保ちながら、前記受信側分散補償量の絶対値を減少させる方向に前記受信側分散補償量を変化させる処理と、
     前記光送信機が、前記第1の開始指示を受信すると、該第1の開始指示が示す方向に前記送信側分散補償量を変化させる処理と、を有する光通信方法。
  12.  請求項11に記載の光通信方法において、
     前記光受信機が、前記受信側分散補償量の絶対値が最小となったことを検知すると、前記送信側分散補償量を変化させるのを停止させるための停止指示を前記第2の伝送路を介して前記光送信機へ送信するとともに、前記受信側分散補償量を変化させるのを停止する処理と、
     前記光送信機が、前記光受信機から送信された前記停止指示を受信すると、前記送信側分散補償量及を変化させるのを停止する処理と、をさらに有する光通信方法。
  13.  請求項11または請求項12に記載の光通信方法において、
     前記光受信機が、前記分散量の変化を検知すると、該変化の変化量が最小となるように前記受信側分散補償量を変化させる処理をさらに有する光通信方法。
  14.  請求項11または請求項12に記載の光通信方法において、
     前記光送信機が、
     前記送信側分散補償量の変化を開始する際、前記受信側分散補償量の変化を開始させるための制御開始フレームを前記電気信号に挿入し、前記制御開始フレームを挿入したことを示す挿入情報を出力する処理と、
     前記挿入情報を受け付けてから所定の時間が経過すると、前記送信側分散補償量を変化させる処理と、
     前記光受信機が、
     前記受信信号から前記制御開始フレームを検出し、該制御開始フレームを検出したことを示す検出情報を出力する処理と、
     前記検出情報を受け付けてから所定の時間が経過すると、前記受信側分散補償量を変化させる処理と、をさらに有する光通信方法。
  15.  請求項11または請求項12に記載の光通信方法において、
     前記光送信機が、
     前記送信側分散補償量の変化を開始する際、前記受信側分散補償量の変化を開始させるための制御開始フレームを前記電気信号に挿入させる指示をする処理と、
     前記指示に応じて前記制御開始フレームを前記電気信号へ挿入する処理と、
     前記指示をしてから所定の時間が経過すると、前記送信側分散補償量の変化を開始させる処理と、
     前記光受信機が、
     前記受信信号から前記制御開始フレームを検出し、該制御開始フレームを検出したことを示す検出情報を出力する処理と、
     前記検出情報を受け付けてから所定の時間が経過すると、前記受信側分散補償量の変化を開始させる処理と、をさらに有する光通信方法。
  16.  請求項11または請求項12に記載の光通信方法において、
     前記光送信機が、
     前記送信側分散補償量の変化を開始する際、前記受信側分散補償量の変化の開始を指示するための第2の開始指示を前記第2の伝送路を介して前記光受信機へ送信する処理と、
     前記第2の開始指示を送信してから所定の時間が経過すると、前記送信側分散補償量を変化させる処理と、
     前記光受信機が、前記第2の開始指示を受信してから所定の時間が経過すると、前記受信側分散補償量を変化させる処理と、をさらに有する光通信方法。
  17.  請求項11乃至16のいずれか1項に記載の光通信方法において、
     前記送信側補償処理は、
     所定の分散量の定数倍の前記分散量を補償するための第1の送信側分散補償量に相当する信号を前記電気信号に付与して第1の送信側補償済信号とする第1の送信側補償処理と、
     前記所定の分散量の定数倍以外の前記分散量を補償するための第2の送信側分散補償量に相当する信号を前記第1の送信側補償済信号に付与して前記送信信号とする第2の送信側補償処理と、を含み、
     前記受信側補償処理は、
     所定の分散量の定数倍の前記分散量を補償するための第1の受信側分散補償量に相当する信号を前記受信信号に付与して第1の受信側補償済信号とする第1の受信側補償処理と、
     前記所定の分散量の定数倍以外の前記分散量を補償するための第2の受信側分散補償量に相当する信号を前記第1の受信側補償済信号に付与する第2の受信側補償処理と、を含む光通信方法。
  18.  請求項11乃至16のいずれか1項に記載の光通信方法において、
     前記送信側補償処理は、
     所定の値以上の前記分散量を補償するための第1の送信側分散補償量に相当する信号を前記電気信号に付与して第1の送信側補償済信号とする第1の送信側補償処理と、
     前記所定の値よりも小さな値の前記分散量を補償するための第2の送信側分散補償量に相当する信号を前記第1の送信側補償済信号に付与して前記送信信号とする第2の送信側補償処理と、を含み、
     前記受信側補償処理は、
     所定の値以上の前記分散量を補償するための第1の受信側分散補償量に相当する信号を前記受信信号に付与して第1の受信側補償済信号とする第1の受信側補償処理と、
     前記所定の値よりも小さな値の前記分散量を補償するための第2の受信側分散補償量に相当する信号を前記第1の受信側補償済信号に付与する第2の受信側補償処理と、を含む光通信方法。
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
     
PCT/JP2010/050136 2009-02-04 2010-01-08 光通信システム及び光通信方法 WO2010090050A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/147,079 US8909060B2 (en) 2009-02-04 2010-01-08 Optical communication system and optical communication method
CN201080006672.3A CN102308499B (zh) 2009-02-04 2010-01-08 光通信系统和光通信方法
JP2010549416A JP5522056B2 (ja) 2009-02-04 2010-01-08 光通信システム及び光通信方法
EP10738389.5A EP2395683A4 (en) 2009-02-04 2010-01-08 OPTICAL COMMUNICATION SYSTEM AND OPTICAL COMMUNICATION METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009023703 2009-02-04
JP2009-023703 2009-02-04

Publications (1)

Publication Number Publication Date
WO2010090050A1 true WO2010090050A1 (ja) 2010-08-12

Family

ID=42541957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/050136 WO2010090050A1 (ja) 2009-02-04 2010-01-08 光通信システム及び光通信方法

Country Status (5)

Country Link
US (1) US8909060B2 (ja)
EP (1) EP2395683A4 (ja)
JP (1) JP5522056B2 (ja)
CN (1) CN102308499B (ja)
WO (1) WO2010090050A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120148259A1 (en) * 2010-12-14 2012-06-14 Tyco Electronics Subsea Communications Llc Dispersion Management in Optical Networks Including Both Coherent and Direct Detection Receivers
JP2014171016A (ja) * 2013-03-01 2014-09-18 Nec Corp 光送信システム、その制御方法、及びプログラム

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8909060B2 (en) * 2009-02-04 2014-12-09 Nec Corporation Optical communication system and optical communication method
JP5786427B2 (ja) * 2011-04-13 2015-09-30 富士通株式会社 スキュー低減方法および光伝送システム
US20130083746A1 (en) 2011-09-30 2013-04-04 Interdigital Patent Holdings, Inc. Method and apparatus for allocating resources for an enhanced physical hybrid automatic repeat request indicator channel
WO2013076832A1 (ja) * 2011-11-24 2013-05-30 富士通株式会社 波長パス切り替え方法、光伝送システム、光伝送装置、光中継装置及びネットワーク管理装置
CN106572040B (zh) * 2015-10-12 2020-04-21 富士通株式会社 发射端调制器的偏置漂移估计装置、补偿装置以及接收机
US11637637B1 (en) * 2021-12-23 2023-04-25 Equinix, Inc. Hybrid compensation of chromatic dispersion in optical networks

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01157112A (ja) * 1987-12-14 1989-06-20 Fujitsu Ltd 自動等化方式
JPH1188260A (ja) * 1997-09-09 1999-03-30 Fujitsu Ltd 光伝送路の分散補償装置
JP2002208892A (ja) * 2001-01-10 2002-07-26 Fujitsu Ltd 分散補償方法、分散補償装置および光伝送システム
JP2003101478A (ja) * 2001-09-25 2003-04-04 Furukawa Electric Co Ltd:The 波長分散補償システム
JP2007067698A (ja) * 2005-08-30 2007-03-15 Mitsubishi Electric Corp 通信システムおよび送受信装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3784691B2 (ja) * 2001-10-30 2006-06-14 富士通株式会社 伝送特性補償制御システム
JP2003224496A (ja) 2002-01-29 2003-08-08 Matsushita Electric Ind Co Ltd 送受信装置、無線通信システム及び送受信方法
US7058311B1 (en) * 2002-03-15 2006-06-06 Xtera Communications, Inc. System and method for dispersion compensation in an optical communication system
US7676158B2 (en) * 2005-11-07 2010-03-09 Broadcom Corporation Method and system for optimum channel equalization from a SerDes to an optical module
US7266310B1 (en) * 2003-04-29 2007-09-04 Nortel Networks Limited Digital compensation for optical transmission system
US7254342B2 (en) * 2003-10-29 2007-08-07 Fujitsu Limited Method and system for transmitting information in an optical communication system with low signal distortion
JP4491268B2 (ja) 2004-04-21 2010-06-30 富士通株式会社 分散補償量設定方法,受信端局および波長多重光伝送システム
US8538272B1 (en) * 2004-04-22 2013-09-17 Ciena Corporation Data security in optical communications systems
US7443798B2 (en) * 2004-09-03 2008-10-28 Agere Systems Inc. Transmit adaptive equalization for communication system with one or more serial data channels
JP2007049486A (ja) 2005-08-10 2007-02-22 Sumitomo Electric Ind Ltd 光伝送システム及びそのアップグレード方法
PT1971052E (pt) * 2005-12-20 2012-07-12 Zte Corp Aparelho e método para compensação de dispersão autoadaptativa
DE602006008750D1 (de) * 2006-05-08 2009-10-08 Alcatel Lucent Verfahren zum Betreiben und Optimieren eines WDM-Übertragungssystems und entsprechendes Computerprogrammprodukt
CN101179338B (zh) * 2006-11-10 2012-02-29 中兴通讯股份有限公司 一种光传输系统大色散量补偿的方法
CN101207445A (zh) * 2006-12-21 2008-06-25 华为技术有限公司 一种色散补偿方法和光纤传输系统
US7693428B2 (en) * 2007-02-27 2010-04-06 Celight, Inc. Optical orthogonal frequency division multiplexed communications with nonlinearity compensation
JP2008244530A (ja) * 2007-03-25 2008-10-09 Nec Corp 制御信号を用い波長分散を補償する光伝送装置及び方法
US8909060B2 (en) * 2009-02-04 2014-12-09 Nec Corporation Optical communication system and optical communication method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01157112A (ja) * 1987-12-14 1989-06-20 Fujitsu Ltd 自動等化方式
JPH1188260A (ja) * 1997-09-09 1999-03-30 Fujitsu Ltd 光伝送路の分散補償装置
JP2002208892A (ja) * 2001-01-10 2002-07-26 Fujitsu Ltd 分散補償方法、分散補償装置および光伝送システム
JP2003101478A (ja) * 2001-09-25 2003-04-04 Furukawa Electric Co Ltd:The 波長分散補償システム
JP2007067698A (ja) * 2005-08-30 2007-03-15 Mitsubishi Electric Corp 通信システムおよび送受信装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
D. MCGHAN: "Electric Dispersion Compensation", OPTICAL FIBER CONFERENCE (OFC), 10 March 2006 (2006-03-10), XP008157076 *
See also references of EP2395683A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120148259A1 (en) * 2010-12-14 2012-06-14 Tyco Electronics Subsea Communications Llc Dispersion Management in Optical Networks Including Both Coherent and Direct Detection Receivers
CN103238283A (zh) * 2010-12-14 2013-08-07 泰科电子海底通信有限责任公司 在包括相干和直接检测接收机的光网络中的色散管理
US9300402B2 (en) * 2010-12-14 2016-03-29 Tyco Electronics Subsea Communications Llc Dispersion management in optical networks including both coherent and direct detection receivers
CN103238283B (zh) * 2010-12-14 2016-09-21 泰科电子海底通信有限责任公司 在包括相干和直接检测接收机的光网络中的色散管理
JP2014171016A (ja) * 2013-03-01 2014-09-18 Nec Corp 光送信システム、その制御方法、及びプログラム

Also Published As

Publication number Publication date
US20110293287A1 (en) 2011-12-01
EP2395683A4 (en) 2015-01-28
US8909060B2 (en) 2014-12-09
CN102308499A (zh) 2012-01-04
JP5522056B2 (ja) 2014-06-18
EP2395683A1 (en) 2011-12-14
JPWO2010090050A1 (ja) 2012-08-09
CN102308499B (zh) 2015-01-21

Similar Documents

Publication Publication Date Title
JP5522056B2 (ja) 光通信システム及び光通信方法
JP5088271B2 (ja) 歪補償器、光受信装置およびそれらの制御方法並びに光伝送システム
US9112608B2 (en) Resource-efficient digital chromatic dispersion compensation in fiber optical communication using spectral shaping subcarrier modulation
KR101484498B1 (ko) 다중 모드 통신들을 위한 광 수신기
WO2018168061A1 (ja) 光伝送特性推定方法、光伝送特性補償方法、光伝送特性推定システム及び光伝送特性補償システム
EP2648346B1 (en) Optical transport system, optical transmitter device and optical receiver device
US6785446B1 (en) Multi-channel optical equalizer for intersymbol interference mitigation
US20090116844A1 (en) Electrical-dispersion compensating apparatus, optical receiving apparatus, and optical receiving method
EP1460788B1 (en) Multi-channel optical equalizer for intersymbol interference mitigation
WO2008074206A1 (fr) Procédé de compensation de dispersion et système de transmission optique
JP3699673B2 (ja) 信号受信方法
JP4842100B2 (ja) 分散予等化光送信器および光通信システム
TW202030999A (zh) 供使用於每秒50十億位元及更大速率n階脈衝振幅調變光學收發器中之用於類比電子光纖色散與頻寬預補償(edpc)的設備及方法
JPWO2012029613A1 (ja) デジタルフィルタ装置、デジタルフィルタリング方法及びデジタルフィルタ装置の制御プログラム
Chen et al. Full-field, carrier-less, polarization-diversity, direct detection receiver based on phase retrieval
US20120141134A1 (en) Transponder for an optical communications system and optical communications system
JP6428881B1 (ja) 光伝送特性推定方法、光伝送特性補償方法、光伝送特性推定システム及び光伝送特性補償システム
EP3169009B1 (en) Transmission apparatus, reception apparatus and modulation method
Zhu et al. Frequency-domain blind equalization for long-haul coherent pol-mux 16-QAM system with CD prediction and dual-mode adaptive algorithm
Bayvel et al. Digital signal processing (DSP) and its applications in optical communications systems
JP2011103656A (ja) 群遅延を使用した相互位相変調の低減
US7733562B2 (en) Optical equalization of multi-level symbol constellations
Ip et al. Nonlinear impairment compensation using backpropagation
Kaiser et al. Integrated circuits for coherent transceivers for 100 G and beyond
JP6116001B2 (ja) 光送信装置及び光受信装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080006672.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10738389

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010549416

Country of ref document: JP

REEP Request for entry into the european phase

Ref document number: 2010738389

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010738389

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13147079

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE