WO2010089857A1 - 内燃機関の始動制御装置及び内燃機関の始動制御方法 - Google Patents

内燃機関の始動制御装置及び内燃機関の始動制御方法 Download PDF

Info

Publication number
WO2010089857A1
WO2010089857A1 PCT/JP2009/051857 JP2009051857W WO2010089857A1 WO 2010089857 A1 WO2010089857 A1 WO 2010089857A1 JP 2009051857 W JP2009051857 W JP 2009051857W WO 2010089857 A1 WO2010089857 A1 WO 2010089857A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
cylinder
internal combustion
combustion engine
dead center
Prior art date
Application number
PCT/JP2009/051857
Other languages
English (en)
French (fr)
Inventor
琢也 平井
嘉紀 太長根
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2009/051857 priority Critical patent/WO2010089857A1/ja
Publication of WO2010089857A1 publication Critical patent/WO2010089857A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/009Electrical control of supply of combustible mixture or its constituents using means for generating position or synchronisation signals
    • F02D2041/0092Synchronisation of the cylinders at engine start
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/009Electrical control of supply of combustible mixture or its constituents using means for generating position or synchronisation signals

Definitions

  • the present invention relates to an internal combustion engine start control device and an internal combustion engine start control method.
  • crankshaft rotates 720 degrees in one cycle. For this reason, if the crank angle differs by 360 degrees, the position of the piston in each cylinder becomes the same. Therefore, even if only the crank angle is detected and the position of the piston is grasped, it cannot be determined in which of the two strokes the crank angle is different by 360 degrees. That is, cylinder discrimination cannot be performed.
  • the piston is located at the top dead center twice per cycle. However, even if only the crank angle is detected, it cannot be determined whether the piston is located at the top dead center of the compression stroke or the top dead center of the exhaust stroke.
  • the present invention has been made in view of the above-described problems, and an object thereof is to supply fuel to a cylinder capable of combusting fuel when the internal combustion engine is started.
  • a start control device for an internal combustion engine employs the following means. That is, the start control device for an internal combustion engine according to the present invention includes: Crank angle detecting means for detecting the crank angle; Cylinder discrimination signal detection means for detecting a signal for performing cylinder discrimination; Calculating means for calculating a fuel supply timing to the internal combustion engine based on values detected by the crank angle detecting means and the cylinder discrimination signal detecting means;
  • an internal combustion engine start control device comprising: Estimating means for estimating whether or not the fuel can be combusted when fuel is supplied at the fuel supply timing calculated by the calculating means; When it is estimated that the fuel can be burned by the estimating means, the fuel is allowed to be supplied at the time calculated by the calculating means, and when the fuel is not combustible by the estimating means, Permission means for prohibiting the supply of fuel at the time calculated by the calculating means; It is characterized by providing.
  • Cylinder discrimination is performed based on values detected by the crank angle detection means and the cylinder discrimination signal detection means. That is, it is detected that the piston of a predetermined cylinder is at a predetermined position in a predetermined stroke.
  • the calculation means calculates the timing for supplying fuel to the cylinder accordingly.
  • the estimation means determines whether or not the fuel can be combusted on the assumption that the fuel is supplied at the fuel supply timing calculated for each cylinder. That is, it is determined whether or not a condition for allowing the fuel to combust is satisfied. This determination is made based on whether or not cranking is started from a piston position where fuel can be combusted. Then, when the gas in the cylinder is sufficiently compressed, it is determined that the fuel can be combusted. This determination may be performed only for the cylinder for which the fuel supply timing comes first after the cylinder determination is completed. Further, for example, it may be performed only for the cylinder where the top dead center of the compression stroke comes first after the cylinder discrimination is completed. By these, since the supplied fuel can be burned more reliably, it can suppress that unburned fuel is discharged
  • the estimation means can estimate whether or not the fuel can be combusted based on an elapsed period from the start of cranking to the completion of cylinder discrimination.
  • the elapsed period in this case may be the time from the start of cranking to the completion of cylinder discrimination.
  • a simple determination can be made by determining whether or not the fuel can be combusted based on the elapsed time from the start of cranking.
  • some sensors that measure the crank angle have low accuracy in detecting the crank angle when the engine is started at a low engine speed.
  • the determination precision of whether a fuel can combust can be made higher.
  • the estimation means can estimate that the fuel can be combusted when the elapsed period is longer than a reference value.
  • This reference value is stored in advance as a threshold value between an elapsed period in which the fuel can be combusted and an elapsed period in which the fuel is not combustable. That is, it is possible to easily determine whether or not the fuel can be combusted by comparing the elapsed period and the threshold without actually obtaining the piston position at the start of cranking.
  • the reference value may be corrected according to the operating state of the internal combustion engine.
  • the rotational speed of the crankshaft (which may be the engine speed) varies depending on the operating state of the internal combustion engine. For example, even if the elapsed time is the same, the angle at which the crankshaft is rotated may be different. That is, the elapsed period from the start of cranking may be affected by the operating state of the internal combustion engine.
  • the reference value may be increased as the rotational speed of the crankshaft at the time of starting the engine is slower. For example, the greater the frictional resistance inside the engine, the slower the rotation speed of the crankshaft, so the reference value may be increased.
  • the permission means performs fuel supply based on the estimation result by the estimation means when the engine speed is lower than a predetermined value, and supplies fuel regardless of the estimation means when the engine speed exceeds a predetermined value. It can be carried out.
  • the calculation for fuel supply (for example, calculation of fuel injection amount or fuel injection timing) is performed after cylinder discrimination, the calculation is in time when the engine speed is low, but the engine speed is high. Then, the calculation may not be in time. In other words, the calculation for fuel supply takes a certain amount of time, but as the engine speed increases, the time from the completion of cylinder discrimination to the fuel supply becomes shorter, and the calculation may not be in time.
  • the predetermined value is a threshold value indicating whether or not the calculation for fuel supply is completed by the fuel supply timing.
  • the internal combustion engine start control method includes: A first step of performing cylinder discrimination; A second step of calculating an elapsed period from the start of cranking of the internal combustion engine to completion of cylinder discrimination; Based on the elapsed time, it is estimated whether or not the fuel can be combusted when it is assumed that the fuel is supplied to the cylinder whose fuel supply timing comes first after the cylinder discrimination is completed in the first step. And the process of When it is estimated that the fuel can be combusted in the third step, the fuel is allowed to be supplied to the cylinder where the fuel supply timing comes first, and when it is determined that the fuel cannot be combusted, the fuel supply timing is first set.
  • the fuel in the third step, it is estimated that the fuel can be combusted when the elapsed period is longer than the reference value, and the reference value can be corrected according to the operating state of the internal combustion engine.
  • fuel can be supplied to a cylinder capable of combusting fuel when the internal combustion engine is started.
  • FIG. 3 is a flowchart illustrating a flow of fuel injection control at the time of starting the internal combustion engine according to the first embodiment. It is the flowchart which showed the flow which calculates a fuel injection amount and fuel injection timing.
  • FIG. 6 is a flowchart showing a flow of fuel injection control at the time of starting an internal combustion engine according to a second embodiment.
  • FIG. 1 is a diagram showing a schematic configuration of an internal combustion engine 1 according to the present embodiment.
  • An internal combustion engine 1 shown in FIG. 1 is a water-cooled four-cycle diesel engine having four cylinders 2. However, only one cylinder 2 is shown in FIG.
  • a fuel injection valve 3 that injects fuel into the cylinder 2 is attached to the internal combustion engine 1.
  • a piston 6 connected to the crankshaft 4 of the internal combustion engine 1 via a connecting rod 5 reciprocates in the cylinder 2.
  • the internal combustion engine 1 is provided with an intake valve 7, and the intake valve 7 is opened and closed by an intake camshaft 8.
  • the intake camshaft 8 is rotated by the driving force of the crankshaft 4.
  • the intake valve 7 is opened and closed by the rotation of the intake camshaft 8.
  • a cam angle sensor 11 that measures the rotational position of the intake camshaft 8 is attached to the intake camshaft 8.
  • a crank angle sensor 12 for measuring the rotational position of the crankshaft 4 is attached to the crankshaft 4.
  • the crank angle sensor 12 corresponds to the crank angle detection means in the present invention.
  • the cam angle sensor 11 corresponds to the cylinder discrimination signal detection means in the present invention.
  • FIG. 2 is a schematic configuration diagram of the crank angle sensor 12.
  • the crank angle sensor 12 includes a rotor 121 provided on the crankshaft 4 that is an engine output shaft so as to be integrally rotatable, and a pickup 122 disposed in the vicinity thereof.
  • the rotor 121 is made of a ferromagnetic material, and a plurality of teeth 123 are formed on the outer periphery of the rotor 121 for each predetermined crank angle. However, a part of the outer periphery of the rotor 121 is formed with a missing tooth portion 124 lacking the teeth 123. In the example of FIG. 2, each tooth 123 is formed every 10 ° CA (“° CA” is a crank angle).
  • the rotor 121 is configured to have 34 teeth 123 that are missing two. That is, the missing tooth portion 124 corresponds to two teeth 123.
  • crank angle sensor 12 configured in this way, the size of the gap between the pickup 122 and the outer periphery of the rotor 121 changes when the teeth 123 pass in the vicinity of the pickup 122. Therefore, every time the teeth 123 of the rotor 121 pass in the vicinity of the pickup 122, an electromotive force is generated in the pickup 122 due to electromagnetic induction, and the crank angle sensor 12 generates a voltage pulse. Thus, the rotation angle (crank angle) of the crankshaft 4 can be detected every 10 ° by the voltage pulse output from the crank angle sensor 12.
  • the missing tooth portion 124 of the rotor 121 passes in the vicinity of the pickup 122, the generation interval of such voltage pulses becomes long. Therefore, the rotation phase (crank position) of the crankshaft 4 can be detected by detecting the output signal corresponding to the missing tooth portion 124 of the crank angle sensor 12, that is, the missing tooth signal.
  • the missing tooth portion 124 of the rotor 121 passes in the vicinity of the pickup 122. That is, it is possible to grasp the timing when the pistons 6 of the first cylinder and the fourth cylinder are positioned 90 ° before the top dead center.
  • FIG. 3 is a schematic configuration diagram of the cam angle sensor 11.
  • the cam angle sensor 11 according to the present embodiment includes a rotor 111 and a pickup 112.
  • the rotor 111 is fixed to the intake camshaft 8 that is rotated once every two rotations of the crankshaft 4 so as to be integrally rotatable.
  • the rotor 111 employed in this embodiment includes three teeth 113, 114, and 115.
  • the angles around the rotation axes of the teeth 113, 114, and 115 are set to different angles. Also, with respect to the intervals between the teeth, the angles around the rotation axis are set to different angles.
  • teeth 113 having an angle around the rotation axis of 30 ° are formed, and then, teeth of 90 ° are formed at intervals of 60 ° (this interval is referred to as a missing tooth portion 116 of 60 °).
  • 60 ° teeth 115 are formed at intervals of 30 ° from the 90 ° teeth 114 (this interval is referred to as a 30 ° missing tooth portion 117).
  • a 90 ° interval (this interval is referred to as a 90 ° missing tooth portion 118) is provided.
  • the pickup 112 is installed in the vicinity of the rotor 111. Similar to the crank angle sensor 12, the cam angle sensor 11 generates a voltage pulse each time the teeth 113, 114, 115 of the rotor 111 pass in the vicinity of the pickup 112 in accordance with the rotation of the intake camshaft 8.
  • a starter motor 13 that drives the crankshaft 4 is attached to the internal combustion engine 1.
  • a battery 14 for supplying power to the starter motor 13 is connected to the starter motor 13.
  • a water temperature sensor 15 that measures the temperature of the cooling water of the internal combustion engine 1 is attached to the internal combustion engine 1.
  • the internal combustion engine 1 configured as described above is provided with an ECU 10 that is an electronic control unit for controlling the internal combustion engine 1.
  • the ECU 10 is a unit that controls the operation state of the internal combustion engine 1 in accordance with the operation conditions of the internal combustion engine 1 and the request of the driver.
  • the ECU 10 is connected to an outside air pressure sensor 16 that measures the pressure of the outside air and an outside air temperature sensor 17 that measures the temperature of the outside air via electrical wiring, and the output signals of these various sensors are the ECU 10. To be input.
  • the fuel injection valve 3 and the starter motor 13 are connected to the ECU 10 via electric wiring, and these are controlled by the ECU 10.
  • the ECU 10 performs cylinder discrimination based on the output signal of the cam angle sensor 11 and the output signal of the crank angle sensor 12.
  • the cylinder discrimination means grasping which piston 6 of which cylinder 2 is located at 90 ° before the compression stroke top dead center. This cylinder discrimination will be described below.
  • FIG. 4 is a time chart showing the transition of the signals obtained from the cam angle sensor 11 and the crank angle sensor 12 and the crank counter CC.
  • the crank counter CC is a value obtained by integrating the number of voltage pulses from the crank angle sensor 12.
  • the crank counter CC becomes 0 when the piston 6 of any cylinder 2 is positioned at 90 ° before the top dead center, and becomes 9 when the piston 6 of any cylinder 2 is positioned at the top dead center.
  • the angle around the rotation axis of the cam angle sensor 11 is expressed in terms of a crank angle (° CA).
  • the top dead center of the compression stroke of the second cylinder is indicated by “# 2TDC”.
  • the compression stroke top dead center of the first cylinder is “# 1 TDC”
  • the compression stroke top dead center of the third cylinder is “# 3 TDC”
  • the compression stroke top dead center of the fourth cylinder is “# 4 TDC”. Show.
  • the boundary between the 30 ° tooth 114 of the rotor 111 and the 60 ° missing tooth portion 116 is located in the vicinity of the pickup 112. Pass through.
  • the boundary between the 30 ° missing tooth portion 117 and the 60 ° tooth 115 of the rotor 111 passes in the vicinity of the pickup 112. .
  • the missing tooth signal of the crank angle sensor 12 is output when the first and fourth cylinders are 90 ° before top dead center.
  • the cam angle sensor 11 determines which of the first cylinder and the fourth cylinder is 90 ° before the compression stroke top dead center. That is, when the piston 6 of the first cylinder is positioned 90 ° before the top dead center of the compression stroke, the 90 ° teeth 114 of the rotor 111 are passing through the vicinity of the pickup 112. In addition, when the piston 6 of the fourth cylinder is positioned 90 ° before the top dead center of the compression stroke, the 90 ° toothless portion 118 of the rotor 111 is passing through the vicinity of the pickup 112. .
  • a signal for determining which piston 6 of which cylinder 2 is located 90 ° before the compression stroke top dead center Is called a cylinder discrimination signal.
  • the fuel may not burn. .
  • the fuel supply timing is, for example, 10 to 20 ° CA before the top dead center of the compression stroke of the cylinder 2. This changes depending on the operating state of the internal combustion engine 1, and the operating state of the internal combustion engine 1 and the fuel supply timing are determined in advance by experiments or the like and stored in the ECU 10.
  • the ECU 10 that calculates the fuel supply timing corresponds to the calculating means in the present invention.
  • FIG. 5 is a diagram showing the relationship between the timing for performing cylinder discrimination and the stop position of the piston 6.
  • TDC0, TDC1, and TDC2 are times when one of the cylinders 2 becomes the top dead center of the compression stroke.
  • the stop position of the piston 6 refers to a stop position in one cycle, that is, the crankshaft 4 is rotated twice (720 ° CA). That is, if the crank angle is different by 360 ° CA, the position of the piston 6 is different. For example, even if the top dead center is the same, the position of the piston 6 is different between the top dead center of the compression stroke and the top dead center of the exhaust stroke.
  • the stop position of the piston 6 indicates a range from 90 ° before the compression stroke top dead center to the compression stroke top dead center by A, and a range from the compression stroke top dead center to 90 ° after the compression stroke top dead center. This is indicated by B. Cylinder discrimination is performed simultaneously with the end of the range B.
  • the condition is satisfied when the temperature in the cylinder 2 is equal to or higher than a predetermined temperature and the pressure in the cylinder 2 is equal to or higher than the predetermined pressure, and the fuel burns.
  • the gas in the cylinder 2 In order to increase the temperature and pressure in the cylinder 2, the gas in the cylinder 2 must be compressed by a predetermined ratio or more in the compression stroke. This ratio also varies depending on the temperature and pressure at the start of compression. Note that the compression is started when the intake valve 7 is closed.
  • the compression stroke is started from the beginning when the internal combustion engine 1 is started. That is, since the entire compression stroke is performed, the temperature and pressure in the cylinder 2 can be increased to values necessary for fuel combustion.
  • the compression stroke is started halfway when the internal combustion engine 1 is started.
  • the gas in the cylinder 2 leaks through the gap between the wall surface of the cylinder 2 and the piston 6 to the crankshaft 4 side. That is, the gas pressure decreases.
  • the temperature of the gas decreases. That is, since the pressure and temperature in the cylinder 2 decrease while the internal combustion engine 1 is stopped, even if the internal combustion engine 1 is subsequently started and the compression stroke is restarted, the temperature and pressure are required for fuel combustion. May not rise to value.
  • the intake stroke before the bottom dead center is first determined in the cylinder 2 (cylinder 2 that becomes the top dead center in the compression stroke at the TDC 1). Since it starts from the middle of the compression process, the entire compression process is performed from the beginning. Thereby, the temperature and pressure in the cylinder 2 are sufficiently increased.
  • the compression stroke after the bottom dead center in the cylinder 2 (the cylinder 2 that becomes the compression stroke top dead center in the TDC 1) determined first. Cranking starts midway through. Therefore, the temperature and pressure in the cylinder 2 may not rise sufficiently.
  • the cylinder 2 determined first (cylinder 2 that becomes the top dead center in the compression stroke in TDC1) does not satisfy the condition necessary for combustion, and the cylinder 2 (the second fuel supply timing comes)
  • the cylinder 2 determined first is the cylinder 2 that becomes the top dead center of the first compression stroke (the cylinder 2 that becomes the top dead center of the compression stroke at TDC1). )
  • the cylinder 2 determined for the second time becomes the cylinder 2 that becomes the top dead center of the second compression stroke. Therefore, the fuel injection is performed on the cylinder 2 determined at the second time (cylinder 2 that becomes the top dead center of the compression stroke in the TDC 2).
  • the output signal of the cam angle sensor 11 since the output signal of the cam angle sensor 11 is not stored when the internal combustion engine 1 is stopped, it cannot be determined at which position the crankshaft 4 is stopped. Then, it is impossible to determine whether the cylinder 2 determined first is the cylinder 2 that becomes the top dead center of the compression stroke for the first time from the start of cranking or the cylinder 2 that becomes the top dead center of the compression stroke for the second time.
  • whether the stop position of the piston 6 is in the range indicated by A or B is determined according to the period from the start of cranking to the first cylinder discrimination. judge. This may be determined according to the period from the start of cranking to the first cylinder determination signal. This period may be a time measured by a timer built in the ECU 10 or a crank angle obtained by counting voltage pulses of the crank angle sensor 12.
  • the relationship between the period from the start of cranking to obtaining the cylinder discrimination signal and the stop position of the piston 6 is obtained in advance through experiments or the like, mapped, and stored in the ECU 10.
  • the stop position of the piston 6 can be obtained by measuring the period from the start of cranking to obtaining the cylinder discrimination signal and substituting it into the map. Further, for example, if the period from the start of cranking to obtaining the cylinder discrimination signal is longer than the threshold value, it can be discriminated that the cylinder 2 determined first is the cylinder 2 that becomes the top dead center of the second compression stroke.
  • the cylinder 2 determined first is the cylinder 2 that becomes the top dead center of the first compression stroke.
  • This threshold value is obtained in advance by experiments or the like and stored in the ECU 10.
  • FIG. 6 is a flowchart showing a flow of fuel injection control when the internal combustion engine 1 according to this embodiment is started.
  • This routine is executed when a condition for starting the internal combustion engine 1 is satisfied. For example, a condition for starting the internal combustion engine 1 is established when the driver operates the key switch to the “start” position. In a hybrid vehicle in which the drive source of the vehicle is switched between the electric motor and the internal combustion engine 1, a condition for starting the internal combustion engine 1 is established when the drive source is switched from the electric motor to the internal combustion engine 1. Further, when a system for automatically stopping the internal combustion engine when the vehicle is stopped is provided, there is a condition for starting the internal combustion engine 1 when an operation for starting the vehicle (for example, depressing the accelerator pedal) is performed. To establish. That is, this routine is executed when the internal combustion engine 1 is started.
  • an operation for starting the vehicle for example, depressing the accelerator pedal
  • step S101 the start flag is turned ON.
  • the start flag is turned on when a condition for starting the internal combustion engine 1 is satisfied, and is turned off when the internal combustion engine 1 is stopped.
  • step S102 it is determined whether or not a cylinder determination condition is satisfied. That is, it is determined whether a cylinder discrimination signal has been obtained. If an affirmative determination is made in step S102, the process proceeds to step S103, and if a negative determination is made, step S102 is executed again.
  • step S103 the completion flag is turned ON. This completion flag is turned on when cylinder discrimination is performed, and is turned off when the internal combustion engine 1 is stopped.
  • step S104 the start time S is calculated.
  • This start time S is the time from when the start flag is turned on until the completion flag is turned on. This time is counted by the ECU 10. Note that the crank angle obtained by the crank angle sensor 12 may be counted instead of the time.
  • step S105 it is determined whether the starting time S is longer than a predetermined value S0.
  • the predetermined value S0 is an upper limit value of the starting time S when it is assumed that the cylinder 2 determined first is the cylinder 2 that becomes the top dead center of the first compression stroke from the start of cranking.
  • the predetermined value S0 is used to determine whether the cylinder 2 determined first is the cylinder 2 that is the top dead center of the compression stroke or the cylinder 2 that is the top dead center of the compression stroke after the second time. Is the threshold value.
  • the predetermined value S0 is obtained in advance through experiments or the like and stored in the ECU 10.
  • step S105 If an affirmative determination is made in step S105, the process proceeds to step S106, and if a negative determination is made, the process proceeds to step S109.
  • the ECU 10 that processes step S105 is This corresponds to the estimation means in the invention.
  • step S106 it is determined that the cylinder 2 determined first is the cylinder 2 that becomes the top dead center of the second compression stroke. That is, before obtaining the cylinder discrimination signal, it is determined that the other cylinder 2 has become the top dead center of the compression stroke. This is equivalent to determining that the stop position of the piston 6 is within the range indicated by A in FIG.
  • step S107 it is determined whether it is an injection calculation time.
  • the injection calculation timing is a timing at which calculation of the fuel injection amount and the fuel injection timing is started. For example, these calculations are started at a predetermined time before the top dead center of the compression stroke. If an affirmative determination is made in step S107, the process proceeds to step S108, and if a negative determination is made, step S107 is executed again.
  • step S108 the fuel injection amount and the fuel injection timing are calculated, and the fuel is injected according to the calculation.
  • the fuel injection amount and the fuel injection timing are calculated according to the operating state of the internal combustion engine 1. These relationships may be mapped in advance.
  • step S109 the cylinder 2 determined first is determined to be the cylinder 2 that first becomes the top dead center of the compression stroke from the start of cranking. This is equivalent to determining that the stop position of the piston 6 is within the range indicated by B in FIG.
  • step S110 it is determined whether it is an injection calculation time. Here, the same processing as step S107 is performed. If an affirmative determination is made in step S110, the process proceeds to step S111. If a negative determination is made, step S110 is executed again.
  • step S111 calculation of the fuel injection amount and fuel injection timing is prohibited, and fuel injection is also prohibited. That is, in the cylinder 2 determined first, there is a high possibility that the fuel will not burn, so fuel injection is not performed. Thereafter, the process proceeds to step S107.
  • step S105 and subsequent steps corresponds to the permission means in the present invention.
  • the stop position of the piston 6 is before the bottom dead center of the intake stroke based on whether or not the start time S is longer than the predetermined value S0.
  • the relationship between the start time S and the stop position of the piston 6 may be obtained in advance and mapped, and the stop position of the piston 6 may be directly determined from the start time S.
  • the calculation of the fuel injection amount and the fuel injection timing usually starts, for example, at 150 ° before the top dead center of the compression stroke so that it can be performed with a margin with respect to the injection timing. For example, the calculation is completed by 60 ° before the compression stroke top dead center. Even if the calculation is completed at a time later than 60 ° before the top dead center of the compression stroke, there is a risk that the fuel injection will not be in time.
  • the calculation must be started from when the cylinder discrimination signal is obtained. That is, the calculation must be started from 90 ° before the compression stroke top dead center. In this case, the calculation is in time when the engine starts at a low engine speed, but the calculation may not be in time when the engine speed is high.
  • the calculation is started after obtaining the cylinder discrimination signal for the cylinder 2 discriminated first. After that, for the cylinder 2 that performs fuel injection, the cylinder 2 that performs fuel injection is determined based on the cylinder determination signal obtained first and the signal obtained from the crank angle sensor 12. That is, after obtaining the cylinder discrimination signal for the first time, the calculation start timing of the fuel injection amount and the like in each cylinder 2 can be obtained by counting the voltage pulses of the crank angle sensor 12.
  • FIG. 7 is a flowchart showing a flow for calculating the fuel injection amount and the fuel injection timing. This routine is repeatedly executed every predetermined time.
  • step S201 the elapsed angle CA is calculated.
  • the elapsed angle CA is a crank angle after the first cylinder discrimination signal is obtained, and is obtained by integrating voltage pulses obtained by the crank angle sensor 12.
  • the missing tooth signal is integrated as two voltage pulses.
  • step S202 it is determined whether or not the elapsed angle CA is less than 50 °, for example.
  • This 50 ° is a crank angle at which the fuel injection amount and the like can be calculated even after obtaining the cylinder discrimination signal because the engine speed is still low.
  • This crank angle is obtained by experiments or the like. That is, for example, if the crank angle has advanced only by less than 50 °, it can be determined that the engine speed is sufficiently low.
  • step S203 the operation mode is set after obtaining the cylinder discrimination signal.
  • step S204 the mode is set to a mode in which calculation is performed from 150 ° before the top dead center of the compression stroke. This may be a normal calculation mode performed after the start of the internal combustion engine 1 is completed. After the start of the internal combustion engine 1 is completed, for example, after the engine speed has become substantially constant at the idle speed.
  • the calculation method may be the same in step S203 and step S204, or may be different.
  • the predetermined value S0 used in step S105 may be corrected based on the operating state of the internal combustion engine 1 or the like.
  • the degree of increase in the engine speed at the start of the internal combustion engine 1 decreases, for example, as the frictional resistance inside the internal combustion engine 1 increases.
  • the lower the outside air temperature, the lower the coolant temperature, and the lower the lubricating oil temperature the greater the frictional resistance, and therefore the degree of increase in the engine speed at the start of the engine becomes smaller. That is, the greater the frictional resistance, the longer the time from the start of cranking until the cylinder discrimination signal is obtained.
  • the degree of increase in the engine speed at the start of the internal combustion engine 1 also varies depending on the driving force of the starter motor 13. That is, as the driving force of the starter motor 13 is smaller, the degree of increase in the engine speed is smaller, so that the time from the start of cranking to obtaining the cylinder discrimination signal is longer. On the other hand, if it correct
  • the voltage of the battery 14 may be estimated based on the outside air temperature. As described above, since the driving force of the starter motor 13 decreases as the voltage of the battery 14 decreases, these relationships may be obtained in advance through experiments or the like. The voltage of the battery 14 is measured by the ECU 10.
  • the predetermined value S0 may be corrected according to other parameters that affect the degree of increase in engine speed.
  • the predetermined value S0 may be corrected according to the fuel property or atmospheric pressure.
  • the same correction can be performed even when the stop position of the piston 6 is directly obtained based on the time from the start of cranking to obtaining the cylinder discrimination signal. For example, when the degree of increase in the engine speed is low (for example, when the frictional resistance is increased or when the driving force of the starter motor 13 is decreased), the starting time S is increased. Then, it is erroneously determined that the stop position of the piston 6 is a crank angle before the actual position. On the other hand, for example, the start time S is corrected so as to decrease as the degree of increase in the engine speed decreases.
  • the starting time S may be corrected instead of correcting the predetermined value S0.
  • the correction may be performed so that the starting time S calculated in step S104 becomes shorter as the frictional resistance increases or the driving force of the starter motor 13 decreases.
  • a cam angle sensor according to the present embodiment uses a cam angle sensor having a different number of teeth or different angles of teeth around the rotation axis.
  • a cam angle sensor having one tooth can be used.
  • the cylinder discrimination signal is obtained at 90 ° before the top dead center of the compression stroke, but the present invention can be similarly applied even when obtained at other angles. That is, it is possible to perform cylinder discrimination other than 90 ° before the compression stroke top dead center.
  • the relationship between the crank angle and the rotational position of the rotor 111 of the cam angle sensor 11 may be changed.
  • crank angle sensor 12 outputs a signal every 10 °, but may output a signal at every other angle. Further, the missing teeth of the crank angle sensor 12 may not be two teeth. Further, the cylinder discrimination signal may be obtained by detecting a rotation angle other than the intake camshaft 8.
  • the stop position of the piston 6 is not stored when the internal combustion engine 1 is stopped, but the same effect can be obtained even if this is stored.
  • fuel injection is not performed on the cylinder 2 that becomes the first compression stroke top dead center from the start of cranking, and the compression stroke top dead center is determined after the second time. Fuel injection may be performed on the cylinder 2.
  • the crank angle sensor 12 may not be able to accurately count the teeth 123. That is, when the engine speed is low, such as when the engine is started, the rotation angle of the crankshaft 4 may be detected to be smaller than actual. For this reason, there is a possibility that it is difficult to accurately determine the stop position of the piston 6 or the accuracy of cylinder discrimination is lowered. On the other hand, if the stop position of the piston 6 is estimated based on the elapsed time from the start of cranking, more accurate estimation is possible. Thereby, fuel can be burned more reliably.
  • the present embodiment it is possible to accurately estimate the stop position of the piston 6 based on the period from the start of cranking until the cylinder discrimination signal is obtained.
  • the stop position of the piston 6 can be accurately estimated even if the operating state changes.
  • FIG. 8 is a diagram showing the relationship between the timing of cylinder discrimination and the stop position of the piston 6. If the stop position of the piston 6 is within the range indicated by C from the intake stroke bottom dead center (TDC0) of the cylinder 2 determined first, fuel injection is performed to the cylinder 2 determined first. Even fuel can burn. Therefore, the ECU 10 estimates whether the stop position of the piston 6 is in the range indicated by D or in the range indicated by E based on the period from the start of cranking until the cylinder discrimination signal is obtained. The stop position of the piston 6 is obtained in the same manner as in the first embodiment. Further, the period C can be obtained by experiments or the like as the upper limit value of the period during which fuel can be combusted even if fuel injection is performed on the cylinder 2 that is first discriminated.
  • TDC0 intake stroke bottom dead center
  • the threshold value that is the boundary between the range indicated by D and the range indicated by E in FIG. 8 can be obtained in advance by experiments or the like.
  • This threshold value changes according to the operating state of the internal combustion engine 1. For example, since the ease of fuel combustion changes depending on the intake air temperature, the coolant temperature, or the outside air pressure, the threshold value changes. For this reason, you may correct
  • the temperature and pressure in the cylinder 2 at the top dead center of the compression stroke are estimated, and it is possible to burn the fuel by determining whether or not the estimated values are values necessary for the combustion of the fuel. It may be determined whether or not.
  • the value necessary for the combustion of this fuel is obtained by experiments or the like.
  • the compression start time may be when the internal combustion engine 1 is stopped. By obtaining in advance the relationship between the volume V0 at the start of compression and the stop position of the piston 6, the volume V0 at the start of compression can be obtained from the stop position of the piston 6. Further, the temperature T0 at the start of compression is equal to the cooling water temperature, the intake air temperature, or the outside air temperature of the internal combustion engine 1, and is obtained by measuring these temperatures.
  • the pressure P0 at the start of compression is equal to the outside air pressure, and is obtained by measuring the outside air pressure.
  • the threshold value may be calculated based on the temperature and pressure in the cylinder 2 at the start of cranking.
  • the temperature in the cylinder 2 may be an intake air temperature, a cooling water temperature, or an outside air temperature.
  • the pressure in the cylinder 2 may be an outside air pressure.
  • FIG. 9 is a diagram showing the values of the temperature and pressure in the cylinder 2 at the compression stroke top dead center with respect to the crank angle at the start of compression.
  • the horizontal axis is the crank angle at the start of compression.
  • the calculation is performed assuming that the compression ratio is 15.8, the pressure at the start of compression is 0.1 MPa, and the specific heat ratio is 1.35.
  • the solid line in the cylinder 2 internal temperature in FIG. 9 indicates the case where the temperature at the start of compression is 50 ° C.
  • the one-dot chain line indicates the case where the temperature at the start of compression is 90 ° C.
  • the two-dot chain line indicates the temperature at the start of compression 130
  • the case of ° C is shown.
  • the lower limit value of the temperature at which the fuel can be combusted is indicated by a circle.
  • the lower the pressure in the cylinder 2 the larger the lower limit value of the temperature at which the fuel can be combusted.
  • the temperature in the cylinder 2 at the start of compression is 90 ° C.
  • the temperature and pressure in the cylinder 2 are necessary for fuel combustion unless the stop position of the piston 6 is 100 ° before the top dead center of the compression stroke. Does not rise to a reasonable value.
  • the threshold in FIG. 9 is 100 ° before the compression stroke top dead center.
  • FIG. 10 is a flowchart showing a flow of fuel injection control when starting the internal combustion engine 1 according to this embodiment.
  • this flowchart after determining the stop position of the piston 6 directly, it is determined whether or not the fuel can be combusted.
  • symbol is attached
  • step S301 the stop position of the piston 6 is estimated.
  • the stop position of the piston 6 is obtained.
  • the relationship between the start time S and the stop position of the piston 6 is obtained in advance through experiments or the like and is mapped.
  • step S302 it is determined whether or not the stop position of the piston 6 is before the threshold value.
  • This threshold value is a boundary between the range indicated by D and the range indicated by E in FIG. If an affirmative determination is made in step S302, the process proceeds to step S107, and if a negative determination is made, the process proceeds to step S110.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

 内燃機関の始動時に、燃料が燃焼可能な気筒へ燃料を供給する。気筒判別を行った後に最初に燃料供給時期が到来する気筒へ燃料を供給すると仮定した場合に、燃料が燃焼可能か否かを推定(S105)し、燃料が燃焼可能と推定される場合には該気筒へ燃料を供給することを許可(S108)し、推定手段により燃料が燃焼可能でないと推定される場合には該気筒へ燃料を供給することを禁止する(S111)。

Description

内燃機関の始動制御装置及び内燃機関の始動制御方法
  本発明は、内燃機関の始動制御装置及び内燃機関の始動制御方法に関する。
 4ストローク機関では、クランクシャフトの2回転が1サイクルに相当する。つまり、1サイクルでクランクシャフトが720度回転する。このため、クランク角が360度異なると、各気筒におけるピストンの位置が同じになる。したがって、クランク角だけを検知してピストンの位置を把握しても、クランク角が360度異なる2つの行程の何れにおける位置であるのかを判別できない。つまり、気筒判別を行うことはできない。
 例えば、ピストンは1サイクルあたり2回ずつ上死点に位置する。しかし、クランク角だけを検知しても、ピストンが圧縮行程の上死点に位置するのか、または排気行程の上死点に位置するのか判別することはできない。
 これに対し、所定のクランク角毎にパルスを出力し所定の気筒の上死点ではパルスを出力しないクランク角センサと、3つの歯を備えたカム角センサと、から夫々得られる信号に基づいて気筒判別を行う技術が知られている(例えば、特許文献1参照。)。
 しかし、気筒判別を行い、しかるべき気筒に燃料を供給しても、燃料が燃焼しない場合がある。ここで、気筒内に供給される燃料が燃焼するには、気筒内の温度及び圧力が燃焼に必要となる値まで上昇する必要がある。しかし、内燃機関が停止するときに圧縮行程の途中であった気筒では、内燃機関の停止中に気筒内の圧力及び温度が低下してしまう。このような気筒では、クランキング開始時に圧縮行程の途中から始まるため、気筒内の温度及び圧力が燃料の燃焼に必要となる値まで上昇しない場合がある。つまり、このような気筒に燃料を供給しても、燃料が燃焼しないまま気筒外へ排出される虞がある。
特開2004-239180号公報 特開2005-273566号公報 特許第4096942号公報
 本発明は、上記したような問題点に鑑みてなされたものであり、その目的は、内燃機関の始動時に、燃料が燃焼可能な気筒へ燃料を供給することにある。
 上記課題を達成するために本発明による内燃機関の始動制御装置は、以下の手段を採用した。すなわち、本発明による内燃機関の始動制御装置は、
 クランク角度を検知するクランク角度検知手段と、
 気筒判別を行うための信号を検知する気筒判別信号検知手段と、
 前記クランク角度検知手段及び前記気筒判別信号検知手段により検知される値に基づいて内燃機関への燃料供給時期を算出する算出手段と、
 を備えた内燃機関の始動制御装置において、
 前記算出手段により算出される燃料供給時期に燃料を供給した場合に、燃料が燃焼可能か否かを推定する推定手段と、
 前記推定手段により燃料が燃焼可能と推定される場合には前記算出手段により算出される時期に燃料を供給することを許可し、前記推定手段により燃料が燃焼可能でないと推定される場合には前記算出手段により算出される時期に燃料を供給することを禁止する許可手段と、
 を備えることを特徴とする。
 クランク角度検知手段及び気筒判別信号検知手段により検知される値に基づいて気筒判別を行う。つまり、所定の気筒のピストンが所定の行程の所定の位置にあることを検知する。そして、気筒判別が行われると、これに応じて算出手段は、気筒に燃料を供給する時期を算出する。
 推定手段は、夫々の気筒に対して算出される燃料供給時期に燃料を供給したと仮定した場合に、該燃料が燃焼可能か否か判定している。つまり、燃料が燃焼可能な条件が成立しているのか否か判定している。この判定は、燃料が燃焼可能となるピストン位置からクランキングが開始されているか否かによって行う。そして、気筒内のガスが十分に圧縮されている場合には燃料が燃焼可能であると判定される。この判定は、気筒判別が完了してから最初に燃料供給時期が到来する気筒にのみ行っても良い。また、例えば気筒判別が完了してから最初に圧縮行程上死点が到来する気筒にのみ行っても良い。これらにより、供給した燃料をより確実に燃焼させることができるため、未燃燃料が排出されることを抑制できる。
 本発明において前記推定手段は、クランキング開始から気筒判別が完了するまでの経過期間に基づいて燃料が燃焼可能か否かを推定することができる。
 つまり、クランキング開始からの経過期間が長ければ、より長い期間に亘り気筒内のガスが圧縮されていたことになるため、燃料が燃焼するのに必要な条件が成立し易くなる。
 この場合の経過期間とは、クランキング開始から気筒判別が完了するまでの時間であっても良い。
 つまり、クランキング開始からの経過時間に基づいて燃料が燃焼可能か否か判定すれば、簡易な判定が可能である。ここで、経過期間をクランク角度で計ることも可能である。しかし、例えばクランク角度を測定するセンサでは機関回転数の低い機関始動時においてクランク角度の検出精度が低いものがある。これに対し、経過時間に基づいて判定すれば、燃料が燃焼可能か否かの判定精度をより高くすることができる。
 また、前記推定手段は、前記経過期間が基準値よりも長いときに、燃料が燃焼可能であると推定することができる。
 この基準値は、燃料が燃焼可能な経過期間と燃焼可能でない経過期間との閾値として予め記憶しておく。つまり、クランキング開始時のピストン位置を実際に求めずに、経過期間と閾値とを比較することにより燃料が燃焼可能か否か簡易に判定することができる。
 また、前記基準値を、内燃機関の運転状態に応じて補正しても良い。
 内燃機関のクランキング時においては、クランクシャフトの回転速度(機関回転数としても良い)が内燃機関の運転状態に応じて変わる。例えば、経過期間が同じであっても、クランクシャフトが回転した角度が異なる場合がある。つまり、クランキング開始からの経過期間は、内燃機関の運転状態に影響を受けることがある。この内燃機関の運転状態に応じて基準値を補正することで、より正確な判定が可能となる。機関始動時のクランクシャフトの回転速度が遅いほど、基準値を大きくしても良い。例えば機関内部の摩擦抵抗が大きいほどクランクシャフトの回転速度が遅くなるため、基準値を大きくしても良い。
 本発明において前記許可手段は、機関回転数が所定値よりも低いときには前記推定手段による推定結果に基づいて燃料供給を行い、機関回転数が所定値以上のときには前記推定手段によらず燃料供給を行うことができる。
 ここで、気筒判別を行ってから燃料供給のための演算(例えば燃料噴射量や燃料噴射時期の算出)を行った場合、機関回転数が低い場合には演算が間に合うが、機関回転数が高くなると演算が間に合わなくなることがある。すなわち、燃料供給のための演算にはある程度の時間がかかるが、機関回転数が高くなるほど、気筒判別が完了してから燃料供給までの時間が短くなるため、演算が間に合わなくなる虞がある。これに対し、機関回転数が所定値より低い場合に限り推定手段による推定結果に基づいて燃料供給を行えば、演算が間に合わなくなることを抑制できる。なお、ここでいう所定値とは、燃料供給のための演算が燃料供給時期までに完了するか否かの閾値である。
 また、本発明による内燃機関の始動制御方法は、
 気筒判別を行う第1の工程と、
 内燃機関のクランキング開始から気筒判別が完了するまでの経過期間を算出する第2の工程と、
 前記第1の工程で気筒判別が完了してから最初に燃料供給時期が到来する気筒へ燃料を供給すると仮定したときに該燃料が燃焼可能か否かを前記経過期間に基づいて推定する第3の工程と、
 前記第3の工程で燃料が燃焼可能と推定されたときには最初に燃料供給時期が到来する気筒へ燃料を供給することを許可し、燃料が燃焼可能でないと判定されたときには最初に燃料供給時期が到来する気筒へ燃料を供給することを禁止する第4の工程と、
 を含んで構成されることを特徴とする。
 この場合、前記第3の工程では、前記経過期間が基準値よりも長いときに燃料が燃焼可能であると推定し、前記基準値を内燃機関の運転状態に応じて補正することができる。
 本発明に係る内燃機関の始動制御装置によれば、内燃機関の始動時に、燃料が燃焼可能な気筒へ燃料を供給することができる。
実施例に係る内燃機関の概略構成を示す図である。 クランク角センサの概略構成図である。 カム角センサの概略構成図である。 カム角センサ及びクランク角センサから得られる信号と、クランクカウンタと、の推移を示したタイムチャートである。 気筒判別を行う時期とピストンの停止位置との関係を示した図である。 実施例1に係る内燃機関の始動時における燃料噴射制御のフローを示したフローチャートである。 燃料噴射量及び燃料噴射時期の演算を行うフローを示したフローチャートである。 気筒判別を行う時期とピストンの停止位置との関係を示した図である。 圧縮開始時のクランク角に対して、圧縮行程上死点での気筒内の温度及び圧力がどのような値になるのかを示した図である。 実施例2に係る内燃機関の始動時における燃料噴射制御のフローを示したフローチャートである。
符号の説明
1     内燃機関
2     気筒
3     燃料噴射弁
4     クランクシャフト
5     コンロッド
6     ピストン
7     吸気弁
8     吸気カムシャフト
10   ECU
11   カム角センサ
12   クランク角センサ
13   スタータモータ
14   バッテリ
15   水温センサ
16   外気圧力センサ
17   外気温度センサ
111 ロータ
112 ピックアップ
113 歯
114 歯
115 歯
116 欠歯部
117 欠歯部
118 欠歯部
121 ロータ
122 ピックアップ
123 歯
124 欠歯部
 以下、本発明に係る内燃機関の始動制御装置の具体的な実施態様について図面に基づいて説明する。
 図1は、本実施例に係る内燃機関1の概略構成を示す図である。図1に示す内燃機関1は、4つの気筒2を有する水冷式の4サイクル・ディーゼルエンジンである。ただし、図1には1つの気筒2のみを表している。内燃機関1には、気筒2内に燃料を噴射する燃料噴射弁3が取り付けられている。そして、内燃機関1のクランクシャフト4にコンロッド5を介して連結されたピストン6が、気筒2内で往復運動を行う。
 内燃機関1には吸気弁7が備えられ、該吸気弁7の開閉動作は吸気カムシャフト8によって行われる。この吸気カムシャフト8は、クランクシャフト4の駆動力によって回転する。吸気カムシャフト8の回転により、吸気弁7の開閉動作が行われる。
 吸気カムシャフト8には、該吸気カムシャフト8の回転位置を計測するカム角センサ11が取り付けられている。一方、クランクシャフト4には、該クランクシャフト4の回転位置を計測するクランク角センサ12が取り付けられている。なお、本実施例においてはクランク角センサ12が、本発明におけるクランク角度検知手段に相当する。また、本実施例においてはカム角センサ11が、本発明における気筒判別信号検知手段に相当する。
 図2は、クランク角センサ12の概略構成図である。図2に示すように、クランク角センサ12は、機関出力軸であるクランクシャフト4に一体回転可能に設けられたロータ121とその近傍に配設されたピックアップ122とを備えて構成されている。
 ロータ121は、強磁性体によって構成されており、その外周には、所定のクランク角毎に複数の歯123が形成されている。ただし、ロータ121の外周の一部には、歯123の欠落した欠歯部124が形成されている。図2の例では、各歯123は10°CA(「°CA」はクランク角)毎に形成されている。そして、2枚が欠落した34枚の歯123を有してロータ121が構成されている。つまり、欠歯部124は、歯123の2枚分に相当する。
 このように構成されたクランク角センサ12では、ピックアップ122の近傍を歯123が通過するときに、ピックアップ122とロータ121の外周との隙間の大きさが変化する。そのため、ピックアップ122の近傍をロータ121の歯123が通過する毎に、ピックアップ122に電磁誘導作用による起電力が発生し、クランク角センサ12は電圧パルスを発生する。こうしてクランク角センサ12から出力される電圧パルスによって、クランクシャフト4の回転角(クランク角)を10°毎に検知することができる。
 一方、ピックアップ122の近傍をロータ121の欠歯部124が通過する際には、そうした電圧パルスの発生間隔が長くなる。そのため、そうしたクランク角センサ12の欠歯部124に対応した出力信号、すなわち欠歯信号の検出によって、クランクシャフト4の回転位相(クランク位置)を検出することができる。そして本実施例では、1番気筒及び4番気筒が上死点前90°に位置するときに、ピックアップ122の近傍をロータ121の欠歯部124が通過する。つまり、1番気筒及び4番気筒のピストン6が上死点前90°に位置する時期を把握することができる。
 なお、1サイクルが4つの行程からなる4ストローク機関では、クランクシャフト4の2回転、すなわち720°CAが機関サイクルの1周期となっている。すなわち、各気筒2は、機関サイクルの1周期で2回ずつ上死点前90°に位置する。そのため、上記のようなクランク角センサ12の検出信号だけでは、2回のうちのいずれにあたるのかを判別すること、すなわち気筒判別を行うことはできない。そこでクランク角センサ12に加え、更にもう1つの回転角センサ、例えばカム角センサ11を併せて設けることで、気筒判別を可能としている。
 図3は、カム角センサ11の概略構成図である。本実施例に係るカム角センサ11は、ロータ111とピックアップ112とを備えて構成されている。ロータ111は、クランクシャフト4が2回転する毎に1回転される吸気カムシャフト8に一体回転可能に固定されている。
 本実施例に採用されるロータ111は、3つの歯113,114,115を備えて構成されている。このロータ111では、各歯113,114,115の回転軸周りの角度がそれぞれ異なる角度に設定されている。また各歯の間隔についてもその回転軸周りの角度は、それぞれ異なる角度に設定されている。
 具体的には、回転軸周りの角度が30°の歯113が形成され、そこから60°の間隔(この間隔を60°の欠歯部116という。)をおいて90°の歯114が形成されている。更にその90°の歯114から30°の間隔(この間隔を30°の欠歯部117という。)をおいて60°の歯115が形成されている。そして60°の歯115と30°の歯113との間には、90°の間隔(この間隔を90°の欠歯部118という。)がおかれている。
 この、ロータ111の近傍にピックアップ112が設置されている。そして、クランク角センサ12と同様に、吸気カムシャフト8の回転に応じてロータ111の各歯113,114,115がピックアップ112の近傍を通過する毎にカム角センサ11は電圧パルスを発生する。
 また、内燃機関1には、クランクシャフト4を駆動するスタータモータ13が取り付けられている。このスタータモータ13には、該スタータモータ13へ電力を供給するためのバッテリ14が接続されている。さらに、内燃機関1には、該内燃機関1の冷却水の温度を測定する水温センサ15が取り付けられている。
 以上述べたように構成された内燃機関1には、該内燃機関1を制御するための電子制御ユニットであるECU10が併設されている。このECU10は、内燃機関1の運転条件や運転者の要求に応じて内燃機関1の運転状態を制御するユニットである。
 また、ECU10には、上記センサの他に、外気の圧力を測定する外気圧力センサ16及び外気の温度を測定する外気温度センサ17が電気配線を介して接続され、これら各種センサの出力信号がECU10に入力されるようになっている。一方、ECU10には、燃料噴射弁3及びスタータモータ13が電気配線を介して接続されており、これらは該ECU10により制御される。
 そして、ECU10は、カム角センサ11の出力信号とクランク角センサ12の出力信号とに基づいて、気筒判別を行う。なお、本実施例で気筒判別とは、いずれの気筒2のピストン6が圧縮行程上死点前90°に位置しているのか把握することをいう。この気筒判別について以下に説明する。
 図4は、カム角センサ11及びクランク角センサ12から得られる信号と、クランクカウンタCCと、の推移を示したタイムチャートである。クランクカウンタCCとは、クランク角センサ12からの電圧パルス数を積算した値である。このクランクカウンタCCは、何れかの気筒2のピストン6が上死点前90°に位置するときに0となり、何れかの気筒2のピストン6が上死点に位置するときに9となる。なお、図4では、カム角センサ11の回転軸周りの角度をクランク角(°CA)に換算して表している。なお、図4では、2番気筒の圧縮行程上死点を「#2TDC」で示している。同様に、1番気筒の圧縮行程上死点を「#1TDC」で、3番気筒の圧縮行程上死点を「#3TDC」で、4番気筒の圧縮行程上死点を「#4TDC」で示している。
 本実施例では、2番気筒のピストン6が圧縮行程上死点前90°に位置するときに、ピックアップ112の近傍をロータ111の30°の歯114と60°の欠歯部116との境界が通過する。そして、3番気筒のピストン6が圧縮行程上死点前90°に位置するときに、ピックアップ112の近傍をロータ111の30°の欠歯部117と60°の歯115との境界が通過する。
 一方、クランク角センサ12の欠歯信号は、1番気筒及び4番気筒が上死点前90°のときに出力される。そして、1番気筒及び4番気筒の何れが圧縮行程上死点前90°なのかは、カム角センサ11により判別する。つまり、1番気筒のピストン6が圧縮行程上死点前90°に位置している場合には、ピックアップ112の近傍をロータ111の90°の歯114が通過している最中である。また、4番気筒のピストン6が圧縮行程上死点前90°に位置している場合には、ピックアップ112の近傍をロータ111の90°の欠歯部118が通過している最中である。
 このように、カム角センサ11及びクランク角センサ12の出力信号に基づいて、何れの気筒2が圧縮行程上死点前90°なのかを判別できる。このようにして、本実施例では、何れの気筒2が圧縮行程上死点前90°となるときに気筒判別が可能となる。
 なお、本実施例では、カム角センサ11及びクランク角センサ12の出力信号の中で、どの気筒2のピストン6が圧縮行程上死点前90°に位置しているのかを判別するための信号を気筒判別信号という。この気筒判別信号を得ることで気筒判別が可能となる。
 ところで、気筒判別が行われた後の最初に燃料供給時期が到来する気筒2(以下、最初に判別された気筒2ともいう。)へ燃料を供給しても、その燃料が燃焼しないことがある。これは、ピストン6がどのような位置で停止していたかによる。ここで、燃料供給時期は、例えば該気筒2の圧縮行程上死点前の10から20°CAとなる。これは内燃機関1の運転状態により変わり、内燃機関1の運転状態と燃料供給時期とは予め実験等により最適値を求めてECU10に記憶させておく。そして、本実施例においては燃料供給時期を算出するECU10が、本発明における算出手段に相当する。
 図5は、気筒判別を行う時期とピストン6の停止位置との関係を示した図である。TDC0,TDC1,TDC2は、何れかの気筒2が圧縮行程上死点となる時期である。なお、本実施例においてピストン6の停止位置とは、1サイクル、すなわちクランクシャフト4が2回転(720°CA)するなかでの停止位置をいう。つまり、クランク角が360°CA異なれば、ピストン6の位置は異なるものとする。例えば、同じ上死点であっても、圧縮行程上死点と排気行程上死点とではピストン6の位置が異なるものとする。ここで、ピストン6の停止位置が、圧縮行程上死点前90°から圧縮行程上死点までの範囲をAで示し、圧縮行程上死点から圧縮行程上死点後90°までの範囲をBで示している。そして、Bの範囲が終了すると同時に気筒判別が行われる。
 ここで、気筒2内で燃料が燃焼するには、燃焼に必要な条件が成立していなければならない。例えば気筒2内の温度が所定温度以上で且つ気筒2内の圧力が所定圧力以上の場合に条件が成立し、燃料が燃焼する。そして、気筒2内の温度や圧力が上昇するには、圧縮行程にて気筒2内のガスが所定の比率以上圧縮されなくてはならない。この比率は、圧縮開始時の温度や圧力によっても変わる。なお、圧縮は吸気弁7が閉じたときから開始されるものとする。
 ところで、ある気筒2において圧縮行程前に内燃機関1が停止された場合には、内燃機関1の始動時に圧縮行程が最初から開始される。つまり、圧縮行程の全てが実施されるため、該気筒2では温度及び圧力が燃料の燃焼に必要な値まで上昇し得る。しかし、ある気筒2において圧縮行程中に内燃機関1が停止された場合には、内燃機関1の始動時に圧縮行程が途中から開始される。ここで、圧縮行程の途中で内燃機関1が停止されると、気筒2内のガスが気筒2の壁面とピストン6との隙間を通ってクランクシャフト4側に漏れる。つまり、ガスの圧力が低下する。また、気筒2内のガスの熱が気筒2の壁面に逃げるため、該ガスの温度が下降する。つまり、内燃機関1の停止中に気筒2内の圧力及び温度が下降するため、その後に内燃機関1が始動され、圧縮行程が再開されたとしても、温度及び圧力が燃料の燃焼に必要となる値まで上昇しないことがある。
 つまり、ピストン6の停止位置が図5のAで示される範囲にある場合には、最初に判別された気筒2(TDC1で圧縮行程上死点となる気筒2)では下死点以前の吸気行程の途中から始まるため、圧縮行程は最初から全て行われる。これにより、気筒2内の温度及び圧力は十分に上昇する。
 しかし、ピストン6の停止位置が図5のBで示される範囲にある場合には、最初に判別された気筒2(TDC1で圧縮行程上死点となる気筒2)では下死点以降の圧縮行程の途中からクランキングが開始される。そのため、気筒2内の温度及び圧力が十分に上昇しない虞がある。このような場合には、最初に判別された気筒2(TDC1で圧縮行程上死点となる気筒2)では燃焼に必要な条件が成立せず、2回目に燃料供給時期が到来する気筒2(TDC2で圧縮行程上死点となる気筒2。以下、2回目に判別された気筒2ともいう。)で該条件が成立する。
 そこで、本実施例では、内燃機関1のクランキング開始から、1回目に圧縮行程上死点となる気筒2に対しては燃料噴射を行わず、2回目以降に圧縮行程上死点となる気筒2に対して燃料噴射を行う。これは、燃料が燃焼可能な気筒2に燃料噴射を行っていることになる。
 つまり、図5の場合には、ピストン6の停止位置がAで示される範囲にある場合には、TDC0にて他の気筒2が圧縮上死点となるため、最初に判別された気筒2(TDC1で圧縮行程上死点となる気筒2)が2回目の圧縮行程上死点となる気筒2となる。したがって、最初に判別された気筒2(TDC1で圧縮行程上死点となる気筒2)に対して燃料噴射を行う。
 一方、ピストン6の停止位置がBで示される範囲にある場合には最初に判別された気筒2が1回目の圧縮行程上死点となる気筒2(TDC1で圧縮行程上死点となる気筒2)であり、2回目に判別された気筒2(TDC2で圧縮行程上死点となる気筒2)が2回目の圧縮行程上死点となる気筒2となる。したがって、2回目に判別された気筒2(TDC2で圧縮行程上死点となる気筒2)に対して燃料噴射を行う。
 しかし、本実施例では、内燃機関1の停止時にカム角センサ11の出力信号は記憶されないため、どのような位置でクランクシャフト4が停止しているのか判定できない。そうすると、最初に判別された気筒2が、クランキング開始から1回目に圧縮行程上死点となる気筒2なのか、2回目に圧縮行程上死点となる気筒2なのか判定することができない。
 そこで本実施例では、ピストン6の停止位置が、Aで示される範囲にあるのか、またはBで示される範囲にあるのかを、クランキング開始から最初に気筒判別が行われるまでの期間に応じて判定する。これは、クランキング開始から最初に気筒判別信号を得るまでの期間に応じて判定するとしても良い。この期間とは、ECU10に内蔵されているタイマーで計測される時間であっても良く、クランク角センサ12の電圧パルスをカウントして得られるクランク角であっても良い。
 例えばクランキング開始から気筒判別信号を得るまでの期間と、ピストン6の停止位置との関係を予め実験等により求めてマップ化してECU10に記憶させておく。そして、クランキング開始から気筒判別信号を得るまでの期間を計測してマップに代入すれば、ピストン6の停止位置を求めることができる。また、例えばクランキング開始から気筒判別信号を得るまでの期間が閾値よりも長ければ、最初に判別された気筒2は2回目の圧縮行程上死点となる気筒2であると判別できる。同様に、クランキング開始から気筒判別信号を得るまでの期間が閾値以下であれば、最初に判別された気筒2は1回目の圧縮行程上死点となる気筒2であると判別できる。この閾値は予め実験等により求めてECU10に記憶させておく。
 次に、図6は、本実施例に係る内燃機関1の始動時における燃料噴射制御のフローを示したフローチャートである。本ルーチンは、内燃機関1を始動させる条件が成立したときに実行される。例えば、運転者によりキースイッチが「始動」の位置に操作された場合に内燃機関1を始動させる条件が成立する。また、車両の駆動源を電動モータと内燃機関1とで切り替えるハイブリッド車では、駆動源が電動モータから内燃機関1へ切り替わるときに内燃機関1を始動させる条件が成立する。さらに、車両の停止時に内燃機関を自動的に停止するシステムを備えている場合には、車両を発進させる動作(例えばアクセルペダルを踏み込むこと)が行われた場合に内燃機関1を始動させる条件が成立する。つまり、本ルーチンは内燃機関1の始動時に実行される。
 ステップS101では、始動フラグがONとされる。この始動フラグは、内燃機関1を始動させる条件が成立したときにONとされ、内燃機関1が停止されるときにOFFとされる。
 ステップS102では、気筒判別条件が成立したか否か判定される。つまり、気筒判別信号を得たか否か判定される。ステップS102で肯定判定がなされた場合にはステップS103へ進み、否定判定がなされた場合にはステップS102を再度実行する。
 ステップS103では、完了フラグがONとされる。この完了フラグは、気筒判別が行われたときにONとされ、内燃機関1が停止されるときにOFFとされる。
 ステップS104では、始動時間Sを算出する。この始動時間Sは、始動フラグがONとされてから、完了フラグがONとされるまでの時間である。この時間は、ECU10によりカウントされる。なお、時間の代わりにクランク角センサ12により得られるクランク角をカウントしても良い。
 ステップS105では、始動時間Sが所定値S0よりも長いか否か判定される。この所定値S0は、最初に判別された気筒2がクランキング開始から1回目の圧縮行程上死点となる気筒2であると仮定した場合の始動時間Sの上限値である。つまり、この所定値S0は、最初に判別された気筒2が最初に圧縮行程上死点となる気筒2なのか、または2回目以降に圧縮行程上死点となる気筒2なのかを判別するための閾値である。この所定値S0は、予め実験等により求めてECU10に記憶させておく。そして、ステップS105で肯定判定がなされた場合にはステップS106へ進み、否定判定がなされた場合にはステップS109へ進む。なお、本実施例では始動時間Sが所定値S0よりも長いか否か判定することにより、燃料が燃焼可能か否か推定しているため、本実施例ではステップS105を処理するECU10が、本発明における推定手段に相当する。
 ステップS106では、最初に判別された気筒2が、2回目の圧縮行程上死点となる気筒2であると決定される。つまり、気筒判別信号を得る前に他の気筒2が圧縮行程上死点となっていたと判定される。これは、ピストン6の停止位置が図5のAで示される範囲にあったと決定していることに等しい。
 ステップS107では、噴射演算時期であるか否か判定される。噴射演算時期とは、燃料噴射量や燃料噴射時期の演算を開始する時期である。例えば、圧縮行程上死点前の所定の時期にこれらの演算が開始される。ステップS107で肯定判定がなされた場合にはステップS108へ進み、否定判定がなされた場合にはステップS107を再度実行する。
 ステップS108では、燃料噴射量や燃料噴射時期の演算を行い、これにしたがって燃料噴射を行う。燃料噴射量や燃料噴射時期は、内燃機関1の運転状態に応じて演算する。これらの関係は予めマップ化しておいても良い。
 次に、ステップS109では、最初に判別された気筒2は、クランキング開始から最初に圧縮行程上死点となる気筒2であると決定される。これは、ピストン6の停止位置が図5のBで示される範囲にあったと決定していることに等しい。
 ステップS110では、噴射演算時期であるか否か判定される。ここでは、ステップS107と同様の処理がなされる。ステップS110で肯定判定がなされた場合にはステップS111へ進み、否定判定がなされた場合にはステップS110を再度実行する。
 ステップS111では、燃料噴射量や燃料噴射時期の演算を禁止し、燃料噴射も禁止する。つまり、最初に判定された気筒2では、燃料が燃焼しない可能性が高いため燃料噴射を行わない。その後、ステップS107へ進む。
 このようにすることで、クランキング開始から1回目に圧縮行程上死点となる気筒2へは燃料噴射を行わず、2回目以降に圧縮行程上死点となる気筒2へ燃料噴射を行うことができる。これにより、燃料が燃焼しないまま気筒2から排出されることを抑制できる。なお、本実施例ではステップS105以降を処理するECU10が、本発明における許可手段に相当する。
 ここで、本フローでは、始動時間Sが所定値S0よりも長いか否かに基づいてピストン6の停止位置が吸気行程下死点前か否かを判定している。本実施例では、これに代えて、始動時間Sとピストン6の停止位置との関係を予め求めてマップ化しておき、始動時間Sからピストン6の停止位置を直接求めても良い。
 ところで、燃料噴射量や燃料噴射時期の演算は、噴射時期に対して余裕をもって行えるように、通常は例えば圧縮行程上死点前150°から開始している。そして例えば、圧縮行程上死点前60°までに演算を完了させる。この圧縮行程上死点前60°よりも遅い時期に演算が完了しても、燃料噴射に間に合わない虞がある。
 しかし、本実施例に係るカム角センサ11を用いた場合には、気筒判別信号を得たときから演算を開始しなければならない。つまり、圧縮行程上死点前90°から演算を開始しなくてはならない。この場合、機関回転数の低い始動開始時であれば演算が間に合うが、機関回転数が高くなると演算が間に合わなくなる虞がある。
 そこで本実施例では、最初に判別された気筒2に対しては気筒判別信号を得た後に演算を開始する。その後に燃料噴射を行う気筒2に対しては、最初に得られた気筒判別信号とクランク角センサ12から得られる信号とに基づいて燃料噴射を行う気筒2を判別する。つまり、気筒判別信号を最初に得た後は、クランク角センサ12の電圧パルスをカウントすることにより、夫々の気筒2における燃料噴射量等の演算開始時期を求めることができる。
 図7は、燃料噴射量及び燃料噴射時期の演算を行うフローを示したフローチャートである。本ルーチンは、所定の時間毎に繰り返し実行される。
 ステップS201では、経過角度CAが算出される。経過角度CAは、最初の気筒判別信号が得られてからのクランク角であり、クランク角センサ12により得られる電圧パルスを積算して求める。なお、欠歯信号は電圧パルスの2つ分として積算する。
 ステップS202では、経過角度CAが例えば50°未満であるか否か判定される。この50°とは、機関回転数がまだ低いために気筒判別信号を得た後であっても燃料噴射量等の演算が可能なクランク角である。このクランク角は、実験等により求める。つまり、例えば50°未満しかクランク角が進んでいなければ、機関回転数は十分に低いと判定することができる。ステップS202で肯定判定がなされた場合にはステップS203へ進み、否定判定がなされた場合にはステップS204へ進む。
 ステップS203では、気筒判別信号を得た後から演算を行うモードに設定される。
 ステップS204では、例えば圧縮行程上死点前150°から演算を行うモードに設定される。これは、内燃機関1の始動完了後に行う通常の演算モードとしても良い。内燃機関1の始動完了後とは、例えば機関回転数がアイドル回転数で略一定となった後である。なお、演算方法は、ステップS203とステップS204とで同じであっても良く、異なっていても良い。
 このようにすることで、燃料噴射量や燃料噴射時期の演算が間に合わなくなることを抑制できる。
 また本実施例では、前記ステップS105で用いている所定値S0を内燃機関1の運転状態等に基づいて補正しても良い。ここで、内燃機関1の始動時における機関回転数の上昇度合いは、例えば内燃機関1の内部の摩擦抵抗が高くなるほど、小さくなる。例えば、外気温度が低いほど、また冷却水温度が低いほど、さらには潤滑油温度が低いほど、摩擦抵抗が大きくなるため、機関始動時の機関回転数の上昇度合いは小さくなる。つまり、摩擦抵抗が大きくなるほど、クランキング開始から気筒判別信号を得るまでの時間が長くなる。これに対し、摩擦抵抗が大きくなるほど所定値S0が大きくなるように補正すれば、より正確にピストン6の停止位置を推定することができる。
 さらに、内燃機関1の始動時における機関回転数の上昇度合いは、スタータモータ13の駆動力によっても変わる。つまり、スタータモータ13の駆動力が小さいほど、機関回転数の上昇度合いは小さくなるため、クランキング開始から気筒判別信号を得るまでの時間が長くなる。これに対し、スタータモータ13の駆動力が小さくなるほど所定値S0が大きくなるように補正すれば、より正確にピストン6の停止位置を推定することができる。スタータモータ13の駆動力は、バッテリ14の電圧と相関関係があるため、該バッテリ14の電圧に基づいて推定しても良い。このバッテリ14の電圧は、外気温度が低くなると低下するため、該外気温度に基づいて推定しても良い。このように、バッテリ14の電圧が低くなるほどスタータモータ13の駆動力は小さくなるため、これらの関係を予め実験等により求めておいても良い。バッテリ14の電圧はECU10により計測する。
 なお、機関回転数の上昇度合いに影響を与える他のパラメータに応じて所定値S0を補正しても良い。例えば、燃料性状または大気圧力に応じて所定値S0を補正しても良い。
 また、クランキング開始から気筒判別信号を得るまでの時間に基づいてピストン6の停止位置を直接求める場合であっても、同様の補正を行うことができる。例えば、機関回転数の上昇度合いが低くなる場合(例えば摩擦抵抗が大きくなる場合、またはスタータモータ13の駆動力が小さくなる場合)には、始動時間Sが長くなる。そうすると、ピストン6の停止位置が実際よりも前のクランク角であると誤判定される。これに対し、例えば機関回転数の上昇度合いが低くなるほど、始動時間Sが短くなるように補正する。
 さらに、所定値S0を補正する代わりに、始動時間Sを補正しても良い。つまり、摩擦抵抗が大きくなるほど、またはスタータモータ13の駆動力が小さいほど、ステップS104で算出される始動時間Sが短くなるように補正を行っても良い。
 なお、本実施例に係るカム角センサ11と歯数または回転軸周りの歯の角度が異なるカム角センサを用いても本実施例と同様の効果を得ることができる。例えば、1つの歯を有するカム角センサを用いることもできる。さらに、本実施例では、気筒判別信号が圧縮行程上死点前90°で得られるが、他の角度で得られる場合であっても同様に適用することができる。つまり、圧縮行程上死点前90°以外で気筒判別を行うこともできる。例えば、クランク角とカム角センサ11のロータ111の回転位置との関係を変更しても良い。また、本実施例に係るクランク角センサ12は、10°毎に信号を出力しているが、他の角度毎に信号を出力しても良い。また、クランク角センサ12の欠歯は、歯の2つ分でなくても良い。さらに、気筒判別信号は吸気カムシャフト8以外の回転角を検知することにより得ても良い。
 また、本実施例では、内燃機関1の停止時にピストン6の停止位置を記憶していないが、これを記憶している場合であっても同様の効果を得ることができる。つまり、ピストン6の停止位置を記憶している場合に、クランキング開始から最初の圧縮行程上死点となる気筒2に対しては燃料噴射を行わず、2回目以降に圧縮行程上死点となる気筒2に燃料噴射を行っても良い。
 ここで、機関回転数が低い場合には、クランク角センサ12において、歯123を正確にカウントできないことがある。つまり、機関始動時のように機関回転数が低い場合には、クランクシャフト4の回転角が実際よりも小さく検知されることがある。このため、ピストン6の停止位置を正確に求めることが困難であったり、気筒判別の精度が低くなったりする虞がある。これに対しクランキング開始からの経過時間に基づいてピストン6の停止位置を推定すれば、より高精度な推定が可能となる。これにより、燃料をより確実に燃焼させることができる。
 以上説明したように本実施例によれば、クランキング開始から気筒判別信号を得るまでの期間に基づいて、ピストン6の停止位置を正確に推定することができる。また、内燃機関1の運転状態に応じて判定条件を補正するため、運転状態が変化してもピストン6の停止位置を正確に推定することができる。これにより、内燃機関1の始動時に、燃料が燃焼可能な気筒2へ燃料を供給することができるので、未燃燃料が排出されることを抑制できる。
 本実施例では、クランキング開始から最初に圧縮行程上死点となる気筒2であっても、燃料が燃焼可能であれば燃料噴射を行う。ここで、圧縮行程の初期で停止していた気筒2ならば、クランキングにより気筒2内の圧力や温度を燃料の燃焼に必要な値まで上昇させることができる。このため、最初に圧縮行程上死点となる気筒2であっても燃料を燃焼させることができる。このような場合には、最初に圧縮行程上死点となる気筒2へ燃料噴射を行うことで内燃機関1の始動時間を短縮することができる。
 ここで、図8は、気筒判別を行う時期とピストン6の停止位置との関係を示した図である。ピストン6の停止位置が、最初に判別された気筒2の吸気行程下死点(TDC0)からCで示した期間の範囲内であれば、最初に判別された気筒2に対して燃料噴射を行っても燃料が燃焼可能である。そこで、ECU10は、ピストン6の停止位置がDで示す範囲にあるのか、またはEで示す範囲にあるのかを、クランキング開始から気筒判別信号を得るまでの期間に基づいて推定する。なお、ピストン6の停止位置は、実施例1と同様にして得る。また、Cの期間は最初に判別された気筒2に対して燃料噴射を行っても燃料が燃焼可能な期間の上限値として実験等により求めることができる。
 つまり、図8のDで示す範囲とEで示す範囲との境界である閾値は、予め実験等により求めることができる。この閾値は、内燃機関1の運転状態に応じて変化する。例えば、吸気温度、冷却水温度、又は外気圧力によって燃料の燃焼のし易さが変化するため、閾値が変化する。このため、これらの値に応じて閾値を補正しても良い。つまり、温度や圧力が低くなるほど燃料が燃焼し難くなるため、Cの期間がより短くなるように補正する。これらの関係は、予め実験等により求めてマップ化しECU10に記憶させておく。
 また、例えば、圧縮行程上死点での気筒2内の温度及び圧力を推定し、この推定値が燃料の燃焼に必要な値となっているのか否かを判定することにより、燃料が燃焼可能か否か判定しても良い。この燃料の燃焼に必要な値は、実験等により求めておく。例えば、圧縮行程上死点における温度及び圧力は、気筒2内で断熱変化が起こっているものと仮定して算出する。つまり、圧縮行程上死点における圧力Pと温度Tとは以下の式により算出する。
 P=P0・(V0/V)κ
 T=T0・(V0/V)κ-1
 ただし、P0は圧縮開始時の気筒2内の圧力、V0は圧縮開始時の気筒2内の容積、Vは上死点での気筒2内の容積、T0は圧縮開始時の気筒2内の温度、κは比熱比である。なお、圧縮開始時とは、内燃機関1の停止時としても良い。圧縮開始時の容積V0とピストン6の停止位置との関係を予め求めておくことにより、該ピストン6の停止位置から圧縮開始時の容積V0を得ることができる。また、圧縮開始時の温度T0は、内燃機関1の冷却水温度、吸気温度、または外気温度と等しいものとし、これらの温度を測定することにより得る。圧縮開始時の圧力P0は、外気圧力と等しいものとし、該外気圧力を測定することにより得る。
 また、クランキング開始時の気筒2内の温度及び圧力に基づいて、前記閾値を算出しても良い。気筒2内の温度は、吸気温度、冷却水温度、または外気温度としても良い。また、気筒2内の圧力は、外気圧力としても良い。
 ここで、図9は、圧縮開始時のクランク角に対して、圧縮行程上死点での気筒2内の温度及び圧力がどのような値になるのかを示した図である。横軸が、圧縮開始時のクランク角である。なお、圧縮比が15.8、圧縮開始時の圧力が0.1MPa、比熱比が1.35として計算している。図9の気筒2内温度における実線は圧縮開始時の温度が50℃の場合を示し、一点鎖線は圧縮開始時の温度が90℃の場合を示し、二点鎖線は圧縮開始時の温度が130℃の場合を示している。そして燃料が燃焼可能な温度の下限値を丸印で示している。
 ここで、気筒2内の圧力が低くなるほど、燃料が燃焼可能な温度の下限値が大きくなる。例えば圧縮開始時の気筒2内の温度が90℃の場合には、ピストン6の停止位置が圧縮行程上死点前100°以前でなければ、気筒2内の温度及び圧力は燃料の燃焼に必要な値まで上昇しない。この場合、図9における閾値は、圧縮行程上死点前100°となる。
 次に、図10は、本実施例に係る内燃機関1の始動時における燃料噴射制御のフローを示したフローチャートである。本フローチャートでは、ピストン6の停止位置を直接求めてから、燃料が燃焼可能であるか否か判定している。なお、図6に示すフローと同じ処理がなされるステップについては同じ符号を付して説明を省略する。
 ステップS301では、ピストン6の停止位置が推定される。ステップS104で得られる始動時間Sをマップに代入してピストン6の停止位置を得る。このマップは、始動時間Sとピストン6の停止位置との関係を予め実験等により求めてマップ化したものである。
 ステップS302では、ピストン6の停止位置が閾値よりも前であるか否か判定される。この閾値は、図8のDで示す範囲とEで示す範囲との境界である。ステップS302で肯定判定がなされた場合にはステップS107へ進み、否定判定がなされた場合にはステップS110へ進む。
 このような判定により、圧縮行程の途中からクランキングが開始された気筒2であっても、燃料が燃焼可能な場合には燃料噴射を行うため、内燃機関1の始動時間を短縮することができる。

Claims (8)

  1.  クランク角度を検知するクランク角度検知手段と、
     気筒判別を行うための信号を検知する気筒判別信号検知手段と、
     前記クランク角度検知手段及び前記気筒判別信号検知手段により検知される値に基づいて内燃機関への燃料供給時期を算出する算出手段と、
     を備えた内燃機関の始動制御装置において、
     前記算出手段により算出される燃料供給時期に燃料を供給した場合に、燃料が燃焼可能か否かを推定する推定手段と、
     前記推定手段により燃料が燃焼可能と推定される場合には前記算出手段により算出される時期に燃料を供給することを許可し、前記推定手段により燃料が燃焼可能でないと推定される場合には前記算出手段により算出される時期に燃料を供給することを禁止する許可手段と、
     を備えることを特徴とする内燃機関の始動制御装置。
  2.  前記推定手段は、クランキング開始から気筒判別が完了するまでの経過期間に基づいて燃料が燃焼可能か否かを推定することを特徴とする請求項1に記載の内燃機関の始動制御装置。
  3.  前記経過期間とは、クランキング開始から気筒判別が完了するまでの時間であることを特徴とする請求項2に記載の内燃機関の始動制御装置。
  4.  前記推定手段は、前記経過期間が基準値よりも長いときに、燃料が燃焼可能であると推定することを特徴とする請求項2または3に記載の内燃機関の始動制御装置。
  5.  前記基準値を、内燃機関の運転状態に応じて補正することを特徴とする請求項4に記載の内燃機関の始動制御装置。
  6.  前記許可手段は、機関回転数が所定値よりも低いときには前記推定手段による推定結果に基づいて燃料供給を行い、機関回転数が所定値以上のときには前記推定手段によらず燃料供給を行うことを特徴とする請求項1から5の何れか1項に記載の内燃機関の始動制御装置。
  7.  気筒判別を行う第1の工程と、
     内燃機関のクランキング開始から気筒判別が完了するまでの経過期間を算出する第2の工程と、
     前記第1の工程で気筒判別が完了してから最初に燃料供給時期が到来する気筒へ燃料を供給すると仮定したときに該燃料が燃焼可能か否かを前記経過期間に基づいて推定する第3の工程と、
     前記第3の工程で燃料が燃焼可能と推定されたときには最初に燃料供給時期が到来する気筒へ燃料を供給することを許可し、燃料が燃焼可能でないと判定されたときには最初に燃料供給時期が到来する気筒へ燃料を供給することを禁止する第4の工程と、
     を含んで構成されることを特徴とする内燃機関の始動制御方法。
  8.  前記第3の工程では、前記経過期間が基準値よりも長いときに燃料が燃焼可能であると推定し、前記基準値を内燃機関の運転状態に応じて補正することを特徴とする請求項7に記載の内燃機関の始動制御方法。
PCT/JP2009/051857 2009-02-04 2009-02-04 内燃機関の始動制御装置及び内燃機関の始動制御方法 WO2010089857A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/051857 WO2010089857A1 (ja) 2009-02-04 2009-02-04 内燃機関の始動制御装置及び内燃機関の始動制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/051857 WO2010089857A1 (ja) 2009-02-04 2009-02-04 内燃機関の始動制御装置及び内燃機関の始動制御方法

Publications (1)

Publication Number Publication Date
WO2010089857A1 true WO2010089857A1 (ja) 2010-08-12

Family

ID=42541781

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/051857 WO2010089857A1 (ja) 2009-02-04 2009-02-04 内燃機関の始動制御装置及び内燃機関の始動制御方法

Country Status (1)

Country Link
WO (1) WO2010089857A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001123925A (ja) * 1999-10-25 2001-05-08 Mitsubishi Motors Corp 内燃機関の制御装置
JP2001280185A (ja) * 2000-03-31 2001-10-10 Toyota Motor Corp 内燃機関の始動制御装置およびこれを備える車両
JP2004036561A (ja) * 2002-07-05 2004-02-05 Mitsubishi Motors Corp 筒内噴射型内燃機関の自動停止始動装置
JP2005030294A (ja) * 2003-07-11 2005-02-03 Toyota Motor Corp 内燃機関の燃料噴射制御装置
JP2005307870A (ja) * 2004-04-22 2005-11-04 Daihatsu Motor Co Ltd 内燃機関の始動方法
JP2006194234A (ja) * 2004-12-17 2006-07-27 Toyota Motor Corp エンジン始動制御装置、その方法及びそれを搭載した車両

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001123925A (ja) * 1999-10-25 2001-05-08 Mitsubishi Motors Corp 内燃機関の制御装置
JP2001280185A (ja) * 2000-03-31 2001-10-10 Toyota Motor Corp 内燃機関の始動制御装置およびこれを備える車両
JP2004036561A (ja) * 2002-07-05 2004-02-05 Mitsubishi Motors Corp 筒内噴射型内燃機関の自動停止始動装置
JP2005030294A (ja) * 2003-07-11 2005-02-03 Toyota Motor Corp 内燃機関の燃料噴射制御装置
JP2005307870A (ja) * 2004-04-22 2005-11-04 Daihatsu Motor Co Ltd 内燃機関の始動方法
JP2006194234A (ja) * 2004-12-17 2006-07-27 Toyota Motor Corp エンジン始動制御装置、その方法及びそれを搭載した車両

Similar Documents

Publication Publication Date Title
JP4419655B2 (ja) エンジンの停止始動制御装置
WO2011093462A1 (ja) 内燃機関の制御装置及び制御方法
JP5772803B2 (ja) 内燃機関の制御装置
JP5170312B2 (ja) 内燃機関の始動制御システム
KR101419168B1 (ko) 엔진 시동 장치 및 엔진 시동 방법
JP2006029247A (ja) エンジンの停止始動制御装置
JP4312752B2 (ja) 内燃機関の制御装置
JP5660143B2 (ja) 内燃機関の制御装置
JP2007205317A (ja) 内燃機関のイオン電流に基づく運転制御方法
JP5379722B2 (ja) 水温センサの異常判定装置
JP2006170173A (ja) 内燃機関装置およびこれを搭載する自動車並びに内燃機関の運転停止方法
JP2008163790A (ja) 内燃機関の制御装置
JP5409538B2 (ja) 内燃機関の燃料噴射制御装置
JP2009138662A (ja) 内燃機関の停止位置検出装置及び逆転検出装置
JP2010216322A (ja) 内燃機関の始動時気筒判別方法
WO2010089857A1 (ja) 内燃機関の始動制御装置及び内燃機関の始動制御方法
JP2006283652A (ja) エンジン始動制御装置
JP4410614B2 (ja) エンジン制御装置
JP2012002076A (ja) 内燃機関の制御装置
JP2008280865A (ja) 内燃機関の始動制御装置
JP2007303352A (ja) 内燃機関の失火判定装置
JP2005042589A (ja) 内燃機関のクランク角検出装置
JP6071463B2 (ja) 内燃機関
JP6070986B2 (ja) 内燃機関の制御装置
JP4406324B2 (ja) エンジン制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09839634

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09839634

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP