WO2010087180A1 - 回転型圧縮機 - Google Patents

回転型圧縮機 Download PDF

Info

Publication number
WO2010087180A1
WO2010087180A1 PCT/JP2010/000503 JP2010000503W WO2010087180A1 WO 2010087180 A1 WO2010087180 A1 WO 2010087180A1 JP 2010000503 W JP2010000503 W JP 2010000503W WO 2010087180 A1 WO2010087180 A1 WO 2010087180A1
Authority
WO
WIPO (PCT)
Prior art keywords
vane
rotary compressor
piston
oil
oil supply
Prior art date
Application number
PCT/JP2010/000503
Other languages
English (en)
French (fr)
Inventor
飯田登
苅野健
船越大輔
鶸田晃
中野雅夫
澤井清
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN201080001456XA priority Critical patent/CN102016320A/zh
Priority to JP2010529964A priority patent/JP5542675B2/ja
Publication of WO2010087180A1 publication Critical patent/WO2010087180A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/08Rotary pistons
    • F01C21/0809Construction of vanes or vane holders
    • F01C21/0818Vane tracking; control therefor
    • F01C21/0854Vane tracking; control therefor by fluid means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/38Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/02 and having a hinged member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/023Lubricant distribution through a hollow driving shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps

Definitions

  • the present invention relates to a rotary compressor that can be used for an air conditioner, a refrigerator, a blower, a water heater, and the like.
  • a rotary compressor that sucks gas refrigerant evaporated in an evaporator, compresses it to a pressure necessary for condensation, and sends high-temperature and high-pressure gas refrigerant into a refrigerant circuit. in use.
  • a rolling piston rotary compressor is known.
  • the rolling piston type rotary compressor is configured such that the electric motor 2 and the compression mechanism unit 3 are connected to each other by a crankshaft 31 and accommodated in the sealed container 1.
  • the compression mechanism unit 3 includes a compression chamber 39 formed by a cylinder 30, an end plate 34 of an upper bearing 34 a that closes both end faces of the cylinder 30, and an end plate 35 of a lower bearing 35 a, and an upper portion in the compression chamber 39.
  • a piston 132 fitted to an eccentric portion 31a of the crankshaft 31 supported by the bearing 34a and the lower bearing 35a, and a reciprocating motion following the eccentric rotation on the outer periphery of the piston 132, and the inside of the compression chamber 39 as a low pressure portion.
  • a vane 133 is provided to partition the high pressure part.
  • the crankshaft 31 is provided with an oil hole 41 along the axis, and oil supply holes 42 and 43 communicating with the oil hole 41 are provided on the walls of the upper bearing 34a and the lower bearing 35a, respectively.
  • An oil supply hole 44 communicating with the oil hole 41 is provided in the wall portion of the crankshaft 31 with respect to the eccentric portion 31a, and an oil groove 45 is formed in the outer peripheral portion.
  • the cylinder 30 is opened with a suction port 40 for sucking gas toward the low pressure portion in the compression chamber 39, and the upper bearing 34 a receives gas from the high pressure portion formed by turning from the low pressure portion in the compression chamber 39.
  • a discharge port 38 for discharging is opened.
  • the discharge port 38 is formed as a circular hole passing through the upper bearing 34a in plan view.
  • a discharge valve 36 On the upper surface of the discharge port 38, there is provided a discharge valve 36 that is released when a pressure of a predetermined magnitude or more is applied.
  • the cup muffler 37 covers the discharge valve 36.
  • the sliding contact portion of the piston 132 On the low pressure portion side, the sliding contact portion of the piston 132 passes through the suction port 40 and moves away while gradually expanding the suction chamber, and gas is sucked into the suction chamber from the suction port 40.
  • the sliding portion of the piston 132 On the high pressure side, the sliding portion of the piston 132 approaches the discharge port 38 while gradually reducing the compression chamber 39, and when the pressure is compressed to a predetermined pressure or higher, the discharge valve 36 opens and the gas is discharged from the discharge port 38. Is discharged from the cup muffler 37 into the sealed container 1.
  • the present invention has been made in view of the above-described problems of the prior art, and can actively supply oil to the fitting swinging portion of the vane and the piston, thereby improving the reliability of the rotary compressor. It aims at improving further.
  • a rotary compressor according to the present invention is inserted into a vane groove of a cylinder, which is divided into a piston that rotates in a cylinder, and a compression chamber in which a suction chamber and a discharge port are opened.
  • Rotation type compression in which the piston and the vane are swingably connected by a swinging portion formed by a vane having a vane, an insertion portion at the tip of the vane, and a fitting portion of the piston into which the insertion portion is inserted
  • An oil supply path from a high pressure oil reservoir to the swinging part is formed. Thereby, oil can be positively supplied to the fitting rocking
  • the rotary compressor according to the present invention can supply oil actively by forming a passage for supplying high-pressure oil to the fitting swinging portion of the vane and the piston, and the reliability of the rotary compressor Can be improved.
  • the longitudinal cross-sectional view of the rotary compressor in the 1st Embodiment of this invention Enlarged sectional view of the compression mechanism of the rotary compressor Schematic diagram showing the compression operation of the rotary compressor
  • An enlarged exploded perspective view showing the main part of the rotary compressor Enlarged perspective view showing the main part of the rotary compressor
  • the expanded sectional view of the compression mechanism part of the rotary compressor in the 2nd Embodiment of this invention Enlarged perspective view showing the main part of the rotary compressor
  • the expanded sectional view of the compression mechanism part of the rotary compressor in the 3rd Embodiment of this invention Enlarged perspective view showing the main part of the rotary compressor
  • Enlarged perspective view showing the main part of the rotary compressor Enlarged perspective view showing the main part of the rotary compressor
  • the expanded sectional view of the compression mechanism part of the rotary compressor in the 4th Embodiment of this invention Enlarged perspective view showing the main part of the rotary compressor
  • a first invention is a piston that pivots in a cylinder, a vane that is partitioned into a compression chamber in which a suction chamber and a discharge port are opened in the cylinder, and is inserted into a vane groove of the cylinder, and an insertion portion at the tip of the vane,
  • a rotary compressor in which the piston and the vane are swingably connected to each other by a swinging portion formed by a fitting portion of the piston into which the insertion portion is inserted.
  • the oil supply path of the first aspect of the invention is configured by an oil supply hole that communicates from the inner surface of the piston to the fitting portion of the piston, so that it can be easily supplied from the high-pressure oil reservoir to the swinging portion.
  • a route can be configured.
  • the oil supply path of the first aspect of the invention is configured by a hole communicating from the back surface of the vane to the tip of the insertion portion of the vane, so that the high pressure oil reservoir can be easily supplied to the swinging portion A route can be configured.
  • the oil supply path of the first aspect of the present invention is configured so that the hole passing through the lower bearing disposed on the end surface of the cylinder and the vane tip is opened intermittently by reciprocating movement of the vane.
  • the hole passing through the lower bearing disposed on the end surface of the cylinder and the vane tip is opened intermittently by reciprocating movement of the vane.
  • FIG. 1 is a longitudinal sectional view of a rotary compressor according to a first embodiment of the present invention
  • FIG. 2 is an enlarged sectional view of a compression mechanism portion of the rotary compressor.
  • FIG. 3 is a schematic view showing a compression operation of the rotary compressor
  • FIG. 4 is an enlarged exploded perspective view showing a main part of the rotary compressor
  • FIG. 5 is an enlarged perspective view showing a main part of the rotary compressor. It is.
  • the rotary compressor of the present invention shown in FIGS. 1 and 2 is one in which an electric motor 2 and a compression mechanism 3 are connected by a crankshaft 31 and stored in a sealed container 1.
  • the compression mechanism unit 3 includes a compression chamber 39 formed by a cylinder 30, an end plate 34 of an upper bearing 34 a that closes both end faces of the cylinder 30, and an end plate 35 of a lower bearing 35 a, and an upper portion in the compression chamber 39.
  • the piston 32 fitted to the eccentric portion 31a of the crankshaft 31 supported by the bearing 34a and the lower bearing 35a, and the compression chamber 39 is partitioned into a low pressure portion and a high pressure portion, and the piston 32 and the tip end portion are connected to freely swing.
  • the vane 33 is provided.
  • a cylindrical insertion portion 33a that is a tip portion of the vane 33 and a cylindrical fitting portion 32a that is formed on the piston 32 and into which the insertion portion 33a of the vane 33 is inserted. It is configured to be swingably fitted and connected, and a gap for swinging is provided between the insertion portion 33a at the tip of the vane 33 and the fitting portion 32a of the piston 32.
  • the crankshaft 31 is provided with an oil hole 41 in the axial line portion, and oil supply holes 42 and 43 communicating with the oil hole 41 are provided on the wall portions of the upper bearing 34a and the lower bearing 35a, respectively.
  • An oil supply hole 44 communicating with the oil hole 41 is provided in the wall portion of the crankshaft 31 with respect to the eccentric portion 31a, and an oil groove 45 is formed in the outer peripheral portion.
  • the high-pressure oil stored in the oil reservoir 6 climbs the oil hole 41 by centrifugal force generated by the rotation of the crankshaft 31, and is supplied to the oil holes 42, 43, 44 and the oil groove 45 to lubricate the bearing portion.
  • the cylinder 30 is opened with a suction port 40 for sucking gas toward the low pressure portion in the compression chamber 39, and the upper bearing 34 a receives gas from the high pressure portion formed by turning from the low pressure portion in the compression chamber 39.
  • a discharge port 38 for discharging is opened.
  • the discharge port 38 is formed as a circular hole in plan view that passes through the end plate 34 of the upper bearing 34a. On the upper surface of the discharge port 38, there is provided a discharge valve 36 that is released when a pressure of a predetermined magnitude or more is applied.
  • the cup muffler 37 covers the discharge valve 36.
  • FIG. 3 the positional relationship between the piston 32 and the vane 33 when the piston 32 is rotated by 90 degrees is shown in the order of FIGS. 3 (A), (B), (C), and (D). .
  • the sliding contact portion of the piston 32 passes through the suction port 40 on the low-pressure portion side and moves away while gradually expanding the suction chamber. Inhale gas into the room.
  • the sliding portion of the piston 32 approaches the discharge port 38 while gradually reducing the compression chamber 39, and when the pressure is compressed to a predetermined pressure or higher, the discharge valve 36 opens and the gas is discharged from the discharge port 38. Is discharged from the cup muffler 37 into the sealed container 1.
  • an oil supply hole 60 that communicates from the inner surface 32 b of the piston 32 to the cylindrical fitting portion 32 a is formed.
  • the oil groove 45 communicates with the oil supply hole 60 for a certain period by the rotation of the crankshaft 31, and the oil existing in the oil groove 45 passes through the oil supply hole 60 and is fitted in a cylindrical shape. It is supplied to a swinging portion formed by the insertion portion 33a at the tip of the portion 32a and the vane 33.
  • This supplied oil further improves the sliding state of the oscillating part and also improves the sealing performance of the oscillating part so that the gas from the high-pressure compression chamber 39 to the low-pressure suction chamber passes through the gap of the oscillating part. Leakage can be further suppressed. Further, since the oil is supplied while the oil groove 45 is in communication with the oil supply hole 60, the supply amount can be controlled. In the general rolling piston type rotary compressor shown in FIGS. 19 and 20, the oil is difficult to be held at the tip of the vane 133, the sliding property is severe, and the oil film is difficult to be formed. Then, since the oil supplied by the oil supply hole 60 is held in the swinging portion, the sliding state is improved and the reliability is improved. Therefore, in the present embodiment, the oil supply path from the high-pressure oil reservoir to the oscillating portion is formed with respect to the oscillating portion, so that oil can be actively supplied. Reliability can be improved.
  • FIG. 6 is an enlarged cross-sectional view of the compression mechanism portion of the rotary compressor according to the second embodiment of the present invention
  • FIG. 7 is an enlarged perspective view showing the main part of the rotary compressor.
  • symbol is provided to the same component as above-mentioned Embodiment 1, and description is abbreviate
  • an oil supply hole 61 that communicates from the back surface 33b of the vane 33 to the insertion portion 33a at the tip of the vane 33 is formed. Since oil is present on the back surface 33b of the vane 33, it swings due to the pressure difference between the high pressure portion and the suction chamber through the oil supply hole 61 and through the clearance of the swinging portion formed by the tip of the vane 33 and the fitting portion 32a of the piston 32. After the oil is supplied to the part, it is supplied to the suction chamber, so that the sliding state is improved and the reliability is improved.
  • FIG. 8 is an enlarged cross-sectional view of the compression mechanism portion of the rotary compressor according to the third embodiment of the present invention.
  • FIGS. 9 and 10 show the essential parts of the rotary compressor according to the third embodiment of the present invention. It is an expansion perspective view which shows a part. The same components as those in the first and second embodiments described above are assigned the same reference numerals and explanations thereof are omitted.
  • an oil supply hole 62 that opens from the end plate 35 of the lower bearing 35a to the oil reservoir 6 is provided, and an oil supply hole 63 that communicates from the lower end surface 33c of the vane 33 to the insertion portion 33a at the tip of the vane 33 is provided.
  • the lower end surface 33 c side of the oil supply hole 63 is disposed at a position where the oil supply hole 62 intermittently communicates with the reciprocating motion of the vane 33.
  • FIGS. 12, 14, and 16 are the main parts of the rotary compressor. It is an expansion perspective view which shows a part. The same components as those in the first to third embodiments are given the same reference numerals and the description thereof is omitted.
  • the insertion portion 33a at the tip of the vane 33 is provided with a recess 33d such as a D-cut.
  • the recess 33d is provided in a portion facing the oil supply hole for supplying oil to the tip of the vane 33 and the swinging portion of the piston 32 when the oil supply hole for supplying oil is formed.
  • the oil supplied from the oil supply hole can be stored by the depression 33d such as the D cut, and the swinging portion can be easily lubricated.
  • FIG. 17 is an enlarged cross-sectional view of a compression mechanism of a rotary compressor according to a fifth embodiment of the present invention
  • FIG. 18 is an enlarged perspective view showing a main part of the rotary compressor.
  • the same components as those in the first to fourth embodiments are given the same reference numerals, and the description thereof is omitted.
  • a recess 32c is provided in a cylindrical fitting portion 32a formed in the piston 32 facing the oil supply hole 60 for supplying oil to the tip of the vane 33 and the swinging portion of the piston 32.
  • the recess 32c can store the oil supplied from the oil supply hole 60 and can easily lubricate the swinging portion.
  • the recess 32c may be formed in one or both of the vane 33 and the piston 32.
  • C chamfering may be provided at the end of the oil supply hole that supplies oil to the tip of the vane 33 and the swinging portion of the piston 32.
  • the rotary compressor of the present invention suppresses deterioration of reliability such as vane tip wear and seizure, and simultaneously reduces leakage loss and sliding loss, thereby improving the efficiency of the compressor. It becomes possible to plan.
  • the present invention can be applied to an air conditioner using a natural refrigerant CO2 or a flammable refrigerant, a heat pump type hot water heater, or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Rotary Pumps (AREA)

Abstract

 ピストン32の内面32bから円筒形の嵌合部32aに連通する給油穴60を形成されることにより、油溝45がクランク軸31の回転により一定区間この給油穴60に連通し、油溝45に存在するオイルが給油穴60を通り、円筒型の嵌合部32aとベーン33先端の挿入部33aで形成される揺動部に供給されることにより、揺動部の摺動状態が更に良化すると共に、揺動部のシール性も向上して揺動部の隙間を通じて高圧の圧縮室39から低圧の吸入室へのガスの漏れをさらに抑制できる。

Description

回転型圧縮機
 本発明は、空調機、冷凍機、ブロワ、給湯機等に使用されることが可能な回転型圧縮機に関するものである。
 従来、冷凍装置や空気調和装置などにおいては、蒸発器で蒸発したガス冷媒を吸入し、凝縮するために必要な圧力まで圧縮し、冷媒回路中に高温高圧のガス冷媒を送り出す回転型圧縮機が使用されている。このような回転型圧縮機の一つとして、ローリングピストン型ロータリ圧縮機が知られている。
 ローリングピストン型ロータリ圧縮機は、たとえば図19、図20に示すように、電動機2と圧縮機構部3をクランク軸31で連結して密閉容器1内に収納したものである。圧縮機構部3は、シリンダ30とこのシリンダ30の両端面を閉塞する上軸受34aの端板34と下軸受35aの端板35とで形成された圧縮室39と、この圧縮室39内に上軸受34aおよび下軸受35aに支持されたクランク軸31の偏心部31aに嵌合されたピストン132と、このピストン132の外周にの偏心回転に追従して往復運動し圧縮室39内を低圧部と高圧部とに仕切るベーン133を備えている。クランク軸31には軸線に沿って油穴41が設けられるとともに、上軸受34a、下軸受35aに対する壁部には、それぞれ油穴41に連通した給油穴42、43が設けられている。また、クランク軸31の偏心部31aに対する壁部には油穴41に連通した給油穴44が設けられ、外周部には油溝45が形成されている。シリンダ30には、圧縮室39内の低圧部に向けてガスを吸入する吸入ポート40が開通され、上軸受34aには、圧縮室39内の低圧部から転じて形成される高圧部からガスを吐出する吐出ポート38が開通されている。吐出ポート38は上軸受34aを貫通する平面視円形の孔として形成されている。吐出ポート38の上面には所定の大きさ以上の圧力を受けた場合に解放される吐出弁36が設けられている。カップマフラ-37は吐出弁36を覆っている。低圧部側ではピストン132の摺接部が吸入ポート40を通過して吸入室を徐々に拡大しながら離れていき、吸入ポート40から吸入室内にガスを吸入する。一方、高圧部側ではピストン132の摺動部が吐出ポート38へ圧縮室39を徐々に縮小しながら近づいていき、所定圧力以上に圧縮された時点で吐出弁36が開いて吐出ポート38からガスを流出し、カップマフラ-37より密閉容器1内に吐出される。
 上記の構成では、ピストン132とベーン133先端の摺動部の面圧が高くオイルが保持されにくく、摺動性が厳しいため、磨耗が起こりやすい。なお、代替冷媒の移行により、非共沸混合冷媒のR407CやR410Aを使用すると冷媒自身の潤滑性が悪く、磨耗がさらに発生しやすい。
 この磨耗を解決する手段として、図21に示す特許文献1が提案されている。図21に示すように、シリンダ30と、シリンダ30内に設けられたクランク軸31の偏心部31aに嵌合されたピストン32と、シリンダ30に設けられたスロット内を往復運動してピストン32と先端部で揺動自由に接続されるベーン33と、シリンダ30の両端面を閉塞する二つの端板34、35と、少なくとも一方の端板34、35に吐出ポート38とを有する揺動ピストン型圧縮機を採用することで、ピストン32とベーン33先端の揺動部の摺動面積が大きいので面圧が下がり摺動性が良好になり、信頼性を向上させることができる。
特開昭50-80510号公報
 しかしながら、特許文献1の構成ではベーン33とピストン32の嵌合する揺動部の潤滑は圧縮室に存在するミスト状のオイルが吸入室へ差圧により流れていくのみであり、過負荷などの厳しい運転において、揺動部の摩耗などの信頼性に課題が生じる恐れがあった。
 本発明は、従来技術の有するこのような問題点に鑑みてなされたものであり、ベーンとピストンの嵌合揺動部に積極的にオイルを供給することができ、回転型圧縮機の信頼性をさらに向上させることを目的とする。
 上記目的を達成するために、本発明の回転型圧縮機は、シリンダ内を旋回運動するピストンと、前記シリンダ内を吸入室と吐出口が開口する圧縮室に仕切り前記シリンダのベーン溝に挿入されるベーンと、前記ベーン先端の挿入部と前記挿入部が挿入される前記ピストンの嵌合部とで形成される揺動部で前記ピストンと前記ベーンとが揺動自在に接続される回転型圧縮機であって、高圧のオイル溜りから前記揺動部へのオイル供給経路を形成したものである。
 これにより、ベーンとピストンの嵌合揺動部に積極的にオイルを供給することができ、回転型圧縮機の信頼性をさらに向上させることができる。
 本発明の回転型圧縮機は、ベーンとピストンの嵌合揺動部に高圧のオイルを供給する経路を形成することで、積極的にオイルを供給することができ、回転型圧縮機の信頼性を向上することができる。
本発明の第1の実施の形態における回転型圧縮機の縦断面図 同回転型圧縮機の圧縮機構部の拡大断面図 同回転型圧縮機の圧縮動作を示す模式図 同回転型圧縮機の要部を示す拡大分解斜視図 同回転型圧縮機の要部を示す拡大斜視図 本発明の第2の実施の形態における回転型圧縮機の圧縮機構部の拡大断面図 同回転型圧縮機の要部を示す拡大斜視図 本発明の第3の実施の形態における回転型圧縮機の圧縮機構部の拡大断面図 同回転型圧縮機の要部を示す拡大斜視図 同回転型圧縮機の要部を示す拡大斜視図 本発明の第4の実施の形態における回転型圧縮機の圧縮機構部の拡大断面図 同回転型圧縮機の要部を示す拡大斜視図 同回転型圧縮機の圧縮機構部の拡大断面図 同回転型圧縮機の要部を示す拡大斜視図 同回転型圧縮機の圧縮機構部の拡大断面図 同回転型圧縮機の要部を示す拡大斜視図 本発明の第5の実施の形態における回転型圧縮機の圧縮機構部の拡大断面図 同回転型圧縮機の要部を示す拡大斜視図 従来のローリングピストン回転型圧縮機の縦断面図 同圧縮機構部を示す断面図 従来の揺動ピストン回転型圧縮機の圧縮機構部を示す縦断面図と横断面図
 1 密閉容器
 2 電動機
 3 圧縮機構部
 5 上シェル
 6 オイル溜り
 7 バネ
 22 固定子
 24 回転子
 30 シリンダ
 30a シリンダ内壁
 30b スロット
 31 クランク軸
 31a 偏芯部
 32 ピストン
 32a 嵌合部
 32b ピストン内面
 32c 窪み
 33 ベーン
 33a 挿入部
 33b ベーン背面
 33c ベーン下端面
 33d 窪み
 34 端板
 34a 上軸受
 35 端板
 35a 下軸受
 36 吐出弁
 37 カップマフラ-
 38 吐出ポート
 39 圧縮室
 40 吸入ポート
 41 油穴
 42 給油穴 
 43 給油穴
 44 給油穴
 45 油溝
 48 経路
 51 冷媒吐出管
 52 吐出空間
 60 給油穴
 61 給油穴
 62 給油穴
 63 給油穴
 第1の発明は、シリンダ内を旋回運動するピストンと、前記シリンダ内を吸入室と吐出口が開口する圧縮室に仕切り前記シリンダのベーン溝に挿入されるベーンと、前記ベーン先端の挿入部と挿入部が挿入される前記ピストンの嵌合部とで形成される揺動部で前記ピストンと前記ベーンとが揺動自在に接続される回転型圧縮機であって、高圧のオイル溜りから前記揺動部へのオイル供給経路を形成したことにより、ベーンとピストンの嵌合揺動部に積極的にオイルを供給することができ、回転型圧縮機の信頼性をさらに向上させることができる。
 第2の発明は、特に第1の発明のオイル供給経路が、ピストンの内面から前記ピストンの嵌合部に連通する給油穴により構成されたことにより、高圧オイル溜りから容易に揺動部に供給する経路を構成することができる。
 第3の発明は、特に、第1の発明のオイル供給経路が、ベーンの背面から前記ベーンの挿入部先端に連通する穴により構成されることにより、高圧オイル溜りから容易に揺動部に供給する経路を構成することができる。
 第4の発明は、特に第1の発明のオイル供給経路が、シリンダの端面に配された下軸受を貫通する穴と、この穴にベーンの往復運動により間欠開口するように、前記ベーン先端の挿入部の端面から前記ベーンの挿入部先端に連通する穴により構成されることにより、揺動部にオイルの量を調節して供給することが可能となり、揺動部の信頼性を向上するとともに効率も向上することができる。
 第5の発明は、特に第1から第4の発明のベーンの挿入部先端に窪みを構成したことにより、揺動部へ確実にオイルを供給することができる。
 第6の発明は、特に第1から第4の発明のピストンの嵌合部に窪みを構成したことにより、揺動部へ確実にオイルを供給することができる。
 以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。
 (実施の形態1)
 図1は本発明の第1の実施の形態における回転型圧縮機の縦断面図、図2は同回転型圧縮機の圧縮機構部の拡大断面図である。図3は同回転型圧縮機の圧縮動作を示す模式図、図4は同回転型圧縮機の要部を示す拡大分解斜視図、図5は同回転型圧縮機の要部を示す拡大斜視図である。
 図1と図2に示す本発明の回転型圧縮機は、電動機2と圧縮機構部3をクランク軸31で連結して密閉容器1内に収納したものである。圧縮機構部3は、シリンダ30とこのシリンダ30の両端面を閉塞する上軸受34aの端板34と下軸受35aの端板35とで形成された圧縮室39と、この圧縮室39内に上軸受34aおよび下軸受35aに支持されたクランク軸31の偏心部31aに嵌合されたピストン32と、圧縮室39内を低圧部と高圧部とに仕切りピストン32と先端部で揺動自由に接続されるベーン33とを備えている。図4の分解斜視図に示すように、ベーン33の先端部である円筒形の挿入部33aと、ピストン32に形成されベーン33の挿入部33aが挿入される円筒形の嵌合部32aとが揺動自在に嵌合接続する構成となっており、ベーン33先端の挿入部33aとピストン32の嵌合部32aの間には揺動の為の隙間が設けられている。クランク軸31には軸線部に油穴41が設けられるとともに、上軸受34a、下軸受35aに対する壁部には、それぞれ油穴41に連通した給油穴42、43が設けられている。また、クランク軸31の偏心部31aに対する壁部には油穴41に連通した給油穴44が設けられ、外周部には油溝45が形成されている。オイル溜り6に貯留されている高圧のオイルはクランク軸31の回転による遠心力で油穴41を上り、油穴42、43、44、および油溝45に供給され、軸受部の潤滑を行っている。シリンダ30には、圧縮室39内の低圧部に向けてガスを吸入する吸入ポート40が開通され、上軸受34aには、圧縮室39内の低圧部から転じて形成される高圧部からガスを吐出する吐出ポート38が開通されている。吐出ポート38は上軸受34aの端板34を貫通する平面視円形の孔として形成されている。吐出ポート38の上面には所定の大きさ以上の圧力を受けた場合に解放される吐出弁36が設けられている。カップマフラ-37は吐出弁36を覆っている。
 次に、図3を用いて、本実施の形態の圧縮動作を説明する。図3に示すように、ピストン32を90度ずつ回転させた時のピストン32とベーン33との位置関係を図3(A),(B),(C),(D)の順に示している。図3に示すようにクランク軸31が一回転する間に低圧部側ではピストン32の摺接部が吸入ポート40を通過して吸入室を徐々に拡大しながら離れていき、吸入ポート40から吸入室内にガスを吸入する。一方、高圧部側ではピストン32の摺動部が吐出ポート38へ圧縮室39を徐々に縮小しながら近づいていき、所定圧力以上に圧縮された時点で吐出弁36が開いて吐出ポート38からガスを流出し、カップマフラ-37より密閉容器1内に吐出される。
 以上のように構成された回転型圧縮機において、図2と図5に示すように、ピストン32の内面32bから円筒形の嵌合部32aに連通する給油穴60が形成されている。この給油穴60が形成されることにより、油溝45がクランク軸31の回転により一定区間この給油穴60に連通し、油溝45に存在するオイルが給油穴60を通り、円筒型の嵌合部32aとベーン33先端の挿入部33aで形成される揺動部に供給される。この供給されたオイルにより揺動部の摺動状態が更に良化すると共に、揺動部のシール性も向上して揺動部の隙間を通じて高圧の圧縮室39から低圧の吸入室へのガスの漏れをさらに抑制できる。また給油穴60に油溝45が連通している間、オイルが供給されるので、供給量をコントロールすることができる。図19、20で示す一般的なローリングピストン型ロータリ圧縮機では、ベーン133先端ではオイルが保持されにくく、摺動性が厳しく油膜が形成されにくいのに対し、本実施の形態の回転型圧縮機では揺動部に給油穴60によって供給されたオイルが保持されるため、摺動状態が良化し、信頼性が向上する。従って、本実施の形態では、揺動部に対して、高圧のオイル溜りから揺動部へのオイル供給経路を形成したことにより、積極的にオイルを供給することができ、回転型圧縮機の信頼性を向上することができる。
 (実施の形態2)
 次に、ベーン33先端の挿入部33aとピストン32の嵌合部32aとで形成される揺動部にオイルを供給する他の実施の形態を説明する。
 図6は本発明の第2の実施の形態における回転型圧縮機の圧縮機構部の拡大断面図であり、図7は同回転型圧縮機の要部を示す拡大斜視図である。なお、前述の実施の形態1と同一構成要素には同一符号を付与して説明を省略する。
 本実施の形態では、ベーン33の背面33bからベーン33先端の挿入部33aに連通する給油穴61を形成している。ベーン33の背面33bにはオイルが存在するので給油穴61を通して、ベーン33先端とピストン32の嵌合部32aとで形成される揺動部の隙間を通して高圧部と吸入室の差圧により揺動部にオイルが供給された後、吸入室へ供給されることで摺動状態が良化し、信頼性が向上する。
 (実施の形態3)
 次に、ベーン33先端の挿入部33aとピストン32の嵌合部32aとで形成される揺動部にオイルを供給する更に他の実施の形態を説明する。
 図8は本発明の第3の実施の形態における回転型圧縮機の圧縮機構部の拡大断面図であり、図9と図10は本発明の第3の実施の形態における回転型圧縮機の要部を示す拡大斜視図である。なお、前述の実施の形態1と2と同一構成要素には同一符号を付与して説明を省略する。
 本実施の形態では、下軸受35aの端板35からオイル溜り6に開口する給油穴62を設けると共に、ベーン33の下端面33cからベーン33先端の挿入部33aに連通する給油穴63を設けている。給油穴63の下端面33c側はベーン33の往復運動により給油穴62と間欠的に連通する位置に配設している。この構成によりオイル溜り6のオイルは給油穴62と給油穴63を経由してベーン33先端とピストン32の揺動部を潤滑した後、吸入室へ供給される。この結果、揺動部の摺動状態が良化し、信頼性が向上する。また給油穴63は給油穴62と間欠的に連通するので連通している割合を変更することで供給するオイル量を調節できる。
 (実施の形態4)
 次に、ベーン33先端の挿入部33aとピストン32の嵌合部32aとで形成される揺動部にオイルを供給するために適用されるベーン33先端の挿入部33aの実施の形態を説明する。
 図11と図13と図15は本発明の第4の実施の形態における回転型圧縮機の圧縮機構部の拡大断面図であり、図12と図14と図16は同回転型圧縮機の要部を示す拡大斜視図である。なお、前述の実施の形態1から3と同一構成要素には同一符号を付与して説明を省略する。
 本実施の形態では、ベーン33先端の挿入部33aにDカット等の窪み33dを設けたものである。なお、この窪み33dは、オイルを供給する給油穴が形成されているときには、ベーン33先端とピストン32の揺動部にオイルを供給する給油穴に臨む部位に設けたものである。このDカット等の窪み33dにより給油穴から供給されるオイルを貯留できると共に揺動部が潤滑しやすくなる。
 (実施の形態5)
 次に、ベーン33先端の挿入部33aとピストン32の嵌合部32aとで形成される揺動部にオイルを供給する更に他の実施の形態を説明する。
 図17は本発明の第5の実施の形態における回転型圧縮機の圧縮機構部の拡大断面図であり、図18は同回転型圧縮機の要部を示す拡大斜視図である。なお、前述の実施の形態1から4と同一構成要素には同一符号を付与して説明を省略する。
 本実施の形態では、ベーン33先端とピストン32の揺動部にオイルを供給する給油穴60に臨むピストン32に形成された円筒形の嵌合部32aに窪み32cを設けたものである。この窪み32cにより給油穴60から供給されるオイルを貯留できると共に揺動部が潤滑しやすくなる。なおこの窪み32cはベーン33もしくはピストン32の一方、又は両方に構成してもよい。
 なお、前述の各実施の形態において、ベーン33先端とピストン32の揺動部にオイルを供給する給油穴の端部にC面取りを設けてもよい。このC面取りにより給油穴から供給されるオイルを貯留できると共に揺動部が潤滑しやすくなる。
 以上のように、本発明の回転型圧縮機は、ベーン先端の磨耗や焼き付きなどの信頼性面の低下を抑制するとともに、漏れ損失と摺動損失を同時に低減し、圧縮機の高効率化を図ることが可能となる。これにより、HFC系冷媒やHCFC系冷媒を用いたエアーコンディショナー用圧縮機のほかに、自然冷媒CO2や可燃性冷媒を用いたエアーコンディショナーやヒートポンプ式給湯機などにも適用できる。

Claims (6)

  1.  シリンダ内を旋回運動するピストンと、
    前記シリンダ内を吸入室と吐出口が開口する圧縮室に仕切り前記シリンダのベーン溝に挿入されるベーンと、
    前記ベーン先端の挿入部と前記挿入部が挿入される前記ピストンの嵌合部とで形成される揺動部と、
    を備え、
    前記揺動部で前記ピストンと前記ベーンとが揺動自在に接続される回転型圧縮機であって、
    高圧のオイル溜りから前記揺動部へのオイル供給経路を形成したことを特徴とする回転型圧縮機。
  2.  前記オイル供給経路が、前記ピストンの内面から前記ピストンの前記嵌合部に連通する給油穴により構成された請求項1に記載の回転型圧縮機。
  3.  前記オイル供給経路が、前記ベーンの背面から前記ベーンの前記挿入部先端に連通する穴により構成された請求項1に記載の回転型圧縮機。
  4.  前記オイル供給経路が、前記シリンダの端面に配された下軸受を貫通する穴と、前記穴に前記ベーンの往復運動により間欠開口するように、前記ベーン先端の前記挿入部の端面から前記ベーンの前記挿入部先端に連通する穴により構成された請求項1に記載の回転型圧縮機。
  5.  前記ベーンの挿入部先端に窪みを構成した請求項1から4のいずれか1項に記載の回転型圧縮機。
  6.  前記ピストンの前記嵌合部に窪みを構成した請求項1から4のいずれか1項に記載の回転型圧縮機。
PCT/JP2010/000503 2009-01-29 2010-01-28 回転型圧縮機 WO2010087180A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201080001456XA CN102016320A (zh) 2009-01-29 2010-01-28 旋转式压缩机
JP2010529964A JP5542675B2 (ja) 2009-01-29 2010-01-28 回転型圧縮機

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-017572 2009-01-29
JP2009017572 2009-01-29

Publications (1)

Publication Number Publication Date
WO2010087180A1 true WO2010087180A1 (ja) 2010-08-05

Family

ID=42395444

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/000503 WO2010087180A1 (ja) 2009-01-29 2010-01-28 回転型圧縮機

Country Status (3)

Country Link
JP (1) JP5542675B2 (ja)
CN (1) CN102016320A (ja)
WO (1) WO2010087180A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014077415A (ja) * 2012-10-11 2014-05-01 Toshiba Carrier Corp 密閉型圧縮機および冷凍サイクル装置
EP3194785A4 (en) * 2014-09-19 2018-05-09 LG Electronics Inc. Compressor
EP3744947A1 (en) * 2019-05-31 2020-12-02 LG Electronics Inc. Rotary compressor
EP3767070A1 (en) * 2019-07-17 2021-01-20 LG Electronics Inc. Rotary compressor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110836184B (zh) 2018-08-17 2022-03-04 Lg电子株式会社 旋转式压缩机
CN117287390A (zh) * 2023-07-18 2023-12-26 广州市德善数控科技有限公司 一种摆动转子式压缩机

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6397895A (ja) * 1986-10-09 1988-04-28 Daikin Ind Ltd ヘリウム圧縮機
JPH04255591A (ja) * 1991-02-05 1992-09-10 Matsushita Refrig Co Ltd 回転式圧縮機
JPH08151988A (ja) * 1994-11-28 1996-06-11 Matsushita Electric Ind Co Ltd ロータリ圧縮機
JPH10148193A (ja) * 1996-11-19 1998-06-02 Matsushita Electric Ind Co Ltd ロータリ圧縮機

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57184291U (ja) * 1981-05-19 1982-11-22
JPH04228894A (ja) * 1990-12-27 1992-08-18 Matsushita Refrig Co Ltd 回転式圧縮機
JPH06257579A (ja) * 1993-03-04 1994-09-13 Matsushita Electric Ind Co Ltd 回転式圧縮機

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6397895A (ja) * 1986-10-09 1988-04-28 Daikin Ind Ltd ヘリウム圧縮機
JPH04255591A (ja) * 1991-02-05 1992-09-10 Matsushita Refrig Co Ltd 回転式圧縮機
JPH08151988A (ja) * 1994-11-28 1996-06-11 Matsushita Electric Ind Co Ltd ロータリ圧縮機
JPH10148193A (ja) * 1996-11-19 1998-06-02 Matsushita Electric Ind Co Ltd ロータリ圧縮機

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014077415A (ja) * 2012-10-11 2014-05-01 Toshiba Carrier Corp 密閉型圧縮機および冷凍サイクル装置
EP3194785A4 (en) * 2014-09-19 2018-05-09 LG Electronics Inc. Compressor
US10718331B2 (en) 2014-09-19 2020-07-21 Lg Electronics Inc. Compressor having a lubrication surface formed on a roller thereof
EP3744947A1 (en) * 2019-05-31 2020-12-02 LG Electronics Inc. Rotary compressor
US11441566B2 (en) 2019-05-31 2022-09-13 Lg Electronics Inc. Rotary compressor having roller with dimple portion
EP3767070A1 (en) * 2019-07-17 2021-01-20 LG Electronics Inc. Rotary compressor
US11486398B2 (en) 2019-07-17 2022-11-01 Lg Electronics Inc. Rotary compressor with selective oil communication

Also Published As

Publication number Publication date
JP5542675B2 (ja) 2014-07-09
JPWO2010087180A1 (ja) 2012-08-02
CN102016320A (zh) 2011-04-13

Similar Documents

Publication Publication Date Title
JP5542675B2 (ja) 回転型圧縮機
US20060216185A1 (en) Hermetic rotary compressor
JP4989154B2 (ja) 気体圧縮機
JP5905005B2 (ja) 多気筒回転式圧縮機及び冷凍サイクル装置
JP5040934B2 (ja) 密閉型圧縮機
JP5540557B2 (ja) ロータリ圧縮機
EP2418386B1 (en) Rotary compressor
JP2014240634A (ja) ロータリ式流体機械
EP4008906B1 (en) Rotary compressor
JP5017842B2 (ja) 回転式圧縮機
JP2010031733A (ja) ロータリ圧縮機
JP2010031732A (ja) ロータリ圧縮機
JP2008169811A (ja) 気体圧縮機
JP2005048666A (ja) スクロール圧縮機
JP2009127517A (ja) 密閉型圧縮機
JP2010031734A (ja) ロータリ圧縮機
CN114555948A (zh) 压缩机及冷冻循环装置
WO2013080519A1 (ja) ロータリ圧縮機
JP4074760B2 (ja) 密閉型回転圧縮機及び冷凍・空調装置
JP2006132332A (ja) 流体機械
JP2011163257A (ja) 密閉型圧縮機
WO2023152799A1 (ja) 圧縮機及び該圧縮機を備えた冷凍サイクル装置
JP5168169B2 (ja) 密閉型圧縮機
JP2011179452A (ja) ロータリ圧縮機
JP2017014908A (ja) 圧縮機

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080001456.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2010529964

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10735652

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10735652

Country of ref document: EP

Kind code of ref document: A1