WO2010084786A2 - サイズ剤組成物 - Google Patents

サイズ剤組成物 Download PDF

Info

Publication number
WO2010084786A2
WO2010084786A2 PCT/JP2010/002392 JP2010002392W WO2010084786A2 WO 2010084786 A2 WO2010084786 A2 WO 2010084786A2 JP 2010002392 W JP2010002392 W JP 2010002392W WO 2010084786 A2 WO2010084786 A2 WO 2010084786A2
Authority
WO
WIPO (PCT)
Prior art keywords
emulsion
succinic anhydride
mass
acid
alkenyl succinic
Prior art date
Application number
PCT/JP2010/002392
Other languages
English (en)
French (fr)
Other versions
WO2010084786A3 (ja
Inventor
藤原康史
白石誠
沖永俊治
伊藤賢一
稲田幸督
Original Assignee
星光Pmc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 星光Pmc株式会社 filed Critical 星光Pmc株式会社
Priority to CN2010800357911A priority Critical patent/CN102472019A/zh
Priority to JP2010547454A priority patent/JPWO2010084786A1/ja
Publication of WO2010084786A2 publication Critical patent/WO2010084786A2/ja
Publication of WO2010084786A3 publication Critical patent/WO2010084786A3/ja

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/14Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by function or properties in or on the paper
    • D21H21/16Sizing or water-repelling agents
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/03Non-macromolecular organic compounds
    • D21H17/05Non-macromolecular organic compounds containing elements other than carbon and hydrogen only
    • D21H17/14Carboxylic acids; Derivatives thereof
    • D21H17/15Polycarboxylic acids, e.g. maleic acid
    • D21H17/16Addition products thereof with hydrocarbons
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/03Non-macromolecular organic compounds
    • D21H17/05Non-macromolecular organic compounds containing elements other than carbon and hydrogen only
    • D21H17/17Ketenes, e.g. ketene dimers

Definitions

  • the present invention relates to a sizing composition, and more particularly to a sizing composition comprising alkenyl succinic anhydride as a main component.
  • ASA Alkenyl succinic anhydride
  • 2-oxetanone compounds typified by alkyl ketene dimers are also used as sizing agents, but ASA has better sizing immediately after papermaking than 2-oxetanone compounds and has a size effect on waste paper pulp and mechanical pulp. It has excellent characteristics.
  • ASA is used as an emulsion emulsified and dispersed in an aqueous medium.
  • ASA is an oily substance at room temperature or in a heated state, it can be emulsified by a conventionally known emulsification method using an emulsifying dispersant and a high-speed stirrer (see, for example, Patent Document 1).
  • an emulsifying dispersant for emulsifying ASA for example, a method using a cationized starch paste (for example, see Patent Documents 1 and 2), a method using a vinyl-based or (meth) acrylamide-based cationic polymer (for example, , Patent Documents 3 and 4), a method using grafted cationized starch obtained by graft polymerization of monomers containing (meth) acrylamide onto cationized starch (for example, see Patent Document 5), and using an amphoteric acrylamide polymer. (For example, refer to Patent Documents 6 and 7).
  • ASA is prone to hydrolysis due to contact with moisture, and not only the size effect on paper is reduced, but also the ASA hydrolyzate causes soiling in the papermaking process. It was easy to become and was not yet satisfactory.
  • the size of the hydrophobic sizing agent includes not only AKD ( ⁇ : alkyl ketene dimer) but also other sizing agents suitable for improving water repellency such as alkenyl succinic anhydride (ASA).
  • Patent Document 11 discloses a paper sizing agent containing a specific cationic starch, a liquid 2-oxetanone compound, ASA, and water (see claim 1 of Patent Document 11). .
  • the cationic starch in the paper sizing agent described in Patent Document 11 is effective as an emulsifier and a retention aid (see page 12 of Patent Document 11).
  • the sizing agent described in Patent Document 12 is not sufficient for solving the problems of the above-mentioned ASA with regard to a technique for improving a sizing agent mainly composed of a 2-oxetanone compound.
  • An object of the present invention is to provide a sizing agent composition having excellent water resistance, excellent emulsion stability, and hardly causing dirt during use.
  • the present inventors have mixed water with a specific ratio of an alkenyl succinic anhydride and a 2-oxetanone compound synthesized from a fatty acid having a specific composition, thereby providing excellent water resistance and stability of the emulsion.
  • the inventors have found that a sizing composition excellent in the above can be obtained, and have completed the present invention.
  • the means for solving the problem is ⁇ 1> An emulsion obtained by emulsifying a mixture containing 60 to 95% by mass of an alkenyl succinic anhydride which is liquid at 25 ° C. and 5 to 40% by mass of a 2-oxetanone compound which is liquid at 25 ° C.
  • a sizing composition characterized by ⁇ 2> A 2-oxetanone compound is obtained using a fatty acid mixture containing 8 to 20% by mass of fatty acids having 8 to 10 carbon atoms and 92 to 80% by mass of fatty acids having 12 to 18 carbon atoms as a raw material.
  • sizing composition according to the above ⁇ 1>, ⁇ 3> The sizing composition according to ⁇ 1> or ⁇ 2>, wherein the 2-oxetanone compound is obtained using a fatty acid mixture having an unsaturated fatty acid content of 2% by mass or less as a raw material.
  • ⁇ 4> In any one of the above items ⁇ 1> to ⁇ 3>, wherein the alkenyl succinic anhydride is an addition reaction product of an olefin having 16 to 24 carbon atoms including an internal isomerized olefin and maleic anhydride
  • the sizing composition according to any one of the above ⁇ 1> to ⁇ 4>, which is an emulsion of a mixture containing 1 to 5 parts by mass of a surfactant, ⁇ 6> The sizing composition according to ⁇ 1> to ⁇ 5>, wherein an average particle size of the dispersoid in the emulsion is 0.5 ⁇ m or more and 1.5 ⁇ m or less.
  • the present invention can provide a sizing composition that is excellent in water resistance, excellent in dispersion stability of an emulsion, and hardly causes stains during use.
  • the alkenyl succinic anhydride may be liquid at 25 ° C., but is preferably an addition reaction product of an olefin having 16 to 24 carbon atoms including internal isomerized olefin and maleic anhydride.
  • the internal isomerized olefin is not an ⁇ -olefin (the olefin in which the double bond is located at the position connecting the first and second carbons of the olefin), but the double bond is more carbon than the ⁇ -position by some method.
  • the position of the carbon where the double bond is formed is not a problem to achieve the object of the invention. Don't be.
  • a mixture containing a plurality of types of internally isomerized alkenyl succinic anhydrides formed by reacting a plurality of types of ⁇ -olefins with succinic anhydride is also suitable as a suitable internal isomerized alkenyl succinate. It can be employed as an acid anhydride.
  • the olefin has 16 or more and 24 or less carbon atoms
  • the sizing composition is excellent in sizing effect on paper.
  • alkenyl succinic anhydride which is an addition reaction product of an olefin containing an internal isomerized olefin and maleic anhydride, makes ASA difficult to hydrolyze. This is preferable because the decrease is reduced.
  • the presence of a double bond inside the ⁇ -position of the olefin is 5.4 ppm in 1 H-NMR analysis of the olefin. This can be confirmed by the presence of a peak derived from an internal isomerized olefin in the vicinity. Conversely, when ⁇ -olefin is contained, it can be confirmed by the presence of ⁇ -olefin-derived peaks in the vicinity of 5.0 ppm and 5.8 ppm in the analysis by 1 H-NMR of the olefin. It is also possible to determine the ratio of ⁇ -olefin and internal isomerized olefin based on the integrated value of the peak.
  • the internal isomerized olefin can be synthesized by an ordinary organic synthesis method, and can be obtained, for example, by internal isomerization of an ⁇ -olefin using a silica / alumina catalyst.
  • Internally isomerized olefin obtained by internal isomerization of ⁇ -olefin by a general organic synthesis method is a mixture of internal olefins in which double bond positions are formed at various positions such as the 2nd and 3rd positions of the carbon chain.
  • the position of the specific double bond of the internal olefin is not specified.
  • each internal olefin may not be specified, and an ⁇ -olefin may be included as long as the object of the present invention is not impaired.
  • the allowable ⁇ -olefin content is 10% by mass or less.
  • alkenyl succinic anhydride As a method for obtaining alkenyl succinic anhydride by adding maleic anhydride to the olefin, a conventional organic synthesis method can be applied.
  • alkenyl succinic anhydride can be obtained by gradually adding maleic anhydride to an olefin heated to 210 ° C. in a nitrogen atmosphere and stirring for 6 to 10 hours.
  • the 2-oxetanone compound used in the present invention may be liquid at 25 ° C. under normal pressure.
  • 2-Oxetanone compounds that do not become liquid at 25 ° C under normal pressure need to be heated and stirred for a long time in order to mix with ASA.
  • the problems of the present invention cannot be achieved due to disadvantages that the oxetanone compound is likely to precipitate as a solid, or that the emulsion of the mixture with ASA tends to be unstable and causes aggregation or separation.
  • Preferred 2-oxetane compounds include saturated monocarboxylic acids having 8 to 30 carbon atoms, unsaturated monocarboxylic acids having 8 to 30 carbon atoms, saturated dicarboxylic acids having 6 to 44 carbon atoms, and unsaturated dicarboxylic acids having 6 to 44 carbon atoms.
  • a 2-oxetanone compound mixture which is liquid at 25 ° C. under normal pressure.
  • an alkenyl ketene dimer produced from a fatty acid containing an unsaturated fatty acid such as oleic acid or linoleic acid an alkyl ketene dimer produced from a fatty acid containing a branched fatty acid such as isostearic acid, and a C8 fatty acid and carbon It is produced using a fatty acid that is a fatty acid mixture of 8 to 20% by mass of several tens of fatty acids, 92 to 80% by mass of fatty acids having 12 to 18 carbon atoms, and 2% by mass or less of unsaturated fatty acids.
  • 2-oxetanone compound which is liquid at 25 ° C. under normal pressure.
  • the raw material include caproic acid, caprylic acid, capric acid, pelargonic acid, stearic acid, isostearic acid, myristic acid, palmitic acid, pentadecanoic acid, undecanoic acid, lauric acid, tridecanoic acid as saturated monocarboxylic acid, Nonadecanoic acid, arachidic acid, and behenic acid, and mixtures thereof may be mentioned, and oleic acid, linoleic acid, dodecenoic acid, tetradecenoic acid, hexadecenoic acid, octadecadiene as unsaturated monocarboxylic acids Acid, octadecatrienoic acid, eicosenoic acid, engineered icosatetraenoic acid, docosenoic acid and docosapentaenoic acid, and mixtures thereof.
  • the fatty acids having 8 and 10 carbon atoms are 8 to 20% by mass, carbon Fatty acid mixture in which the number of fatty acids of 12 to 18 is 92 to 80% by mass It is things, is liquid at 25 ° C., also preferable because of excellent size properties.
  • caprylic acid carbon number 8
  • capric acid carbon number 10
  • lauric acid carbon number 12
  • myristic acid carbon number 14
  • palmitic acid carbon number 16
  • It is preferably composed of fatty acids such as stearic acid (18 carbon atoms), oleic acid (18 carbon atoms), linoleic acid (18 carbon atoms), and contains 50 to 80% by mass of lauric acid and myristic acid.
  • fatty acids having 8 and 10 carbon atoms 8 to 20% by mass of fatty acids having 8 and 10 carbon atoms, 3 to 10% by mass of fatty acids having 8 carbons, 3 to 12% by mass of fatty acids having 10 carbons, 12 and carbons of carbon
  • the number 14 fatty acid is 54 to 78% by mass
  • the number of carbon atoms 16 and 18 is 6 to 37% by mass.
  • the reaction of hydrogenating the raw material containing unsaturated rubonic acid is a reduction reaction using a general hydrogen gas as a reducing agent, and is usually mainly nickel, copper chromium monoxide, ruthenium, palladium, rhodium, platinum, etc.
  • Metal fine powders or those obtained by adsorbing them on an insoluble carrier such as activated carbon, alumina, diatomaceous earth, etc. can be carried out by a general method using a catalyst.
  • the 2-oxetanone compound can be synthesized by a conventional organic synthesis method using the above-mentioned raw materials, and some of them can be easily obtained as a commercial product.
  • stearyl ketene dimer can be obtained by reacting stearic acid with a chlorinating agent such as phosgene, phosphorus trichloride, thionyl chloride to stearic acid chloride, then dehydrochlorinating with triethylamine, and then removing triethylamine hydrochloride.
  • the preferred 2-oxetanone compound in the present invention is a mixture of several 2-oxetanone compounds because it can be reacted with a fatty acid mixture as described above.
  • the unsaturated fatty acid ratio within 2% by mass can prevent double bond oxidation, and the storage stability, dispersion stability, and This is preferable because it contributes to size performance.
  • an improvement in size effect can be achieved. Stability improvement and dirt reduction effect can be obtained.
  • the amount of 2-oxetanone compound is larger than the above range, the size effect is inferior to that of the case of alkenyl succinic acid alone. This is not preferable.
  • the 2-oxetanone compound and alkenyl succinic anhydride in the present invention are excellent in compatibility with each other and can be mixed under any temperature condition as long as both are liquid, but it is preferable to mix by heating at 100 ° C. or lower.
  • the temperature is higher than 100 ° C., there is a risk of discoloration due to alteration due to heat or a decrease in the effect as a sizing agent.
  • moisture such as dry air, nitrogen, argon, etc. is used. It is preferable to mix in the atmosphere which does not contain.
  • the sizing composition according to the present invention has an effect that the succinic anhydride and the 2-oxetanone compound are superior in size performance to each of them alone. This is thought to be due to the synergistic effect of improving the hydrophobicity when both molecules are mixed and oriented in addition to the effect of inhibiting hydrolysis of the alkenyl succinic acid.
  • the sizing agent composition of the present invention is liquid at room temperature, it can be applied as it is, or it can be dissolved in a solvent such as toluene and applied as a varnish, but it can be used as an aqueous dispersion for workability.
  • the aqueous dispersion can be prepared by emulsifying and dispersing by a known emulsification method using a surfactant or various aqueous polymer dispersants.
  • the aqueous dispersion is prepared for the purpose of minimizing performance degradation due to hydrolysis of alkenyl succinic anhydride, and is dispersed immediately before use, or continuously sent to an emulsifier by a pump to prepare an aqueous dispersion. It is preferable to use them continuously.
  • the present invention it is preferable to emulsify a mixture obtained by further mixing a surfactant with a mixture of an alkenyl succinic anhydride and a 2-oxetanone compound, because it improves emulsifiability and stains hardly adhere to papermaking tools.
  • the amount of surfactant added to the mixture of alkenyl succinic anhydride and 2-oxetanone compound (hereinafter sometimes abbreviated as a surfactant for mixing) is alkenyl succinic anhydride and 2 -0.01 to 10 parts by mass is preferable with respect to 100 parts by mass in total with the oxetanone compound, and more preferably 0.1 to 5 parts by mass.
  • the mixture easily absorbs moisture in the air when storing the mixture of alkenyl succinic anhydride and 2-oxetanone compound and surfactant. Hydrolysis may be accelerated, and the alkenyl succinic acid that is a hydrolyzate may cause soiling of the papermaking tool and decrease in size performance. If the amount of the surfactant for mixing is too small, the above-mentioned advantages due to mixing may not be sufficiently exhibited.
  • cationic surfactants As the mixing surfactant, conventionally known cationic surfactants, amphoteric surfactants, anionic surfactants or nonionic surfactants can be used. These may use 1 type (s) or 2 or more types.
  • Examples of the cationic surfactant include a long-chain alkylamine salt, a modified amine salt, a tetraalkyl quaternary ammonium salt, a trialkylbenzyl quaternary ammonium salt, an alkylpyridinium salt, an alkylquinolium salt, and an alkylsulfonium salt. It is done.
  • amphoteric surfactant examples include various betaine surfactants.
  • anionic surfactant examples include alkyl sulfonates, alkyl sulfates, alkyl phosphates, polyoxyalkylene alkyl sulfates, polyoxyalkylene alkylaryl sulfates, polyoxyalkylene aralkyl aryl sulfates. And alkyl-aryl sulfonates, polyoxyalkylene alkyl phosphate salts, and various sulfosuccinate ester surfactants.
  • nonionic surfactant examples include fatty acid sorbitan ester and its polyalkylene oxide adduct, fatty acid polyglycol ester, various polyalkylene oxide type nonionic surfactants (polyoxyethylene fatty acid ester, polyoxyethylene fatty acid amide, polyoxy Ethylene aliphatic amine, polyoxyethylene aliphatic mercaptan, polyoxyethylene alkylaryl ether, polyoxyethylene polyoxypropylene block polymer, polyoxyethylene aralkyl aryl ether, polyoxyethylene distyrenated phenol ether phosphate ester, etc.) .
  • anionic surfactants and nonionic surfactants are preferable, and specifically, sulfosuccinic acid dialkyl sodium salt or polyoxyalkylene alkyl ether phosphate ester is preferable.
  • the mixing surfactant may be mixed at the same time when the alkenyl succinic anhydride and the 2-oxetanone compound are mixed, or may be continuously mixed into the mixture of the alkenyl succinic anhydride and the 2-oxetanone compound immediately before emulsification. However, it is preferably mixed in advance with a mixture of an alkenyl succinic anhydride and a 2-oxetanone compound.
  • a dispersion of a sizing composition is prepared from an alkenyl succinic anhydride and a 2-oxetanone compound used in the present invention, a surfactant used as necessary, various aqueous polymer dispersants, and water.
  • emulsifiers and emulsifiers such as a static mixer, a venturi mixer, a blender, a homomixer, a high-pressure / high-speed discharge homogenizer, an ultrasonic emulsifier, and a high shear rotary emulsifier can be used. is there.
  • aqueous polymer dispersing agent When obtaining a sizing composition by emulsification in the present invention, it is preferable to use an aqueous polymer dispersing agent because the dispersion stability of the sizing composition as an emulsion is excellent.
  • aqueous polymer dispersant examples include various water-soluble synthetic polymers and natural polymers. Specifically, starches, acrylamide polymers, starch graft acrylamide polymers, polyvinyl alcohols, carboxymethyl celluloses, gums. And casein. Among these, starches, acrylamide polymers, starch graft acrylamide polymers, carboxymethyl celluloses, and polyvinyl alcohols are preferable.
  • the weight average molecular weight of the aqueous polymer dispersant is preferably 10,000 or more and 10,000,000 or less. If the weight average molecular weight is less than 10,000, the emulsifiability and dispersion stability may be reduced. When the weight average molecular weight is larger than 10,000,000, the viscosity of the aqueous polymer dispersant increases, which may make handling difficult.
  • starch for example, raw starch such as corn, wheat, potato, rice, tapioca and the starch, at least one selected from the group consisting of primary, secondary and tertiary amino groups and quaternary ammonium groups And cationic starch containing basic nitrogen.
  • amphoteric starch obtained by introducing an anionic group (for example, phosphate group) into the cationic starch can be used.
  • Other examples include oxidized starch, dialdehyde starch, alkyl etherified starch, phosphate starch, urea phosphate starch, and hydrophobically modified starch.
  • the object of the present invention can be achieved even if liquid cationic starch is not contained.
  • the acrylamide polymers include water-soluble polymers containing 50 mol% or more of acrylamide and / or methacrylamide, that is, (meth) acrylamide, and may have a cationic group and / or an anionic group.
  • This acrylamide polymer can be obtained, for example, by a modification method in which an ionic group is introduced by modifying a water-soluble polymer containing (meth) acrylamide as a main component, or (meth) acrylamide and, if necessary, a cationic monomer or anion. It can be obtained by a copolymerization method in which a monomer mixture containing a polymerizable monomer and another vinyl monomer is polymerized by a conventionally known method, or by a combination of both methods.
  • Examples of the cationic monomer include mono- or di-alkylaminoalkyl acrylate, mono- or di-alkylaminoalkyl methacrylate, mono- or di-alkylaminoalkyl methacrylamide, vinyl pyridine, vinyl imidazole, mono- or di-allylamine And mixtures thereof, and quaternary ammonium salts thereof.
  • anionic monomer examples include ⁇ , ⁇ -unsaturated carboxylic acids such as acrylic acid, methacrylic acid, maleic acid, fumaric acid and itaconic acid, and various other known polymerizable monomers having a sulfonic acid group or a phosphoric acid group. Can be exemplified.
  • vinyl monomers examples include cross-linkable vinyl monomers such as N-methylolacrylamide, methylene (bis) acrylamide, bifunctional monomer, trifunctional monomer, and tetrafunctional monomer that can be copolymerized with (meth) acrylamide.
  • nonionic vinyl monomers such as (meth) acrylic acid ester, styrene, and vinyl acetate can be used in combination.
  • a reaction vessel equipped with a stirrer and a nitrogen gas introduction tube is charged with vinyl monomer and water as constituents, and as a polymerization initiator, peroxide such as hydrogen peroxide, ammonium persulfate, potassium persulfate, ammonium hydroperoxide, etc. Or any redox initiator comprising a combination of these peroxides and a reducing agent such as sodium bisulfite, and further a water-soluble azo initiator such as 2-2'azobis (aminopropane) hydrochloric acid.
  • the acrylamide polymers can be obtained by reacting at a reaction temperature of 40 to 80 ° C. for 1 to 5 hours.
  • the starch graft acrylamide polymer used in the present invention is prepared by graft polymerization of monomers capable of forming the acrylamide polymer in the presence of starch.
  • a monomer mixture containing (a) a cationic group-containing monomer, (b) an anionic group-containing monomer and (c) (meth) acrylamide in an aqueous cationic starch solution.
  • cationic monomer (a) examples include mono- or di-alkylaminoalkyl acrylate, mono- or di-alkylaminoalkyl methacrylate, mono- or di-alkylaminoalkyl acrylamide, mono- or di-alkyl.
  • examples thereof include aminoalkyl methacrylamide, vinyl pyridine, vinyl imidazole, mono- or di-arylamine and mixtures thereof, and quaternary ammonium salts thereof.
  • anionic monomer (b) examples include ⁇ , ⁇ -unsaturated carboxylic acids such as acrylic acid, methacrylic acid, maleic acid, fumaric acid and itaconic acid, as well as various known sulfonic acid groups and phosphoric acid groups. Polymerizable monomers can be used. The above modification and copolymerization reactions follow known reaction procedures, and appropriate reaction conditions can be arbitrarily selected.
  • carboxymethyl celluloses As other water-soluble polymers, carboxymethyl celluloses, polyvinyl alcohols, dextrins, chitosans and the like can also be used.
  • concentration and addition amount of the aqueous polymer dispersant are not particularly limited, and the addition amount and concentration can be changed according to the application, but the solid content ratio with respect to the size composition of the present invention is 0.1 to 4 times. Is preferably added.
  • a surfactant hereinafter sometimes abbreviated as a surfactant for emulsification
  • a surfactant for emulsification it is preferable to use a surfactant in order to further improve emulsifiability and stability.
  • the conventionally known cationic surfactants, anionic surfactants, amphoteric surfactants or nonionic surfactants can be used. These may use 1 type (s) or 2 or more types.
  • nonionic surfactants and anionic surfactants are preferred as the surfactant for emulsification of the present invention.
  • the concentration and addition amount of the surfactant for emulsification are not particularly limited, and the addition amount and concentration can be changed according to the use, but the solid content ratio with respect to the sizing agent composition of the present invention is 0.3 to 3
  • the use of mass% is preferable because emulsification and stability of the obtained emulsion are improved.
  • the surfactant for emulsification may be mixed with the aqueous polymer dispersant in advance, or may be continuously mixed with the aqueous polymer dispersant at the time of emulsification. Is preferred.
  • Alkenyl succinic anhydride Production Example 1 Production of alkenyl succinic anhydride (A1) 1-octadecene was isomerized using a silica-alumina catalyst. The obtained internal isomerized octadecene mixture was confirmed to contain no ⁇ -olefin by analysis by 1 H-NMR. 200 g of this internally isomerized octadecene mixture and 86 g of maleic anhydride were reacted at 215 ° C. for 8 hours in an autoclave under a nitrogen atmosphere.
  • Production of alkenyl succinic anhydride (A2) In Production Example 1, 1-hexadecene was used instead of 1-octadecene, and an internal isomerization reaction was carried out in the same manner as in Production Example 1, and 1 H-NMR Analysis gave an internally isomerized hexadecene mixture free of ⁇ -olefins. Further, 243 g of internally isomerized octadecenyl succinic anhydride (A2), which was a liquid at 25 ° C. under normal pressure and was a mixture, was obtained in the same manner as in Production Example 1 except that 96 g of maleic anhydride was used.
  • Table 1 shows the number of carbon atoms of this isomerized hexadecenyl succinic anhydride, the state at 25 ° C., and the content of ⁇ -olefin contained in the olefin subjected to the isomerization reaction.
  • Production Example 3 Production of alkenyl succinic anhydride (A3)
  • an internal isomerization reaction was performed in the same manner as in Production Example 1, and an internal isomerized olefin mixture containing no ⁇ -olefin was obtained by analysis by 1 H-NMR.
  • Production of alkenyl succinic anhydride (A4) In Production Example 1, 1-dodecene was used instead of 1-octadecene, and an internal isomerization reaction was carried out in the same manner as in Production Example 1, and 1 H-NMR Analysis gave an internal isomerized dodecene mixture free of ⁇ -olefins. Further, 259 g of internally isomerized dodecenyl succinic anhydride (A4) as a mixture was obtained in the same manner as in Production Example 1 except that the amount of maleic anhydride was changed to 128 g and in a liquid state at 25 ° C. under normal pressure.
  • Table 1 shows the number of carbon atoms of this isomerized dodecenyl succinic anhydride, the state at 25 ° C., and the content of ⁇ -olefin contained in the olefin subjected to the isomerization reaction.
  • Table 1 shows the number of carbon atoms of this isomerized branched dodecenyl succinic anhydride, the state at 25 ° C., and the content of ⁇ -olefin contained in the olefin subjected to the isomerization reaction.
  • Table 1 shows the number of carbon atoms of the non-internally isomerized octadecenyl succinic anhydride, the state at 25 ° C., and the content of ⁇ -olefin contained in the olefin subjected to the isomerization reaction. .
  • caprylic acid chloride capric acid chloride, lauric acid chloride, myristic acid chloride, palmitic acid chloride and stearic acid chloride. 212.7 g of fatty acid chloride was obtained.
  • 200 g of the above fatty acid chloride and 200 ml of toluene were put in a new four-flask and cooled to 20 ° C., and 108.4 g of triethylamine was added dropwise over 3 hours while maintaining 20 ° C. After completion of the dropwise addition, the temperature was raised to 30 ° C., and the reaction was further continued for 3 hours.
  • Production of 2-oxetanone compound (B7) The hydrogenated coconut oil fatty acid (a1) in Production Example 1 was reacted in the same manner by changing it to 280.3 g of isostearic acid (a7), and 277.7 g of fatty acid chloride was reacted. Obtained. Next, 200 g of the obtained fatty acid chloride and 81.3 g of triethylamine were reacted in the same manner as in Production Example 1 to obtain 146.8 g of 2-oxetanone compound (B7). The obtained 2-oxetanone compound (B7) was liquid at 25 ° C. under normal pressure. Table 2 shows the types and blending ratios of the raw fatty acids used to produce the 2-oxetanone compound.
  • the mixture was heated to 60 ° C. in a nitrogen gas atmosphere while stirring.
  • a polymerization initiator 14.8 parts of a 2% aqueous solution of ammonium persulfate was added, and the temperature was raised to 80 ° C. and held for 3 hours.
  • isopropyl alcohol was distilled off, ion-exchanged water was added, and the mixture was cooled to room temperature to obtain an aqueous polymer dispersant solution (C1) having a solid content concentration of 20% by mass, a viscosity of 190 mPa ⁇ s, and a pH of 4.2.
  • Table 3 shows the correspondence between the aqueous polymer dispersant solution and the preparation examples.
  • Preparation Example 2 ⁇ Acrylamide-based polymer aqueous solution> By adding 75 parts of ion-exchanged water to 25 parts of amphoteric acrylamide-based paper strength agent DS4388 (manufactured by Seiko PMC Co., Ltd.), stirring and diluting, an aqueous solution of acrylamide-based polymers having a solid content of 5.0% by mass (C2) Got.
  • Table 3 shows the correspondence between the aqueous polymer dispersant solution and the preparation examples.
  • Preparation Example 4 ⁇ Starch Paste>
  • a reaction vessel equipped with a stirrer, a thermometer and a reflux condenser 57 parts of cationized starch Cato304 (manufactured by NSC Japan, water content measured value 13%) was charged, and then 943 parts of water was charged and stirring was started. Dispersed. Next, the temperature was raised to 95 ° C., and stirring was continued for 20 minutes, followed by cooling to 40 ° C. to obtain a cationized starch paste liquid (C4) having a solid content of 5.0% by mass.
  • Table 3 shows the correspondence between the aqueous polymer dispersant solution and the preparation examples.
  • Preparation Example 5 Polyvinyl alcohol>
  • 20 parts of polyvinyl alcohol “PVA-117” manufactured by Kuraray Co., Ltd.
  • 980 parts of water was charged and stirring was started and dispersed.
  • the temperature was raised to 95 ° C., and stirring was continued for 20 minutes, followed by cooling to 40 ° C. to obtain 1000 parts of a polyvinyl alcohol aqueous solution (C5) having a solid content of 2.0% by mass, a viscosity of 10 mPas and pH 6.1.
  • Table 3 shows the correspondence between the aqueous polymer dispersant solution and the preparation examples.
  • the particle size measurement, stability test, and water resistance test were performed as follows.
  • ⁇ Particle size measurement> The weight average particle size of the emulsion obtained by emulsification was measured using a laser light scattering particle size distribution analyzer LA-910 (manufactured by Horiba, Ltd.).
  • Bleached kraft pulp (mixed pulp with softwood to hardwood pulp ratio of 1 to 9) is diluted with water for dilution with a conductivity of 35 mS / m so that the pulp concentration is 2.5 mass%, and a Canadian standard using a beater Beat up to Freeness 430.
  • 1.2 liters of the obtained pulp slurry was weighed in a disaggregator, kept at 40 ° C., and with stirring, 5% by weight of light calcium carbonate (Tama Pearl 121 manufactured by Okutama Kogyo Co., Ltd.) was added to the sulfuric acid band.
  • Yield agent NR12MLS was added to 0.01% by weight of pulp sequentially, hand-made with a paper machine manufactured by Noble and Wood to a basis weight of 65 g / m 2, and the moisture content in the wet paper was measured with a lab roll press. After adjusting to 55%, it was dried using a drum dryer at 100 ° C. for 80 seconds. The resulting paper was placed at 23 ° C. and 50% R.D. H. After the humidity was controlled in a constant temperature and humidity chamber for 24 hours, the water resistance was evaluated by measuring the degree of steecht size according to JIS P-8122. It means that it is excellent in water resistance provision, so that this measured value is large. This papermaking condition corresponds to fine paper.
  • Water resistance test 2 The test was carried out in the same manner as in the water resistance test 1 except that the pulp slurry was kept at 40 ° C. for 1 hour under stirring before adding the cationic retention agent. In this test, the time during which the sizing emulsion is dispersed in the moisture of the pulp slurry is longer than that of the water resistance test 1 and the hydrolysis of the sizing proceeds. It is.
  • ⁇ Water resistance test 3> The used corrugated paper was diluted with dilution water having an electric conductivity of 100 mS / m so that the pulp concentration was 2.5% by mass, and beaten to Canadian Standard Freeness 330 using a beater. Next, 1.2 liters of the obtained pulp slurry was weighed in a disaggregator, kept at 40 ° C., and 0.3% by mass of a dry paper strength agent (DS4416 manufactured by Seiko PMC Co., Ltd.) was added with stirring. Thereafter, 0.14% by mass of the sizing agent composition was added to the pulp.
  • a dry paper strength agent DS4416 manufactured by Seiko PMC Co., Ltd.
  • the obtained pulp slurry is diluted to a concentration of 0.8 mass% with diluted water having a pH of 7.5 and an electric conductivity of 100 mS / m, and a dry paper strength agent (DH4160 manufactured by Seiko PMC Co., Ltd.) is added to 0.05 mass of pulp. %, And hand-made to a basis weight of 80 g / m 2 with a paper machine manufactured by Noble and Wood, and adjusted the moisture content in the wet paper to 58% with a lab roll press, and then used a drum dryer. Drying was performed at 100 ° C. for 80 seconds. The resulting paper was placed at 23 ° C. and 50% R.D. H.
  • ⁇ Dirt test 1> Instead of adding chemicals to bleached kraft pulp as in the water resistance test 1 and conducting a hand-making test, the slurry is filtered through a 60 mesh stainless steel mesh, and the filtration residue is brought into close contact with the stainless steel plate and 4.2 kgf / cm 2. The stainless plate was pressed for 2 minutes at a pressure of 2 mm and peeled, and the stainless steel plate was observed for four-stage evaluation. As the emulsion becomes unstable and the fixing property to the pulp fiber becomes worse, the transfer to the stainless steel plate becomes easier, and as the hydrolysis of the alkenyl succinic acid proceeds, the tackiness increases and the transfer to the stainless steel plate becomes easier.
  • the criteria for evaluation are as follows. A: No dirt adhesion is observed. ⁇ : Slight adhesion is observed. ⁇ : A small amount of adhesion is observed. X: A large amount of adhesion is observed.
  • ⁇ Dirt test 2> As in the water resistance test 2, the preparation of the pulp slurry was conducted in the same manner as in the soil test 1 except that it was kept in a stirred state at 40 ° C. for 1 hour before the retention agent was added.
  • A1 alkenyl succinic anhydride
  • B1 2-oxetanone compound
  • Example 2 An emulsion was obtained in the same manner as in Example 1, except that the alkenyl succinic anhydride (A1) was changed to the alkenyl succinic anhydride (A2). This emulsion maintained the emulsion state stably for 6 hours or more.
  • Table 5 shows the particle diameter of the obtained dispersion, and Table 6 shows the results of performance evaluation.
  • Example 3 An emulsion was obtained in the same manner as in Example 1 except that the alkenyl succinic anhydride (A1) was changed to the alkenyl succinic anhydride (A3). This emulsion maintained the emulsion state stably for 6 hours or more.
  • Table 5 shows the particle diameter of the obtained dispersion, and Table 6 shows the results of performance evaluation.
  • Example 4 An emulsion was obtained in the same manner as in Example 1 except that the alkenyl succinic anhydride (A1) was changed to the alkenyl succinic anhydride (A4).
  • Table 5 shows the particle diameter of the obtained dispersion, and Table 6 shows the results of performance evaluation.
  • Example 5 An emulsion was obtained in the same manner as in Example 1 except that the alkenyl succinic anhydride (A1) was changed to the alkenyl succinic anhydride (A5). This emulsion maintained the emulsion state stably for 6 hours or more.
  • Table 5 shows the particle diameter of the obtained dispersion, and Table 6 shows the results of performance evaluation.
  • Example 6 An emulsion was obtained in the same manner as in Example 1 except that the 2-oxetanone compound (B1) in Example 1 was changed to the 2-oxetanone compound (B2). This emulsion maintained the emulsion state stably for 6 hours or more.
  • Table 5 shows the particle diameter of the obtained dispersion, and Table 6 shows the results of performance evaluation.
  • Example 7 An emulsion was obtained in the same manner as in Example 1 except that the 2-oxetanone compound (B1) was changed to the 2-oxetanone compound (B3) in Example 1. This emulsion maintained the emulsion state stably for 6 hours or more.
  • Table 5 shows the particle diameter of the obtained dispersion, and Table 6 shows the results of performance evaluation.
  • Example 8 An emulsion was obtained in the same manner as in Example 1 except that the 2-oxetanone compound (B1) was changed to the 2-oxetanone compound (B4) in Example 1. This emulsion maintained the emulsion state stably for 6 hours or more.
  • Table 5 shows the particle diameter of the obtained dispersion, and Table 6 shows the results of performance evaluation.
  • Example 9 An emulsion was obtained in the same manner as in Example 1 except that the 2-oxetanone compound (B1) was changed to the 2-oxetanone compound (B5) in Example 1. This emulsion maintained the emulsion state stably for 6 hours or more.
  • Table 5 shows the particle diameter of the obtained dispersion, and Table 6 shows the results of performance evaluation.
  • Example 10 An emulsion was obtained in the same manner as in Example 1 except that the 2-oxetanone compound (B1) in Example 1 was changed to the 2-oxetanone compound (B6). This emulsion maintained the emulsion state stably for 6 hours or more.
  • Table 5 shows the particle diameter of the obtained dispersion, and Table 6 shows the results of performance evaluation.
  • Example 11 An emulsion was obtained in the same manner as in Example 1, except that the 2-oxetanone compound (B1) was changed to the 2-oxetanone compound (B7) in Example 1. This emulsion maintained the emulsion state stably for 6 hours or more.
  • Table 5 shows the particle diameter of the obtained dispersion, and Table 6 shows the results of performance evaluation.
  • Example 12 In Example 1, 70 g of alkenyl succinic anhydride (A1) and 30 g of 2-oxetanone compound (B1) were changed to 85 g of alkenyl succinic anhydride (A1) and 15 g of 2-oxetanone compound (B1), respectively. In the same manner as in Example 1, an emulsion was obtained. This emulsion maintained the emulsion state stably for 6 hours or more. Table 5 shows the particle diameter of the obtained dispersion, and Table 6 shows the results of performance evaluation.
  • Example 13 In Example 1, 70 g of alkenyl succinic anhydride (A1) and 30 g of 2-oxetanone compound (B1) were changed to 95 g of alkenyl succinic anhydride (A1) and 5 g of 2-oxetanone compound (B1), respectively. In the same manner as in Example 1, an emulsion was obtained. This emulsion maintained the emulsion state stably for 6 hours or more. Table 5 shows the particle diameter of the obtained dispersion, and Table 6 shows the results of performance evaluation.
  • Example 14 In Example 1, an emulsion was obtained in the same manner as in Example 1 except that the mixture was stirred at 10000 rpm for 1 minute with a rotary homomixer (manufactured by Nippon Seiki Seisakusho Co., Ltd.). This emulsion maintained the emulsion state stably for 6 hours or more.
  • Table 5 shows the particle diameter of the obtained dispersion, and Table 6 shows the results of performance evaluation.
  • Example 15 In Example 1, an emulsion was obtained in the same manner as in Example 1 except that the mixture was stirred at 15000 rpm for 3 minutes with a rotary homomixer (manufactured by Nippon Seiki Seisakusho Co., Ltd.). This emulsion maintained the emulsion state stably for 6 hours or more.
  • Table 5 shows the particle diameter of the obtained dispersion, and Table 6 shows the results of performance evaluation.
  • Example 1 an emulsion was prepared in the same manner as in Example 1 except that the 2-oxetanone compound (B1) was changed to the 2-oxetanone compound (B8) and the temperature during stirring was changed from 25 ° C. to 50 ° C. After 10 minutes, the waxy 2-oxetanone compound (B8) was precipitated and separated in the resulting dispersion, and therefore, the particle size measurement and the water resistance test could not be performed.
  • the emulsion prepared in this comparative example is out of the scope of the present invention because the emulsion state is destroyed in a short time.
  • Example 2 an emulsion was obtained in the same manner as in Example 1 except that the 2-oxetanone compound (B1) was changed to the 2-oxetanone compound (B9). However, the emulsion was separated after 1 hour after standing. A stable emulsion could not be obtained. Therefore, the particle size measurement and the water resistance test could not be performed.
  • Example 3 In Example 1, 70 g of alkenyl succinic anhydride (A1) and 30 g of 2-oxetanone compound (B1) were changed to 50 g of alkenyl succinic anhydride (A1) and 50 g of 2-oxetanone compound (B1), respectively. Otherwise, an emulsion was obtained in the same manner as in Example 1. Table 5 shows the particle diameter of the obtained dispersion, and Table 6 shows the results of performance evaluation.
  • Example 4 In Example 1, 70 g of alkenyl succinic anhydride (A1) and 30 g of 2-oxetanone compound (B1) were changed to 98 g of alkenyl succinic anhydride (A1) and 2 g of 2-oxetanone compound (B1), respectively. Otherwise, an emulsion was obtained in the same manner as in Example 1. Table 5 shows the particle diameter of the obtained dispersion, and Table 6 shows the results of performance evaluation.
  • Example 1 an emulsion was obtained in the same manner as in Example 1 except that the alkenyl succinic anhydride (A1) was changed to the alkenyl succinic anhydride (A6). Separated and stable emulsion was not obtained. Therefore, the particle size measurement and the water resistance test could not be performed.
  • Comparative Example 6 A total of 30 g of 15 g of alkenyl succinic anhydride (A1) and 15 g of acrylamide polymer (C1) having a solid content of 20% by mass was stirred at 15000 rpm for 2 minutes with a rotary homomixer (manufactured by Nippon Seiki Seisakusho). An emulsion of alkenyl succinic anhydride (A1) was obtained. For this dispersion, 0.1% by weight of the sizing composition dispersion was added to the pulp in all of ⁇ Water resistance test 1>, ⁇ Water resistance test 2>, ⁇ Stain test 1>, and ⁇ Stain test 2>. Instead, each test was performed after adding 0.1% by weight of an alkenyl succinic anhydride (A1) emulsion to the pulp. Table 6 shows the performance evaluation results.
  • Comparative Example 7 A total of 30 g of 15 g of alkenyl succinic anhydride (A1) and 15 g of acrylamide polymer (C1) having a solid content of 20% by mass was stirred at 15000 rpm for 2 minutes with a rotary homomixer (manufactured by Nippon Seiki Seisakusho). An emulsion of alkenyl succinic anhydride (A1) was obtained. Separately, a total of 30 g of 15 g of 2-oxetanone compound (B1) and 15 g of acrylamide polymer (C1) having a solid content of 20% was mixed at 15000 rpm for 2 minutes with a rotary homomixer (manufactured by Nippon Seiki Seisakusho).
  • the mixture was stirred to obtain an emulsion of the 2-oxetanone compound (B1).
  • 21 g of emulsion of alkenyl succinic anhydride (A1) and 9 g of emulsion of 2-oxetanone compound (B1) were rapidly stirred and mixed, and 70 pairs of alkenyl succinic anhydride (A1) and 2-oxetanone compound (B1) were mixed.
  • a mixture of emulsions having a mass ratio of 30 was obtained.
  • Table 5 shows the particle diameter of the obtained dispersion
  • Table 6 shows the results of performance evaluation.
  • This comparative example is “emulsification obtained by emulsifying a mixture containing 60 to 95% by mass of an alkenyl succinic anhydride which is liquid at 25 ° C. and 5 to 40% by mass of a 2-oxetanone compound which is liquid at 25 ° C. Since it is not a "product", it is outside the scope of this invention.
  • Comparative Example 8 A total of 30 g of 15 g of alkenyl succinic anhydride (A1) and 15 g of acrylamide polymer (C1) having a solid content of 20% by mass was stirred at 15000 rpm for 2 minutes with a rotary homomixer (manufactured by Nippon Seiki Seisakusho). An emulsion of alkenyl succinic anhydride (A1) was obtained. Separately, a total of 30 g of 15 g of 2-oxetanone compound (B1) and 15 g of acrylamide polymer (C1) having a solid content of 20% was mixed at 15000 rpm for 2 minutes with a rotary homomixer (manufactured by Nippon Seiki Seisakusho).
  • Example 17 In Example 16, an emulsion was obtained in the same manner as in Example 16 except that alkenyl succinic anhydride (A1) was replaced with alkenyl succinic anhydride (A2) and 1.1 g of surfactant (D2) was further charged. . This emulsion maintained the emulsion state stably for 6 hours or more.
  • Table 5 shows the particle diameter of the obtained dispersion, and Table 6 shows the results of performance evaluation.
  • Table 4 shows the correspondence between the symbol indicating the surfactant and the type of the surfactant.
  • Example 18 In Example 16, an emulsion was prepared in the same manner as in Example 16 except that alkenyl succinic anhydride (A1) was replaced by alkenyl succinic anhydride (A3) and 6.4 g of surfactant (D2) was further added. Obtained. This emulsion maintained the emulsion state stably for 6 hours or more.
  • Table 5 shows the particle diameter of the obtained dispersion, and Table 6 shows the results of performance evaluation.
  • Table 4 shows the correspondence between the symbol indicating the surfactant and the type of the surfactant.
  • Example 19 In Example 16, an emulsion was obtained in the same manner as in Example 16 except that 5.3 g of the surfactant (D2) was charged. This emulsion maintained the emulsion state stably for 6 hours or more. Table 5 shows the particle diameter of the obtained dispersion, and Table 6 shows the results of performance evaluation.
  • Table 5 shows the particle diameter of the obtained dispersion
  • Table 6 shows the results of performance evaluation.
  • Table 4 shows the correspondence between the symbol indicating the surfactant and the type of the surfactant.
  • Table 5 shows the particle diameter of the obtained dispersion
  • Table 6 shows the results of performance evaluation.
  • Table 4 shows the correspondence between the symbol indicating the surfactant and the type of the surfactant.
  • C6 carboxymethyl cellulose aqueous solution
  • Example 25 In Example 20, the 2-oxetanone compound (B1) is changed to the 2-oxetanone compound (B2), the acrylamide polymer (C2) is changed to the acrylamide polymer (C1), and the surfactant (D2) is changed to the surfactant.
  • An emulsion was obtained in the same manner as in Example 20 except for changing to (D1). This emulsion maintained the emulsion state stably for 6 hours or more.
  • Table 5 shows the particle diameter of the obtained dispersion
  • Table 6 shows the results of performance evaluation.
  • Table 4 shows the correspondence between the symbol indicating the surfactant and the type of the surfactant.
  • Example 26 In Example 20, the 2-oxetanone compound (B1) is changed to the 2-oxetanone compound (B3), the acrylamide polymer (C2) is changed to the acrylamide polymer (C1), and the surfactant (D2) is changed to the surfactant.
  • An emulsion was obtained in the same manner as in Example 20 except for changing to (D3). This emulsion maintained the emulsion state stably for 6 hours or more.
  • Table 5 shows the particle diameter of the obtained dispersion, and Table 6 shows the results of performance evaluation.
  • Table 4 shows the correspondence between the symbol indicating the surfactant and the type of the surfactant.
  • Example 27 In Example 20, the 2-oxetanone compound (B1) is changed to the 2-oxetanone compound (B3), the acrylamide polymer (C2) is changed to the acrylamide polymer (C1), and the surfactant (D2) is changed to the surfactant.
  • An emulsion was obtained in the same manner as in Example 20 except for changing to (D4). This emulsion maintained the emulsion state stably for 6 hours or more.
  • Table 5 shows the particle diameter of the obtained dispersion, and Table 6 shows the results of performance evaluation.
  • Table 4 shows the correspondence between the symbol indicating the surfactant and the type of the surfactant.
  • Table 5 shows the particle diameter of the obtained dispersion
  • Table 6 shows the results of performance evaluation.
  • Table 4 shows the correspondence between the symbol indicating the surfactant and the type of the surfactant.
  • acrylamide polymer (C1) having a solid content of 20% by mass, 1 g of surfactant (D2), and 604 g of water were added and stirred at room temperature for 1 hour, followed by acrylamide polymer (C1) / surfactant ( D2) An aqueous solution having a solid content of 5% and a solid content mass ratio of 97.5 / 2.5 was obtained. Subsequently, 10 g of the obtained mixture and 20 g of the aqueous solution, 30 g in total, were stirred at 12000 rpm for 2 minutes with a rotary homomixer (manufactured by Nippon Seiki Seisakusyo Co., Ltd.) to obtain an emulsion.
  • a rotary homomixer manufactured by Nippon Seiki Seisakusyo Co., Ltd.
  • Table 5 shows the particle diameter of the obtained dispersion
  • Table 6 shows the results of performance evaluation.
  • Table 4 shows the correspondence between the symbol indicating the surfactant and the type of the surfactant.

Landscapes

  • Paper (AREA)

Abstract

 本発明は、耐水性が優れ、エマルションの安定性に優れ、使用時に汚れの発生を起こし難いアルケニルコハク酸無水物系サイズ剤組成物を提供するために、25℃で液状であるアルケニルコハク酸無水物60~95質量%と25℃で液状である2-オキセタノン化合物を5~40質量%と含有する混合物を乳化して得られる乳化物であることを特徴とするアルケニルコハク酸無水物系サイズ剤組成物であって、好ましくは、2-オキセタノン化合物が以下の(1)及び(2)を満たすアルケニルコハク酸無水物系サイズ剤組成物を解決手段とする。 (1)炭素数8~10の脂肪酸が8~20質量%、及び炭素数12~18である脂肪酸が92~80質量%である脂肪酸混合物を原料にして得られる2-オキセタノン化合物 (2)前記(1)の脂肪酸混合物に含まれる不飽和脂肪酸が2質量%以下である脂肪酸混合物を原料にして得られる2-オキセタノン化合物

Description

サイズ剤組成物
 本発明は、サイズ剤組成物に関し、詳しくは、アルケニルコハク酸無水物を主成分とするサイズ剤組成物に関する。
 アルケニルコハク酸無水物(以下、ASAと略すことがある)は、製紙分野において紙に耐水性を付与するサイズ剤として広く使用されている。同じくアルキルケテンダイマーに代表される2-オキセタノン化合物もサイズ剤として使用されているが、ASAは2-オキセタノン化合物よりも抄造直後のサイズ度が優れ、また古紙パルプや機械パルプに対してサイズ効果が優れる特徴を有する。実際の製紙工程において、ASAは水媒体中に乳化分散したエマルションとして使用される。ASAは常温あるいは加温状態で油状物質であるので、乳化分散剤および高速攪拌機を用いた従来公知の乳化方法により乳化することができる(例えば特許文献1参照)。
 ASAを乳化させるための乳化分散剤として、例えば、カチオン化澱粉糊液を使用する方法(例えば特許文献1、2参照)、ビニル系や(メタ)アクリルアミド系のカチオン性ポリマーを使用する方法(例えば、特許文献3、4参照)、(メタ)アクリルアミドを含むモノマー類をカチオン化澱粉にグラフト重合させたグラフト化カチオン化澱粉を使用する方法(例えば、特許文献5参照)、両性アクリルアミド系ポリマーを使用する方法(例えば、特許文献6、7参照)が提案されている。
 しかしながら、上記の乳化分散剤を用いてもASAは、水分との接触による加水分解を起こし易く、紙へのサイズ効果の低下を起こすばかりでなく、ASA加水分解物が製紙工程の汚れの原因になり易く、未だ満足できるものではなかった。
 乳化分散液の品質を改良する他の方法として、特定の化学構造を有するASAを使用する方法(例えば、特許文献8参照)、ASAに相溶する疎水性物質を混合する方法(例えば、特許文献9参照)やASAと2-オキセタノン化合物とを含有するサイジング分散液を使用する方法(例えば、特許文献10参照)が提案されている。前記特許文献10には、「疎水性サイズ剤の断片がAKD(註:アルキルケテン二量体)だけでなくアルケニル無水コハク酸(ASA)のように撥水性の向上に適した他のサイズ剤も添加されていることから成る紙サイジングの使用にも適していることが分かった。しかしながら、・・・製紙工程でASAサイジングを効率で添加することが必要になることにより、しみ問題が生じるため、このサイジング方法は好ましくないように見える。」(特許文献10の第7頁下から21行~15行参照)との記載がある。このように、ASAを高率で含有するサイズ剤は好ましくないとの知見のあったことが理解できる。つまり紙へのサイズ付与効果が十分でなく、加水分解物による汚れは十分に解消されていない。
 また、特許文献11には、特定のカチオン性デンプンと液状の2-オキセタノン化合物とASAと水とを含有する紙サイズ剤が開示されている(特許文献11の特許請求の範囲第1項参照)。特許文献11に記載の紙サイズ剤におけるカチオン性デンプンは乳化剤及び保持助剤として有効である(特許文献11の第12頁参照)。また、特許文献12に記載のサイズ剤は、2-オキセタノン化合物を主体とするサイズ剤を改良する技術に関し、上記のASAの有する課題を解決するには十分でなかった。
米国特許3821069号公報(特開昭49-94907号公報が対応する。) 特公昭39-002305号公報 特開昭60-246893号公報 特公平6-33597号公報 特開平9-111692号公報 特公平3-4247号公報 特開昭58-45731号公報 特開平6-248596号公報(特許2915241号公報) 米国特許6576049号公報 特許第3834699号公報 特表2000-506941号公報 特表2002-517638号公報
 本発明は、耐水性が優れ、エマルションの安定性に優れ、使用時に汚れの発生を起こし難いサイズ剤組成物を提供することを課題とする。
 本発明者らは鋭意研究を重ねた結果、アルケニルコハク酸無水物に特定の組成の脂肪酸より合成される2-オキセタノン化合物を特定の比率で混合することにより、耐水性が優れ、エマルションの安定性に優れるサイズ剤組成物が得られることを見出し、本発明を完成するに至った。
 すなわち、前記課題を解決する手段は、
<1>25℃で液状であるアルケニルコハク酸無水物60~95質量%と25℃で液状である2-オキセタノン化合物5~40質量%とを含有する混合物を乳化して得られる乳化物であることを特徴とするサイズ剤組成物であり、
<2>2-オキセタノン化合物が、炭素数8~10の脂肪酸が8~20質量%、及び炭素数12~18である脂肪酸が92~80質量%である脂肪酸混合物を原料にして得られることを特徴とする前記<1>のサイズ剤組成物であり、
<3>2-オキセタノン化合物が、不飽和脂肪酸の含有量が2質量%以下である脂肪酸混合物を原料にして得られることを特徴とする前記<1>または<2>のサイズ剤組成物であり、
<4>アルケニルコハク酸無水物が、内部異性化オレフィンを含む炭素数16以上24以下のオレフィンと無水マレイン酸との付加反応生成物である前記<1>~<3>の何れか1項に記載のサイズ剤組成物であり、
<5>25℃で液状であるアルケニルコハク酸無水物と25℃で液状である2-オキセタノン化合物と、前記アルケニルコハク酸無水物と前記2-オキセタノン化合物との合計100質量部に対して0.1~5質量部の界面活性剤とを含有する混合物の乳化物であることを特徴とする前記<1>~<4>の何れか1項に記載のサイズ剤組成物であり、
<6>前記乳化物における分散質の平均粒子径が0.5μm以上1.5μm以下である前記<1>~<5>のサイズ剤組成物である。
 この発明は、耐水性が優れ、エマルションの分散安定性に優れ、使用時に汚れの発生を起こし難いサイズ剤組成物を提供することができる。
 前記アルケニルコハク酸無水物としては、25℃で液状であればよいが、好ましくは内部異性化オレフィンを含む炭素数16以上24以下のオレフィンと無水マレイン酸との付加反応生成物である。ここで内部異性化オレフィンとは、α-オレフィン(二重結合の位置がオレフィンの1位と2位の炭素を結ぶ位置にあるオレフィン)ではなく、何らかの方法により二重結合がα-位より炭素鎖の内部に存在するオレフィンを言うこととする。また、この発明においては、内部異性化オレフィンはその二重結合がα位に形成されていないのであれば、二重結合が形成される炭素の位置は発明の目的を達成するのに何等問題にならない。
 具体的には、内部異性化ヘキサデセニルコハク酸無水物、内部異性化オクタデセニルコハク酸無水物、内部異性化イコセニルコハク酸無水物、内部異性化ドコセニルコハク酸無水物、内部異性化テトラコセニルコハク酸無水物等が挙げられ、これらは単独で使用しても良いし、複数混合して使用しても良い。また、複数種のα-オレフィンとコハク酸無水物とを反応させることによって形成されるところの、複数種の内部異性化アルケニルコハク酸無水物を含有する混合物もまた、好適な内部異性化アルケニルコハク酸無水物として採用することができる。
 前記オレフィンの炭素数が16以上24以下である場合は、サイズ剤組成物の紙へのサイズ付与効果が優れるため好ましい。また内部異性化オレフィンを含むオレフィンと無水マレイン酸との付加反応生成物であるアルケニルコハク酸無水物であると、ASAが加水分解し難くなるため、サイズ剤組成物の紙へのサイズ付与効果の低下が少なくなるため好ましい。
 内部異性化オレフィンについて、オレフィンのα-位(1位の炭素と2位の炭素を結ぶ位置)より内部に二重結合が存在することは、オレフィンのH-NMRによる分析において、5.4ppm付近に内部異性化オレフィン由来のピークがあることで確認できる。また逆に、α-オレフィンが含まれている場合は、オレフィンのH-NMRによる分析において、5.0ppm付近および5.8ppm付近にα-オレフィン由来のピークがあることで確認できる。また、上記ピークの積分値を基にα-オレフィンと内部異性化オレフィンの比率を求めることも可能である。
 内部異性化オレフィンは、通常の有機合成法により合成することができるが、例えば、シリカ・アルミナ系触媒を用いてα-オレフィンを内部異性化することで得ることができる。通常の有機合成法によりα-オレフィンを内部異性化して得られる内部異性化オレフィンは、二重結合の位置が炭素鎖の2位、3位等の様々な位置に形成されてなる内部オレフィンの混合物となっているが、この発明においては、異性化反応により形成された内部オレフィンの混合物である内部異性化オレフィンにあっては、その内部オレフィンの具体的な二重結合の位置が特定されなくてもよく、内部オレフィンの混合物である限り各内部オレフィンが特定されなくてもよく、また、この発明の目的を阻害しない限りα-オレフィンが含まれていても良い。各種の内部オレフィンが含まれている内部異性化オレフィンにあっては、許容されるα-オレフィンの含有量は10質量%以下である。
 上記オレフィンに無水マレイン酸を付加させ、アルケニルコハク酸無水物を得る方法としては、通常の有機合成法が適用できる。例えば、窒素雰囲気下210℃に加熱したオレフィンに無水マレイン酸を徐々に加え、6~10時間攪拌することでアルケニルコハク酸無水物を得ることができる。
 本発明に用いる2-オキセタノン化合物は、常圧下に25℃で液状であれば良い。常圧下に25℃で液状にならない2-オキセタノン化合物は、ASAと混合するために長時間の加熱撹拌操作が必要であったり、ASAと均一に混合しても常圧下25℃で保管中に2-オキセタノン化合物が固体として析出しやすかったり、ASAとの混合物の乳化液が不安定となりやすく凝集や分離などを起こしたり、といった不都合があってこの発明の課題を達成することができない。好ましい2-オキセタン化合物は、炭素数8から30の飽和モノカルボン酸、炭素数8から30の不飽和モノカルボン酸、炭素数6から44の飽和ジカルボン酸および炭素数6から44の不飽和ジカルボン酸よりなる群から選択される少なくとも一種、好ましくは二種以上の混合物であって、これら脂肪酸から製造され、かつ常圧下に25℃で液状である2-オキセタノン化合物、好ましくは脂肪酸の混合物から製造され、かつ常圧下に25℃で液状である2-オキセタノン化合物混合物である。より好ましくは、オレイン酸やリノール酸などの不飽和脂肪酸を含む脂肪酸から製造されるアルケニルケテンダイマー、イソステアリン酸などの分岐脂肪酸を含む脂肪酸から製造されるアルキルケテンダイマー、および炭素数8の脂肪酸と炭素数10の脂肪酸とが8~20質量%、炭素数12~18である脂肪酸が92~80質量%であり、不飽和脂肪酸が2質量%以下である脂肪酸混合物である脂肪酸を利用して製造されるアルキルケテンダイマーを含み、かつ常圧下に25℃で液状である2-オキセタノン化合物である。
 これらは、ASAと混合する際に短時間の緩やかな撹拌で均一な混合状態となりやすく、また混合物を25℃で保管しても長期間にわたり均一な状態を保つことができ、更にASAとの混合物のエマルションの保存安定性が優れる、という利点があるので好ましい。
 前記の具体的な原料としては、飽和モノカルボン酸としてカプロン酸、カプリル酸、カプリン酸、ペラルゴン酸、ステアリン酸、イソステアリン酸、ミリスチン酸、パルミチン酸、ペンタデカン酸、ウンデカン酸、ラウリン酸、トリデカン酸、ノナデカン酸、アラキン酸、及びべへン酸、並びにこれらの混合物よりなる群を挙げることができ、不飽和モノカルボン酸としてオレイン酸、リノール酸、ドデセン酸、テトラデセン酸、へキサデセン酸、オクタデカジエン酸、オクタデカトリエン酸、エイコセン酸、工イコサテトラエン酸、ドコセン酸及びドコサペンタエン酸、並びにこれらの混合物を挙げることができ炭素数8と炭素数10の脂肪酸が8~20質量%であり、炭素数12~18である脂肪酸が92~80質量%である脂肪酸混合物であることが、25℃で液状であり、またサイズ性能が優れることから好ましい。これらの中でも、炭素数8~18であるカプリル酸(炭素数8)、カプリン酸(炭素数10)、ラウリン酸(炭素数12)、ミリスチン酸(炭素数14)、パルミチン酸(炭素数16)、ステアリン酸(炭素数18)、オレイン酸(炭素数18)、リノール酸(炭素数18)のような脂肪酸からなることが好ましく、ラウリン酸とミリスチン酸とを原料の50~80質量%含有していることが好ましい。炭素数8と炭素数10の脂肪酸が8~20質量%であって、かつ、炭素数8の脂肪酸が3~10質量%、炭素数10の脂肪酸が3~12質量%、炭素数12と炭素数14の脂肪酸が54~78質量%、炭素数16と炭素数18の脂肪酸が6~37質量%であることがさらに好ましい。前記の条件を満たすためココヤシ油脂肪酸のアルケニル基を水素添加反応によってアルキル基に変換されている脂肪酸を原料とすることがさらに好ましい。
 前記不飽和力ルボン酸を含有する原料を水素添加する反応は一般的な水素ガスを還元剤として用いる還元反応であり、通常、主にニッケル、銅一酸化クロム、ルテニウム、パラジウム、ロジウム、白金などの金属の微粉末、もしくはそれらを活性炭、アルミナ、珪藻土などの不溶性の担体に吸着させたものが触媒を用いて一般的な方法で行うことができる。
 前記2-オキセタノン化合物は、上記の原料を用いて通常の有機合成法により合成することができ、又、市販品として容易に得ることもできるものもある。例えばステアリルケテンダイマーは、ステアリン酸にホスゲン、三塩化リン、塩化チオニルなどの塩素化剤を反応させ、ステアリン酸クロライドにし、次いでトリエチルアミンで脱塩酸処理した後、トリエチルアミン塩酸塩を除去することで得られる。
なお、本発明における好適な2-オキセタノン化合物は、前記のごとく脂肪酸混合物を反応させ得てられるため、数種の2-オキセタノン化合物の混合物である。
 2-オキセタノン化合物に使用する脂肪酸のうち、不飽和脂肪酸の割合が2質量%以内であることが二重結合の酸化を防止することができ、サイズ剤組成物の貯蔵安定性、分散安定性及びサイズ性能に寄与するため好ましい。
 本発明においては、上記アルケニルコハク酸無水物と上記混合組成となっている2-オキセタノン化合物とを特定の割合で混合した混合物を乳化して使用することにより、サイズ効果の向上、水性分散液の安定性向上および汚れ低減効果が得られる。アルケニルコハク酸無水物と上記混合組成となっている2-オキセタノン化合物との混合割合としては、アルケニルコハク酸無水物:混合組成となっている2-オキセタノン化合物=60:40~95:5の範囲である必要があり、70:30~90:10がさらに好ましい。上記範囲よりも2-オキセタノン化合物が多いと、アルケニルコハク酸単独の場合よりもサイズ効果が劣り好ましくなく、上記範囲よりも2-オキセタノン化合物が少ないとサイズ効果、安定性および汚れ低減に効果が見られず好ましくない。
 本発明における2-オキセタノン化合物およびアルケニルコハク酸無水物は、互いに相溶性に優れ、双方が液状であればいかなる温度条件でも混合することができるが、100℃以下で加熱混合することが好ましい。100℃より高温になると熱による変質で変色したりサイズ剤としての効果が低下したりするおそれがある。また、混合する際はアルケニルコハク酸無水物と2-オキセタノン化合物との両者が攪拌中に空気中の水分で加水分解し、または変性することを防ぐため、乾燥空気、窒素、アルゴン等の水分を含まない雰囲気下で混合することが好ましい。
 本発明に係るサイズ剤組成物は、アルケニルコハク酸無水物、および2-オキセタノン化合物のそれぞれを単独で用いるよりもサイズ性能が優れる効果が見られる。これは前記のアルケニルコハク酸の加水分解の抑止効果のほかに、双方の分子が混在し、配向することにより疎水性が向上する効果などが相乗することによると考えられる。
 本発明のサイズ剤組成物は常温で液体であることからそのまま塗布したり、トルエン等の溶剤に溶解させてワニスとして塗布することも可能であるが、作業性から水性分散液として使用することが好ましい。水性分散液は界面活性剤や各種水性高分子分散剤を用い、公知の乳化方法にて乳化分散することにより調製可能である。なお、水性分散液の調製はアルケニルコハク酸無水物の加水分解による性能低下を最小限にする目的から、使用直前に分散したり、ポンプで連続的に乳化装置に送って水分散液を調製し、連続的に使用したりすることが好ましい。
 本発明において、アルケニルコハク酸無水物と2-オキセタノン化合物との混合物に更に界面活性剤を混合した混合物を乳化することが、乳化性を改善すること、抄紙用具に汚れが付着し難いことから好ましい。前記のようにアルケニルコハク酸無水物と2-オキセタノン化合物との混合物に添加する界面活性剤(以下、混合用界面活性剤と略することがある)の使用量は、アルケニルコハク酸無水物と2-オキセタノン化合物との合計100質量部に対して0.01~10質量部が好ましく、0.1~5質量部がより好ましい。混合用界面活性剤の量が多すぎると、アルケニルコハク酸無水物、2-オキセタノン化合物と界面活性剤の混合物の保管時に混合物が空気中の水分を吸収しやすくなるため、アルケニルコハク酸無水物の加水分解を促進する場合があり、加水分解物であるアルケニルコハク酸が抄紙用具の汚れとサイズ性能の低下をもたらす恐れがある。混合用界面活性剤の量が少なすぎると混合による前記利点が十分に発揮されないおそれがある。
 混合用界面活性剤としては、従来公知のカチオン性界面活性剤、両性界面活性剤、アニオン性界面活性剤あるいはノニオン性界面活性剤が使用できる。これらは1種又は2種以上を使用しても良い。
 前記カチオン性界面活性剤としては、たとえば長鎖アルキルアミン塩、変性アミン塩、テトラアルキル4級アンモニウム塩、トリアルキルベンジル4級アンモニウム塩、アルキルピリジニウム塩、アルキルキノリウム塩、アルキルスルホニウム塩などが挙げられる。
 前記両性界面活性剤としては、たとえば各種ベタイン系界面活性剤が挙げられる。
 前記アニオン性界面活性剤としては、たとえばアルキルスルホン酸塩、アルキル硫酸エステル塩、アルキル燐酸エステル塩、ポリオキシアルキレンアルキル硫酸エステル塩、ポリオキシアルキレンアルキルアリール硫酸エステル塩、ポリオキシアルキレンアラルキルアリール硫酸エステル塩、アルキル-アリールスルホン酸塩、ポリオキシアルキレンアルキル燐酸エステル塩および各種スルホコハク酸エステル系界面活性剤等が挙げられる。
 前記ノニオン性界面活性剤としては、脂肪酸ソルビタンエステルおよびそのポリアルキレンオキサイド付加物、脂肪酸ポリグリコールエステル、各種ポリアルキレンオキサイド型ノニオン性界面活性剤(ポリオキシエチレン脂肪酸エステル、ポリオキシエチレン脂肪酸アミド、ポリオキシエチレン脂肪族アミン、ポリオキシエチレン脂肪族メルカプタン、ポリオキシエチレンアルキルアリールエーテル、ポリオキシエチレンポリオキシプロピレンブロックポリマー、ポリオキシエチレンアラルキルアリールエーテル、ポリオキシエチレンジスチレン化フェノールエーテル燐酸エステル等)が挙げられる。
 これらの中でもアニオン性界面活性剤、ノニオン性界面活性剤が好ましく、具体的には、スルホコハク酸ジアルキルナトリウム塩またはポリオキシアルキレンアルキルエーテル燐酸エステルが好ましい。
 混合用界面活性剤はアルケニルコハク酸無水物と2-オキセタノン化合物の混合時に同時に混合してもよいし、乳化直前にアルケニルコハク酸無水物と2-オキセタノン化合物との混合物に連続混合してもよいが、予めアルケニルコハク酸無水物と2-オキセタノン化合物との混合物に混合しておくことが好ましい。
 乳化装置としては本発明に用いるアルケニルコハク酸無水物と2-オキセタノン化合物と必要に応じて用いられる界面活性剤や各種水性高分子分散剤および水とからサイズ剤組成物の分散液を調製することが可能であれば特に制限はなく、スタティックミキサー、ベンチュリーミキサー、ブレンダー、ホモミキサー、高圧・高速吐出ホモジナイザー、超音波乳化機、高せん断型回転乳化機等の各種乳化機乃至乳化装置が使用可能である。
 本発明にて乳化によりサイズ剤組成物を得るに際して、乳化物であるサイズ剤組成物の分散安定性が優れることから水性高分子分散剤を使用することが好ましい。
 水性高分子分散剤としては水溶性の各種合成高分子、天然高分子が挙げられ、具体的には、澱粉類、アクリルアミド系ポリマー類、澱粉グラフトアクリルアミド系ポリマー、ポリビニルアルコール類、カルボキシメチルセルロース類、ガム類、カゼインなどが挙げられる。これらの中でも澱粉類、アクリルアミド系ポリマー、澱粉グラフトアクリルアミド系ポリマー、カルボキシメチルセルロース類、ポリビニルアルコール類が好ましい。
 水性高分子分散剤の重量平均分子量として、10,000以上10,000,000以下が好ましい。10,000より重量平均分子量が小さい場合、乳化性および分散安定性が低下するおそれがある。10,000,000より重量平均分子量が大きい場合は水性高分子分散剤の粘度が増加し、取り扱いが困難になるおそれがある。
上記澱粉類として、例えばトウモロコシ、小麦、馬鈴薯、米、タピオカ等の生澱粉およびそれらの澱粉に、一級、二級、第三級の各アミノ基及び四級アンモニウム基からなる群から選ばれる少なくとも一種の塩基性窒素を含有させたカチオン性澱粉が挙げられる。また上記カチオン性澱粉にアニオン性基(例えば、リン酸エステル基等)を導入した両イオン性澱粉も使用可能である。その他、酸化澱粉、ジアルデヒド澱粉、アルキルエーテル化澱粉、リン酸澱粉、尿素リン酸澱粉、疎水変性澱粉等が挙げられる。なお、本発明においては液体カチオン性澱粉が含まれていなくても本発明の目的が達成される。
 前記アクリルアミド系ポリマー類として、アクリルアミド及び/又はメタクリルアミド、即ち(メタ)アクリルアミドを50モル%以上含有し、カチオン性基及び/又はアニオン性基を有しても良い水溶性ポリマーを挙げることができる。このアクリルアミド系ポリマーは、例えば、(メタ)アクリルアミドを主成分とする水溶性ポリマーを変性することによってイオン性基を導入する変性方法により、あるいは(メタ)アクリルアミドと必要に応じてカチオン性モノマー、アニオン性モノマー及び他のビニル系モノマーとを含有するモノマー混合物を従来公知の方法で重合させる共重合方法により、更にはこれら両方の方法の組み合わせ等によって得ることができる。
 前記変性方法による場合、カチオン性基の導入には、ホフマン変成反応、マンニッヒ反応及びポリアミンによるアミド交換反応が利用され、他方アニオン性基の導入には、加水分解反応等が利用できる。
 前記カチオン性モノマーとしては、モノ-あるいはジ-アルキルアミノアルキルアクリレート、モノ-あるいはジ-アルキルアミノアルキルメタクリレート、モノ-あるいはジ-アルキルアミノアルキルメタクリルアミド、ビニルピリジン、ビニルイミダゾール、モノ-あるいはジ-アリルアミン及びそれらの混合物、更にはこれらの4級アンモニウム塩などを例示することができる。
 前記アニオン性モノマーとしては、アクリル酸、メタクリル酸、マレイン酸、フマル酸、イタコン酸などのα,β-不飽和カルボン酸類、あるいはこのほかスルホン酸基やリン酸基を有する公知の各種重合性モノマー類を例示することができる。
 前記他のビニル系モノマーとしては、(メタ)アクリルアミドなどと共重合可能なN-メチロールアクリルアミド、メチレン(ビス)アクリルアミド、2官能性モノマー、3官能性モノマー、4官能性モノマーなどの架橋性ビニルモノマーや、(メタ)アクリル酸エステル、スチレン、酢酸ビニルなどのノニオン性ビニルモノマーも併用可能である。
 本発明で用いるアクリルアミド系ポリマー類の製造法としては、従来公知の各種方法により行うことができる。例えば、攪拌機、及び窒素ガス導入管を備えた反応容器に構成成分であるビニルモノマーと水とを仕込み、重合開始剤として過酸化水素、過硫酸アンモニウム、過硫酸カリウム、アンモニウムハイドロパーオキサイドなどの過酸化物、或はこれらの過酸化物と重亜硫酸ソーダなどの還元剤との組み合わせからなる任意のレドックス開始剤、更には2-2´アゾビス(アミノプロパン)塩酸類のような水溶性アゾ系開始剤などを使用し、反応温度40~80℃で1~5時間反応させてアクリルアミド系ポリマー類を得ることができる。
 本発明で用いる澱粉グラフトアクリルアミド系ポリマーは、澱粉類の存在下に前記アクリルアミド系ポリマー類を形成し得るモノマー類をグラフト重合させて調製される。
 例えば、カチオン性澱粉水溶液中において、(a)カチオン性基含有モノマー、(b)アニオン性基含有モノマーおよび(c)(メタ)アクリルアミドを含有するモノマー混合物を共重合して得ることができる。
 前記カチオン性モノマー(a)の具体例としては、モノ-或いはジ-アルキルアミノアルキルアクリレート、モノ-或いはジ-アルキルアミノアルキルメタアクリレート、モノ-或いはジ-アルキルアミノアルキルアクリルアミド、モノ-或いはジ-アルキルアミノアルキルメタアクリルアミド、ビニルピリジン、ビニルイミダゾール、モノ-或いはジ-アリールアミン及びそれらの混合物、更にそれらの第4級アンモニウム塩等を例示することができる。また前記アニオン性モノマー(b)としては、アクリル酸、メタクリル酸、マレイン酸、フマル酸、イタコン酸等のα,β-不飽和カルボン酸類のほか、スルホン酸基やリン酸基を有する公知の各種重合性モノマー類等が使用可能である。上記の変性や共重合の反応は、公知の反応操作に従うもので、適当な反応条件を任意に選択できる。
 その他の水溶性ポリマーとしては、カルボキシメチルセルロース類、ポリビニルアルコール類、デキストリン類、キトサン類なども使用可能である。
 水性高分子分散剤の濃度、添加量は特に制限はなく、用途に応じて添加量、濃度を変更することができるが、本発明のサイズ剤組成物に対する固形分比で0.1~4倍を添加することが好ましい。
 更に乳化によりサイズ剤組成物を得るに際して、界面活性剤(以下、乳化用界面活性剤と略することがある)を併用することが、より乳化性と安定性が向上することから好ましい。
 乳化用界面活性剤としては、前記従来公知のカチオン性界面活性剤、アニオン性界面活性剤、両性界面活性剤あるいはノニオン性界面活性剤が使用できる。これらは1種又は2種以上を使用しても良い。
 前記界面活性剤の中でも、本発明の乳化用界面活性剤としてはノニオン性界面活性剤及びアニオン性界面活性剤が好ましい。
 前記乳化用界面活性剤の濃度、添加量は特に制限はなく、用途に応じて添加量、濃度を変更することができるが、本発明のサイズ剤組成物に対する固形分比で0.3~3質量%を使用することにより乳化性、得られたエマルションの安定性が向上するため、好ましい。
 乳化用界面活性剤は予め水性高分子分散剤に混合してもよいし、また、乳化時に水性高分子分散剤に連続混合してもよいが、予め水性高分子分散剤に混合しておくことが好ましい。
 以下、本発明の効果を製造例及び実施例を挙げて具体的に説明するが、本発明はこれらの例にのみ限定されるものではない。
(アルケニルコハク酸無水物)
(製造例1)アルケニルコハク酸無水物(A1)の製造
 シリカ・アルミナ系触媒を用いて1-オクタデセンを異性化した。得られた内部異性化オクタデセン混合物にはH-NMRによる分析でα-オレフィンが含まれていないことを確認した。この内部異性化オクタデセン混合物200gと無水マレイン酸86gとを、オートクレーブ中窒素雰囲気下において215℃で8時間反応させた。反応液から未反応の無水マレイン酸とオレフィンとを減圧蒸留により除去し、常圧下25℃で液状であり、かつ混合物である内部異性化オクタデセニルコハク酸無水物(A1)235gを得た。表1に、この異性化オクタデセニルコハク酸無水物の炭素数および25℃における状態、異性化反応に供されたオレフィン中に含まれるα-オレフィンの含有量を、示した。
(製造例2)アルケニルコハク酸無水物(A2)の製造
 製造例1において、1-オクタデセンの代わりに1-ヘキサデセンを使用して製造例1と同様に内部異性化反応を行い、H-NMRによる分析でα-オレフィンが含まれていない内部異性化ヘキサデセン混合物を得た。更に無水マレイン酸を96gとした以外は製造例1と同様にして常圧下25℃で液状であり、かつ混合物である内部異性化オクタデセニルコハク酸無水物(A2)243gを得た。表1に、この異性化ヘキサデセニルコハク酸無水物の炭素数および25℃における状態、異性化反応に供されたオレフィン中に含まれるα-オレフィンの含有量を、示した。
(製造例3)アルケニルコハク酸無水物(A3)の製造
 製造例1において、1-オクタデセンの代わりに1-イコセン/1-ドコセン/1-テトラコセン=70/20/10(質量比)であるα-オレフィン混合物を使用して製造例1と同様に内部異性化反応を行い、H-NMRによる分析でα-オレフィンが含まれていない内部異性化オレフィン混合物を得た。更に無水マレイン酸を75gとした以外は製造例1と同様にして常圧下25℃で液状であり、かつ混合物である内部異性化アルケニルコハク酸無水物(A3)231gを得た。表1に、この異性化アルケニルコハク酸無水物の炭素数および25℃における状態、異性化反応に供されたオレフィン中に含まれるα-オレフィンの含有量を、示した。
(製造例4)アルケニルコハク酸無水物(A4)の製造
 製造例1において、1-オクタデセンの代わりに1-ドデセンを使用して製造例1と同様に内部異性化反応を行い、H-NMRによる分析でα-オレフィンが含まれていない内部異性化ドデセン混合物を得た。更に無水マレイン酸を128gとした以外は製造例1と同様にして常圧下25℃で液状であり、かつ混合物である内部異性化ドデセニルコハク酸無水物(A4)259gを得た。表1に、この異性化ドデセニルコハク酸無水物の炭素数および25℃における状態、異性化反応に供されたオレフィン中に含まれるα-オレフィンの含有量を、示した。
(製造例5)アルケニルコハク酸無水物(A5)の製造
 プロピレンテトラマー(H-NMRによる分析でα-オレフィンが7%であることを確認)200gと無水マレイン酸128gとを、オートクレーブ中窒素雰囲気下において215℃で8時間反応させた。反応液から未反応の無水マレイン酸とオレフィンを減圧蒸留により除去し、常圧下25℃で液状であり、かつ内部異性化オレフィンを含む分岐状ドデセニルコハク酸無水物(A5)230gを得た。表1に、この異性化分岐状ドデセニルコハク酸無水物の炭素数および25℃における状態、異性化反応に供されたオレフィン中に含まれるα-オレフィンの含有量を、示した。
(製造例6)アルケニルコハク酸無水物(A6)の製造
 1-オクタデセン(H-NMRによる分析でα-オレフィンが100%であることを確認)200gと無水マレイン酸86gとを、オートクレーブ中窒素雰囲気下において215℃で8時間反応させた。反応液から未反応の無水マレイン酸と1-オクタデセンを減圧蒸留により除去し、常圧下25℃で固体である内部異性化されていないオクタデセニルコハク酸無水物(A6)239gを得た。表1に、この内部異性化されていないオクタデセニルコハク酸無水物の炭素数および25℃における状態、異性化反応に供されたオレフィン中に含まれるα-オレフィンの含有量を、示した。
(製造例1)2-オキセタノン化合物(B1)の製造
 四つ口フラスコに塩化チオニルを200g入れ、温度を80℃(塩化チオニル還流条件)にした。次いで質量組成比がカプリル酸/カプリン酸/ラウリン酸/ミリスチン酸/パルミチン酸/ステアリン酸/オレイン酸=7/7/51/18/9/8/0(不飽和脂肪酸無含有)である水素添加ココヤシ油脂肪酸(a1)205.8gを2時間かけて滴下した。その後80℃で1時間攪拌を続け、更に80℃常圧下で塩化チオニルを留去し、カプリル酸クロリド、カプリン酸クロリド、ラウリン酸クロリド、ミリスチン酸クロリド、パルミチン酸クロリド及びステアリン酸クロリドの混合物である脂肪酸クロリド212.7gを得た。次に新たに四つロフラスコに上記脂肪酸クロリド200gおよびトルエン200mlを入れて20℃に冷却し、20℃を保ちながらトリエチルアミン108.4gを3時間かけて滴下した。滴下終了後30℃に昇温し、更に3時間反応を続けた。次に3%の希塩酸水溶液を200ml加えて10分攪拌した後、1時間静置して下層の水相を分離した後、減圧下でトルエンを留去して炭素数の異なる2-オキセタノンの混合物である2-オキセタノン化合物(B1)141.5gを得た。得られた2-オキセタノン化合物(B1)は常圧下25℃で液状であった。なお、表2に、2-オキセタノン化合物を製造するのに用いられた原料脂肪酸の種類と配合割合とを示した。
(製造例2)2-オキセタノン化合物(B2)の製造
 製造例1における水素添加ココヤシ油脂肪酸(a1)を、カプリル酸/カプリン酸/ラウリン酸/ミリスチン酸/パルミチン酸/ステアリン酸/オレイン酸=7/7/51/18/9/7/1(不飽和脂肪酸1質量%)である水素添加ココヤシ油脂肪酸(a2)205.8gに変えて同様に反応し、脂肪酸クロリドを210.4g得た。次いで得られた脂肪酸クロリド200gとトリエチルアミン208.4gを用いて、製造例1と同様に反応させ2-オキセタノン化合物(B2)を144.7g得た。得られた2-オキセタノン化合物(B2)は常圧下25℃で液状であった。なお、表2に、2-オキセタノン化合物を製造するのに用いられた原料脂肪酸の種類と配合割合とを示した。
(製造例3)2-オキセタノン化合物(B3)の製造
 製造例1における水素添加ココヤシ油脂肪酸(a1)を、質量組成比がカプリル酸/カプリン酸/ラウリン酸/ミリスチン酸/パルミチン酸/ステアリン酸/オレイン酸=7/7/51/18/9/6/2(不飽和脂肪酸2質量%)である水素添加ココヤシ油脂肪酸(a3)205.8gに変えて同様に反応し、脂肪酸クロリドを211.5g得た。次いで得られた脂肪酸クロリド200gとトリエチルアミン108.4gを用いて、製造例1と同様に反応させ2-オキセタノン化合物(B3)を142.3g得た。得られた2-オキセタノン化合物(B3)は常圧下25℃で液状であった。なお、表2に、2-オキセタノン化合物を製造するのに用いられた原料脂肪酸の種類と配合割合とを示した。
(製造例4)2-オキセタノン化合物(B4)の製造
 製造例1における水素添加ココヤシ油脂肪酸(a1)を、カプリル酸/カプリン酸/ラウリン酸/ミリスチン酸/パルミチン酸/ステアリン酸/オレイン酸=7/7/51/18/9/1/7(不飽和脂肪酸7質量%)である水素添加していないココヤシ油脂肪酸(a4)205.8gに変えて同様に反応し、脂肪酸クロリドを210.6g得た。次いで得られた脂肪酸クロライド200gとトリエチルアミン108.4gを用いて、製造例1と同様に反応させ2-オキセタノン化合物(B4)を140.3g得た。得られた2-オキセタノン化合物(B4)は常圧下25℃で液状であった。なお、表2に、2-オキセタノン化合物を製造するのに用いられた原料脂肪酸の種類と配合割合とを示した。
(製造例5)2-オキセタノン化合物(B5)の製造
 製造例1における水素添加ココヤシ油脂肪酸(a1)を、カプリル酸/カプリン酸/ラウリン酸/ミリスチン酸/パルミチン酸/ステアリン酸/オレイン酸=11/11/47/14/9/8/0(不飽和脂肪酸0質量%)の質量比の脂肪酸混合物(a5)200.3gに変えて同様に反応し、脂肪酸クロリドを204.8g得た。次いで得られた脂肪酸クロリド200gとトリエチルアミン111.2gを用いて、製造例1と同様に反応させ2-オキセタノン化合物(B5)を142.1g得た。得られた2-オキセタノン化合物(B5)は常圧下25℃で液状であった。なお、表2に、2-オキセタノン化合物を製造するのに用いられた原料脂肪酸の種類と配合割合とを示した。
(製造例6)2-オキセタノン化合物(B6)の製造
 製造例1における水素添加ココヤシ油脂肪酸(a1)を、オレイン酸(不飽和脂肪酸100質量%)(a6)282.5gに変えて同様に反応し、脂肪酸クロリドを279.1g得た。次いで得られた脂肪酸クロリド200gとトリエチルアミン80.8gを用いて、製造例1と同様に反応させて2-オキセタノン化合物(B6)を149.6g得た。得られた2-オキセタノン化合物(B6)は常圧下25℃で液状であった。なお、表2に、2-オキセタノン化合物を製造するのに用いられた原料脂肪酸の種類と配合割合とを示した。
(製造例7)2-オキセタノン化合物(B7)の製造
 製造例1における水素添加ココヤシ油脂肪酸(a1)を、イソステアリン酸(a7)280.3gに変えて同様に反応し、脂肪酸クロリドを277.7g得た。次いで得られた脂肪酸クロリド200gとトリエチルアミン81.3gを用いて、製造例1と同様に反応させて2-オキセタノン化合物(B7)を146.8g得た。得られた2-オキセタノン化合物(B7)は常圧下25℃で液状であった。なお、表2に、2-オキセタノン化合物を製造するのに用いられた原料脂肪酸の種類と配合割合とを示した。
(製造例8)2-オキセタノン化合物(B8)の製造
 製造例1における水素添加ココヤシ油脂肪酸(a1)を、パルチミン酸/ステアリン酸=60/40(不飽和脂肪酸0質量%)の質量比の脂肪酸混合物(a8)267.0gに変え、80℃に加温して滴下する以外は同様に反応し、脂肪酸クロリドを274.2g得た。次いで得られた脂肪酸クロリド200gとトリエチルアミン85.1gを用いて、製造例1と同様に反応させて2-オキセタノン化合物(B8)を152.5g得た。得られた2-オキセタノン化合物(B8)は常圧下25℃でワックス状の固体であった。なお、表2に、2-オキセタノン化合物を製造するのに用いられた原料脂肪酸の種類と配合割合とを示した。
(製造例9)比較例3用2-オキセタノン化合物(B9)の製造
 製造例1における水素添加ココヤシ油脂肪酸(a1)を、ラウリン酸/パルチミン酸/ステアリン酸=50/25/25(不飽和脂肪酸0質量%)の質量比の脂肪酸混合物(a9)229.9gに変え80℃に加温して滴下する以外は同様に反応し、脂肪酸クロリドを228.3g得た。次いで、得られた脂肪酸クロリド200gとトリエチルアミン97.9gを用いて、製造例1と同様に反応させて2-オキセタノン化合物(B9)を147.7gを得た。得られた2-オキセタノン化合物(B9)は常圧下25℃でワックス状の固体であった。なお、表2に、2-オキセタノン化合物を製造するのに用いられた原料脂肪酸の種類と配合割合とを示した。
(界面活性剤)
 界面活性剤として、ノニオン性界面活性剤であるポリオキシエチレンジスチレン化フェノールエーテル(第一工業製薬株式会社製ノイゲンEA-167)(D1)、アニオン性界面活性剤としてスルホコハク酸ジオクチルナトリウム塩(D2)、リン酸系のノニオン性界面活性剤であるポリオキシエチレンジスチレン化フェノールエーテル燐酸エステル(第一工業製薬株式会社製プライサーフAL)(D3)、リン酸系のノニオン性界面活性剤であるポリオキシエチレンアルキルエーテルリン酸エステル(第一工業製薬株式会社製プライサーフA208N)(D4)を使用した。
(水性高分子分散剤)
調製例1<アクリルアミド系ポリマー類水溶液>
 攪拌機、温度計、還流冷却器及び窒素ガス導入管を備えた4つ口フラスコに50%アクリルアミド水溶液335.7部、N,N-ジメチルアミノプロピルアクリルアミド16.2部、80質量%メタクリル酸水溶液11.2部とメタリルスルホン酸ナトリウム4.1部、ノルマルドデシルメルカプタン2.6部、イオン交換水215.6部、イソプロピルアルコール199.8部を仕込み、20%硫酸にてpHを4.5に調整した。この混合液を攪拌しながら窒素ガス雰囲気下で、60℃まで昇温した。重合開始剤として2%過硫酸アンモニウム水溶液14.8部加え、80℃まで昇温し、3時間保持した。次いでイソプロピルアルコールの留去を行い、イオン交換水を加えて室温まで冷却し、固形分濃度20質量%、粘度190mPa・s、pH4.2の高分子分散剤水溶液(C1)を得た。表3に、高分子分散剤水溶液と調製例との対応を示した。
調製例2<アクリルアミド系ポリマー類水溶液>
 両性アクリルアミド系紙力剤DS4388(星光PMC株式会社製)の25部に、イオン交換水を75部加えて攪拌、希釈することにより、固形分5.0質量%のアクリルアミド系ポリマー類水溶液(C2)を得た。表3に、高分子分散剤水溶液と調製例との対応を示した。
調製例3<澱粉グラフトアクリルアミド系ポリマー水溶液>
 澱粉グラフトアクリルアミド系紙力剤DG4204(星光PMC株式会社製)の33.3部に、イオン換水を66.7部加えて攪拌、希釈することにより、固形分5.0質量%の澱粉グラフトアクリルアミド系ポリマー水溶液(C3)を得た。表3に、高分子分散剤水溶液と調製例との対応を示した。
調製例4<澱粉類糊液>
 攪拌機、温度計、還流冷却管を付した反応容器に、カチオン化澱粉Cato304(日本エヌエスシー株式会社製、水分率実測値13%)57部を仕込み、次いで水943部を仕込み攪拌を開始し、分散させた。ついで95℃まで昇温し、20分攪拌を続け、その後40℃まで冷却し、固形分5.0質量%、のカチオン化澱粉類糊液(C4)を得た。表3に、高分子分散剤水溶液と調製例との対応を示した。
調製例5<ポリビニルアルコール>
 攪拌機、温度計、還流冷却管を付した反応容器に、ポリビニルアルコール「PVA-117」((株)クラレ製)20部を仕込み、次いで水980部を仕込み攪拌を開始し、分散させた。ついで95℃まで昇温し、20分攪拌を続け、その後40℃まで冷却し、固形分2.0質量%、粘度10mPas,pH6.1のポリビニルアルコール水溶液(C5)1000部を得た。表3に、高分子分散剤水溶液と調製例との対応を示した。
調製例6<水溶性セルロース類>
 攪拌機、温度計、還流冷却管を付した反応容器に、カルボキシメチルセルロース「セロゲン5A」(第一工業製薬製)20部を仕込み、次いで水980部を仕込み攪拌を開始し、分散させた。ついで95℃まで昇温し、20分攪拌を続け、その後40℃まで冷却し、固形分2.0質量%、粘度10mPas,pH6.1のカルボキシメチルセルロース水溶液(C6)1000部を得た。表3に、高分子分散剤水溶液と調製例との対応を示した。
 なお、粒子径測定、安定性試験、耐水性試験は以下のように行った。
<粒子径測定>
 乳化により得られたエマルションについて、レーザー光散乱式粒度分布計LA-910((株)堀場製作所製)を用いて重量平均粒子径を測定した。
<耐水性試験1>
 晒クラフトパルプ(針葉樹対広葉樹のパルプ比が1対9である混合パルプ)をパルプ濃度が2.5質量%になるように電導度35mS/mの希釈用水で希釈し、ビーターを用いてカナディアンスタンダードフリーネス430まで叩解した。次いで、得られたパルプスラリー1.2リットルを離解機に秤取し、40℃に保温し、攪拌下、軽質炭酸カルシウム(奥多摩工業株式会社製タマパール121)を対パルプ5質量%加え、硫酸バンドを対パルプ0.5質量%、カチオン性澱粉(日本エヌエスシー株式会社製Cato304)を対パルプ0.7質量%添加した後、サイズ剤組成物を対パルプ0.1質量%添加した。その後pH8、電導度35mS/mの希釈水でこの得られたパルプスラリーを濃度0.8質量%まで希釈し、上記軽質炭酸カルシウムをさらに対パルプ15質量%、カチオン性歩留まり剤(ハイモ株式会社製歩留まり剤NR12MLS)を対パルプ0.01質量%順次添加し、ノーブルアンドウッド社製抄紙機で坪量65g/mとなるよう手抄きを行い、ラボロールプレスで湿紙中の水分率を55%に調整した後にドラムドライヤーを用いて100℃、80秒の条件で乾燥した。得られた紙を23℃、50%R.H.の恒温恒湿室中で24時間調湿した後、ステキヒトサイズ度をJIS P-8122に準じて測定することにより耐水性性能を評価した。この測定値が大きいほど耐水性付与に優れることを意味する。なお、本抄紙条件は上質紙に該当する。
<耐水性試験2>
 カチオン性歩留まり剤を添加する前に、パルプスラリーを攪拌下、40℃の状態で1時間保持する以外は耐水性試験1と同様にして試験を行った。この試験では、サイズ剤エマルションがパルプスラリーの水分中に分散されている時間が耐水性試験1より長くなり、サイズ剤の加水分解が進行するため、エマルション粒子がより不安定化しやすい条件での評価である。
<耐水性試験3>
 段ボール古紙をパルプ濃度が2.5質量%になるように電導度100mS/mの希釈用水で希釈し、ビーターを用いてカナディアンスタンダードフリーネス330まで叩解した。次いで、得られたパルプスラリー1.2リットルを離解機に秤取し、40℃に保温し、攪拌下、乾燥紙力剤(星光PMC株式会社製DS4416)を対パルプ0.3質量%添加した後、サイズ剤組成物を対パルプ0.14質量%添加した。その後pH7.5、電導度100mS/mの希釈水でこの得られたパルプスラリーを濃度0.8質量%まで希釈し、乾燥紙力剤(星光PMC株式会社製DH4160)を対パルプ0.05質量%添加し、ノーブルアンドウッド社製抄紙機で坪量80g/mとなるように手抄きを行い、ラボロールプレスで湿紙中の水分率を58%に調整した後ドラムドライヤーを用いて100℃、80秒の条件で乾燥した。得られた紙を23℃、50%R.H.の恒温恒湿室中で24時間調湿した後、コブ吸水度(120秒)をJIS P-8140に準じて測定することにより耐水性能を評価した。この測定値が小さいほど耐水性付与に優れることを意味する。なお、本抄紙条件はライナー等の板紙に該当する。
<耐水性試験4>
 乾燥紙力剤DH4160を添加する前に、パルプスラリーを攪拌下、40℃の状態で1時間保持する以外は耐水性試験3と同様にして試験を行った。この試験では、サイズ剤エマルションがパルプスラリーの水分中に分散されている時間が耐水性試験3より長くなり、サイズ剤の加水分解が進行するため、エマルション粒子がより不安定化しやすい条件での評価である。
<汚れ試験1>
 耐水性試験1と同様に晒クラフトパルプに薬品を添加し、手抄き試験を行うかわりにスラリーを60メッシュステンレスメッシュにて濾過し、濾過残をステンレス板に密着させ、4.2kgf/cmの圧力で2分間プレスし、剥がした後のステンレス板の付着汚れを観察、4段階評価を行った。エマルションが不安定化し、パルプ繊維への定着性が悪いほどステンレス板へ転写されやすく、アルケニルコハク酸の加水分解が進むほど粘着性が増し、ステンレス板へ転写されやすい。この評価において、汚れが多いほど実際の使用条件においても同様に汚れの原因となる。評価の基準は以下の通りである。
◎;汚れ付着が認められない。
○;僅かに付着が認められる。
△;少量の付着が認められる。
×;多量の付着が認められる。
<汚れ試験2>
 パルプスラリーの調製を耐水性試験2と同様に歩留まり剤添加前に40℃1時間攪拌状態で保持する以外は汚れ試験1と同様にして神経を行い、4段階評価を行った。
実施例1
 攪拌機、温度計、及び窒素ガス導入管を付した密閉容器に、アルケニルコハク酸無水物(A1)を70g仕込み、次いで2-オキセタノン化合物(B1)を30g仕込んで窒素雰囲気下25℃にて1時間攪拌を続け、A2/B1=70/30の比率の混合物を100g得た。次いで、得られた混合物を15g、および固形分20質量%であるアクリルアミド系ポリマー(C1)15gの計30gを、回転型ホモミキサー(株式会社日本精機製作所製)にて15000rpmで2分攪拌し、エマルションを得た。このエマルションは6時間以上安定にエマルション状態を維持した。得られた分散液の粒子径を表5に、性能評価結果を表6に示す。
実施例2
 実施例1において、アルケニルコハク酸無水物(A1)を、アルケニルコハク酸無水物(A2)に変える以外は実施例1と同様にしてエマルションを得た。このエマルションは6時間以上安定にエマルション状態を維持した。得られた分散液の粒子径を表5に、性能評価結果を表6に示す。
実施例3
 実施例1において、アルケニルコハク酸無水物(A1)を、アルケニルコハク酸無水物(A3)に変える以外は実施例1と同様にしてエマルションを得た。このエマルションは6時間以上安定にエマルション状態を維持した。得られた分散液の粒子径を表5に、性能評価結果を表6に示す。
実施例4
 実施例1において、アルケニルコハク酸無水物(A1)を、アルケニルコハク酸無水物(A4)に変える以外は実施例1と同様にしてエマルションを得た。得られた分散液の粒子径を表5に、性能評価結果を表6に示す。
実施例5
 実施例1において、アルケニルコハク酸無水物(A1)を、アルケニルコハク酸無水物(A5)に変える以外は実施例1と同様にしてエマルションを得た。このエマルションは6時間以上安定にエマルション状態を維持した。得られた分散液の粒子径を表5に、性能評価結果を表6に示す。
実施例6
 実施例1において、2-オキセタノン化合物(B1)を、2-オキセタノン化合物(B2)に変える以外は実施例1と同様にしてエマルションを得た。このエマルションは6時間以上安定にエマルション状態を維持した。得られた分散液の粒子径を表5に、性能評価結果を表6に示す。
実施例7
 実施例1において、2-オキセタノン化合物(B1)を、2-オキセタノン化合物(B3)に変える以外は実施例1と同様にしてエマルションを得た。このエマルションは6時間以上安定にエマルション状態を維持した。得られた分散液の粒子径を表5に、性能評価結果を表6に示す。
実施例8
 実施例1において、2-オキセタノン化合物(B1)を、2-オキセタノン化合物(B4)に変える以外は実施例1と同様にしてエマルションを得た。このエマルションは6時間以上安定にエマルション状態を維持した。得られた分散液の粒子径を表5に、性能評価結果を表6に示す。
実施例9
 実施例1において、2-オキセタノン化合物(B1)を、2-オキセタノン化合物(B5)に変える以外は実施例1と同様にしてエマルションを得た。このエマルションは6時間以上安定にエマルション状態を維持した。得られた分散液の粒子径を表5に、性能評価結果を表6に示す。
実施例10
 実施例1において、2-オキセタノン化合物(B1)を、2-オキセタノン化合物(B6)に変える以外は実施例1と同様にしてエマルションを得た。このエマルションは6時間以上安定にエマルション状態を維持した。得られた分散液の粒子径を表5に、性能評価結果を表6に示す。
実施例11
 実施例1において、2-オキセタノン化合物(B1)を、2-オキセタノン化合物(B7)に変える以外は実施例1と同様にしてエマルションを得た。このエマルションは6時間以上安定にエマルション状態を維持した。得られた分散液の粒子径を表5に、性能評価結果を表6に示す。
実施例12
 実施例1において、アルケニルコハク酸無水物(A1)の70g、2-オキセタノン化合物(B1)の30gを、それぞれアルケニルコハク酸無水物(A1)の85g、2-オキセタノン化合物(B1)の15gに変えて他は実施例1と同様にしてエマルションを得た。このエマルションは6時間以上安定にエマルション状態を維持した。得られた分散液の粒子径を表5に、性能評価結果を表6に示す。
実施例13
 実施例1において、アルケニルコハク酸無水物(A1)の70g、2-オキセタノン化合物(B1)の30gを、それぞれアルケニルコハク酸無水物(A1)の95g、2-オキセタノン化合物(B1)の5gに変えて他は実施例1と同様にしてエマルションを得た。このエマルションは6時間以上安定にエマルション状態を維持した。得られた分散液の粒子径を表5に、性能評価結果を表6に示す。
実施例14
 実施例1において、回転型ホモミキサー(株式会社日本精機製作所製)にて10000rpmで1分攪拌した以外は実施例1と同様にしてエマルションを得た。このエマルションは6時間以上安定にエマルション状態を維持した。得られた分散液の粒子径を表5に、性能評価結果を表6に示す。
実施例15
 実施例1において、回転型ホモミキサー(株式会社日本精機製作所製)にて15000rpmで3分攪拌した以外は実施例1と同様にしてエマルションを得た。このエマルションは6時間以上安定にエマルション状態を維持した。得られた分散液の粒子径を表5に、性能評価結果を表6に示す。
比較例1
 実施例1において、2-オキセタノン化合物(B1)を、2-オキセタノン化合物(B8)に変え、攪拌時の温度を25℃から50℃に変える以外は実施例1と同様にしてエマルションを調製したが、10分が経過すると得られた分散液にワックス状の2-オキセタノン化合物(B8)が析出し、分離したため粒子径の測定および耐水性試験を行うことができなかった。この比較例で調製されたエマルションは短時間のうちにエマルション状態が破壊されてしまうので、この発明の範囲外にある。
比較例2
 実施例1において、2-オキセタノン化合物(B1)を、2-オキセタノン化合物(B9)に変える以外は実施例1と同様にしてエマルションを得たが、静置後1時間が経過するとエマルションが分離し、安定なエマルションは得られなかった。そのため粒子径の測定および耐水性試験を行うことができなかった。
比較例3
 実施例1において、アルケニルコハク酸無水物(A1)の70g、2-オキセタノン化合物(B1)の30gを、それぞれアルケニルコハク酸無水物(A1)の50g、2-オキセタノン化合物(B1)の50gに変えた他は実施例1と同様にしてエマルションを得た。得られた分散液の粒子径を表5に、性能評価結果を表6に示す。
比較例4
 実施例1において、アルケニルコハク酸無水物(A1)の70g、2-オキセタノン化合物(B1)の30gを、それぞれアルケニルコハク酸無水物(A1)の98g、2-オキセタノン化合物(B1)の2gに変えた他は実施例1と同様にしてエマルションを得た。得られた分散液の粒子径を表5に、性能評価結果を表6に示す。
比較例5
 実施例1において、アルケニルコハク酸無水物(A1)を、アルケニルコハク酸無水物(A6)に変える以外は実施例1と同様にしてエマルションを得たが、静置後20分が経過するとエマルションが分離し、安定なエマルションは得られなかった。そのため粒子径の測定および耐水性試験を行うことができなかった。
比較例6
 アルケニルコハク酸無水物(A1)の15g、および固形分20質量%であるアクリルアミド系ポリマー(C1)15gの計30gを、回転型ホモミキサー(株式会社日本精機製作所製)にて15000rpmで2分攪拌し、アルケニルコハク酸無水物(A1)のエマルションを得た。この分散液について、<耐水性試験1>、<耐水性試験2>、<汚れ試験1>、<汚れ試験2>の全てにおいて、サイズ剤組成物の分散液を対パルプ0.1質量%添加する代わりにアルケニルコハク酸無水物(A1)のエマルションを対パルプ0.1質量%添加した後にそれぞれの試験を行った。性能評価結果を表6に示す。
比較例7
 アルケニルコハク酸無水物(A1)の15g、および固形分20質量%であるアクリルアミド系ポリマー(C1)15gの計30gを、回転型ホモミキサー(株式会社日本精機製作所製)にて15000rpmで2分攪拌し、アルケニルコハク酸無水物(A1)のエマルションを得た。また、別に2-オキセタノン化合物(B1)の15g、および固形分20%であるアクリルアミド系ポリマー(C1)15gの計30gを、回転型ホモミキサー(株式会社日本精機製作所製)にて15000rpmで2分攪拌し、2-オキセタノン化合物(B1)のエマルションを得た。アルケニルコハク酸無水物(A1)のエマルション21gと2-オキセタノン化合物(B1)のエマルション9gを速やかに攪拌して混合し、アルケニルコハク酸無水物(A1)と2-オキセタノン化合物(B1)が70対30の質量比であるエマルションの混合物を得た。得られた分散液の粒子径を表5に、性能評価結果を表6に示す。
 この比較例は、「25℃で液状であるアルケニルコハク酸無水物60~95質量%と25℃で液状である2-オキセタノン化合物5~40質量%とを含有する混合物を乳化して得られる乳化物」ではないから、この発明の範囲外である。
比較例8
 アルケニルコハク酸無水物(A1)の15g、および固形分20質量%であるアクリルアミド系ポリマー(C1)15gの計30gを、回転型ホモミキサー(株式会社日本精機製作所製)にて15000rpmで2分攪拌し、アルケニルコハク酸無水物(A1)のエマルションを得た。また、別に2-オキセタノン化合物(B1)の15g、および固形分20%であるアクリルアミド系ポリマー(C1)15gの計30gを、回転型ホモミキサー(株式会社日本精機製作所製)にて15000rpmで2分攪拌し、2-オキセタノン化合物(B1)のエマルションを得た。これら2種の分散液について、<耐水性試験1>、<耐水性試験2>、<汚れ試験1>、<汚れ試験2>の全てにおいて、サイズ剤組成物の分散液を対パルプ0.1質量%添加する代わりにアルケニルコハク酸無水物(A1)のエマルションを対パルプ0.07質量%、2-オキセタノン化合物(B1)のエマルションを対パルプ0.03質量%別々に添加した後にそれぞれの試験を行った。性能評価結果を表6に示す。
実施例16
 攪拌機、温度計、及び窒素ガス導入管を付した密閉容器に、アルケニルコハク酸無水物(A1)を70g仕込み、次いで2-オキセタノン化合物(B1)を30g、アニオン性界面活性剤(D2)を0.5g仕込んで窒素雰囲気下60℃にて1時間攪拌を続けた後25℃に冷却し、界面活性剤を0.5質量%含むA1/B1=70/30の混合物を100.5g得た。次いで、得られた混合物の15g、および固形分20%であるアクリルアミド系ポリマー(C1)15gの計30gを、回転型ホモミキサー(株式会社日本精機製作所製)にて15000rpmで2分攪拌し、エマルションを得た。得られた分散液の粒子径を表5に、性能評価結果を表6に示す。なお、表4に界面活性剤を示す記号と界面活性剤の種類との対応を示した。
実施例17
 実施例16において、アルケニルコハク酸無水物(A1)をアルケニルコハク酸無水物(A2)にかえ、さらに界面活性剤(D2)を1.1g仕込む以外は実施例16と同様にしてエマルションを得た。このエマルションは6時間以上安定にエマルション状態を維持した。得られた分散液の粒子径を表5に、性能評価結果を表6に示す。なお、表4に界面活性剤を示す記号と界面活性剤の種類との対応を示した。
実施例18
 実施例16において、アルケニルコハク酸無水物(A1)にかえてアルケニルコハク酸無水物(A3)にかえ、さらに界面活性剤(D2)を6.4g仕込む以外は実施例16と同様にしてエマルションを得た。このエマルションは6時間以上安定にエマルション状態を維持した。得られた分散液の粒子径を表5に、性能評価結果を表6に示す。なお、表4に界面活性剤を示す記号と界面活性剤の種類との対応を示した。
実施例19
 実施例16において、界面活性剤(D2)を5.3g仕込む以外は実施例16と同様にしてエマルションを得た。このエマルションは6時間以上安定にエマルション状態を維持した。得られた分散液の粒子径を表5に、性能評価結果を表6に示す。
実施例20
 攪拌機、温度計、及び窒素ガス導入管を付した密閉容器に、アルケニルコハク酸無水物(A1)を70g仕込み、次いで2-オキセタノン化合物(B1)を30g、界面活性剤(D2)を1.1g仕込んで窒素雰囲気下60℃にて1時間攪拌を続けた後25℃に冷却し、界面活性剤を1.0質量%含むA1/B1=70/30の混合物を101.1g得た。次いで、得られた混合物を10g、および固形分5質量%に水で希釈したアクリルアミド系ポリマー(C2)20gの計30gを、回転型ホモミキサー(株式会社日本精機製作所製)にて15000rpmで2分攪拌し、エマルションを得た。このエマルションは6時間以上安定にエマルション状態を維持した。得られた分散液の粒子径を表5に、性能評価結果を表6に示す。なお、表4に界面活性剤を示す記号と界面活性剤の種類との対応を示した。
実施例21
 実施例20において、界面活性剤を1.0質量%含むA1/B1=70/30の混合物を2gおよび固形分5質量%である澱粉グラフトポリマー(C3)40gの計42gを、回転型ホモミキサー(株式会社日本精機製作所製)にて15000rpmで2分攪拌し、エマルションを得た。このエマルションは6時間以上安定にエマルション状態を維持した。得られた分散液の粒子径を表5に、性能評価結果を表6に示す。なお、表4に界面活性剤を示す記号と界面活性剤の種類との対応を示した。
実施例22
 実施例20において、界面活性剤を1.0質量%含むA1/B1=70/30の混合物を2g、および固形分5質量%である澱粉糊液(C4)40gの計42gを、回転型ホモミキサー(株式会社日本精機製作所製)にて15000rpmで3分攪拌し、エマルションを得た。このエマルションは6時間以上安定にエマルション状態を維持した。得られた分散液の粒子径を表5に、性能評価結果を表6に示す。なお、表4に界面活性剤を示す記号と界面活性剤の種類との対応を示した。
実施例23
 実施例20において、界面活性剤を1.0質量%含むA1/B1=70/30の混合物を2g、および固形分5質量%であるポリビニルアルコール水溶液(C5)40gの計42gを、回転型ホモミキサー(株式会社日本精機製作所製)にて15000rpmで3分攪拌し、エマルションを得た。このエマルションは6時間以上安定にエマルション状態を維持した。得られた分散液の粒子径を表5に、性能評価結果を表6に示す。なお、表4に界面活性剤を示す記号と界面活性剤の種類との対応を示した。
実施例24
 実施例20において、界面活性剤を1.0質量%含むA1/B1=70/30の混合物を2g、および固形分5質量%であるカルボキシメチルセルロース水溶液(C6)40gの合計42gを、回転型ホモミキサー(株式会社日本精機製作所製)にて15000rpmで3分攪拌し、このエマルションは6時間以上安定にエマルション状態を維持した。エマルションを得た。得られた分散液の粒子径を表5に、性能評価結果を表6に示す。なお、表4に界面活性剤を示す記号と界面活性剤の種類との対応を示した。
実施例25
 実施例20において、2-オキセタノン化合物(B1)を、2-オキセタノン化合物(B2)に変え、アクリルアミド系ポリマー(C2)をアクリルアミド系ポリマー(C1)に変え、界面活性剤(D2)を界面活性剤(D1)に変える以外は実施例20と同様にしてエマルションを得た。このエマルションは6時間以上安定にエマルション状態を維持した。得られた分散液の粒子径を表5に、性能評価結果を表6に示す。なお、表4に界面活性剤を示す記号と界面活性剤の種類との対応を示した。
実施例26
 実施例20において、2-オキセタノン化合物(B1)を、2-オキセタノン化合物(B3)に変え、アクリルアミド系ポリマー(C2)をアクリルアミド系ポリマー(C1)に変え、界面活性剤(D2)を界面活性剤(D3)に変える以外は実施例20と同様にしてエマルションを得た。このエマルションは6時間以上安定にエマルション状態を維持した。得られた分散液の粒子径を表5に、性能評価結果を表6に示す。なお、表4に界面活性剤を示す記号と界面活性剤の種類との対応を示した。
実施例27
 実施例20において、2-オキセタノン化合物(B1)を、2-オキセタノン化合物(B3)に変え、アクリルアミド系ポリマー(C2)をアクリルアミド系ポリマー(C1)に変え、界面活性剤(D2)を界面活性剤(D4)に変える以外は実施例20と同様にしてエマルションを得た。このエマルションは6時間以上安定にエマルション状態を維持した。得られた分散液の粒子径を表5に、性能評価結果を表6に示す。なお、表4に界面活性剤を示す記号と界面活性剤の種類との対応を示した。
実施例28
 攪拌機、温度計、及び窒素ガス導入管を付した密閉容器に、アルケニルコハク酸無水物(A1)を70g仕込み、次いで2-オキセタノン化合物(B1)を30g、界面活性剤(D1)を1.1g仕込んで窒素雰囲気下60℃にて1時間攪拌を続けた後25℃に冷却し、界面活性剤を1.0質量%含むA1/B1=70/30の混合物を101.1g得た。別に固形分20%であるアクリルアミド系ポリマー(C1)を195g、界面活性剤(D2)を1g、水を604g仕込んで25℃にて1時間攪拌してアクリルアミド系ポリマー(C1)/界面活性剤(D2)固形分質量比が97.5/2.5である固形分5%の水溶液を得た。次いで、得られた混合物10g、水溶液20gの計30gを、回転型ホモミキサー(株式会社日本精機製作所製)にて10000rpmで2分攪拌し、エマルションを得た。このエマルションは6時間以上安定にエマルション状態を維持した。得られた分散液の粒子径を表5に、性能評価結果を表6に示す。なお、表4に界面活性剤を示す記号と界面活性剤の種類との対応を示した。
実施例29
 攪拌機、温度計、及び窒素ガス導入管を付した密閉容器に、アルケニルコハク酸無水物(A1)を70g仕込み、次いで2-オキセタノン化合物(B1)を30g仕込んで窒素雰囲気下25℃にて1時間攪拌を続け、A1/B1=70/30の混合物を100g得た。別に固形分20質量%であるアクリルアミド系ポリマー(C1)を195g、界面活性剤(D2)を1g、水を604g仕込んで常温にて1時間攪拌してアクリルアミド系ポリマー(C1)/界面活性剤(D2)固形分質量比が97.5/2.5である固形分5%の水溶液を得た。次いで、得られた混合物10g、水溶液20gの計30gを、回転型ホモミキサー(株式会社日本精機製作所製)にて12000rpmで2分攪拌し、エマルションを得た。このエマルションは6時間以上安定にエマルション状態を維持した。得られた分散液の粒子径を表5に、性能評価結果を表6に示す。なお、表4に界面活性剤を示す記号と界面活性剤の種類との対応を示した。
Figure JPOXMLDOC01-appb-T000001
 表1の略号の説明
C18:炭素数が18、
C16:炭素数が16、
C22/C22/C24=70/20/10:炭素数20、22、24の割合が70、20、10、
C12:炭素数が12
であることを示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 表5の略号の説明
注1:A1のエマルションとB1のエマルションを別途作成した後に混合した。
注2:混合したエマルションの粒子径
注3:A1のエマルションとB1のエマルションを別途作成し、別々に添加した。
Figure JPOXMLDOC01-appb-T000006

Claims (6)

  1. 25℃で液状であるアルケニルコハク酸無水物60~95質量%と25℃で液状である2-オキセタノン化合物5~40質量%とを含有する混合物を乳化して得られる乳化物であることを特徴とするサイズ剤組成物。
  2. 2-オキセタノン化合物が、炭素数8~10の脂肪酸が8~20質量%、及び炭素数12~18である脂肪酸が92~80質量%である脂肪酸混合物を原料にして得られることを特徴とする請求項1のサイズ剤組成物
  3. 2-オキセタノン化合物が不飽和脂肪酸が2質量%以下である脂肪酸混合物を原料にして得られることを特徴とする請求項1又は2のサイズ剤組成物
  4. アルケニルコハク酸無水物が、内部異性化オレフィンを含む炭素数16以上24以下のオレフィンと無水マレイン酸との付加反応生成物であることを特徴とする請求項1~3の何れか1項に記載のサイズ剤組成物。
  5. 25℃で液状であるアルケニルコハク酸無水物と25℃で液状である2-オキセタノン化合物と、前記アルケニルコハク酸無水物と前記2-オキセタノン化合物との合計100質量部に対して0.1~5質量部の界面活性剤とを含有する混合物の乳化物であることを特徴とする請求項1~4の何れか1項に記載のアルケニルコハク酸無水物系サイズ剤組成物。
  6. 前記乳化物における分散質の平均粒子径が0.5μm以上1.5μm以下であることを特徴とする請求項1~5の何れか1項に記載のアルケニルコハク酸無水物系サイズ剤組成物。
PCT/JP2010/002392 2009-08-27 2010-03-31 サイズ剤組成物 WO2010084786A2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2010800357911A CN102472019A (zh) 2009-08-27 2010-03-31 施胶剂组成物
JP2010547454A JPWO2010084786A1 (ja) 2009-08-27 2010-03-31 サイズ剤組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-197349 2009-08-27
JP2009197349 2009-08-27

Publications (2)

Publication Number Publication Date
WO2010084786A2 true WO2010084786A2 (ja) 2010-07-29
WO2010084786A3 WO2010084786A3 (ja) 2011-02-24

Family

ID=42356282

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/002392 WO2010084786A2 (ja) 2009-08-27 2010-03-31 サイズ剤組成物

Country Status (3)

Country Link
JP (1) JPWO2010084786A1 (ja)
CN (1) CN102472019A (ja)
WO (1) WO2010084786A2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016105139A (ja) * 2014-12-01 2016-06-09 花王株式会社 静電荷像現像用トナー

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102240361B1 (ko) * 2013-06-13 2021-04-13 에코랍 유에스에이 인코퍼레이티드 물-비함유 표면 사이징 조성물

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000506941A (ja) * 1996-03-21 2000-06-06 ベッツディアボーン・インコーポレイテッド 紙サイズ剤および紙のサイジング方法
JP2000507651A (ja) * 1996-03-29 2000-06-20 ストゥーラー コーパーバリィス バリィスラーグス アクチエボラーグ(ペーユーベーエル) サイズ剤組成物、その製造方法及び用途
JP2002517638A (ja) * 1998-06-12 2002-06-18 ハーキュリーズ・インコーポレーテッド サイズ処理された紙及び高速加工機またはリプログラフィー操作におけるその使用。
JP2006307363A (ja) * 2005-04-27 2006-11-09 Tokushu Paper Mfg Co Ltd 耐油性シート状物
JP2007092251A (ja) * 2005-09-29 2007-04-12 Seiko Pmc Corp 汚れを防止する方法及び薬品

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5725731A (en) * 1995-05-08 1998-03-10 Hercules Incorporated 2-oxetanone sizing agents comprising saturated and unsaturated tails, paper made with the 2-oxetanone sizing agents, and use of the paper in high speed converting and reprographic operations
US7317053B1 (en) * 2000-07-10 2008-01-08 Hercules Incorporated Compositions for imparting desired properties to materials
CN1241918C (zh) * 2003-10-23 2006-02-15 魏素芬 高纯度烯基琥珀酸酐制备工艺

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000506941A (ja) * 1996-03-21 2000-06-06 ベッツディアボーン・インコーポレイテッド 紙サイズ剤および紙のサイジング方法
JP2000507651A (ja) * 1996-03-29 2000-06-20 ストゥーラー コーパーバリィス バリィスラーグス アクチエボラーグ(ペーユーベーエル) サイズ剤組成物、その製造方法及び用途
JP2002517638A (ja) * 1998-06-12 2002-06-18 ハーキュリーズ・インコーポレーテッド サイズ処理された紙及び高速加工機またはリプログラフィー操作におけるその使用。
JP2006307363A (ja) * 2005-04-27 2006-11-09 Tokushu Paper Mfg Co Ltd 耐油性シート状物
JP2007092251A (ja) * 2005-09-29 2007-04-12 Seiko Pmc Corp 汚れを防止する方法及び薬品

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016105139A (ja) * 2014-12-01 2016-06-09 花王株式会社 静電荷像現像用トナー

Also Published As

Publication number Publication date
CN102472019A (zh) 2012-05-23
JPWO2010084786A1 (ja) 2012-07-19
WO2010084786A3 (ja) 2011-02-24

Similar Documents

Publication Publication Date Title
JP2006510821A (ja) 無水アルケニルこはく酸組成物及びその使用法
JP2008531864A (ja) ウェットエンド塗布のための低せん断セルロース反応性サイズ剤
JP5704448B2 (ja) 板紙の製造方法
JP3744566B2 (ja) 製紙用ロジン系エマルションサイズ剤及び紙サイジング方法
JP3805367B2 (ja) 紙サイズ剤混合物
WO2010084786A2 (ja) サイズ剤組成物
US6414055B1 (en) Method for preparing aqueous size composition
JP5397838B2 (ja) 分散剤
EP0548835B1 (en) Emulsified alkenylsuccinic acid sizing agent
JP6070071B2 (ja) 紙の製造方法
JPH06128896A (ja) アルケニルコハク酸系エマルションサイズ剤
JP7456556B2 (ja) 製紙用サイズ剤の製造方法
JP2007186822A (ja) 板紙の製造方法及び板紙
TW571013B (en) Surface-sizing agent
JP5408560B2 (ja) サイズ剤組成物、抄紙方法、及び板紙の製造方法
JP2011214190A (ja) 板紙の製造方法
JP4526365B2 (ja) 紙の表面サイジング方法およびその紙の製造方法
JP2003155690A (ja) ロジン系エマルション組成物、紙のサイジング方法及び紙
JP4048477B2 (ja) 表面サイズ剤、その製造方法及び新聞用紙
JP2761891B2 (ja) 製紙用サイズ剤組成物及びサイジング方法
JP5376231B2 (ja) サイズ剤組成物
JP2007332512A (ja) 填料改質剤、填料スラリー及び製紙方法
JPS62119255A (ja) 置換コハク酸無水物の水性分散液
JP5958135B2 (ja) アルキルケテンダイマー系製紙用サイズ剤用のサイズ性発現促進助剤、製紙用サイズ剤、これらを用いて得られる紙および紙の製造方法
JP4158190B2 (ja) 製紙用サイズ剤

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080035791.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10733393

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2010547454

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10733393

Country of ref document: EP

Kind code of ref document: A2