WO2010082447A1 - Slurry regenerating device and method - Google Patents

Slurry regenerating device and method Download PDF

Info

Publication number
WO2010082447A1
WO2010082447A1 PCT/JP2009/071792 JP2009071792W WO2010082447A1 WO 2010082447 A1 WO2010082447 A1 WO 2010082447A1 JP 2009071792 W JP2009071792 W JP 2009071792W WO 2010082447 A1 WO2010082447 A1 WO 2010082447A1
Authority
WO
WIPO (PCT)
Prior art keywords
slurry
centrifuge
dispersion medium
tank
separation
Prior art date
Application number
PCT/JP2009/071792
Other languages
French (fr)
Japanese (ja)
Inventor
百中幸久
池永邦信
緒方秀敏
Original Assignee
株式会社 安永
株式会社Ihi回転機械
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 安永, 株式会社Ihi回転機械 filed Critical 株式会社 安永
Priority to CN200980154520.5A priority Critical patent/CN102281991B/en
Publication of WO2010082447A1 publication Critical patent/WO2010082447A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B57/00Devices for feeding, applying, grading or recovering grinding, polishing or lapping agents
    • B24B57/02Devices for feeding, applying, grading or recovering grinding, polishing or lapping agents for feeding of fluid, sprayed, pulverised, or liquefied grinding, polishing or lapping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B27/00Other grinding machines or devices
    • B24B27/06Grinders for cutting-off
    • B24B27/0633Grinders for cutting-off using a cutting wire
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • B28D5/0058Accessories specially adapted for use with machines for fine working of gems, jewels, crystals, e.g. of semiconductor material
    • B28D5/007Use, recovery or regeneration of abrasive mediums
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/10Greenhouse gas [GHG] capture, material saving, heat recovery or other energy efficient measures, e.g. motor control, characterised by manufacturing processes, e.g. for rolling metal or metal working

Definitions

  • the present invention relates to a slurry regenerating apparatus and method, and more particularly to a waste slurry regenerating apparatus and method after cutting in a wire saw apparatus.
  • waste slurry discharged from a processing apparatus using slurry has been recycled for cost reduction.
  • the waste slurry in such a wire saw device is formed of a dispersion medium, abrasive grains and cutting waste mixed therein.
  • two centrifuges were used to separate the abrasive grains and the cutting waste from the dispersion medium. Specifically, waste slurry is charged into the first centrifuge, and abrasive grains having a specific gravity greater than that of cutting waste are first separated with a low centrifugal force of less than 1500G.
  • a mixed liquid composed of the dispersion medium and the cutting waste is put into a second centrifuge, and the cutting waste is separated with a high centrifugal force of 1500 G or more. Thereafter, the dispersion medium and abrasive grains were mixed to regenerate the slurry.
  • the use of two centrifuges requires a large installation space, and it is difficult to secure the space.
  • waste slurry or mixed solution it is preferable to supply the waste slurry or mixed solution to be introduced into the centrifuge at a constant flow rate. For this reason, waste slurry or a mixed liquid has been thrown into the centrifuge through the orifice pot (see, for example, Patent Document 1).
  • the orifice pot adjusts the flow rate by replacing the orifice plate.
  • it is necessary to select an optimum orifice plate depending on the properties of the slurry temperature, viscosity, specific gravity, abrasive grain type, coolant type, etc.
  • the present invention takes the above-mentioned conventional technology into consideration, and does not require a large installation space, so that the primary separator and the secondary separator can be reliably separated from the waste slurry with only one centrifuge, and the separation is performed. It is an object of the present invention to provide a slurry regenerating apparatus and method capable of mixing a dispersed medium and a primary separated product to generate a slurry again.
  • a waste slurry containing at least one of a primary separator and a secondary separator having different specific gravity to be separated from the dispersion medium is introduced into the dispersion medium, A centrifuge capable of separating the primary separated product or the secondary separated product from a waste slurry, and the centrifugal separator provided in the centrifugal separator, and discharging the primary separated product or the secondary separated product from the centrifugal separator.
  • a fourth recovery tank for recovering the liquid a preparation tank for mixing the primary separated product and the dispersion medium to generate a regenerated slurry, and the first path and the discharge port.
  • a slurry regenerating apparatus comprising switching means for connecting any one of the second paths.
  • variable control quantitative supply means for adjusting the flow rate of the waste slurry or the mixed liquid
  • mass flow meter provided between the variable control quantitative supply means and the centrifuge, and measurement of the mass flow meter
  • a PID control unit is further provided for controlling the operation of the variable control type quantitative supply means so as to make the flow rate of the waste slurry or the mixed liquid constant based on the result.
  • the storage tank, the fourth recovery tank, and the centrifuge are connected via a three-way valve, and the variable control type quantitative supply means and The mass flow meter is arranged between the three-way valve and the centrifuge.
  • the waste slurry is a slurry used in a wire saw device that presses a workpiece against a wire and cuts the wire
  • the primary separated is the Abrasive grains mixed in the slurry, wherein the secondary separation is a cutting waste of the workpiece.
  • the invention of claim 5 is a slurry regeneration method using the slurry regeneration device according to any one of claims 1 to 4, wherein the waste slurry is introduced into the centrifuge, and the centrifuge is Driving with a predetermined centrifugal force (low G), the primary separated product is centrifuged from the waste slurry, the centrifuged primary separated product is collected in the first collection tank, and the mixed solution is collected in the first collection tank. 4 is collected in the collection tank, the mixed solution is charged into the centrifuge from the fourth collection tank, and the centrifuge is driven with a centrifugal force (high G) higher than the predetermined centrifugal force.
  • the centrifuge is Driving with a predetermined centrifugal force (low G)
  • the primary separated product is centrifuged from the waste slurry
  • the centrifuged primary separated product is collected in the first collection tank
  • the mixed solution is collected in the first collection tank. 4 is collected in the collection tank
  • the mixed solution is charged into the centrifuge from the fourth
  • the secondary separation is centrifuged from the mixed solution, the centrifuged secondary separation is collected in the second collection tank, the dispersion medium is collected in the third collection tank, and the mixture tank is collected.
  • the primary separation recovered in the first recovery tank and the recovery in the third recovery tank Wherein a dispersion medium which is a new primary isolates and a new dispersion medium were placed, to provide a slurry reproducing method characterized by generating a regenerated slurry.
  • the actual flow rate value of the waste slurry or the mixed liquid is measured by the mass flow meter, and the actual flow rate value and the set flow rate value are compared by the PID control unit.
  • the variable control type quantitative supply means is PID-controlled so that the actual flow rate value becomes the set flow rate value.
  • the supply of the waste slurry or the mixed solution to be introduced into the centrifuge can be made pulsation-free and quantitative by PID control of the variable control type quantitative supply means and the mass flow meter. For this reason, it is not necessary to adjust the flow rate by human hands, the flow rate can be automatically stabilized, and workability is improved. In addition, in order to perform stable recovery with a centrifuge, it is important to supply the solution in a pulsating and quantitative manner.
  • the storage tank for storing the waste slurry, the fourth recovery tank for recovering the mixed liquid, and the centrifuge are connected via the three-way valve. And a pipe through which the mixed solution is introduced into the centrifuge. Therefore, since the pump and the flow rate control can be used in common, the number of parts can be reduced and the cost is also efficient.
  • the reusable abrasive grain contained in the waste slurry used with the wire saw apparatus is collect
  • a primary separator is isolate
  • the variable control type quantitative supply means is PID controlled so that the actual flow rate value of the waste slurry or the mixed solution is fed back and approaches the set flow rate value.
  • the centrifuge can be charged at a flow rate.
  • a stable centrifugal effect can be obtained by supplying the solution without pulsation and quantification.
  • FIG. 1 is a schematic view of a slurry regenerator according to the present invention.
  • the slurry regenerating apparatus 1 includes a centrifuge 2, a first recovery tank 3 for recovering abrasive grains (primary separation), and cutting waste (secondary separation).
  • Second recovery tank 4 for recovery
  • third recovery tank 5 for recovering the dispersion medium
  • fourth recovery tank 6 for recovering the mixed liquid
  • a tank 7, a branch chute 8, and switching means 9 are provided.
  • the centrifuge 2 includes two motors (first motor 10 and second motor 11), respectively, and can generate centrifugal force different from low G or high G.
  • the waste slurry that is the separation target consists of abrasive grains, cutting waste (sludge), and a dispersion medium (oil).
  • Cutting chips are generated when a brittle material (not shown) is cut by a wire saw device (not shown) in a manufacturing process of a wafer ring made of a brittle material (for example, silicon).
  • the waste slurry used in the wire saw device is stored in the storage tank 16.
  • abrasive grains have a higher specific gravity than cutting waste. Accordingly, when the waste slurry is centrifuged with a small centrifugal force, abrasive grains having a large specific gravity are mainly separated. Thereafter, when the centrifugal separation is performed with a large centrifugal force, the cutting waste is mainly separated. Thereby, the abrasive grains and cutting waste having different specific gravities can be separated into two stages and separated by one centrifuge 2.
  • a discharge port 12 is provided on the lower side of the centrifuge 2.
  • the discharge port 12 drops and discharges the centrifuged abrasive grains or cutting waste.
  • the outlet side of the branch chute 8 is connected to the discharge port 12.
  • the exit side of the branch chute 8 is branched in the middle into a first path 8a through which abrasive grains (primary separation) are transferred and a second path 8b through which cutting waste (secondary separation) is transferred. .
  • the opening position of the inlet side of the branch chute 8 with respect to the discharge port 12 is changed. By changing this position, the abrasive grains can be passed through the first path 8a and the cutting waste can be passed through the second path 8b.
  • the first collection tank 3 for collecting abrasive grains is connected to the first path 8a.
  • the second recovery tank 4 for recovering cutting waste is connected to the second path 8b. Therefore, the abrasive grains or cutting waste discharged from the discharge port 12 are collected in the first collection tank 3 or the second collection tank 4 through the first path 8a or the second path 8b, respectively.
  • the third recovery tank 5 for recovering the dispersion medium and the fourth recovery tank 6 for recovering the mixed liquid are connected to the drainage port 13 of the centrifuge 2 via the three-way valve 14.
  • the three-way valve 14 is an automatic switching valve (the following three-way valves 19, 22, 23, 26, 29, 30, 32, and 37 are all the same).
  • the drainage port 13 is provided on the lower side of the centrifuge 2. When centrifuging the abrasive grains in the primary separation, the mixed liquid composed of the cutting waste and the dispersion medium is collected from the drainage port 13 through the three-way valve 14 into the fourth collection tank 6. The mixed liquid is put into the centrifuge 2 again for secondary separation, and the cutting waste is centrifuged.
  • the dispersion medium is recovered from the drain port 13 through the three-way valve 14 to the third recovery tank 5.
  • the pump 36 is driven, and the oil in the third recovery tank 5 is supplied to the three-way valve 19, the branch pipe 21, the three-way valve 22, the pump 36, the three-way valve 37, The branch pipe 38 and the valve 41 are passed in this order to return to the fourth recovery tank 6 and secondary separation is performed again.
  • the pump 51 is operated to transfer the mixed solution to the mixed solution disposal tank 52.
  • the blending tank 7 for blending the regenerated slurry is connected to the first collection tank 3 and the third collection tank 5.
  • a new dispersion medium is accommodated in the first recovery tank 3 in advance.
  • the abrasive grains recovered in the first recovery tank 3 are sent to the preparation tank 7 together with a new dispersion medium via the pump 15.
  • the new abrasive grains S are sent to the mixing tank 7 not only from such regenerated abrasive grains but also from a new abrasive grain storage tank (not shown).
  • the dispersion medium When the dispersion medium is sent from the third collection tank 5 to the preparation tank 7, it passes through the following flow path.
  • the pump 20 When the pump 20 is driven, the three-way valve 19, the branch pipe 21, the three-way valve 22, the three-way valve 23, the pump 20, the damper 24, the mass flow meter 25, and the three-way valve 26 are passed in this order from the third recovery tank 5. It is sent to the mixing tank 7.
  • the branch pipe 21 is provided with a fluid sensor 27. The fluid sensor 27 detects that the dispersion medium is flowing.
  • a new dispersion medium is accommodated in the new dispersion medium tanks 28a and 28b.
  • the pump 20 is driven and sent to the three-way valve 19 through the three-way valve 30. Thereafter, the flow path from the third recovery tank 5 to the preparation tank 7 is the same.
  • recycled abrasive grains and recycled dispersion medium and in some cases, new abrasive grains and new dispersion medium are sent to the mixing tank 7 and stirred in the mixing tank 7 to obtain a cutting slurry used in the wire saw device. Played. Stirring is performed using a stirring member 17 that rotates as the motor 18 is driven.
  • the volume of the regenerated slurry at this time is monitored by the ultrasonic sensor 31.
  • the sensor 31 detects the liquid level of the regenerated slurry. Since the size of the mixing tank 7 is known in advance, the volume of the regenerated slurry can be calculated by detecting the liquid level.
  • the first recovery tank 3, the third recovery tank 5, the fourth recovery tank 6, and the storage tank 16 are also provided with the same stirring member 17, motor 18, and ultrasonic sensor 31.
  • the second collection tank 4 is provided with an ultrasonic sensor 31.
  • the storage tank 16 is connected to the centrifuge 2 via a three-way valve 32, a variable control type quantitative supply means 33, and a mass flow meter 34.
  • the supply means 33 is, for example, an air-driven or electrically-driven pump equipped with a function for preventing pulsation.
  • the supply means 33 and the mass flow meter 34 are connected by wire using a PID controller 35 and a PLC or the like.
  • the waste slurry is sent in a pulsating manner and in a fixed amount using the supply means 33.
  • This actual flow value is measured by the mass flow meter 34.
  • This actual flow rate value is compared with the set flow rate value by the PID control unit 35.
  • the supply means 33 is controlled so that the actual flow rate value becomes the set flow rate value. For this reason, the supply means 33 is PID controlled so that the actual flow rate value of the waste slurry is fed back and approaches the set flow rate value, so that the waste slurry can be reliably fed into the centrifuge 2 at a constant flow rate. . For this reason, it is not necessary to adjust the flow rate by human hands, the flow rate can be automatically stabilized, and workability is improved.
  • the three-way valve 32 is also connected to a fourth recovery tank 6 for recovering the mixed liquid, and the mixed liquid is also sent to the centrifuge 2 with the same flow rate control. Therefore, the flow rate control of the waste slurry and the mixed liquid can be performed by the same PID control unit 35, so that the number of parts can be reduced and the cost is also efficient.
  • this PID control is an automatic control method using a touch panel and PLC, so that operability can be improved.
  • You may enable it to select separation modes, such as collection
  • a mode or a so-called one-stage separation oil recovery mode in which only oil is recovered may be selected.
  • the new dispersion medium is also used for cleaning the equipment.
  • the pump 36 When used for cleaning, the pump 36 is driven, a new dispersion medium is sent from the three-way valve 22 to the three-way valve 37, and the fourth recovery tank 6 is cleaned through the branch pipe 38 through the valve 41.
  • Such supply of the new dispersion medium is also used when it is desired to increase the amount of the dispersion medium in the mixed liquid.
  • the valve 42 is passed through the branch pipe 39, the inside of the centrifuge 2 can be washed.
  • the valve 43 when the valve 43 is passed through the branch pipe 40, the discharge port 12 can be cleaned and the branch chute 8 can also be cleaned. In particular, the discharge port 12 and the branch chute 8 are regularly cleaned during the separation because the abrasive grains are stuck.
  • the cutting waste has a very high viscosity and remains in the centrifuge 2 or the branch chute 8 (second path 8b), cleaning with a dispersion medium is indispensable.
  • the storage tank 16 can be washed. This can also be used when it is desired to increase the amount of the dispersion medium in the waste slurry.
  • the new dispersion medium for cleaning becomes unnecessary, the new dispersion medium is circulated from the three-way valve 37 to the three-way valve 29 and returned to the new dispersion medium tank 28a or 28b.
  • FIG. 2 is a schematic plan view of a centrifuge used in the slurry regenerator according to the present invention
  • FIG. 3 is a schematic side view.
  • the centrifuge 2 includes the first motor 10 and the second motor 11.
  • 45 is an inlet through which the waste slurry flows into the centrifuge 2.
  • a discharge port 12 and a drain port 13 are provided below the centrifuge 2.
  • 46a and 46b are inflow ports for allowing the new dispersion medium or the regenerated dispersion medium to flow in and washing the inside of the centrifuge 2.
  • Reference numeral 47 denotes an inlet for washing the outlet 12 by introducing a new dispersion medium or a regenerated dispersion medium.
  • FIG. 4 is a schematic diagram showing the relationship between the branch chute and the switching means used in the slurry regenerating apparatus according to the present invention.
  • the branch chute 8 is surrounded by a frame body 49 having four rollers 48.
  • the switching means 9 is connected to the frame 49.
  • the switching means 9 is a cylinder and is movable in the axial direction (arrow R direction). With the movement of the switching means 9, the roller 48 moves on the rail 50, and the branch chute 8 is also pushed by the frame 49 and moves in the direction of arrow R.
  • the inlet side of the branch chute 8 is connected to the first path 8a or second. To the path 8b.
  • FIG. 5 is a schematic view of a branch chute.
  • the branch chute 8 is divided into a first path 8a and a second path 8b on the exit side. Since the cutting waste is in a lump shape, the second path 8b is formed in the vertical direction from the discharge port 12 so that it can be dropped and collected. On the other hand, since the abrasive grains are collected with some dispersion medium mixed, they flow even if there is a slight angle, so the first path 8a is formed obliquely. The angle ⁇ is about 0 ° to 45 °.
  • the inner surfaces of the first path 8a and the second path 8b are mirror-finished so that abrasive grains and cutting waste do not adhere to the inside.
  • FIG. 6 is a flowchart of the slurry regeneration method according to the present invention.
  • Step S1 The waste slurry after use is stored in a storage tank by a wire saw device.
  • Step S2 The waste slurry is put into a centrifuge and primary separation is performed. In this primary separation, only the abrasive grains (primary separation) in the waste slurry are separated. This primary separation is centrifuged at a low G of less than 1500G. The centrifuge is charged without pulsation and quantitatively by the variable control type quantitative supply means 33 (see FIG. 1). The flow rate is managed by a mass flow meter, and the actual flow rate value is fed back and controlled by the PID control unit 35 (see FIG. 1) so as to approach the set flow rate value.
  • the inside of the centrifuge and the branch chute (first path) are washed with a new dispersion medium at an appropriate time.
  • the separated abrasive grains are recovered in the first recovery tank 3 (see FIG. 1).
  • the mixed liquid after the abrasive grain separation is recovered in the fourth recovery tank 6 (see FIG. 1).
  • the storage tank becomes empty the inside of the storage tank is washed with a dispersion medium, and the dispersion medium is primarily separated again. Thereby, the abrasive grains and cutting waste remaining in the storage tank can be removed and recovered.
  • Step S3 The mixed liquid recovered in step S2 is again put into the centrifuge used in step S2, and secondary separation is performed.
  • the mixed liquid is separated into cutting waste (secondary separated product) and a dispersion medium.
  • This secondary separation is centrifuged at a high G of 1500 G or higher.
  • the input control of the mixed liquid to the centrifugal separator is the same as the flow control of the waste slurry shown in step S2.
  • the inside of the centrifuge and the branch chute (second path) are washed with a new dispersion medium at an appropriate time.
  • the separated cutting waste is recovered in the second recovery tank 4 (see FIG. 1).
  • the dispersion medium is recovered in the third recovery tank 5 (see FIG. 1).
  • the fourth recovery tank When the fourth recovery tank becomes empty, the inside of the storage tank is washed with the dispersion medium, and the dispersion medium is secondarily separated again. Thereby, the cutting waste remaining in the fourth recovery tank can be removed and recovered. Thereafter, the specific gravity in the third recovery tank is measured to confirm the recovery of the dispersion medium in the secondary separation.
  • Step S4 Abrasive grains recovered by primary separation, a dispersion medium recovered by secondary separation, and new abrasive grains and a new dispersion medium (new oil) are added as necessary to prepare a regenerated slurry. For example, (i) new abrasive grains and new oil are automatically added, or (ii) new abrasive grains are manually supplied and new oil is automatically supplied. (Iii) There is a method in which only new oil is automatically charged, or (iv) a new slurry and new oil which are formed in advance with new abrasive grains and new oil are automatically charged.
  • recycle abrasive grains from the first recovery tank are transferred to the mixing tank. This transfer is performed so that all abrasive grains are transferred while washing the first recovery tank with the dispersion medium.
  • the specific gravity in the preparation tank is measured and the abrasive recovery rate in the primary separation is determined. This determination may be performed after the end of step S2.
  • the regenerated slurry has a target volume and specific gravity. The amount of recovered abrasive grains that is insufficient for the set value is replenished with new abrasive grains.
  • a dispersion medium is also supplied. When it reaches the target specific gravity, it is used again as a regenerated slurry in a wire saw device.
  • primary separation and secondary separation can be performed by generating different centrifugal forces of low G and high G using the first motor and the second motor. For this reason, abrasive grains (primary separation) and cutting waste (secondary separation) having different specific gravities can be reliably separated and recovered with only one centrifuge. Therefore, when separating, it is only necessary to secure a space in which one centrifuge can be installed, and space efficiency is high.
  • Steps S1 to S4 described above are steps for performing a so-called two-stage separation mode in which the primary separation and the secondary separation are separated.
  • steps S1, S2, and S4 are performed in this order except for step S3.
  • steps S1, S2, and S4 are performed in this order except for step S3.
  • steps S1, S2, and S4 are performed in this order except for step S3.

Abstract

A slurry regenerating device provided with a centrifugal separator (2) for allowing waste slurry to be inserted therein, a discharge opening (12) for discharging a primarily separated substance and a secondarily separated substance from the centrifugal separator (2), a first collecting vessel (3) communicating with the discharge opening (12) through a route (8a) for the primarily separated substance, a second collecting vessel (4) communicating with the discharge opening (12) through a route (8b) for the secondarily separated substance, a liquid discharge opening (13) for discharging dispersed soot or a mixed liquid of the dispersed soot and the secondarily separated substance, a third collecting vessel (5) and a fourth collecting vessel (6) which communicate with the liquid discharge opening (13), a blending vessel (7) for generating regenerated slurry, and a switching means (9) for connecting either the route (8a) for the primarily separated substance or the route (8b) for the secondarily separated substance to the discharge opening (12).

Description

スラリー再生装置及び方法Slurry regeneration apparatus and method
 本発明は、スラリーの再生装置及び方法に関し、特に、ワイヤソー装置における切断加工後の廃スラリーの再生装置及び方法に関するものである。 The present invention relates to a slurry regenerating apparatus and method, and more particularly to a waste slurry regenerating apparatus and method after cutting in a wire saw apparatus.
 従来、コスト削減のため、スラリーを用いた加工装置(例えばワイヤソー装置等)から排出される廃スラリーは、再生利用されていた。このようなワイヤソー装置における廃スラリーは、分散媒と、これに混入する砥粒及び切削屑で形成されている。これらの分離は、2台の遠心分離機を用いて、砥粒及び切削屑をそれぞれ分散媒から分離していた。具体的には、1台目の遠心分離機に廃スラリーを投入し、1500G未満の低い遠心力で切削屑よりも比重が大きい砥粒をまず分離する。この後、分散媒と切削屑とからなる混合液を2台目の遠心分離機に投入し、1500G以上の高い遠心力で切削屑を分離する。この後、分散媒と砥粒を混合し、スラリーを再生していた。しかしながら、遠心分離機を2台用いることは、多大な設置スペースを必要とするので、そのスペースの確保が困難であった。 Conventionally, waste slurry discharged from a processing apparatus using slurry (for example, a wire saw apparatus) has been recycled for cost reduction. The waste slurry in such a wire saw device is formed of a dispersion medium, abrasive grains and cutting waste mixed therein. In these separations, two centrifuges were used to separate the abrasive grains and the cutting waste from the dispersion medium. Specifically, waste slurry is charged into the first centrifuge, and abrasive grains having a specific gravity greater than that of cutting waste are first separated with a low centrifugal force of less than 1500G. Thereafter, a mixed liquid composed of the dispersion medium and the cutting waste is put into a second centrifuge, and the cutting waste is separated with a high centrifugal force of 1500 G or more. Thereafter, the dispersion medium and abrasive grains were mixed to regenerate the slurry. However, the use of two centrifuges requires a large installation space, and it is difficult to secure the space.
 一方、遠心分離機に投入する廃スラリー又は混合液は、一定の流量で供給することが好ましい。このため、オリフィスポットを介して遠心分離機に廃スラリー又は混合液を投入していた(例えば特許文献1参照)。オリフィスポットは、オリフィスプレートを交換することによって流量を調整する。しかしながら、スラリーの性質(温度、粘度、比重、砥粒種別、クーラント種別等)によって、最適なオリフィスプレートを選択する必要がある。この選択は、作業者の経験によるものが大きく、確実性に欠けているものであった。 On the other hand, it is preferable to supply the waste slurry or mixed solution to be introduced into the centrifuge at a constant flow rate. For this reason, waste slurry or a mixed liquid has been thrown into the centrifuge through the orifice pot (see, for example, Patent Document 1). The orifice pot adjusts the flow rate by replacing the orifice plate. However, it is necessary to select an optimum orifice plate depending on the properties of the slurry (temperature, viscosity, specific gravity, abrasive grain type, coolant type, etc.). This choice was largely due to the experience of the operator and lacked certainty.
特開2005-169299号公報JP 2005-169299 A
 本発明は、上記従来技術を考慮したものであって、多大な設置スペースを必要とせず、1台の遠心分離機のみで廃スラリーから一次分離物及び二次分離物を確実に分離でき、分離された分散媒と一次分離物を混合して再びスラリーを生成することができるスラリーの再生処理装置及び方法を提供することを目的とする。 The present invention takes the above-mentioned conventional technology into consideration, and does not require a large installation space, so that the primary separator and the secondary separator can be reliably separated from the waste slurry with only one centrifuge, and the separation is performed. It is an object of the present invention to provide a slurry regenerating apparatus and method capable of mixing a dispersed medium and a primary separated product to generate a slurry again.
 前記目的を達成するため、請求項1の発明では、分散媒中に前記分散媒から分離されるべき互いに比重の異なる一次分離物及び二次分離物の少なくとも一方を含む廃スラリーが投入され、前記廃スラリーから前記一次分離物又は前記二次分離物を分離可能な遠心分離機と、前記遠心分離機に設けられ、前記遠心分離機から分離後の前記一次分離物又は前記二次分離物を排出する排出口と、該排出口に前記一次分離物を移送するための第1の経路を介して連通可能な前記一次分離物を回収するための第1の回収槽と、前記排出口に前記二次分離物を移送するための第2の経路を介して連通可能な前記二次分離物を回収するための第2の回収槽と、前記遠心分離機に設けられ、前記遠心分離機から前記廃スラリーを分離した後の前記分散媒又は該分散媒と前記二次分離物の混合液を排液する排液口と、該排液口に対して選択的に連通可能な前記分散媒を回収するための第3の回収槽及び前記混合液を回収するための第4の回収槽と、前記一次分離物と前記分散媒とを混合して再生スラリーを生成するための調合槽と、前記排出口に対して、前記第1の経路と前記第2の経路のいずれかを接続させる切替手段とを備えたことを特徴とするスラリー再生装置を提供する。 In order to achieve the above object, in the invention of claim 1, a waste slurry containing at least one of a primary separator and a secondary separator having different specific gravity to be separated from the dispersion medium is introduced into the dispersion medium, A centrifuge capable of separating the primary separated product or the secondary separated product from a waste slurry, and the centrifugal separator provided in the centrifugal separator, and discharging the primary separated product or the secondary separated product from the centrifugal separator. A first recovery tank for recovering the primary separation that can be communicated via a first path for transferring the primary separation to the discharge port; and A second recovery tank for recovering the secondary separator that can be communicated via a second path for transferring the secondary separator; and provided in the centrifuge, from the centrifuge to the waste The dispersion medium after separating the slurry or A drain port for draining the mixed liquid of the dispersion medium and the secondary separated product, a third recovery tank for recovering the dispersion medium that can be selectively communicated with the drain port, and the mixed liquid A fourth recovery tank for recovering the liquid, a preparation tank for mixing the primary separated product and the dispersion medium to generate a regenerated slurry, and the first path and the discharge port. There is provided a slurry regenerating apparatus comprising switching means for connecting any one of the second paths.
 請求項2の発明では、請求項1の発明において、前記廃スラリーを収容するための収容槽と前記遠心分離機の間、及び前記第4の回収槽と前記遠心分離機の間にそれぞれ設けられ、前記廃スラリー又は前記混合液の流量を調整する可変制御式定量供給手段と、該可変制御式定量供給手段と前記遠心分離機の間に設けられた質量流量計と、前記質量流量計の計測結果に基づき、前記廃スラリー又は前記混合液の流量を一定にすべく前記可変制御式定量供給手段の作動を制御するPID制御部とを更に備えることを特徴としている。 In the invention of claim 2, in the invention of claim 1, it is provided between the storage tank for storing the waste slurry and the centrifuge, and between the fourth recovery tank and the centrifuge, respectively. , Variable control quantitative supply means for adjusting the flow rate of the waste slurry or the mixed liquid, a mass flow meter provided between the variable control quantitative supply means and the centrifuge, and measurement of the mass flow meter A PID control unit is further provided for controlling the operation of the variable control type quantitative supply means so as to make the flow rate of the waste slurry or the mixed liquid constant based on the result.
 請求項3の発明では、請求項1又は2の発明において、前記収容槽と前記第4の回収槽、及び前記遠心分離機は、三方弁を介して接続され、前記可変制御式定量供給手段及び前記質量流量計は、前記三方弁と前記遠心分離機の間に配置されていることを特徴としている。
 請求項4の発明では、請求項1~3のいずれかの発明において、前記廃スラリーは、ワイヤに被加工物を押し付けて切断加工するワイヤソー装置で用いたスラリーであり、前記一次分離物は前記スラリーに混入する砥粒であり、前記二次分離物は前記被加工物の切削屑であることを特徴としている。
In the invention of claim 3, in the invention of claim 1 or 2, the storage tank, the fourth recovery tank, and the centrifuge are connected via a three-way valve, and the variable control type quantitative supply means and The mass flow meter is arranged between the three-way valve and the centrifuge.
According to a fourth aspect of the present invention, in the invention according to any one of the first to third aspects, the waste slurry is a slurry used in a wire saw device that presses a workpiece against a wire and cuts the wire, and the primary separated is the Abrasive grains mixed in the slurry, wherein the secondary separation is a cutting waste of the workpiece.
 さらに、請求項5の発明では、請求項1~4のいずれかに記載のスラリー再生装置を用いたスラリー再生方法であって、前記遠心分離機に前記廃スラリーを投入し、前記遠心分離機を所定の遠心力(低G)で駆動して、前記一次分離物を前記廃スラリーから遠心分離し、該遠心分離した一次分離物を前記第1の回収槽に回収し、前記混合液を前記第4の回収槽に回収し、該第4の回収槽から前記混合液を前記遠心分離機に投入し、前記遠心分離機を前記所定の遠心力より高い遠心力(高G)で駆動して前記二次分離物を前記混合液から遠心分離し、該遠心分離した二次分離物を前記第2の回収槽に回収し、前記分散媒を前記第3の回収槽に回収し、前記調合槽に、前記第1の回収槽に回収された前記一次分離物と、前記第3の回収槽に回収された前記分散媒と、新しい一次分離物及び新しい分散媒とを投入し、再生スラリーを生成することを特徴とするスラリー再生方法を提供する。 Further, the invention of claim 5 is a slurry regeneration method using the slurry regeneration device according to any one of claims 1 to 4, wherein the waste slurry is introduced into the centrifuge, and the centrifuge is Driving with a predetermined centrifugal force (low G), the primary separated product is centrifuged from the waste slurry, the centrifuged primary separated product is collected in the first collection tank, and the mixed solution is collected in the first collection tank. 4 is collected in the collection tank, the mixed solution is charged into the centrifuge from the fourth collection tank, and the centrifuge is driven with a centrifugal force (high G) higher than the predetermined centrifugal force. The secondary separation is centrifuged from the mixed solution, the centrifuged secondary separation is collected in the second collection tank, the dispersion medium is collected in the third collection tank, and the mixture tank is collected. The primary separation recovered in the first recovery tank and the recovery in the third recovery tank Wherein a dispersion medium which is a new primary isolates and a new dispersion medium were placed, to provide a slurry reproducing method characterized by generating a regenerated slurry.
 請求項6の発明では、請求項5の発明において、前記質量流量計により前記廃スラリー又は前記混合液の実流量値を計測し、前記PID制御部にて前記実流量値と設定流量値を比較し、前記実流量値が前記設定流量値になるように、前記可変制御式定量供給手段をPID制御することを特徴としている。 In the invention of claim 6, in the invention of claim 5, the actual flow rate value of the waste slurry or the mixed liquid is measured by the mass flow meter, and the actual flow rate value and the set flow rate value are compared by the PID control unit. The variable control type quantitative supply means is PID-controlled so that the actual flow rate value becomes the set flow rate value.
 請求項1の発明によれば、第1のモータ及び第2のモータを用いて、異なる遠心力を発生させることができる。このため、1台の遠心分離機のみで比重の異なる一次分離物及び二次分離物を確実に分離して回収することができる。したがって、1台分の遠心分離機が設置できるスペースを確保できればよく、スペース的に効率がよい。また、切替手段を用いて、分離した一次分離物又は二次分離物をそれぞれ別の第1又は第2の回収槽に回収することができる。さらに、分散媒も別の第3の回収槽に回収できるので、一次分離物と分散媒を混合して再生スラリーを確実に調合することができる。 According to the invention of claim 1, different centrifugal forces can be generated using the first motor and the second motor. For this reason, it is possible to reliably separate and recover the primary separation and the secondary separation having different specific gravities with only one centrifuge. Therefore, it is only necessary to secure a space in which one centrifuge can be installed, and space efficiency is high. Moreover, the separated primary separated product or secondary separated product can be collected in separate first or second collection tanks using the switching means. Furthermore, since the dispersion medium can also be recovered in another third recovery tank, the primary slurry and the dispersion medium can be mixed to reliably prepare the regenerated slurry.
 請求項2の発明によれば、遠心分離機に投入する廃スラリー又は混合液の供給を可変制御式定量供給手段と質量流量計のPID制御により無脈動かつ定量にすることができる。このため、人の手による流量調整が不要となり、流量の一定化を自動的に行うことができ、作業性が向上する。また、遠心分離機にて安定した回収を行うためには無脈動かつ定量に液を供給することが重要となる。 According to the second aspect of the present invention, the supply of the waste slurry or the mixed solution to be introduced into the centrifuge can be made pulsation-free and quantitative by PID control of the variable control type quantitative supply means and the mass flow meter. For this reason, it is not necessary to adjust the flow rate by human hands, the flow rate can be automatically stabilized, and workability is improved. In addition, in order to perform stable recovery with a centrifuge, it is important to supply the solution in a pulsating and quantitative manner.
 請求項3の発明によれば、廃スラリーを収容するための収容槽と混合液を回収するための第4の回収槽、及び遠心分離機は、三方弁を介して接続されるので、廃スラリーと混合液が遠心分離機に投入される配管を共有することができる。したがって、ポンプや流量制御も共通して使用することができるので、部品点数を減少でき、コスト的にも効率がよい。
 請求項4の発明によれば、ワイヤソー装置で用いた廃スラリーに含まれる再利用可能な砥粒を一次分離物として回収し、被加工物の切削屑を二次分離物として、別に回収できる。したがって、分散媒と砥粒を再び混合して切削用スラリーとしてワイヤソー装置に再利用できる。このため、スラリーの節約ができる。
According to the invention of claim 3, the storage tank for storing the waste slurry, the fourth recovery tank for recovering the mixed liquid, and the centrifuge are connected via the three-way valve. And a pipe through which the mixed solution is introduced into the centrifuge. Therefore, since the pump and the flow rate control can be used in common, the number of parts can be reduced and the cost is also efficient.
According to invention of Claim 4, the reusable abrasive grain contained in the waste slurry used with the wire saw apparatus is collect | recovered as a primary separated material, and the cutting waste of a workpiece can be separately collect | recovered as a secondary separated material. Therefore, the dispersion medium and the abrasive can be mixed again and reused as a cutting slurry in a wire saw device. For this reason, the slurry can be saved.
 請求項5の発明によれば、遠心分離機にて廃スラリーから一次分離物を分離し、その後同じ遠心分離機で第二分離物を分離して、これらを別の第1又は第2の回収槽に回収する。したがって、1台の遠心分離機で2つの分離物を回収することができるので、1台分の遠心分離機設置スペースを確保できればよく、スペース的に効率がよい。
 請求項6の発明によれば、廃スラリー又は混合液の実流量値をフィードバックさせて設定流量値に近づくように可変制御式定量供給手段をPID制御するので、確実に廃スラリー又は混合液を一定流量で遠心分離機に投入することができる。また、無脈動かつ定量に液を供給することで安定した遠心分離効果が得られる。
According to invention of Claim 5, a primary separator is isolate | separated from waste slurry with a centrifuge, and after that, a 2nd isolate | separation is isolate | separated with the same centrifuge, and these are separate 1st or 2nd collection | recovery. Collect in the tank. Therefore, since two separated matters can be collected by one centrifuge, it is only necessary to secure a space for installing one centrifuge, which is efficient in terms of space.
According to the sixth aspect of the present invention, the variable control type quantitative supply means is PID controlled so that the actual flow rate value of the waste slurry or the mixed solution is fed back and approaches the set flow rate value. The centrifuge can be charged at a flow rate. In addition, a stable centrifugal effect can be obtained by supplying the solution without pulsation and quantification.
本発明に係るスラリー再生装置の概略図である。It is the schematic of the slurry reproduction | regeneration apparatus which concerns on this invention. 本発明に係るスラリー再生装置に用いられる遠心分離機の概略平面図である。It is a schematic plan view of the centrifuge used for the slurry reproduction | regeneration apparatus which concerns on this invention. 本発明に係るスラリー再生装置に用いられる遠心分離機の概略側面図である。It is a schematic side view of the centrifuge used for the slurry reproduction | regeneration apparatus which concerns on this invention. 本発明に係るスラリー再生装置に用いられる分岐シュートと切替手段の関係を示した概略図である。It is the schematic which showed the relationship between the branch chute used for the slurry reproduction | regeneration apparatus which concerns on this invention, and a switching means. 分岐シュートの概略図である。It is the schematic of a branch chute. 本発明に係るスラリー再生方法のフローチャートである。3 is a flowchart of a slurry regeneration method according to the present invention.
 図1は本発明に係るスラリー再生装置の概略図である。
 図示したように、本発明に係るスラリー再生装置1は、遠心分離機2と、砥粒(一次分離物)を回収するための第1の回収槽3と、切削屑(二次分離物)を回収するための第2の回収槽4と、分散媒を回収するための第3の回収槽5と、混合液を回収するための第4の回収槽6と、再生スラリーを調合するための調合槽7と、分岐シュート8と、切替手段9とを備えている。遠心分離機2は、2台のモータ(第1のモータ10、第2のモータ11)をそれぞれ備えており、低G又は高Gと異なる遠心力を発生させることができる。
FIG. 1 is a schematic view of a slurry regenerator according to the present invention.
As shown in the figure, the slurry regenerating apparatus 1 according to the present invention includes a centrifuge 2, a first recovery tank 3 for recovering abrasive grains (primary separation), and cutting waste (secondary separation). Second recovery tank 4 for recovery, third recovery tank 5 for recovering the dispersion medium, fourth recovery tank 6 for recovering the mixed liquid, and preparation for preparing the regenerated slurry A tank 7, a branch chute 8, and switching means 9 are provided. The centrifuge 2 includes two motors (first motor 10 and second motor 11), respectively, and can generate centrifugal force different from low G or high G.
 分離対象物たる廃スラリーは、砥粒と、切削屑(スラッジ)と、分散媒(オイル)からなる。切削屑は、脆性材料(例えばシリコン等)からなるウェーハリングの製造工程の際に、図示しない脆性材料をワイヤソー装置(不図示)で切断加工するときに発生する。ワイヤソー装置で使用された廃スラリーは、収容槽16に収容されている。一般的に砥粒は、切削屑より比重が大きい。したがって、廃スラリーに対して小さい遠心力で遠心分離すると、主に比重の大きい砥粒が分離される。この後、大きな遠心力で遠心分離すると、主に切削屑が分離される。これにより、互いに比重の異なる砥粒と切削屑を2段階に分けて1台の遠心分離機2で分離することができる。 The waste slurry that is the separation target consists of abrasive grains, cutting waste (sludge), and a dispersion medium (oil). Cutting chips are generated when a brittle material (not shown) is cut by a wire saw device (not shown) in a manufacturing process of a wafer ring made of a brittle material (for example, silicon). The waste slurry used in the wire saw device is stored in the storage tank 16. Generally, abrasive grains have a higher specific gravity than cutting waste. Accordingly, when the waste slurry is centrifuged with a small centrifugal force, abrasive grains having a large specific gravity are mainly separated. Thereafter, when the centrifugal separation is performed with a large centrifugal force, the cutting waste is mainly separated. Thereby, the abrasive grains and cutting waste having different specific gravities can be separated into two stages and separated by one centrifuge 2.
 遠心分離機2の下側に、排出口12が備えられている。排出口12は、遠心分離された砥粒又は切削屑を落下させて排出する。この排出口12に、分岐シュート8の入口側が接続されている。分岐シュート8の出口側は、砥粒(一次分離物)が移送される第1の経路8aと、切削屑(二次分離物)が移送される第2の経路8bに途中で分岐している。切替手段9を用いて、排出口12に対する分岐シュート8の入口側開口位置を変更する。この位置を変更することにより、砥粒を第1の経路8aに、切削屑を第2の経路8bにそれぞれ通過させることができる。砥粒を回収するための第1の回収槽3は、第1の経路8aと接続されている。切削屑を回収するための第2の回収槽4は、第2の経路8bと接続されている。したがって、排出口12から排出された砥粒又は切削屑は、それぞれ第1の経路8a又は第2の経路8bを通って第1の回収槽3又は第2の回収槽4に回収される。 A discharge port 12 is provided on the lower side of the centrifuge 2. The discharge port 12 drops and discharges the centrifuged abrasive grains or cutting waste. The outlet side of the branch chute 8 is connected to the discharge port 12. The exit side of the branch chute 8 is branched in the middle into a first path 8a through which abrasive grains (primary separation) are transferred and a second path 8b through which cutting waste (secondary separation) is transferred. . Using the switching means 9, the opening position of the inlet side of the branch chute 8 with respect to the discharge port 12 is changed. By changing this position, the abrasive grains can be passed through the first path 8a and the cutting waste can be passed through the second path 8b. The first collection tank 3 for collecting abrasive grains is connected to the first path 8a. The second recovery tank 4 for recovering cutting waste is connected to the second path 8b. Therefore, the abrasive grains or cutting waste discharged from the discharge port 12 are collected in the first collection tank 3 or the second collection tank 4 through the first path 8a or the second path 8b, respectively.
 分散媒を回収するための第3の回収槽5及び混合液を回収するための第4の回収槽6は、三方弁14を介して遠心分離機2の排液口13と接続されている。三方弁14は、自動式切替弁である(以下の三方弁19,22,23,26,29,30,32,37もすべて同じ)。排液口13は、遠心分離機2の下側に備えられている。一次分離で砥粒を遠心分離する際、切削屑と分散媒からなる混合液は、排液口13から三方弁14を通って第4の回収槽6に回収される。混合液は、二次分離のため再び遠心分離機2に投入され、切削屑を遠心分離される。この後、分散媒は排液口13から三方弁14を通って第3の回収槽5に回収される。分散媒に切削屑が残って回収された場合には、ポンプ36を駆動し、第3の回収槽5中のオイルを三方弁19、分岐管21、三方弁22、ポンプ36、三方弁37、分岐管38、バルブ41の順に通して第4の回収槽6に戻し、再び二次分離を行う。一方、一次分離のみ実施し、二次分離をしないとき等、混合液を廃棄したいときは、ポンプ51を作動させて混合液廃棄槽52に混合液を移送する。 The third recovery tank 5 for recovering the dispersion medium and the fourth recovery tank 6 for recovering the mixed liquid are connected to the drainage port 13 of the centrifuge 2 via the three-way valve 14. The three-way valve 14 is an automatic switching valve (the following three- way valves 19, 22, 23, 26, 29, 30, 32, and 37 are all the same). The drainage port 13 is provided on the lower side of the centrifuge 2. When centrifuging the abrasive grains in the primary separation, the mixed liquid composed of the cutting waste and the dispersion medium is collected from the drainage port 13 through the three-way valve 14 into the fourth collection tank 6. The mixed liquid is put into the centrifuge 2 again for secondary separation, and the cutting waste is centrifuged. Thereafter, the dispersion medium is recovered from the drain port 13 through the three-way valve 14 to the third recovery tank 5. When the cutting waste remains in the dispersion medium and is recovered, the pump 36 is driven, and the oil in the third recovery tank 5 is supplied to the three-way valve 19, the branch pipe 21, the three-way valve 22, the pump 36, the three-way valve 37, The branch pipe 38 and the valve 41 are passed in this order to return to the fourth recovery tank 6 and secondary separation is performed again. On the other hand, when only the primary separation is performed and the mixed solution is to be discarded, such as when the secondary separation is not performed, the pump 51 is operated to transfer the mixed solution to the mixed solution disposal tank 52.
 再生スラリーを調合するための調合槽7は、第1の回収槽3及び第3の回収槽5と接続されている。第1の回収槽3には、予め新しい分散媒が収容されている。第1の回収槽3に回収された砥粒は、ポンプ15を介して新しい分散媒とともに調合槽7に送られる。このような再生砥粒だけでなく、新砥粒収容槽(不図示)からも、調合槽7に新砥粒Sは送られる。 The blending tank 7 for blending the regenerated slurry is connected to the first collection tank 3 and the third collection tank 5. A new dispersion medium is accommodated in the first recovery tank 3 in advance. The abrasive grains recovered in the first recovery tank 3 are sent to the preparation tank 7 together with a new dispersion medium via the pump 15. The new abrasive grains S are sent to the mixing tank 7 not only from such regenerated abrasive grains but also from a new abrasive grain storage tank (not shown).
 第3の回収槽5から分散媒が調合槽7に送られる場合、以下の流路を通る。ポンプ20が駆動することにより、第3の回収槽5から、三方弁19、分岐管21、三方弁22、三方弁23、ポンプ20、ダンパー24、質量流量計25、三方弁26の順に通り、調合槽7に送られる。分岐管21には流体センサ27が備えられている。この流体センサ27は、分散媒が流れていることを検知する。 When the dispersion medium is sent from the third collection tank 5 to the preparation tank 7, it passes through the following flow path. When the pump 20 is driven, the three-way valve 19, the branch pipe 21, the three-way valve 22, the three-way valve 23, the pump 20, the damper 24, the mass flow meter 25, and the three-way valve 26 are passed in this order from the third recovery tank 5. It is sent to the mixing tank 7. The branch pipe 21 is provided with a fluid sensor 27. The fluid sensor 27 detects that the dispersion medium is flowing.
 新分散媒槽28a、28bには、新分散媒が収容されている。調合槽7に新しい分散媒を送るときは、ポンプ20を駆動し、三方弁30を通して、三方弁19に送る。その後は、第3の回収槽5から調合槽7への流路と同様である。このように、調合槽7に再生砥粒、再生分散媒、場合によっては新砥粒、新分散媒が送られ、これが調合槽7で攪拌されることにより、ワイヤソー装置に用いられる切削用スラリーとして再生される。攪拌は、モータ18の駆動とともに回転する攪拌部材17を用いて行われている。このときの再生スラリーの容量は、超音波センサ31で監視されている。センサ31は、再生スラリーの液面レベルを検知する。調合槽7の大きさは予めわかっているので、液面レベルを検知することにより、再生スラリーの容量を算出できる。なお、第1の回収槽3、第3の回収槽5、第4の回収槽6、収容槽16にも、同様の攪拌部材17、モータ18、及び超音波センサ31が備えられている。また、第2の回収槽4には、超音波センサ31が備えられている。 A new dispersion medium is accommodated in the new dispersion medium tanks 28a and 28b. When sending a new dispersion medium to the mixing tank 7, the pump 20 is driven and sent to the three-way valve 19 through the three-way valve 30. Thereafter, the flow path from the third recovery tank 5 to the preparation tank 7 is the same. In this way, recycled abrasive grains and recycled dispersion medium, and in some cases, new abrasive grains and new dispersion medium are sent to the mixing tank 7 and stirred in the mixing tank 7 to obtain a cutting slurry used in the wire saw device. Played. Stirring is performed using a stirring member 17 that rotates as the motor 18 is driven. The volume of the regenerated slurry at this time is monitored by the ultrasonic sensor 31. The sensor 31 detects the liquid level of the regenerated slurry. Since the size of the mixing tank 7 is known in advance, the volume of the regenerated slurry can be calculated by detecting the liquid level. The first recovery tank 3, the third recovery tank 5, the fourth recovery tank 6, and the storage tank 16 are also provided with the same stirring member 17, motor 18, and ultrasonic sensor 31. The second collection tank 4 is provided with an ultrasonic sensor 31.
 収容槽16は、三方弁32、可変制御式定量供給手段33、質量流量計34を介して遠心分離機2と接続される。供給手段33は、例えば脈動防止する機能を搭載したエア駆動又は電気駆動式のポンプである。供給手段33及び質量流量計34は、PID制御部35とPLC等を用いて有線で接続されている。廃スラリーは、供給手段33を用いて、無脈動かつ定量で送られる。この実流量値は、質量流量計34で計測されている。この実流量値は、PID制御部35にて設定流量値と比較されている。PID制御部35において、実流量値が設定流量値になるように、供給手段33が制御される。このため、廃スラリーの実流量値がフィードバックされて設定流量値に近づくように供給手段33がPID制御されることになり、確実に廃スラリーを一定流量で遠心分離機2に投入することができる。このため、人の手による流量調整が不要となり、流量の一定化を自動的に行うことができ、作業性が向上する。なお、三方弁32には混合液を回収するための第4の回収槽6も接続され、混合液も同様の流量制御で遠心分離機2に送られる。したがって、廃スラリーと混合液の流量制御を同一のPID制御部35にて行うことができるので、部品点数を減少でき、コスト的にも効率がよい。 The storage tank 16 is connected to the centrifuge 2 via a three-way valve 32, a variable control type quantitative supply means 33, and a mass flow meter 34. The supply means 33 is, for example, an air-driven or electrically-driven pump equipped with a function for preventing pulsation. The supply means 33 and the mass flow meter 34 are connected by wire using a PID controller 35 and a PLC or the like. The waste slurry is sent in a pulsating manner and in a fixed amount using the supply means 33. This actual flow value is measured by the mass flow meter 34. This actual flow rate value is compared with the set flow rate value by the PID control unit 35. In the PID control unit 35, the supply means 33 is controlled so that the actual flow rate value becomes the set flow rate value. For this reason, the supply means 33 is PID controlled so that the actual flow rate value of the waste slurry is fed back and approaches the set flow rate value, so that the waste slurry can be reliably fed into the centrifuge 2 at a constant flow rate. . For this reason, it is not necessary to adjust the flow rate by human hands, the flow rate can be automatically stabilized, and workability is improved. The three-way valve 32 is also connected to a fourth recovery tank 6 for recovering the mixed liquid, and the mixed liquid is also sent to the centrifuge 2 with the same flow rate control. Therefore, the flow rate control of the waste slurry and the mixed liquid can be performed by the same PID control unit 35, so that the number of parts can be reduced and the cost is also efficient.
 また、このPID制御は、タッチパネル、PLCによる自動制御方式とし、操作性を向上することができる。タッチパネル、PLCを用いて、砥粒のみの回収や分散媒のみの回収等、分離モードを選択できるようにしてもよい。すなわち、後述するように、一次分離物と二次分離物を分離する、いわゆる2段分離モードや、単に砥粒(一次分離物)のみを回収する場合のような、いわゆる1段分離砥粒回収モードや、オイルのみを回収するような、いわゆる1段分離オイル回収モードを選択できるようにしてもよい。 In addition, this PID control is an automatic control method using a touch panel and PLC, so that operability can be improved. You may enable it to select separation modes, such as collection | recovery of only an abrasive grain, and collection | recovery of only a dispersion medium, using a touch panel and PLC. That is, as will be described later, so-called two-stage separation mode in which the primary separated material and the secondary separated material are separated, or so-called first-stage separated abrasive collection such as when only abrasive grains (primary separated material) are collected. A mode or a so-called one-stage separation oil recovery mode in which only oil is recovered may be selected.
 新分散媒は、装置の洗浄にも用いられる。洗浄に用いる場合は、ポンプ36を駆動させ、三方弁22から三方弁37に新分散媒を送り、分岐管38からバルブ41を通り、第4の回収槽6内を洗浄する。このような新分散媒の供給は、混合液中の分散媒の量を増やしたいときにも利用される。また、分岐管39からバルブ42を通すと、遠心分離機2内を洗浄できる。また、分岐管40からバルブ43を通すと、排出口12を洗浄できるとともに、分岐シュート8も洗浄できる。特にこの排出口12、分岐シュート8は砥粒がこびりつくため、分離中は定期に洗浄されている。また、切削屑は非常に粘度が高く、遠心分離機2内や分岐シュート8(第2の経路8b)内に残るため、分散媒での洗浄が不可欠である。分散媒をバルブ44に通すと、収容槽16を洗浄できる。これは、廃スラリー中の分散媒の量を増やしたいときにも利用できる。洗浄用の新分散媒が不要になったら、三方弁37から三方弁29に新分散媒を流通させ、新分散媒槽28a又は28bに戻す。なお、上記洗浄には、遠心分離機2にて廃スラリーから回収した再生分散媒を用いてもよい。 The new dispersion medium is also used for cleaning the equipment. When used for cleaning, the pump 36 is driven, a new dispersion medium is sent from the three-way valve 22 to the three-way valve 37, and the fourth recovery tank 6 is cleaned through the branch pipe 38 through the valve 41. Such supply of the new dispersion medium is also used when it is desired to increase the amount of the dispersion medium in the mixed liquid. Further, when the valve 42 is passed through the branch pipe 39, the inside of the centrifuge 2 can be washed. Further, when the valve 43 is passed through the branch pipe 40, the discharge port 12 can be cleaned and the branch chute 8 can also be cleaned. In particular, the discharge port 12 and the branch chute 8 are regularly cleaned during the separation because the abrasive grains are stuck. Further, since the cutting waste has a very high viscosity and remains in the centrifuge 2 or the branch chute 8 (second path 8b), cleaning with a dispersion medium is indispensable. When the dispersion medium is passed through the valve 44, the storage tank 16 can be washed. This can also be used when it is desired to increase the amount of the dispersion medium in the waste slurry. When the new dispersion medium for cleaning becomes unnecessary, the new dispersion medium is circulated from the three-way valve 37 to the three-way valve 29 and returned to the new dispersion medium tank 28a or 28b. In addition, you may use the reproduction | regeneration dispersion medium collect | recovered from the waste slurry with the centrifuge 2 for the said washing | cleaning.
 図2は本発明に係るスラリー再生装置に用いられる遠心分離機の概略平面図であり、図3は概略側面図である。
 上述したように、遠心分離機2には、第1のモータ10及び第2のモータ11が備わっている。45は、廃スラリーが遠心分離機2内に流入する流入口である。遠心分離機2の下側には、上述しように、排出口12、排液口13が備わっている。46a、46bは、新分散媒又は再生分散媒を流入させて遠心分離機2内を洗浄するための流入口である。47は、新分散媒又は再生分散媒を流入させて排出口12を洗浄するための流入口である。
FIG. 2 is a schematic plan view of a centrifuge used in the slurry regenerator according to the present invention, and FIG. 3 is a schematic side view.
As described above, the centrifuge 2 includes the first motor 10 and the second motor 11. 45 is an inlet through which the waste slurry flows into the centrifuge 2. As described above, a discharge port 12 and a drain port 13 are provided below the centrifuge 2. 46a and 46b are inflow ports for allowing the new dispersion medium or the regenerated dispersion medium to flow in and washing the inside of the centrifuge 2. Reference numeral 47 denotes an inlet for washing the outlet 12 by introducing a new dispersion medium or a regenerated dispersion medium.
 図4は本発明に係るスラリー再生装置に用いられる分岐シュートと切替手段の関係を示した概略図である。
 分岐シュート8は、4本のローラ48を備えた枠体49に囲まれて配設されている。枠体49に切替手段9が接続されている。切替手段9は、シリンダであり、軸方向(矢印R方向)に移動可能である。切替手段9の移動に伴い、ローラ48がレール50上を移動し、分岐シュート8も枠体49に押されて矢印R方向に移動する。分岐シュート8の上方に位置する遠心分離機2の排出口12(図1、図3参照)から落下してくる分離物に応じて、分岐シュート8の入口側を第1の経路8a又は第2の経路8bに切替える。分岐シュート8を枠体49で囲むことにより、分岐シュート8のみの修理や交換が独立して容易に行うことができ、メンテナンス性が向上する。
FIG. 4 is a schematic diagram showing the relationship between the branch chute and the switching means used in the slurry regenerating apparatus according to the present invention.
The branch chute 8 is surrounded by a frame body 49 having four rollers 48. The switching means 9 is connected to the frame 49. The switching means 9 is a cylinder and is movable in the axial direction (arrow R direction). With the movement of the switching means 9, the roller 48 moves on the rail 50, and the branch chute 8 is also pushed by the frame 49 and moves in the direction of arrow R. Depending on the separation falling from the discharge port 12 (see FIGS. 1 and 3) of the centrifuge 2 located above the branch chute 8, the inlet side of the branch chute 8 is connected to the first path 8a or second. To the path 8b. By surrounding the branch chute 8 with the frame 49, only the branch chute 8 can be repaired or replaced independently and the maintainability is improved.
 図5は分岐シュートの概略図である。
 図示したように、分岐シュート8は、出口側が第1の経路8aと第2の経路8bに分かれている。切削屑は塊状なので、落下させて回収できるように、第2の経路8bは排出口12から鉛直方向に形成されている。一方、砥粒は若干分散媒が混じって回収されるので、多少角度があっても流れるため、第1の経路8aは斜めに形成されている。その角度θは、0°~45°程度である。なお、第1の経路8a及び第2の経路8bの内面は、内側に砥粒や切削屑が付着しないように、鏡面仕上げされている。
FIG. 5 is a schematic view of a branch chute.
As illustrated, the branch chute 8 is divided into a first path 8a and a second path 8b on the exit side. Since the cutting waste is in a lump shape, the second path 8b is formed in the vertical direction from the discharge port 12 so that it can be dropped and collected. On the other hand, since the abrasive grains are collected with some dispersion medium mixed, they flow even if there is a slight angle, so the first path 8a is formed obliquely. The angle θ is about 0 ° to 45 °. The inner surfaces of the first path 8a and the second path 8b are mirror-finished so that abrasive grains and cutting waste do not adhere to the inside.
 図6は本発明に係るスラリー再生方法のフローチャートである。
 ステップS1:
 ワイヤソー装置にて使用後の廃スラリーを収容槽に収容する。
 ステップS2:
 廃スラリーを遠心分離機に投入し、一次分離を行う。この一次分離にて、廃スラリー中の砥粒(一次分離物)のみを分離する。この一次分離は、1500G未満の低Gで遠心分離される。遠心分離機への投入は、可変制御式定量供給手段33(図1参照)によって無脈動かつ定量で行われる。その流量は質量流量計によって管理され、実流量値がフィードバックされ設定流量値に近づくようにPID制御部35(図1参照)にて制御される。一次分離中、適時に新分散媒等で遠心分離機内や分岐シュート(第1の経路)内が洗浄される。分離された砥粒は、第1の回収槽3(図1参照)に回収される。砥粒分離後の混合液は、第4の回収槽6(図1参照)に回収される。収容槽が空になった場合は、分散媒にて収容槽内を洗浄し、この分散媒を再び一次分離する。これにより、収容槽内に残った砥粒や切削屑を取り除き、回収することができる。
FIG. 6 is a flowchart of the slurry regeneration method according to the present invention.
Step S1:
The waste slurry after use is stored in a storage tank by a wire saw device.
Step S2:
The waste slurry is put into a centrifuge and primary separation is performed. In this primary separation, only the abrasive grains (primary separation) in the waste slurry are separated. This primary separation is centrifuged at a low G of less than 1500G. The centrifuge is charged without pulsation and quantitatively by the variable control type quantitative supply means 33 (see FIG. 1). The flow rate is managed by a mass flow meter, and the actual flow rate value is fed back and controlled by the PID control unit 35 (see FIG. 1) so as to approach the set flow rate value. During the primary separation, the inside of the centrifuge and the branch chute (first path) are washed with a new dispersion medium at an appropriate time. The separated abrasive grains are recovered in the first recovery tank 3 (see FIG. 1). The mixed liquid after the abrasive grain separation is recovered in the fourth recovery tank 6 (see FIG. 1). When the storage tank becomes empty, the inside of the storage tank is washed with a dispersion medium, and the dispersion medium is primarily separated again. Thereby, the abrasive grains and cutting waste remaining in the storage tank can be removed and recovered.
 ステップS3:
 ステップS2で回収した混合液をステップS2で用いた遠心分離機に再び投入し、二次分離を行う。この二次分離にて、混合液を切削屑(二次分離物)と分散媒とに分離する。この二次分離は、1500G以上の高Gで遠心分離される。混合液の遠心分離機への投入制御は、ステップS2で示した廃スラリーの流量制御と同様である。二次分離中、適時に新分散媒等で遠心分離機内や分岐シュート(第2の経路)内が洗浄される。分離された切削屑は、第2の回収槽4(図1参照)に回収される。分散媒は、第3の回収槽5(図1参照)に回収される。第4の回収槽が空になった場合は、分散媒にて収容槽内を洗浄し、この分散媒を再び二次分離する。これにより、第4の回収槽内に残った切削屑を取り除き、回収することができる。この後、第3の回収槽内の比重を計測し、二次分離における分散媒の回収を確認する。
Step S3:
The mixed liquid recovered in step S2 is again put into the centrifuge used in step S2, and secondary separation is performed. In this secondary separation, the mixed liquid is separated into cutting waste (secondary separated product) and a dispersion medium. This secondary separation is centrifuged at a high G of 1500 G or higher. The input control of the mixed liquid to the centrifugal separator is the same as the flow control of the waste slurry shown in step S2. During the secondary separation, the inside of the centrifuge and the branch chute (second path) are washed with a new dispersion medium at an appropriate time. The separated cutting waste is recovered in the second recovery tank 4 (see FIG. 1). The dispersion medium is recovered in the third recovery tank 5 (see FIG. 1). When the fourth recovery tank becomes empty, the inside of the storage tank is washed with the dispersion medium, and the dispersion medium is secondarily separated again. Thereby, the cutting waste remaining in the fourth recovery tank can be removed and recovered. Thereafter, the specific gravity in the third recovery tank is measured to confirm the recovery of the dispersion medium in the secondary separation.
 ステップS4:
 一次分離にて回収した砥粒、二次分離にて回収した分散媒、さらに必要に応じて新砥粒及び新分散媒(新オイル)を加えて再生スラリーを調合する。この新砥粒や新オイル等の投入の仕方は、例えば、(i)新砥粒及び新オイルを自動で投入したり、(ii)新砥粒を手動で、新オイルを自動で投入したり、(iii)新オイルのみを自動で投入したり、(iv)新砥粒と新オイルで予め形成された新スラリー及び新オイルを自動で投入する方法がある。
Step S4:
Abrasive grains recovered by primary separation, a dispersion medium recovered by secondary separation, and new abrasive grains and a new dispersion medium (new oil) are added as necessary to prepare a regenerated slurry. For example, (i) new abrasive grains and new oil are automatically added, or (ii) new abrasive grains are manually supplied and new oil is automatically supplied. (Iii) There is a method in which only new oil is automatically charged, or (iv) a new slurry and new oil which are formed in advance with new abrasive grains and new oil are automatically charged.
 まずは第1の回収槽からの再生砥粒を調合槽に移送する。この移送は、第1の回収槽を分散媒で洗浄しながら、すべての砥粒が移送されるように行われる。砥粒の移送が終わったら、調合槽内の比重を計測し、一次分離における砥粒回収率を判定する。この判定は、ステップS2の終了後に行ってもよい。再生スラリーは、目標とする体積と比重が設定されている。この設定値になるように、回収砥粒で足りない分が新砥粒で補充される。これに合わせて、分散媒も供給される。目標比重となったら、再生スラリーとして再びワイヤソー装置に使用する。 First, recycle abrasive grains from the first recovery tank are transferred to the mixing tank. This transfer is performed so that all abrasive grains are transferred while washing the first recovery tank with the dispersion medium. When the transfer of the abrasive grains is finished, the specific gravity in the preparation tank is measured and the abrasive recovery rate in the primary separation is determined. This determination may be performed after the end of step S2. The regenerated slurry has a target volume and specific gravity. The amount of recovered abrasive grains that is insufficient for the set value is replenished with new abrasive grains. In accordance with this, a dispersion medium is also supplied. When it reaches the target specific gravity, it is used again as a regenerated slurry in a wire saw device.
 以上によれば、第1のモータ及び第2のモータを用いて、低Gと高Gの異なる遠心力を発生させ、一次分離と二次分離を行うことができる。このため、1台の遠心分離機のみで比重の異なる砥粒(一次分離物)及び切削屑(二次分離物)を確実に分離して回収することができる。したがって、分離に際しては、1台分の遠心分離機が設置できるスペースを確保できればよく、スペース的に効率がよい。 According to the above, primary separation and secondary separation can be performed by generating different centrifugal forces of low G and high G using the first motor and the second motor. For this reason, abrasive grains (primary separation) and cutting waste (secondary separation) having different specific gravities can be reliably separated and recovered with only one centrifuge. Therefore, when separating, it is only necessary to secure a space in which one centrifuge can be installed, and space efficiency is high.
 上述したステップS1~ステップS4は、一次分離物と二次分離物を分離する、いわゆる2段分離モードを行う場合の工程である。これに対し、単に砥粒(一次分離物)のみを回収する場合のような、いわゆる1段分離砥粒回収モードの場合は、上記ステップS3を除いたステップS1,S2,S4の順で行う。さらに、オイルのみを回収するような、いわゆる1段分離オイル回収モードの場合は、ステップS3のみで実現できる。 Steps S1 to S4 described above are steps for performing a so-called two-stage separation mode in which the primary separation and the secondary separation are separated. On the other hand, in the case of a so-called single-stage separation abrasive grain recovery mode, such as when only abrasive grains (primary separated matter) are collected, steps S1, S2, and S4 are performed in this order except for step S3. Furthermore, in the so-called one-stage separation oil recovery mode in which only oil is recovered, it can be realized only in step S3.
1 スラリー再生装置
2 遠心分離機
3 第1の回収槽
4 第2の回収槽
5 第3の回収槽
6 第4の回収槽
7 調合槽
8 分岐シュート
8a 第1の経路
8b 第2の経路
9 切替手段
10 第1のモータ
11 第2のモータ
12 排出口
13 排液口
14 三方弁
15 ポンプ
16 収容槽
17 攪拌部材
18 モータ
19 三方弁
20 ポンプ
21 分岐管
22 三方弁
23 三方弁
24 ダンパー
25 質量流量計
26 三方弁
27 流体センサ
28a 新分散媒槽
28b 新分散媒槽
29 三方弁
30 三方弁
31 超音波センサ
32 三方弁
33 可変制御式定量供給手段
34 質量流量計
35 PID制御部
36 ポンプ
37 三方弁
38 分岐管
39 分岐管
40 分岐管
41 バルブ
42 バルブ
43 バルブ
44 バルブ
45 流入口
46a 流入口
46b 流入口
47 流入口
48 ローラ
49 枠体
50 レール
51 ポンプ
52 混合液廃棄槽
DESCRIPTION OF SYMBOLS 1 Slurry reproduction | regeneration apparatus 2 Centrifuge 3 1st collection tank 4 2nd collection tank 5 3rd collection tank 6 4th collection tank 7 Mixing tank 8 Branch chute 8a 1st path | route 8b 2nd path | route 9 Switching Means 10 First motor 11 Second motor 12 Discharge port 13 Drain port 14 Three-way valve 15 Pump 16 Storage tank 17 Stirring member 18 Motor 19 Three-way valve 20 Pump 21 Branch pipe 22 Three-way valve 23 Three-way valve 24 Damper 25 Mass flow rate Total 26 Three-way valve 27 Fluid sensor 28a New dispersion medium tank 28b New dispersion medium tank 29 Three-way valve 30 Three-way valve 31 Ultrasonic sensor 32 Three-way valve 33 Variable control type quantitative supply means 34 Mass flow meter 35 PID control unit 36 Pump 37 Three-way valve 38 branch pipe 39 branch pipe 40 branch pipe 41 valve 42 valve 43 valve 44 valve 45 inlet 46a inlet 46b inlet 47 inlet 48 roller 49 Frame 50 Rail 51 Pump 52 Mixed liquid waste tank

Claims (6)

  1.  分散媒中に前記分散媒から分離されるべき互いに比重の異なる一次分離物及び二次分離物の少なくとも一方を含む廃スラリーが投入され、前記廃スラリーから前記一次分離物又は前記二次分離物を分離可能な遠心分離機と、
     前記遠心分離機に設けられ、前記遠心分離機から分離後の前記一次分離物又は前記二次分離物を排出する排出口と、
     該排出口に前記一次分離物を移送するための第1の経路を介して連通可能な前記一次分離物を回収するための第1の回収槽と、
     前記排出口に前記二次分離物を移送するための第2の経路を介して連通可能な前記二次分離物を回収するための第2の回収槽と、
     前記遠心分離機に設けられ、前記遠心分離機から前記廃スラリーを分離した後の前記分散媒又は該分散媒と前記二次分離物の混合液を排液する排液口と、
     該排液口に対して選択的に連通可能な前記分散媒を回収するための第3の回収槽及び前記混合液を回収するための第4の回収槽と、
     前記一次分離物と前記分散媒とを混合して再生スラリーを生成するための調合槽と、
     前記排出口に対して、前記第1の経路と前記第2の経路のいずれかを接続させる切替手段とを備えたことを特徴とするスラリー再生装置。
    A waste slurry containing at least one of a primary separator and a secondary separator having different specific gravity to be separated from the dispersion medium is introduced into the dispersion medium, and the primary separator or the secondary separator is removed from the waste slurry. A separable centrifuge,
    Provided in the centrifuge, and a discharge port for discharging the primary separated product or the secondary separated product after separation from the centrifuge;
    A first recovery tank for recovering the primary separator that can be communicated via a first path for transferring the primary separator to the outlet;
    A second recovery tank for recovering the secondary separator that can be communicated via a second path for transferring the secondary separator to the discharge port;
    A drainage port provided in the centrifuge, for draining the dispersion medium after separating the waste slurry from the centrifuge, or a mixture of the dispersion medium and the secondary separation;
    A third recovery tank for recovering the dispersion medium that can selectively communicate with the drainage port, and a fourth recovery tank for recovering the mixed liquid;
    A mixing tank for mixing the primary separation and the dispersion medium to produce a regenerated slurry;
    A slurry regenerator comprising switching means for connecting either the first path or the second path to the discharge port.
  2.  前記廃スラリーを収容するための収容槽と前記遠心分離機の間、及び前記第4の回収槽と前記遠心分離機の間にそれぞれ設けられ、前記廃スラリー又は前記混合液の流量を調整する可変制御式定量供給手段と、該可変制御式定量供給手段と前記遠心分離機の間に設けられた質量流量計と、前記質量流量計の計測結果に基づき、前記廃スラリー又は前記混合液の流量を一定にすべく前記可変制御式定量供給手段の作動を制御するPID制御部とを更に備えることを特徴とする請求項1に記載のスラリー再生装置。 Variable between the storage tank for storing the waste slurry and the centrifuge, and between the fourth recovery tank and the centrifuge, and for adjusting the flow rate of the waste slurry or the mixed liquid. The flow rate of the waste slurry or the mixed liquid is controlled based on the measurement result of the control type quantitative supply unit, the mass flow meter provided between the variable control type quantitative supply unit and the centrifuge, and the mass flow meter. The slurry regenerating apparatus according to claim 1, further comprising a PID control unit that controls the operation of the variable control type quantitative supply unit so as to be constant.
  3.  前記収容槽と前記第4の回収槽、及び前記遠心分離機は、三方弁を介して接続され、前記可変制御式定量供給手段及び前記質量流量計は、前記三方弁と前記遠心分離機の間に配置されていることを特徴とする請求項1又は2に記載のスラリー再生装置。 The storage tank, the fourth recovery tank, and the centrifuge are connected via a three-way valve, and the variable control quantitative supply means and the mass flow meter are disposed between the three-way valve and the centrifuge. The slurry regenerator according to claim 1 or 2, wherein
  4.  前記廃スラリーは、ワイヤに被加工物を押し付けて切断加工するワイヤソー装置で用いたスラリーであり、前記一次分離物は前記スラリーに混入する砥粒であり、前記二次分離物は前記被加工物の切削屑であることを特徴とする請求項1~3のいずれかに記載のスラリー再生装置。 The waste slurry is a slurry used in a wire saw device that presses and cuts a workpiece against a wire, the primary separation is abrasive grains mixed in the slurry, and the secondary separation is the workpiece. The slurry reclaiming device according to any one of claims 1 to 3, wherein the slurry reclaiming device is any of the above.
  5.  請求項1~4のいずれかに記載のスラリー再生装置を用いたスラリー再生方法であって、
     前記遠心分離機に前記廃スラリーを投入し、
     前記遠心分離機を所定の遠心力(低G)で駆動して、前記一次分離物を前記廃スラリーから遠心分離し、
     該遠心分離した一次分離物を前記第1の回収槽に回収し、
     前記混合液を前記第4の回収槽に回収し、
     該第4の回収槽から前記混合液を前記遠心分離機に投入し、
     前記遠心分離機を前記所定の遠心力より高い遠心力(高G)で駆動して前記二次分離物を前記混合液から遠心分離し、
     該遠心分離した二次分離物を前記第2の回収槽に回収し、
     前記分散媒を前記第3の回収槽に回収し、
     前記調合槽に、前記第1の回収槽に回収された前記一次分離物と、前記第3の回収槽に回収された前記分散媒と、新しい一次分離物及び新しい分散媒とを投入し、再生スラリーを生成することを特徴とするスラリー再生方法。
    A slurry regeneration method using the slurry regeneration apparatus according to any one of claims 1 to 4,
    Throwing the waste slurry into the centrifuge,
    Driving the centrifuge at a predetermined centrifugal force (low G) to centrifuge the primary separation from the waste slurry;
    Collecting the centrifuged primary separation in the first collection tank;
    The mixed liquid is recovered in the fourth recovery tank;
    Throwing the mixed solution from the fourth recovery tank into the centrifuge;
    Driving the centrifuge at a centrifugal force (high G) higher than the predetermined centrifugal force to centrifuge the secondary separation from the mixture;
    Collecting the centrifuged secondary separation in the second recovery tank;
    Collecting the dispersion medium in the third collection tank;
    The primary separation collected in the first collection tank, the dispersion medium collected in the third collection tank, a new primary separation and a new dispersion medium are charged into the mixing tank and regenerated. A slurry regeneration method comprising producing a slurry.
  6.  前記質量流量計により前記廃スラリー又は前記混合液の実流量値を計測し、前記PID制御部にて前記実流量値と設定流量値を比較し、前記実流量値が前記設定流量値になるように、前記可変制御式定量供給手段をPID制御することを特徴とする請求項5に記載のスラリー再生方法。 The actual flow rate value of the waste slurry or the mixed solution is measured by the mass flow meter, the actual flow rate value is compared with the set flow rate value by the PID control unit, and the actual flow rate value becomes the set flow rate value. 6. The slurry regeneration method according to claim 5, wherein the variable control type quantitative supply means is PID controlled.
PCT/JP2009/071792 2009-01-15 2009-12-28 Slurry regenerating device and method WO2010082447A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200980154520.5A CN102281991B (en) 2009-01-15 2009-12-28 Slurry regenerating device and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-006422 2009-01-15
JP2009006422A JP5280218B2 (en) 2009-01-15 2009-01-15 Slurry regeneration processing apparatus and method

Publications (1)

Publication Number Publication Date
WO2010082447A1 true WO2010082447A1 (en) 2010-07-22

Family

ID=42339702

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/071792 WO2010082447A1 (en) 2009-01-15 2009-12-28 Slurry regenerating device and method

Country Status (5)

Country Link
JP (1) JP5280218B2 (en)
KR (1) KR101575924B1 (en)
CN (1) CN102281991B (en)
TW (1) TW201036719A (en)
WO (1) WO2010082447A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106757035A (en) * 2016-12-23 2017-05-31 佛山市南海铂朗助剂科技有限公司 A kind of medal polish handling process

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102873774A (en) * 2012-04-10 2013-01-16 沈阳连城精密机器有限公司 Online mortar recovery method in silicon industry
TWI461258B (en) * 2012-11-09 2014-11-21 Sino American Silicon Prod Inc Slurry recycling method and slurry recycling apparatus for the same
JP2017012974A (en) * 2015-06-30 2017-01-19 日立工機株式会社 Centrifugal machine
WO2020246162A1 (en) * 2019-06-03 2020-12-10 株式会社industria Fine material amount detection device, clamp-type holder, centrifugal separation device, and fine material removal system
TWI779280B (en) * 2019-06-03 2022-10-01 日商英達斯特股份有限公司 System for removing fine material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11267974A (en) * 1997-12-26 1999-10-05 Nippei Toyama Corp Slurry control system
JPH11309674A (en) * 1998-02-26 1999-11-09 Nippei Toyama Corp Slurry control system
JP2001277113A (en) * 2000-03-28 2001-10-09 Japan Steel Works Ltd:The Method and device for removing grinding wheel grain from grinding fluid

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4369095B2 (en) 2002-05-24 2009-11-18 シャープ株式会社 Slurry regeneration method
ITRM20050329A1 (en) * 2005-06-24 2006-12-25 Guido Fragiacomo PROCEDURE FOR TREATING ABRASIVE SUSPENSIONS EXHAUSTED FOR THE RECOVERY OF THEIR RECYCLABLE COMPONENTS AND ITS PLANT.
JP2008188683A (en) 2007-02-01 2008-08-21 Mitsubishi Electric Corp Silicon ingot cutting method and cutting device
JP2008188723A (en) 2007-02-06 2008-08-21 Mitsubishi Electric Corp Recycling method for used slurry

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11267974A (en) * 1997-12-26 1999-10-05 Nippei Toyama Corp Slurry control system
JPH11309674A (en) * 1998-02-26 1999-11-09 Nippei Toyama Corp Slurry control system
JP2001277113A (en) * 2000-03-28 2001-10-09 Japan Steel Works Ltd:The Method and device for removing grinding wheel grain from grinding fluid

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106757035A (en) * 2016-12-23 2017-05-31 佛山市南海铂朗助剂科技有限公司 A kind of medal polish handling process

Also Published As

Publication number Publication date
JP5280218B2 (en) 2013-09-04
JP2010162640A (en) 2010-07-29
CN102281991B (en) 2014-04-16
CN102281991A (en) 2011-12-14
KR101575924B1 (en) 2015-12-08
KR20110117081A (en) 2011-10-26
TW201036719A (en) 2010-10-16

Similar Documents

Publication Publication Date Title
WO2010082447A1 (en) Slurry regenerating device and method
KR101545021B1 (en) An apparatus and an method for cleaning of lubricant and also lubricant circuit
KR100229989B1 (en) Machining process waste liquor regeneration method and machining process waste liquor regenerating apparatus
JP6041380B2 (en) Processing fluid purification system
EP2480748B1 (en) Multiple process service vessel
JP2008307442A (en) Sludge filtration apparatus capable of obtaining uncontaminated clean liquid and its method
KR20120125323A (en) Ballast flocculation and sedimentation water treatment system with simplified sludge recirculation, and process therefor
GB2190603A (en) Method and apparatus for clarifying beer
CN110846121A (en) Cutting fluid recovery and purification treatment device and method
KR100393007B1 (en) Regenerating process and regenerating system to regenerate waste slurry from semiconductor wafer manufacturing process
JP2003309091A (en) Polishing drain recycling method in semiconductor production and breaker
JPH105512A (en) Filter and filtration system
CN211339415U (en) Cutting fluid recovery and purification treatment device
KR100652822B1 (en) Recycling method and system of slurry in semi-conductor producing process
TWI418441B (en) Sawing mill grinding machine
JP2005262046A (en) Magnetic separation device and water-cleaning device using it
KR102055101B1 (en) System for regeneration off-specification adhesive
CN112194273A (en) Oil-water separation device and method for oily waste water of kitchen garbage
KR101819818B1 (en) Apparatus for collecting grinding oil for grinder
JP2010115719A (en) Method and device for oscillating filtration
CA2870552C (en) Scrubbing backwash filter
CN210651375U (en) On-line recovery device for semiconductor silicon wafer cutting slurry
CN106396038A (en) Efficient and environment-friendly industrial wastewater separating and reusing machine and operation method thereof
JP2000237959A (en) Slurry circulating and supplying system, and polishing system provided with the same
JP2005040686A (en) Method and apparatus for recovering solid particles

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980154520.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09838412

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117016292

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09838412

Country of ref document: EP

Kind code of ref document: A1