WO2010081465A2 - Formmassenumschlossenes leistungshalbleiterelement - Google Patents

Formmassenumschlossenes leistungshalbleiterelement Download PDF

Info

Publication number
WO2010081465A2
WO2010081465A2 PCT/DE2010/000019 DE2010000019W WO2010081465A2 WO 2010081465 A2 WO2010081465 A2 WO 2010081465A2 DE 2010000019 W DE2010000019 W DE 2010000019W WO 2010081465 A2 WO2010081465 A2 WO 2010081465A2
Authority
WO
WIPO (PCT)
Prior art keywords
power semiconductor
heat
semiconductor element
element according
enclosed power
Prior art date
Application number
PCT/DE2010/000019
Other languages
English (en)
French (fr)
Other versions
WO2010081465A3 (de
Inventor
Frank Osterwald
Holger Ulrich
Mathias Kock
Original Assignee
Danfoss Silicon Power Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Danfoss Silicon Power Gmbh filed Critical Danfoss Silicon Power Gmbh
Publication of WO2010081465A2 publication Critical patent/WO2010081465A2/de
Publication of WO2010081465A3 publication Critical patent/WO2010081465A3/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/433Auxiliary members in containers characterised by their shape, e.g. pistons
    • H01L23/4334Auxiliary members in encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49503Lead-frames or other flat leads characterised by the die pad
    • H01L23/49506Lead-frames or other flat leads characterised by the die pad an insulative substrate being used as a diepad, e.g. ceramic, plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49517Additional leads
    • H01L23/49524Additional leads the additional leads being a tape carrier or flat leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49517Additional leads
    • H01L23/49531Additional leads the additional leads being a wiring board
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49541Geometry of the lead-frame
    • H01L23/49562Geometry of the lead-frame for devices being provided for in H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49568Lead-frames or other flat leads specifically adapted to facilitate heat dissipation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L24/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L24/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L24/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L24/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L24/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L24/41Structure, shape, material or disposition of the strap connectors after the connecting process of a plurality of strap connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/71Means for bonding not being attached to, or not being formed on, the surface to be connected
    • H01L24/72Detachable connecting means consisting of mechanical auxiliary parts connecting the device, e.g. pressure contacts using springs or clips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/84Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L24/80 - H01L24/90
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/05639Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/2612Auxiliary members for layer connectors, e.g. spacers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/37001Core members of the connector
    • H01L2224/37099Material
    • H01L2224/371Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/37138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/37139Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/37001Core members of the connector
    • H01L2224/37099Material
    • H01L2224/371Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/37138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/37147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/40221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/40245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73219Layer and TAB connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73221Strap and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/83801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8384Sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/84Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
    • H01L2224/848Bonding techniques
    • H01L2224/84801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/84Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
    • H01L2224/848Bonding techniques
    • H01L2224/8484Sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49541Geometry of the lead-frame
    • H01L23/49548Cross section geometry
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49579Lead-frames or other flat leads characterised by the materials of the lead frames or layers thereon
    • H01L23/49586Insulating layers on lead frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01014Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0102Calcium [Ca]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01058Cerium [Ce]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate
    • H01L2924/15172Fan-out arrangement of the internal vias
    • H01L2924/15174Fan-out arrangement of the internal vias in different layers of the multilayer substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/1815Shape

Definitions

  • the invention relates to a molding compound-closed power semiconductor element.
  • the components will usually have only one side through the substrate or the lead frame a cooling path to the outer heat sink.
  • This derivation of the total generated power loss over only one defined cooling path is fraught with problems.
  • this cooling path leads from the underside of the semiconductor element through the substrate of the assembly or through a stamped grid to an outer surface of the molded power semiconductor module (of the so-called "mold package"). From there, the power loss is usually delivered via thermal grease to air or water cooler.
  • the power loss in a semiconductor in particular in the case of a MOSFET and IGBE components, amounts to a few 10 ⁇ m to 100 ⁇ m below the contact surface of the semiconductor. This corresponds to the upper 20% of the usual total thickness of a semiconductor.
  • these modules are also referred to as semiconductor mold packages (that is to say as thermoset encapsulated cladding bodies of an electronic assembly having at least one semiconductor element) and are known as robust, cladding-sprayed assemblies in which power components are preferably used for certain applications (eg motor controls) be covered with a particularly high power loss.
  • semiconductor mold packages that is to say as thermoset encapsulated cladding bodies of an electronic assembly having at least one semiconductor element
  • robust, cladding-sprayed assemblies in which power components are preferably used for certain applications (eg motor controls) be covered with a particularly high power loss.
  • thermosets The top of such semiconductor devices is usually connected by arcuate patch contact wires (bonding wires) with other tracks of the substrate or the lead frame and wrapped by insulating Duroplastmasse.
  • bonding wires The very low heat conduction of the thermosets ( ⁇ 1 W / mK) leads only to a very small line of heat loss through the cladding body to the environment.
  • the invention has therefore set itself the task of enabling an improved dissipation of the heat loss. This is achieved by a form-locked half-power semiconductor module having the features of the main claim.
  • the subclaims give advantageous embodiments of the invention. It is particularly advantageous that the operating conditions of the semiconductor and the associated disadvantages can be significantly reduced by a further Entskyrmungspfad to the environment. The heat path should be led to the environment on the existing substrate, opposite side of the mold package. There can then be made thermal contact with an air or water cooler.
  • the additional heat path increases the heat dissipation by 20% to 30% and by the same amount the loss-related temperature increase decreases in the barrier layer of the semiconductor. This lower temperature swing can now be used for increased life or increased power output.
  • the additional cooling path starts in a very favorable manner on the hot upper side of the semiconductor and is realized by the following structure:
  • the contact tab may be part of a second, extended punch grid.
  • the contact lug can carry in its course a partial electrical insulation (insulating lacquers, polyimide hose) to avoid possible, montage electioner touches of potential-carrying conductor tracks or component boundaries.
  • thermally and electrically conductive bridge which extends the heat path to the surface of Moldpackages.
  • the crowning should preferably be oriented so that the convex side faces the interior of the moldpack.
  • the concave side is accordingly facing the closed tool on the outer surface. This ensures that penetration of the thermoset compound (the over-mold) between the thermal bridge and the tool wall is prevented. There is no need for reworking to remove thermoset stains.
  • a üotentialmaster cooling is required in addition.
  • a heat conductive ceramic e.g., AIn, A12O3
  • soldering, sintering or conductive bonding for electrical insulation.
  • the yielding of the thermal bridge is also advantageous when using electrical insulation.
  • the electrical insulator may be a heat-conducting ceramic body (AlN or A12O3) on the contact tab of the semiconductor worker.
  • the electrical insulator may be a heat-conducting layer, which is applied, for example, on the thermal bridge (bottom or top) by (cold gas or plasma sprayed AlN or A12O3) and then bonded by soldering, sintering or gluing.
  • the electrical insulator can be a heat-conducting ceramic body (AlN or Al 2 O 3 ) or a ceramic layer on the outside of the mold package on the surfaces of the stamped grid and the thermal bridge
  • Such materials are typically plastics (thermoplastics or thermosets), z.T. with mineral fillers (SiO2, A12O3, AlN or similar) or completely bindable minerals (cements).
  • the mold casting is created by decay of an open or closed form in which the component to be wrapped is wholly or partially. If the assembly has external cooling requirements, the partial exemption of coolable surfaces (substrate surfaces or heat spreading elements) is required to ensure optimum heat flow from the covered assembly.
  • the assembly Prior to the process of encapsulation, the assembly may be wholly or partially coated with a bond promoting and insulating laminate (monomers, e.g., parylene or polymers, e.g., paints). This avoids micro-shrinkage at component edges and undercuts.
  • a bond promoting and insulating laminate monomers, e.g., parylene or polymers, e.g., paints.
  • the molding compound may optionally be conveyed using pressure and temperature during and after the coating.
  • pressureless mold casting inter alia, the filling in a vacuum has proved to be advantageous.
  • the partially or fully enclosed assembly is removed from the mold and thus usually has the final outer shape.
  • the electrical and mechanical connections can be finalized by cutting, punching and bending as needed.
  • FIG. 1 shows the assembly according to the invention (substrateless) with a second heat path up through a metal contact tab and an electrically insulating, but heat-conducting insulating body,
  • FIG 3 shows the prior art in the form of a mold package assembly with DCB substrate as a component carrier (and a punched grid for the electrical connections)
  • FIG. 4 shows the assembly according to the invention with a second heat path upwards through a metal contact lug and an electrically insulating but heat-conducting insulating body, with a DCB substrate as the component carrier and a second DCB as the second (electrically insulated main heat bridge (and a copper punched grid) for the contacting of the substrate and a second punched grid for Laschenking ist the semiconductor with yielding crowned expression) and
  • the inventive assembly with a second heat path up through a metal contact tab and an electrically conductive spherically embossed Al or Cu disc is electrically separated from the voltages of the power electronics with a thin Polyimind Mrs.
  • the molding compound power semiconducting conductor according to the invention is shown as a module with a punched grid 19, 24 projecting on the side, so that a substrate can be dispensed with and the stamped grid serves as component carrier.
  • a solder layer or an Ag Sintered layer a power semiconductor 12 is arranged, which is contacted with bonding wires 14 electrically.
  • the electrical contact 16 according to the invention on the upper side can be applied as a copper or silver tab with an underlying Polyimidisolie- tion 18 area on the larger contacts of the semiconductor at the top.
  • a heat-conducting body such as a ceramic insulator 20 is arranged with turn solder or heat conduction paste.
  • Fig. 2 shows a Aufnau without substrate according to the prior art
  • Fig. 3 shows a construction on a DCB (direct copper bond substrate) according to the prior art.
  • FIG. 4 shows the molded-plastic power semiconductor element according to the invention, in which a power inductor with metallic contacts guided in the outer side of a mold module is surrounded, for example, with thermosets in cladding spraying, and wherein a heat conduction path is present for heat dissipation of a bottom side at least through the semiconductor and a substrate carrier, with two DCBs, a DCB substrate as the component carrier, and a second DCB as the second (electrically isolated) main thermal bridge (and a Cu punched grid for contacting the substrate and a second punched grid for tab contacting the semiconductor with compliant crowned features) also a second heat path is formed upward through a metal contact tab and an electrically insulating, but heat-conducting insulating body over at least a portion of a contact of the semiconductor on its upper side.
  • a contact covering which covers the contacts over a wide area is realized, the crowning is applied substantially without any voids over the whole area (ie the crowning of the representation is provided clearly).
  • the thermally conductive on the at least one flat portion of the contact tab to the top of the mold module provided at least one heat-conducting member for forming a second heat-dissipating bridge to the outside of the module is here a DCB.
  • the at least one heat-conducting element can be a ceramic layer to the top of the cladding body is indicated by the layer 40 in FIG. 5.
  • the ceramic layer may be a ceramic plate, or a layer sprayed onto the metallic contact tab by plasma spraying or, as shown in FIG. 5, onto an underlying crowned metal plate.
  • the thermally conductive metallic plate can also be used alone, but it is then preferably by a thin insulating layer - as also shown in FIG. 5 - to be separated from the current-carrying contact tab. It is also possible to use other substrate surfaces, e.g. To provide chip edges with organic protective films, so as to better protect against the aging in the multiple temperature changes particularly critical corner areas.
  • the crowning of the metallic plate proposed in a preferred embodiment is provided with a slightly concave curvature towards the power semiconductor.
  • the free-guided portion of the tab (which may be narrower) may also be electrically insulated, e.g. through a tube 18 as in Fig. 1 or an underlaid insulating sheet to isolate in any case with respect to the stamped grid.
  • the thermally conductive element may be a solid ceramic body or else a compressible, electrically and thermally conductive layer of sintered metal particles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

Formmassenumschlossenes Leistungshalbleiterelement, bei dem ein Leistungshalbleiter mit metallischen, an die Außenseite eines Moldmoduls geführten Kontakten in Umhüllungsspritzen mit Duroplasten umgeben ist, und wobei zur Wärmeableitung einer Bodenseite eine Wärmeleitungsstrecke wenigstens durch den Halbleiter und einen Substratträger vorhanden ist, wobei wenigstens eine wenigstens im Bereich eines der Kontakte des Halbleiters auf seiner Oberseite einen der Kontakte flächig bedeckend ausgebildete Kontaktlasche angesetzt ist, und auf dem wenigstens einen flächigen Abschnitt der Kontaktlasche wärmeleitend zur Oberseite des Moldmoduls wenigstens ein wärmeleitendes Element zur Ausbildung einer zweiten wärmeableitenden Brücke an die Außenseite des Moduls vorgesehen ist.

Description

Formmassenumschlossenes Leistungshalbleiterelement
Die Erfindung betrifft ein formmassenurnschlossenes Leistungshalbleiterelement. Dabei wird ein Halbleiter zu seinem Schutz mit einer Kunststoffmasse - denkbar sind jedoch auch Zemente, d.h. mineralische, gießfähige Gusstoffe - vergossen oder umspritzt.
Bei Leistungshalbleiterelementen, insbesondere bei solchen mit Formverguss werden die Bauelemente üblicherweise nur einseitig durch das Substrat oder das Stanzgitter einen Kühlungspfad zum äußeren Kühlkörper aufweisen. Diese Ableitung der gesamten erzeugten Verlustleistung über nur einen definierten Kühlpfad ist mit Problemen behaftet. Zum einen führt dieser Kühlpfad von der Unterseite des Halbleiterelementes durch das Substrat der Baugruppe beziehungsweise durch ein Stanzgitter an eine äußere Fläche des formvergossenen Leistungshalbleitermoduls (des s. g. mold packages). Von dort wird die Verlustleistung üblicherweise über Wärmeleitpasten an Luft oder Wasserkühler abgegeben.
Andererseits ist schon bekannt, dass die Verlustleistung in einem Halbleiter insbesondere bei einem MOSFET und IGBE-Bauelementen einige lOμm bis lOOμm unterhalb der Kontaktoberfläche des Halbleiters entsteht. Dies entspricht also den oberen 20% der üblichen Gesamtdicke eines Halbleiters.
Da die Montage des Halleiters auf dem Substrat/Stanzgitter üblicherweise auf seiner Unterseite (der von Source-Kontakt bzw. Emitter und Gate abgewandten Seite) erfolgt, ist lediglich der Drain- bzw. Kollektoranschluss an der Unterseite. Die Verlustleistung muss daher im wesentlichen durch die Trägerschichten des Siliziums bis zum Substrat, also durch ca. 80% der Gesamtdicke des Halbleiters geführt werden. Dieser lange Entwärmungspfad fuhrt bei möglichst effektivem Betrieb (hohe Stromlast pro Halbleiterfläche) zu einer starken Erwärmung der Sperrschicht des Halbleiters und dies hat weitere ungünstige Folgen.
Im Stand der Technik werden diese Module auch als Halbleiter-Moldpackages (also als mit Duroplast umspritzte Umhüllungskörper einer elektronischen Baugruppe mit mindestens einen Halbleiterelement) bezeichnet und sind als robuste, umhüllungsge- spritzte Baugruppen bekannt, in denen für bestimmte Anwendungen (z.B. Motorsteuerungen) vorzugweise Leistungsbauelemente mit besonders hoher Verlustleistung zugefasst werden.
Die Oberseite solcher Halbleiterbauelemente ist üblicherweise durch bogenförmig aufgesetzte Kontaktdrähte (Bonddrähte) mit anderen Leiterbahnen des Substrates oder des Stanzgitters verbunden und von isolierender Duroplastmasse umhüllt. Die sehr geringe Wärmeleitung der Duroplastmassen (< 1 W/mK) fuhrt nur zu einer sehr geringen Leitung von Verlustwärme durch den Umhüllungskörper an die Umgebung.
Die oben erwähnten ungünstigen Folgen bestehen daher in :
• geringere Lebensdauer durch höhere Sperrschichttemperatur
• früheres Ablösen der Bonddrähte (Wirebond lift off) bei hoher mittlerer Betriebstemperatur bei wechselnden Lasten
• Suboptimaler Maximalstrom (uneffektive Ausnutzung der Siliziumfläche)
• Größeres Volumen durch unsymmetrische, äußere Kühlkörper der gesamten Baugruppe
Bei der Fertigung des Moldpackage nach dem Stand der Technik sind durch den unsymmetrischen Aufbau (Bauteileträger unten und großes Moldvolumen oben) starke Verformungen durch unsymmetrisches Schrumpfen zu beobachten. Nur durch langwierige Temperung kann diese Verwerfung vermindert werden.
Die Erfindung hat sich daher zur Aufgabe gestellt, eine verbesserte Ableitung der Verlustwärme zu ermöglichen. Erfindungsgemäß wird dies durch ein formumschlossenes Halbleistungshalbleitermodul mit den Merkmalen des Hauptanspruches gelöst. Die Unteransprüche geben vorteilhafte Ausführungsformen der Erfindung wieder. Besonders vorteilhaft ist, dass die Betriebsbedingungen der Halbleiter und die damit verbundenen Nachteile durch einen weiteren Entwärmungspfad zur Umgebung deutlich verringert werden können. Der Wärmepfad soll auf der dem vorhandenen Substrat, gegenüberliegenden Seite des Moldpackage an die Umgebung geführt werden. Dort kann dann thermischer Kontakt zu einem Luft- oder Wasserkühler hergestellt werden.
Der zusätzliche Wärmepfad steigert die Wärmeabfuhr um 20% bis 30% und um den gleichen Anteil sinkt der verlustleistungsbedingte Temperaturhub in der Sperrschicht des Halbleiters. Dieser geringere Temperaturhub kann nun für eine gesteigerte Lebensdauer oder erhöhte Stromabgabe genutzt werden.
Der zusätzliche Entwärmungspfad beginnt dabei in sehr günstiger Weise auf der heißen Oberseite des Halbleiters und wird durch folgenden Aufbau realisiert:
1. Anstelle der üblichen Bonddrähte werden durch Löten, Sintern oder Leitkleben überwiegend ebene Kontaktlaschen zur elektrischen Kontaktierung eingesetzt.
Optionen: a. Die Kontaktlasche kann Bestandteil eines zweiten, ausgedehnten Stanz gitters sein. b . Die Kontaktlasche kann in Ihrem Verlauf eine partielle elektrische Isolierung tragen (Isolierlacke, Polyimidschlauch) zur Vermeidung möglicher, montagebedingter Berührungen von potentialtragenden Leiterbahnen o- der Bauteilberandungen.
2. Auf diesen Kontaktlaschen kann nun durch Löten, Sintern oder Leitkleben eine thermisch und elektrisch leitende Brücke aufgesetzt werden, die den Wärmepfad bis zur Oberfläche des Moldpackages verlängert. Optionen: a. Eine weitere Funktion dieser metallischen Wärmebrücke ist die Gestaltung als nachgiebiges Element. Diese Eigenschaft ist erforderlich, um die technisch bedingten Dickentoleranzen aller gestapelten Materialien durch Nachgeben beim Schließen des Spritzwerkzeugen auszugleichen. Durch eine z.B. ballige Formgebung der Wärmebrücke wird sicherge- stellt, dass keine positive Dickentoleranz entstellt und so Halbleiterbauelemente durch Schließkraft des Werkzeuges zerstört werden. Nach dem Schließen des Spritzwerkzeuges folgt das Einpressen der Duroplastmasse und das vollständige Ausfüllen der verbliebenen Hohlräume innerhalb des Werkzeuges. Eine weitere Verformung der Wärmebrücke ist danach nicht mehr möglich. b. Die Balligkeit soll vorzugsweise so orientiert werden, dass die konvexe Seite dem Inneren des Moldpacke zugewandt ist. Die konkave Seite ist demnach an äußeren Fläche dem geschlossenen Werkzeug zugewandt. Damit wird erreicht, dass ein Eindringen der Duroplastmasse (das Over- mold) zwischen Wärmebrücke und Werkzeugwand verhindert wird. Eine Nacharbeit zur Beseitigung von Duroplast-Flecken entfällt.
3. Für viele Anwendungen ist zusätzlich eine üotentialfreie Entwärmung erforderlich. Dann wird eine möglichst gut Wärme leitende Keramik (z.B. AIn, A12O3) unterhalb oder oberhalb der metallischen Wärmebrücke in den Wärmepfad durch Löten, Sintern oder Leitkleben zur elektrischen Isolation eingesetzt. Das Nachgeben der Wärmebrücke ist auch bei Einsatz einer elektrischen Isolation vorteilhaft.
4.
Optionen: a. Der elektrische Isolator kann ein Wärme leitender Keramikkörper (AlN oder A12O3) auf der Kontaktlasche des Halbeiters sein. b. Der elektrische Isolator kann eine Wärme leitende Schicht sein, die beispielsweise auf der Wärmebrücke (unten oder oben) durch (kaltgas- oder plasmagespritztes AlN oder A12O3) aufgebracht ist und dann durch Löten, Sintern oder Kleben stoffschlüssig verbunden wird. c. Der elektrische Isolator kann ein Wärme leitender Keramikkörper (AlN oder Al2O3) oder eine keramische Schicht auf der Außenseite des Moldpackage auf den Flächen der Stanzgitter und der Wärmebrücke
Die unsymmetrische Schrumpfung mit den ungünstigen Formverwerfungen entfällt vorteilhafterweise durch die Füllung des Moldkörpers mit dem zusätzlichem Material der Wärmebrücke. Der energieaufwendige Temperprozess entfällt.
Weitere Vorteile des Formvergusses sind : • Erhöhung der elektischen Isolation zwischen unterschiedlichen Potentialen im Inneren und gegenüber äußeren Potentialen
• Erhöhung der mechanischen Robustheit und Möglichkeiten zur weiterführenden automatischen Bestückung durch Greifer
• Bestehen hoher klimatischer Anforderungen durch Schaffung eines luftfreien Bauteilvolumens (Vermeidung kondensierender Feuchte im Bauteilvolumen)
• Mechanische Fixierung der äußeren Anschlüsse
• Erhöhung der Zuverlässigkeit des Bauelementes durch angepasste thermische Ausdehnungskoeffizienten von Umhüllungswerkstoff und Bauteilkom- ponenten, und
• Verbesserung der Montagefähigkeit auf Kühlkörpern (Anpressdruck zur Verbesserung des Wärmeüberganges).
Diese Ziele können durch Umhüllen mit einem isolierenden Werkstoff erreicht werden. Solche Werkstoffen sind typischerweise Kunststoffe (Thermoplaste oder Duroplaste), z.T. mit mineralischen Füllstoffen (SiO2, A12O3, AlN oder ähnlich) versehen oder vollständig bindungsfähige Mineralstoffe (Zemente).
Der Formverguss entsteht dabei durch Verfällen einer offenen oder geschlossenen Form in der sich das zu umhüllen Bauelement ganz oder teilweise befindet. Besitzt die Baugruppe externen Kühlungsbedarf, so ist die teilweise Freistellung von kühlbaren Flächen (Substratflächen oder Wärmespreizelementen) erforderlich, damit ein optimaler Wärmefluss aus der umhüllten Baugruppe gewährleistet ist.
Vor dem Prozess des Umhüllens kann die Baugruppe ganz oder teilweise mit einem verbindungsfördernden und isolierenden Schichtstoff (Monomere, z.b. Parylene oder Polymere, z.B. Lacke) überzogen sein. Dies vermeidet Mikrolunker an Komponentenkanten und Hinterschneidungen.
Der Formverguss kann gegebenenfalls unter Anwendung von Druck und Temperatur während und nach der Umhüllung gefördert werden. Bei drucklosem Formverguss hat sich unter anderem das Befüllen im Vakuum als vorteilhaft erwiesen. Nach dem Beenden des Formvergießens wird die teil- oder vollumhüllte Baugruppe aus der Form entnommen und besitzt damit in der Regel die endgültige äußere Gestalt. Die elektrischen und mechanischen Anschlüsse können bei Bedarf durch Schneiden, Stanzen und Biegen in die endgültige Form gebracht werden."
Weitere Merkmale der Erfindung ergeben sich aus der nachfolgenden Beschreibung anhand eines bevorzugten Ausführungsbeispiels. Dabei zeigt :
Fig.l die erfindungsgemäße Baugruppe (substratlos) mit einem zweiten Wärmepfad nach oben durch eine Metall-Kontaktlasche und einen elektrisch isolierenden, aber Wärme leitenden Isolierkörper,
Fig.2 den Stand der Technik in Form einer Moldpackage-Baugruppe mit
Stanzgitter als Bauteileträger (also substratlos)
Fig. 3 den Stand der Technik in Form einer Moldpackage-Baugruppe mit DCB- Substrat als Bauteileträger (und einem Stanzgitter für die elektrischen Anschlüsse)
Fig. 4 die erfindungsgemässe Baugruppe mit einem zweiten Wärmepfad nach oben durch eine Metall-Kontaktlasche und einen elektrisch isolierenden, aber Wärme leitenden Isolierkörper, mit einem DCB-Substrat als Bauteileträger und einem zweiten DCB als zweiter (elektrisch isolierter Hauptwärmebrücke (und einem Cu-Stanzgitter für die Kontaktierung des Substrats und einem zweiten Stanzgitter zur Laschenkontaktierung des Halbleiters mit nachgiebiger balliger Ausprägung) und
Fig. 5 die erfindungsgemässe Baugruppe mit einem zweiten Wärmepfad nach oben durch eine Metall-Kontaktlasche und einen elektrisch leitende ballig geprägte Al oder Cu-Scheibe die mit einer dünnen Polyimindschicht elektrisch von den Spannungen der Leistungselektronik getrennt ist.
In der Fig. 1 wird der erfindungsgemäße formmassenvergossene Leistungshalbleitlei- ter als Modul mit einem an der Seite herausragenden Stanzgitter 19, 24 dargestellt, so dass auf ein Substrat verzichtet werden kann und das Stanzgitter als Bauteileträger dient. Oberhalb des Stanzgitters 10 ist über eine Lotschicht oder eine Ag- Sinterschicht ein Leistungshalbleiter 12 angeordnet, der mit Bonddrähten 14 elektrisch kontaktiert wird. Der erfindungsgemäße elektrische Kontakt 16 an der Oberseite kann als Kupfer- oder Silberlasche mit einer darunter liegenden Polyimidisolie- rung 18 flächig auf die größeren Kontakte des Halbleiters an der Oberseite aufgelegt werden.
Oberhalb dieser Lasche ist ein wärmeleitender Körper, beispielsweise ein keramischer Isolierkörper 20 mit wiederum Lot- oder Wärmeleitungspaste angeordnet.
Oberhalb dieses wiederum ist (zur Verdeutlichung mit einem tatsächlich so nicht vorhandenen weis belassenen Freiraum) eine metallische Wärmebrücke, z. B. eine balliggeprägte Aluminium- oder Kupferscheibe dargestellt.
Es kann jedoch auch nur ein wärmeleitender Körper vorgesehen werden, also lediglich eine dünne, isolierende Schicht auf die Leiterlasche aufgelegt werden und dann direkt der thermische Kontakt zu einer Metallscheibe oder auch nur einem keramischen Leitelement gesucht werden.
Fig. 2 zeigt einen Aufnau ohne Substrat nach dem Stand der Technik, Fig. 3 einen Aufbau auf einem DCB (direct copper bond substrat) nach dem Stand der Technik.
In Fig. 4 ist das erfindungsgemäße formmassenumschlossenes Leistungshalbleiterelement, bei dem ein Leistungshalbeiter mit metallischen, an die Außenseite eines Moldmoduls geführten Kontakten in Umhüllungsspritzen beispielsweise mit Duroplasten umgeben ist, und wobei zur Wärmeableitung einer Bodenseite eine Wärmeleitungsstrecke wenigstens durch den Halbleiter und einen Substratträger vorhanden ist, mit zwei DCB dargestellt, einem DCB-Substrat als Bauteileträger und einem zweiten DCB als zweiter (elektrisch isolierter) Haupt- Wärmebrücke (und einem Cu- Stanzgitter für die Kontaktierung des Substrats und einem zweiten Stanzgitter zur Laschenkontaktierung des Halbleiters mit nachgiebiger balliger Ausprägung) wodurch ebenfalls ein zweiter Wärmepfad nach oben durch eine Metall-Kontaktlasche und einen elektrisch isolierenden, aber Wärme leitenden Isolierkörper über wenigstens einen Bereich eines Kontakts des Halbleiters auf seiner Oberseite gebildet ist. Wie zuvor ist eine den Kontakte flächig bedeckend ausgebildete Kontaktlasche realisiert, die Balligkeit legt sich ohne Lunker im wesentlichen vollflächig an (d.h. die Balligkeit der Darstellung ist überdeutlich vorgesehen).
Das auf dem wenigstens einen flächigen Abschnitt der Kontaktlasche wärmeleitend zur Oberseite des Moldmoduls vorgesehene wenigstens eine wärmeleitende Element zur Ausbildung einer zweiten wärmeableitenden Brücke an die Außenseite des Moduls ist hier ein DCB.
Dass das wenigstens eine wärmeleitenden Element zur Oberseite des Umhüllungskörpers eine keramische Schicht sein kann, ist durch die Schicht 40 in Fig. 5 angedeutet. Die keramische Schicht kann eine keramische Platte sein, oder eine durch Plasmaspritzen auf die metallische Kontaktlasche - oder wie in Fig. 5 dargestellt auf eine darunter liegende ballige Metallplatte - aufgespritzte Schicht.
Die wärmeleitende metallische Platte kann auch allein eingesetzt werden, sie ist dann aber bevorzugt durch eine dünne Isolierschicht - wie ebenfalls der Fig. 5 zu entnehmen - von der stromführenden Kontaktlasche zu trennen. Es ist auch möglich andere Substratoberflächen, z.B. Chipkanten mit organischen Schutzfolien zu versehen, um so die bei den vielfachen Temperaturwechseln besonders kritischen Eckbereiche gegen Alterung besser zu schützen.
Die in einer bevorzugten Ausführungsform vorgeschlagene Balligkeit der metallischen Platte ist mit einer leicht konkaven Wölbung auf den Leistungshalbleiter hin vorgesehen.
Neben der Isolierung oberhalb der Kontaktlasche ist auch der frei geführte Teil der Lasche (der schmaler sein kann) elektrisch zu isolieren, z.B. durch einen Schlauch 18 wie in Fig. 1 oder eine untergelegte Isolierblatt, um jedenfalls gegenüber dem Stanzgitter zu isolieren.
Das wärmeleitende Element kann ein fester Keramikkörper oder auch eine kompres- sible, elektrisch und thermisch leitfähige Schicht aus sinterfälligen Metallpartikeln sein.

Claims

ANSPRUCHE
1. Formmassenumschlossenes Leistungshalbleiterelement, bei dem ein Leistungshalbeiter mit metallischen, an die Außenseite eines Moldmoduls geführten Kontakten mit einer Umhüllung aus Duroplasten, Thermoplasten oder Zementen umgeben ist, und wobei zur Wärmeableitung einer Bodenseite eine Wärmeleitungsstrecke wenigstens durch den Halbleiter und einen Substratträger vorhanden ist, dadurch gekennzeichnet, daß
wenigstens eine wenigstens im Bereich eines der Kontakte des Halbleiters auf seiner Oberseite einen der Kontakte flächig bedeckend ausgebildete Kontaktlasche angesetzt ist,
auf dem wenigstens einen flächigen Abschnitt der Kontaktlasche wärmeleitend zur Oberseite des Moldmoduls wenigstens ein wärmeleitendes Element zur Ausbildung einer zweiten wärmeableitenden Brücke an die Außenseite des Moduls vorgesehen ist.
2. Formmassenumschlossenes Leistungshalbleiterelement nach Anspruch 1, dadurch gekennzeichnet, dass wenigstens eines der wärmeleitenden Element zur Oberseite des Umhüllungskörpers eine keramische Schicht ist.
3. Formmassenumschlossenes Leistungshalbleiterelement nach Anspruch 2, dadurch gekennzeichnet, dass die keramische Schicht eine keramische Platte ist.
4. Formmassenumschlossenes Leistungshalbleiterelement nach Anspruch 2, dadurch gekennzeichnet, dass die keramische Schicht durch Plasmaspritzen auf die metallische Kontaktlasche aufgespritzt ist.
5. Formmassenumschlossenes Leistungshalbleiterelement nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass wenigstens eines der wärmeleitenden Elemente eine metallische Platte ist.
6. Formmassenumschlossenes Leistungshalbleiterelement nach Anspruch 5, dadurch gekennzeichnet, dass die metallische Platte ballig ausgebildet ist mit einer leicht konkaven "Wölbung auf den Leistungshalbleiter hin.
7. Formmassenumschlossenes Leistungshalbleiterelement nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass unterhalb des freigeführten Teils der metallischen Kontaktlasche eine isolierende Lagenschicht eingelegt ist.
8. Formmassenumschlossenes Leistungshalbleiterelement nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das wärmeleitende Element eine kompressible, elektrisch und thermisch leitfähige Schicht aus sinterfähigem Metallpartikeln ist.
9. Formmassenumschlossenes Leistungshalbleiterelement nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass wenigstens eine weitere Substratoberfläche mit einer organischen Schutzfolien unter der Formmassenumhüllung versehen ist.
10. Formmassenumschlossenes Leistungshalbleiterelement nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass vor dem Prozess des Umhül- lens die Baugruppe ganz oder teilweise einen Überzug aus einem verbindungsför- dernden und isolierenden Schichtstoff aufweist.
PCT/DE2010/000019 2009-01-15 2010-01-13 Formmassenumschlossenes leistungshalbleiterelement WO2010081465A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE202009000615U DE202009000615U1 (de) 2009-01-15 2009-01-15 Formmassenvergossenes Leistungshalbleiterelement
DE202009000615.8 2009-01-15

Publications (2)

Publication Number Publication Date
WO2010081465A2 true WO2010081465A2 (de) 2010-07-22
WO2010081465A3 WO2010081465A3 (de) 2010-12-02

Family

ID=42221218

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2010/000019 WO2010081465A2 (de) 2009-01-15 2010-01-13 Formmassenumschlossenes leistungshalbleiterelement

Country Status (2)

Country Link
DE (1) DE202009000615U1 (de)
WO (1) WO2010081465A2 (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2775516A3 (de) * 2013-03-08 2014-12-03 Delphi Technologies, Inc. Beanspruchungsausgleichsanordnung für Halbleitervorrichtungen mit einer oder mehreren doppelseitig mit Stanzgittern verbundenen Vorrichtungen, wobei die anderen Seiten der Stanzgitter mit AlN, Al2O3 oder Si3N4 Substraten verbunden sind
DE102015102041A1 (de) * 2015-02-12 2016-08-18 Danfoss Silicon Power Gmbh Leistungsmodul
US9842796B2 (en) 2014-06-17 2017-12-12 Robert Bosch Gmbh Electronic module including a device for dissipating heat generated by a semiconductor unit situated in a plastic housing and method for manufacturing an electronic module
CN110466106A (zh) * 2019-08-08 2019-11-19 中国商用飞机有限责任公司北京民用飞机技术研究中心 一种传感器安装结构及传感器安装方法
US10679978B2 (en) 2017-04-13 2020-06-09 Infineon Technologies Ag Chip module with spatially limited thermally conductive mounting body
CN113266542A (zh) * 2021-06-29 2021-08-17 哈尔滨工业大学 一种霍尔推力器磁路散热结构
US11251116B2 (en) 2017-08-25 2022-02-15 Huawei Technologies Co., Ltd. Power semiconductor module for improved heat dissipation and power density, and method for manufacturing the same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012201889A1 (de) * 2012-02-09 2012-10-04 Conti Temic Microelectronic Gmbh Elektrisches Leistungsmodul und Verfahren und Vorrichtung zum Herstellen eines elektrischen Leistungsmoduls
DE102012204159A1 (de) * 2012-03-16 2013-03-14 Continental Automotive Gmbh Leistungshalbleitermodul und Verfahren zur Herstellung desselben
US9275926B2 (en) 2013-05-03 2016-03-01 Infineon Technologies Ag Power module with cooling structure on bonding substrate for cooling an attached semiconductor chip
DE102014014473C5 (de) * 2014-09-27 2022-10-27 Audi Ag Verfahren zum Herstellen einer Halbleiteranordnung sowie entsprechende Halbleiteranordnung
US10002821B1 (en) 2017-09-29 2018-06-19 Infineon Technologies Ag Semiconductor chip package comprising semiconductor chip and leadframe disposed between two substrates

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6891256B2 (en) * 2001-10-22 2005-05-10 Fairchild Semiconductor Corporation Thin, thermally enhanced flip chip in a leaded molded package
JP2004349347A (ja) * 2003-05-20 2004-12-09 Rohm Co Ltd 半導体装置
WO2006068643A1 (en) * 2004-12-20 2006-06-29 Semiconductor Components Industries, L.L.C. Semiconductor package structure having enhanced thermal dissipation characteristics
US7557432B2 (en) * 2005-03-30 2009-07-07 Stats Chippac Ltd. Thermally enhanced power semiconductor package system
US7285849B2 (en) * 2005-11-18 2007-10-23 Fairchild Semiconductor Corporation Semiconductor die package using leadframe and clip and method of manufacturing
JP4450230B2 (ja) * 2005-12-26 2010-04-14 株式会社デンソー 半導体装置
US7663212B2 (en) * 2006-03-21 2010-02-16 Infineon Technologies Ag Electronic component having exposed surfaces
US7757392B2 (en) * 2006-05-17 2010-07-20 Infineon Technologies Ag Method of producing an electronic component
JP4967447B2 (ja) * 2006-05-17 2012-07-04 株式会社日立製作所 パワー半導体モジュール

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2775516A3 (de) * 2013-03-08 2014-12-03 Delphi Technologies, Inc. Beanspruchungsausgleichsanordnung für Halbleitervorrichtungen mit einer oder mehreren doppelseitig mit Stanzgittern verbundenen Vorrichtungen, wobei die anderen Seiten der Stanzgitter mit AlN, Al2O3 oder Si3N4 Substraten verbunden sind
US8987875B2 (en) 2013-03-08 2015-03-24 Delphi Technologies, Inc. Balanced stress assembly for semiconductor devices
US9842796B2 (en) 2014-06-17 2017-12-12 Robert Bosch Gmbh Electronic module including a device for dissipating heat generated by a semiconductor unit situated in a plastic housing and method for manufacturing an electronic module
DE102015102041A1 (de) * 2015-02-12 2016-08-18 Danfoss Silicon Power Gmbh Leistungsmodul
US10403566B2 (en) 2015-02-12 2019-09-03 Danfoss Silicon Power Gmbh Power module
US10679978B2 (en) 2017-04-13 2020-06-09 Infineon Technologies Ag Chip module with spatially limited thermally conductive mounting body
US11251116B2 (en) 2017-08-25 2022-02-15 Huawei Technologies Co., Ltd. Power semiconductor module for improved heat dissipation and power density, and method for manufacturing the same
US11823996B2 (en) 2017-08-25 2023-11-21 Huawei Technologies Co., Ltd. Power semiconductor module for improved heat dissipation and power density, and method for manufacturing the same
CN110466106A (zh) * 2019-08-08 2019-11-19 中国商用飞机有限责任公司北京民用飞机技术研究中心 一种传感器安装结构及传感器安装方法
CN113266542A (zh) * 2021-06-29 2021-08-17 哈尔滨工业大学 一种霍尔推力器磁路散热结构

Also Published As

Publication number Publication date
WO2010081465A3 (de) 2010-12-02
DE202009000615U1 (de) 2010-05-27

Similar Documents

Publication Publication Date Title
WO2010081465A2 (de) Formmassenumschlossenes leistungshalbleiterelement
DE102014213564B4 (de) Halbleitervorrichtung und Verfahren zu ihrer Herstellung
DE19983419B3 (de) Elektrisch isoliertes verpacktes Leistungshalbleiterbauelement und Verfahren zur Herstellung desselben
DE102007005233B4 (de) Leistungsmodul
DE102016206865B4 (de) Halbleitervorrichtung
DE102014102006B4 (de) Halbleitermodul
DE102009014794B3 (de) Verfahren zum Herstellen eines für Hochvoltanwendungen geeigneten festen Leistungsmoduls und damit hergestelltes Leistungsmodul
DE102014118080B4 (de) Elektronisches Modul mit einem Wärmespreizer und Verfahren zur Herstellung davon
DE102008029829B4 (de) Vertikal nach oben kontaktierender Halbleiter und Verfahren zu dessen Herstellung
EP3271943B1 (de) Leistungsmodul sowie verfahren zum herstellen eines leistungsmoduls
DE102013112267A1 (de) Halbleitermodul mit einer einen Halbleiterbaustein bedeckenden Umhüllungsmasse
EP2019429A1 (de) Modul mit einem zwischen zwei Substraten, insbesondere DCB-Keramiksubstraten, elektrisch verbundenen elektronischen Bauelement und dessen Herstellungsverfahren
US10991650B2 (en) Semiconductor device and method of manufacturing semiconductor device
US20080191359A1 (en) Panel, semiconductor device and method for the production thereof
DE112016000517T5 (de) Halbleitervorrichtung
DE102014104856A1 (de) Explosionsgeschütztes Leistungshalbleitermodul
US11581230B2 (en) Power semiconductor module and a method for producing a power semiconductor module
EP3488466A1 (de) Leistungsmodul
US9818730B2 (en) Semiconductor arrangement, method for producing a number of chip assemblies, method for producing a semiconductor arrangement and method for operating a semiconductor arrangement
US11935811B2 (en) Baseplate for a semiconductor module and method for producing a baseplate
DE112019002851T5 (de) Halbleiterbauelement und leistungswandlervorrichtung
DE102005030247A1 (de) Leistungshalbleitermodul mit Verbindungselementen hoher Stromtragfähigkeit
US10304751B2 (en) Electronic sub-module including a leadframe and a semiconductor chip disposed on the leadframe
DE102012215656B4 (de) Verfahren zur Herstellung eines Leistungshalbleitermoduls
WO2018001883A1 (de) Leistungsmodul

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10706477

Country of ref document: EP

Kind code of ref document: A2

122 Ep: pct application non-entry in european phase

Ref document number: 10706477

Country of ref document: EP

Kind code of ref document: A2