WO2010081287A1 - 用于含无定形羟基氧化铁物料和含该物料的脱硫剂的制备方法和再生方法 - Google Patents

用于含无定形羟基氧化铁物料和含该物料的脱硫剂的制备方法和再生方法 Download PDF

Info

Publication number
WO2010081287A1
WO2010081287A1 PCT/CN2009/001595 CN2009001595W WO2010081287A1 WO 2010081287 A1 WO2010081287 A1 WO 2010081287A1 CN 2009001595 W CN2009001595 W CN 2009001595W WO 2010081287 A1 WO2010081287 A1 WO 2010081287A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron oxyhydroxide
amorphous iron
desulfurizing agent
solid
agent
Prior art date
Application number
PCT/CN2009/001595
Other languages
English (en)
French (fr)
Inventor
刘振义
林科
高群仰
Original Assignee
北京三聚环保新材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN200810247535.3A external-priority patent/CN101767830B/zh
Priority claimed from CN200810247537.2A external-priority patent/CN101767832B/zh
Priority claimed from CN200910086347.1A external-priority patent/CN101898110B/zh
Priority claimed from CN200910086348.6A external-priority patent/CN101898111B/zh
Application filed by 北京三聚环保新材料股份有限公司 filed Critical 北京三聚环保新材料股份有限公司
Priority to DK09838074.4T priority Critical patent/DK2384814T3/en
Priority to EA201170903A priority patent/EA023831B1/ru
Priority to EP09838074.4A priority patent/EP2384814B1/en
Publication of WO2010081287A1 publication Critical patent/WO2010081287A1/zh
Priority to US13/174,728 priority patent/US8647600B2/en
Priority to US14/147,007 priority patent/US9283539B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/52Hydrogen sulfide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0225Compounds of Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt
    • B01J20/0229Compounds of Fe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/2803Sorbents comprising a binder, e.g. for forming aggregated, agglomerated or granulated products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3071Washing or leaching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/3433Regenerating or reactivating of sorbents or filter aids other than those covered by B01J20/3408 - B01J20/3425
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/345Regenerating or reactivating using a particular desorbing compound or mixture
    • B01J20/3458Regenerating or reactivating using a particular desorbing compound or mixture in the gas phase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/345Regenerating or reactivating using a particular desorbing compound or mixture
    • B01J20/3475Regenerating or reactivating using a particular desorbing compound or mixture in the liquid phase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/90Regeneration or reactivation
    • B01J23/94Regeneration or reactivation of catalysts comprising metals, oxides or hydroxides of the iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/112Metals or metal compounds not provided for in B01D2253/104 or B01D2253/106
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20738Iron
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/02Amorphous compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Definitions

  • the invention relates to a preparation method and a regeneration method thereof for containing an amorphous iron oxyhydroxide material, a preparation method of the desulfurization agent containing the amorphous iron oxyhydroxide and a regeneration method thereof, and belongs to the technical field of desulfurization agents.
  • Sulfides are produced in many applications in industrial production, such as in the production of chemical raw materials from coal or petroleum, and in wastewater or waste gas from industrial production.
  • industrial production such as in the production of chemical raw materials from coal or petroleum, and in wastewater or waste gas from industrial production.
  • the sulfur-containing substances react in the production process to release hydrogen sulfide, which directly leads to the catalyst in the subsequent production section. Active substance poisoning is inactivated.
  • the discharge of waste water from industrial production or hydrogen sulfide contained in exhaust gas if directly discharged, will seriously affect the environment and even cause human and animal poisoning.
  • the bonding metal oxide described in the document includes one or more of metal oxides of the formula MeA, wherein Me is a metal element selected from the 4th, 5th, 6th, and 7th cycles of the periodic table, and X is selected from the group consisting of 1-3, y is selected from 1-4, and the above-mentioned binder metal oxide further includes a hydrate of the above metal oxide and a hydrophobic binder. It is apparent that when Me is selected for Fe, the bonding metal oxide disclosed in the patent document may be composed of Fe 3 (V, Fe 2 ( 3 ⁇ 4 , Fe 2 0 3 • 0) and a hydrophobic binder.
  • the sulfur oxide test of the metal oxide indicates that the compressed metal oxide particles can retain the average amount of sulfur equal to 10%, more preferably 30%, of the weight of the bonded metal oxide particles; the amount of hydrogen sulfide contained is per pound of metal Oxide particles
  • the desulfurizing agent (including the iron-based desulfurizing agent) in the prior art is also ubiquitous, and the waste agent after use is not difficult to be regenerated or regenerated, so that only the large 1: waste agent can be buried, which is not only effective in wasting the original desulfurizing agent. Resources, and cause new 'environmental pollution problems.
  • Ferric oxyhydroxide (FeOOH) is widely used as a desulfurizer in the chemical and chemical industry due to its good desulfurization performance.
  • a ⁇ -FeOOH desulfurizing agent for removing hydrogen sulfide in industrial wastewater and a preparation method thereof are disclosed in Japanese Patent Publication No. JP5329362 A.
  • JP5329362 A In the article entitled "Study on Desulfurization Activity of Ferric Oxyhydroxide by Different Methods" (Coal Conversion, Vol. 29, No.
  • the product formed is dense in structure, the pores are not developed, and the sulfur capacity is not high, so it does not meet the requirements of industrial mass production.
  • the contents of the method for regenerating and regenerating iron oxyhydroxide are not disclosed in this article.
  • amorphous iron oxyhydroxide desulfurizers are less, even if so-called amorphous iron oxyhydroxide desulfurizers are commercially available, because the content of amorphous iron oxyhydroxide is low (low At 40%), other non-renewable iron oxides such as ferroferric oxide, ferric oxide or other crystalline iron oxyhydroxide are high in content, resulting in poor desulfurization performance of these amorphous iron oxide desulfurizer products. Moreover, regeneration is difficult, and there is no practical value even if it is regenerated.
  • the applicant has been working on the desulfurization performance of amorphous iron oxyhydroxide.
  • the topic published in 2006 was "a high sulfur capacity.”
  • the characterization of the active components of the iron desulfurizer (see the National Gas Purification Information Station 2006 Technical Exchange Proceedings, pp. 107-111)'s article has disclosed the laboratory preparation ideas for amorphous iron oxyhydroxide.
  • the sulfur capacity of the obtained amorphous iron oxyhydroxide was measured, and the reaction mechanism of the desulfurization and regeneration of the amorphous iron oxyhydroxide was verified by experimental data.
  • the prepared product still contains a large amount of ferroferric oxide, ferric oxide and other crystalline iron oxyhydroxide, and the content of amorphous iron oxyhydroxide is not ideal.
  • the method of regeneration has not been studied in depth, it is only disclosed that the prepared product containing amorphous iron oxyhydroxide can be oxidized and regenerated in the air under natural conditions without industrial regeneration method. Do research.
  • CN1944273A a method for preparing ⁇ -FeOOH, which saturates ferrous sulfate
  • the solution and the carbonate saturated solution are uniformly mixed in the reaction tank, and the reaction pH is controlled to be 8-9, and ferrous carbonate and sulfate are formed, and the reaction is carried in the reaction tank.
  • the air is oxidized, washed with water, filtered, and the filtered material is dried to obtain the Y-FeOOH; due to the controlled reaction conditions and steps, the method prepares the material whose main component is Y-FeOOH, not The main component is amorphous iron oxyhydroxide material, while Y-FeOOH has low sulfur capacity and poor reproducibility; (2) other types of desulfurizing agents used now cannot be recycled or the regeneration cost is high, so that only a large amount of waste agent can be landfilled. It not only wastes the effective resources in the original desulfurizer, but also causes serious pollution to the environment.
  • the technical problem to be solved by the present invention is the problem of low amorphous iron oxyhydroxide content in the materials prepared in the prior art, thereby proposing an industrially large-scale and stable production of amorphous iron oxyhydroxide content.
  • the method of high material is the technical problem to be solved by the present invention.
  • Another technical problem to be solved by the present invention is to propose a method for preparing the desulfurizing agent.
  • Still another technical problem to be solved by the present invention is to propose a method of repeating regeneration of the desulfurizing agent.
  • an amorphous iron oxyhydroxide-containing material having a high purity and a high sulfur capacity can be produced on an industrial scale;
  • the waste agent after use of the desulfurizing agent The rapid regeneration and recovery of elemental sulfur produced during the regeneration process;
  • Third, the material recovered after removal of elemental sulfur can produce a new high sulfur capacity desulfurizer.
  • a method for preparing an amorphous iron oxyhydroxide-containing material of the present invention comprises the following steps: (1) preparing a solid soluble ferrous salt into a solution for use; (2) step (1) The soluble ferrous salt solution obtained is mixed with a pre-formed soluble carbonate or soluble acid carbonate solution to react the two; or the soluble ferrous salt solution obtained in the step (1) and the solid carbonate Or the solid acid carbonate is mixed to react the two; (3) filtering the material obtained in the step (2), filtering out the formed soluble salt, and washing the obtained filter cake with water; (4) The filter cake is formulated into a suspension, oxidized by passing through an oxygen-containing gas, and then filtered and dried to obtain a material containing amorphous iron oxyhydroxide.
  • the solid carbonate is N C0 3, (N3 ⁇ 4) 2 C0 3 or K 2 C0 3, of the solid bicarbonate NaHC0 3, HC0 3 or KHC0 3. 5 ⁇
  • the pH of the solution is controlled in the range of 7. 5- 8. 5. 5% ⁇
  • the mass percentage of Na', IT or NH in the filter cake is less than 0.5%.
  • the suspension is formulated to have a solid mass percentage of 5 to 30%, preferably 10 to 15%.
  • the drying temperature does not exceed 100
  • the drying temperature is from 80 ° C to 100 ° C.
  • the oxygen-containing gas is air.
  • Oxidation is carried out by passing an oxygen-containing gas until the mass ratio of ferrous ions to iron in the suspension is less than 1%.
  • the mass of the amorphous iron oxyhydroxide in the prepared material is 65-100%, and the remaining components are water and reaction by-products.
  • the method for regenerating the material containing amorphous iron oxyhydroxide as a desulfurizing agent comprises the following steps: (a) grinding the material containing the amorphous iron oxyhydroxide as a desulfurizing agent into particles, thereby obtaining (b) dissolving the waste powder into a suspension, oxidizing it with an oxygen-containing gas, and converting the iron sulfide in the suspension into amorphous iron oxyhydroxide and elemental sulfur to form a a slurry of amorphous iron oxyhydroxide and elemental sulfur; (c) filtering the slurry to obtain a solid material, extracting elemental sulfur in the solid material with a solvent, and remaining solid after extraction is oxidized by amorphous hydroxy group containing regeneration Iron material.
  • step (a) Also included in the step (a) is a step of washing the waste with water.
  • step (c) the solution separated after the extraction is concentrated to obtain crystallized elemental sulfur.
  • the solid content in the suspension prepared is 5-30% by mass, preferably 10-15% by weight.
  • the oxygen-containing gas is air.
  • the solvent used is a non-polar solvent.
  • the non-polar solvent is carbon tetrachloride or carbon disulfide.
  • the waste agent is ground to a particle of 100 to 400 mesh, preferably 200 mesh.
  • the method for regenerating the material containing amorphous iron oxyhydroxide as a desulfurizing agent comprises the following steps: (I) grinding the material containing the amorphous iron oxyhydroxide as a desulfurizing agent into particles, thereby obtaining (A) dissolving the waste powder into a suspension, oxidizing by introducing an oxygen-containing gas, and converting the iron sulfide in the suspension into amorphous iron oxyhydroxide and elemental sulfur to form a a slurry of the amorphous iron oxyhydroxide and elemental sulfur; (III) placing the slurry or the solid material obtained by filtering the slurry into a container, and introducing air to float the elemental sulfur, the lower part of the container The precipitate is a regenerated material containing amorphous iron oxyhydroxide.
  • the step of washing the waste agent with water is further included.
  • the step of separating the floating elemental sulfur is further included.
  • the solid content in the prepared suspension is from 5 to 30%, preferably from 10 to 15%.
  • the oxygen-containing gas is air.
  • an auxiliary agent is added to the container to facilitate the floating of the elemental sulfur.
  • the auxiliaries are water glass and kerosene.
  • the container used is a flotation cell.
  • the waste agent is ground into particles of 100-400 mesh. The waste was ground to 200 mesh pellets.
  • the oxygen atom in the amorphous iron oxyhydroxide of the invention has a cubic close-packed structure, and the iron ions are located in the tetrahedron or the octahedral cavity formed by the oxygen atom, and the two forms a short-range order and a long-range absence in the overall structure.
  • the structure of the sequence has a strong stability with the combination of sulfur atoms, so the sulfur capacity is high and the desulfurization effect is good; ⁇
  • the present invention discloses a desulfurizing agent which can be repeatedly recycled, and the desulfurizing agent includes a material for shaping iron oxyhydroxide and an organic binder, wherein the material containing amorphous iron oxyhydroxide is prepared by the following steps: (1) solid soluble ferrous salt and solid soluble carbonate or soluble acid carbonate Preparing a solution for use; (2) mixing the soluble ferrous salt solution obtained in the step (1) with a pre-formed soluble carbonate or soluble acid carbonate solution to cause the two to react; or The soluble ferrous salt solution obtained in 1) is mixed with a solid carbonate or a solid acid carbonate to react the two; (3) the product obtained in the step (2) The material is filtered, and the resulting soluble salt is filtered off to obtain a filter cake; (4) the filter cake is oxidized with an oxygen-containing gas to obtain the a
  • the desulfurizing agent also includes an additive.
  • the desulfurizing agent is composed of 88% by weight to 93% by weight of the amorphous iron oxyhydroxide-containing material and 7 wt% to 12% by weight of the organic binder.
  • the desulfurizing agent is composed of 88 wt% to 92 wt% of an amorphous iron oxyhydroxide-containing material, 7 wt% to 11 wt% of the organic binder, and 1 wt% to 5 wt% of the additive.
  • the organic binder is one or more of sodium carboxymethyl cellulose, phthalocyanine powder, and cellulose powder.
  • the additive is one or more of wood powder, rice hull powder, and wheat bran.
  • the solid carbonate is Na 2 C0 3 , ( ⁇ , , ) 2 C0 3 or K 2 C0 3
  • the solid acid carbonate is NaHC0 3 , NH. HC0a or KHC0:,. 5 ⁇
  • the pH of the solution is controlled in the range of 7. 5- 8. 5.
  • the oxidation in the step (4) is achieved by first arranging the filter cake in the step (3) into a suspension, then introducing air into the oxidation, filtering and drying to obtain the amorphous iron oxyhydroxide-containing material. materials.
  • the filter cake was washed with water, the filter cake Na ', ⁇ H 4 + or a mass percent concentration of less than 0.5%; the solid mass of the formulated suspension percentage 5 to 30%, preferably 10-15%; in this step, the air is oxidized until the mass ratio of ferrous ions to iron in the suspension is less than 1%; the drying temperature does not exceed 10 CTC, preferably 80 - lOO'C.
  • the oxidation in the step (4) is carried out by: subjecting the filter cake in the step (3) to natural oxidation in air, followed by water washing, filtration, and drying to obtain the amorphous iron oxide-containing material.
  • the filter cake is placed in the air and oxidized until the mass ratio of ferrous ions to iron in the material is less than 10%; in this step, the mass concentration of Na K' or NI in the water-washed material is less than 1 %; Drying temperature does not exceed 100 °C.
  • the preparation method of the above desulfurizing agent comprises the following steps: (A) weighing the amorphous iron oxyhydroxide-containing material and the organic binder as required, or weighing the amorphous iron oxyhydroxide-containing material, organically viscous a mixture of additives and additives, and then mixing the solid materials in the mixer; (B) forming the mixed solid material into a strip or a sphere or a pellet; (C) forming the above-mentioned molded product at -5 - 45'
  • the desulfurizing agent is obtained by drying naturally at C or by drying at 60-90 °C. .
  • the regeneration of the desulfurizing agent is the regeneration of amorphous iron oxyhydroxide in the amorphous iron oxyhydroxide containing material.
  • the method for repeating regeneration after use of the desulfurizing agent comprises the following steps: (I) grinding the waste agent obtained after the use of the desulfurizing agent into particles to obtain a waste agent powder; ( ⁇ ) the waste agent powder Forming a suspension, oxidizing by introducing an oxygen-containing gas, converting the iron sulfide in the suspension into amorphous iron oxyhydroxide and elemental sulfur to form a slurry containing the amorphous iron oxyhydroxide and elemental sulfur; (III) placing the slurry or the solid material obtained by filtering the slurry into a container, introducing air to float the elemental sulfur, removing the precipitate from the lower part of the container, and then adding an organic binder or adding organic The binder and the additive form a regenerated desulfurizing agent.
  • a step of washing the waste agent with water is further included.
  • the step of separating the floating elemental sulfur is further included.
  • the solid mass percentage in the prepared suspension is 5-'30%, preferably 10-15%.
  • the oxygen-containing gas is air.
  • an auxiliary agent is added to the container to facilitate the floating of the elemental sulfur, and the auxiliary agent is water glass and kerosene.
  • the container used is a flotation cell.
  • the waste agent is ground to particles of 100 to 400 mesh, preferably particles of 200 mesh.
  • the repeated regeneration method after the use of the desulfurizing agent comprises the following steps: (a) grinding the waste agent obtained after the use of the desulfurizing agent into particles to obtain a waste powder; (b) dissolving the waste powder into a suspension The liquid is oxidized by introducing an oxygen-containing gas to convert the iron sulfide in the suspension into amorphous iron oxyhydroxide and elemental sulfur to form a slurry containing the amorphous iron oxyhydroxide and elemental sulfur; (c) The slurry is filtered to obtain a solid material, and the elemental sulfur in the solid material is extracted with a solvent. After the extraction, an organic binder is added to the remaining solid or an organic binder and an additive are added to prepare a regenerated desulfurizing agent.
  • step (a) Also included in the step (a) is a step of washing the waste with water.
  • step (c) the solution separated after the extraction is concentrated to obtain crystallized elemental sulfur.
  • the solid content in the suspension prepared is from 5 to 30% by mass, preferably from 10 to 15%.
  • the oxygen-containing gas is air.
  • the solvent used is a non-polar solvent.
  • the non-polar solvent is carbon tetrachloride or carbon disulfide.
  • the waste agent is ground to a particle of 100 to 400 mesh, preferably 200 mesh.
  • the above technical solution of the present invention has the following advantages compared with the prior art: (1)
  • the method for preparing a material containing amorphous iron oxyhydroxide according to the present invention is not limited to a laboratory, can be mass-produced industrially, and is produced.
  • the material has high content of amorphous iron oxyhydroxide (65-100%) and high sulfur capacity (up to 62%), which solves the problem that the prior art cannot stably and mass-produce industrially pure amorphous and desulfurization performance.
  • the present invention reacts in a soluble ferrous salt with a carbonate or an acid carbonate
  • the soluble salt formed by the reaction such as sodium sulfate, sodium chloride, potassium chloride, etc.
  • This step is to avoid the solubility of oxygen in the suspension when the suspension is oxidized in the next step, and the oxidation rate is low.
  • the invention ensures that the amorphous iron oxyhydroxide is finally formed after the reaction of the material by the above preparation method, and the iron oxyhydroxide or the ferric oxide and the trioxide are not mainly formed into other crystal phases.
  • the filter cake is formulated into a suspension
  • the air is oxidized.
  • the oxidation method has the advantages that the oxidation process can be controlled and the oxidation effect is good.
  • the mass percentage of the solid in the prepared suspension is preferably 10-15%, and the oxidation speed is fast and can be guaranteed in this range.
  • the method of the method of the present invention In order to ensure that the ferrous ions in the solution are completely precipitated, secondly, under the alkaline condition, the ferrous ions are easily oxidized to iron ions without generating triiron tetroxide; (5)
  • the preparation of the present invention contains amorphous In the method of controlling iron oxyhydroxide, controlling the drying temperature to not exceed 10 CTC is to prevent the amorphous iron oxyhydroxide from generating more ferric oxide at a high temperature; (6) oxidizing the amorphous hydroxy group prepared by the method of the invention
  • the iron material and the two regeneration methods of the present invention can rapidly regenerate the waste agent produced by using the material as a desulfurizer, and the recycled material still maintains a high sulfur capacity, and the recycled material is used after use.
  • the present invention converts the flotation method of mine beneficiation into the field of desulfurizer regeneration, and separates the regenerated amorphous iron oxyhydroxide and elemental sulfur by introducing air, that is, by completely physical means The separation and purification of the regenerated amorphous iron oxyhydroxide has good economic and environmental significance;
  • the waste agent is ground into particles of 100-400 mesh (preferably 200 mesh), The particle size contributes to the oxidation of the waste agent, and is also advantageous for the subsequent extraction step or flotation step;
  • (12) in the method for preparing an amorphous iron oxyhydroxide material according to the present invention The cake is placed in the air for natural oxidation, and the oxidation method has the advantages of low cost;
  • the desulfurizing agent of the present invention comprises a material containing amorphous iron oxyhydroxide and an organic binder, wherein the preparation method of the present invention is used.
  • the amorphous iron oxyhydroxide-containing material has a high content of amorphous iron oxyhydroxide, and therefore, the desulfurizing agent having the amorphous iron oxyhydroxide-containing material has a high sulfur capacity (under anaerobic conditions, one-time penetration) Sulfur capacity can reach 56%, and regeneration is easy;
  • Additives such as wood chip powder, rice husk powder, wheat bran, etc. can also be added to the desulfurizing agent of the present invention, and the additive is added to make the structure of the desulfurizing agent loose and easy to absorb.
  • the organic binder of the present invention is one or more selected from the group consisting of sodium carboxymethyl cellulose, phthalocyanine powder, and cellulose powder. These organic binders do not cover amorphous iron oxyhydroxide. The surface of the material, so it does not affect the desulfurization activity of the amorphous iron oxyhydroxide, so that the desulfurizing agent of the present invention has a high sulfur capacity; (16) the oxidation of the amorphous hydroxyl group obtained by the method of the present invention Materials, the prior art also applies to any other fields except the field of the desulfurization agent.
  • the 152 g of FeS04 was placed in a reaction vessel, and 58 g of solid Na 2 CO 3 was added under stirring. Finally, the pH of the mixed aqueous solution was adjusted to 8, and the reaction was carried out for 0.5 hours, and the filter cake was washed with water until the filter cake ⁇ content of less than 0.5%, and then the filter cake was formulated percent solids content of 30% by mass of an aqueous suspension, into the air and is oxidized until the Fe 2 VFe. e is less than 1% The material is completely oxidized, filtered, and dried at 100 ° C to obtain a material containing amorphous iron oxyhydroxide.
  • the mass percentage of amorphous iron oxyhydroxide in the material is 85%, and the remaining components are Na 2 S0. , water and Ti0 2 (Ti0 2 is FeSO., impurities in the salt, the same as in the following examples), the material has a sulfur capacity of 53%.
  • Fe 3 ⁇ 4 refers to the total content of iron elements, Fe 2 7Fe. e is measured by phenanthroline spectrophotometry, and the content of N a - is determined by flame photometry, the same as in the following examples.
  • Regeneration method 1 The material containing amorphous iron oxyhydroxide is placed in a desulfurization reactor for desulfurization. After the S is penetrated, the waste agent is discharged, washed with water, and ground into a 100-mesh particle in a wet ball mill to obtain a waste agent. Powder; the waste powder is formulated into an aqueous suspension having a solid mass percentage of 5%, and compressed air is introduced into the air for a period of time, and then sampled and tested.
  • the water is The iron sulfide in the suspension is completely converted into amorphous iron oxyhydroxide and elemental sulfur to form a slurry containing the amorphous iron oxyhydroxide and elemental sulfur, and the slurry is filtered to obtain a solid material, which is obtained by extracting and filtering with CC1 4 .
  • the materials are extracted three times in total, and the extracts are combined, and the solvent is recovered by distillation to obtain crystallized elemental sulfur, and the remaining solid after the extract is separated is a material containing regenerated amorphous iron oxyhydroxide.
  • the material containing the regenerated amorphous iron oxyhydroxide can be used as a desulfurizing agent after drying, the sulfur capacity of the material is 51%; the sulfur content of the second recycled material is 48%, the third regeneration The sulfur content of the latter material was 46%, and the sulfur content of the material after the fourth regeneration was 44%.
  • the material containing amorphous iron oxyhydroxide is placed in a desulfurization reactor for desulfurization. After the S is penetrated, the waste agent is discharged, washed with water, and ground into a 100-mesh particle in a wet ball mill to obtain a waste agent. Powder; the waste powder is formulated into an aqueous suspension having a solid mass percentage of 5%, and compressed air is introduced into the air for a period of time, and then sampled and tested.
  • the iron sulfide in the aqueous suspension is completely converted into amorphous iron oxyhydroxide and elemental sulfur to form a slurry containing the amorphous iron oxyhydroxide and elemental sulfur, and the slurry is filtered to obtain a solid material, and the solid material is placed.
  • water is added, and then air is introduced.
  • the elemental sulfur overflows due to its hydrophobicity, and the precipitate in the lower portion of the container is a material containing regenerated amorphous iron oxyhydroxide.
  • the overflowed elemental sulfur may be purified by extraction or other methods; the material containing the regenerated amorphous iron oxyhydroxide may be used as a desulfurizing agent after drying, and the sulfur capacity of the material is 52%; The sulfur content of the regenerated material is 50% ⁇ , the sulfur content of the material after the third regeneration is 48%, and the sulfur capacity of the material after the fourth regeneration is 46%.
  • the 127 g of FeCl 2 was placed in a reaction kettle, and 88 g of solid K 2 C0 3 was added under stirring, and the pH of the mixture was adjusted to 8. 0 1 hour, filtered, and the filter cake was washed with water until The content of the filter cake is less than 0.5%, and then the filter cake is formulated into an aqueous suspension having a solid mass percentage of 15%, and is oxidized by passing air until the Fe 2 7Fe. a is less than 1%. Oxidation is complete, filtered, and dried at 90 ° C to obtain a material containing amorphous iron oxyhydroxide.
  • the mass percentage of amorphous iron oxyhydroxide in the material is 80%, and the remaining components are KC1, moisture, 6% ⁇
  • the sulfur content of the material is 49.6%.
  • the K' content was determined by flame photometry, and the following examples are the same.
  • the amorphous iron oxyhydroxide-containing material is desulfurized in a desulfurization reactor, and after the S is penetrated, the waste agent is discharged, washed with water, and ground into 200 mesh particles in a wet ball mill to obtain a waste powder;
  • the waste powder is formulated into an aqueous suspension having a solid content of 10% by mass, and compressed air is introduced into the air for a period of time, and then sampled and tested.
  • the water is The iron sulfide in the suspension is completely converted into amorphous iron oxyhydroxide and elemental sulfur to form a slurry containing the amorphous iron oxyhydroxide and elemental sulfur, and the slurry is filtered to obtain a solid material, which is obtained by extraction and filtration with CS 2 .
  • the solid material is extracted three times in total, and the extract is combined, and the solvent is recovered by distillation to obtain crystallized elemental sulfur, and the remaining solid after the extract is separated is a material containing regenerated amorphous iron oxyhydroxide.
  • the material containing the regenerated amorphous iron oxyhydroxide can be used as a desulfurizing agent after drying, the sulfur capacity of the material is 48%; the sulfur content of the second recycled material is 46%, the third regeneration The sulfur content of the latter material was 44.5%, and the sulfur content of the fourth recycled material was 42%.
  • the amorphous iron oxyhydroxide-containing material is desulfurized in a desulfurization reactor. After the H 2 S is penetrated, the waste agent is discharged, washed with water, and ground into 200 mesh particles in a wet ball mill to obtain a waste agent.
  • Powder The waste powder is formulated into an aqueous suspension having a solid mass percentage of 10%, and compressed air is introduced into the air for a period of time, and then sampled and tested.
  • the iron sulfide in the aqueous suspension is completely converted into amorphous iron oxyhydroxide and elemental sulfur to form a slurry containing the amorphous iron oxyhydroxide and elemental sulfur, and the slurry is placed in a flotation tank and water is added. And adding water glass and kerosene as flotation aid to the flotation tank, and then introducing air, the elemental sulfur overflows due to hydrophobicity, and the precipitate in the lower part of the vessel is a regenerated amorphous hydroxyl group.
  • Iron oxide material Iron oxide material.
  • the sulfur capacity of the material is 48%; the sulfur content of the second recycled material is 46.5%, and the sulfur content of the third recycled material is 45%, fourth
  • the secondary regenerated material has a sulfur capacity of 44%.
  • the flotation aid is advantageous for the floating of the elemental sulfur, and the effect of separating the amorphous iron oxyhydroxide and the elemental sulfur is better, as in the following examples.
  • the amorphous iron oxyhydroxide-containing material is desulfurized in a desulfurization reactor, and after the S is penetrated, the waste agent is discharged, washed with water, and ground into a 100-mesh particle in a wet ball mill to obtain a waste powder;
  • the waste powder is formulated into an aqueous suspension having a solid mass percentage of 5%, and compressed air is introduced into the air for a period of time, and then sampled and tested. When the sample taken out reacts with hydrochloric acid to form no H 2 S, the water suspension is carried out.
  • the iron sulfide in the liquid is completely converted into amorphous iron oxyhydroxide and elemental sulfur to form a slurry containing the amorphous iron oxyhydroxide and elemental sulfur, and the slurry is filtered to obtain a solid material, which is obtained by extracting and filtering (1 4
  • the solid material is extracted three times in total, and the extract is combined, and the solvent is recovered by distillation to obtain crystallized elemental sulfur, and the remaining solid after the extract is separated is a material containing regenerated amorphous iron oxyhydroxide.
  • the sulphur content of the second regenerated material is 44.6%
  • the third time the sulfur content of the second regenerated material is 44.6%
  • the third time Sulfur content of recycled material 42.8% sulfur material after the fourth regeneration volume was 41.2 percent.
  • the amorphous iron oxyhydroxide-containing material is desulfurized in a desulfurization reactor, and after the S is penetrated, the waste agent is discharged, washed with water, and ground into a 100-mesh particle in a wet ball mill to obtain a waste powder;
  • the waste powder is formulated into an aqueous suspension having a solid mass percentage of 5%, and compressed air is introduced into the air for a period of time, and then sampled and tested. When the sample taken out reacts with hydrochloric acid to form no H 2 S, the water suspension is carried out.
  • the iron sulfide in the liquid is completely converted into amorphous iron oxyhydroxide and elemental sulfur to form a slurry containing the amorphous iron oxyhydroxide and elemental sulfur, the slurry is placed in a flotation tank, water is added, ffi is The air overflows due to the hydrophobicity of the elemental sulfur, and the precipitate in the lower part of the vessel is a material containing regenerated amorphous iron oxyhydroxide.
  • the sulphur capacity of the material is 47.8%; the sulphur content of the material is 47.8%; 2% ⁇
  • the sulfur content of the material after the second regeneration was 42.2%, the sulfur content of the material after the fourth regeneration was 41.2%.
  • the 127 g of FeCl 2 ⁇ 4 ⁇ 20 is placed in a reaction kettle, and 128 g of solid KHC0 3 is added under stirring, and the mixture is adjusted to pH 8.
  • the reaction is 1. 5 hours, filtered, and the filter cake is washed with water. Until the content of cerium in the filter cake is less than 0.5%, the filter cake is then formulated into an aqueous suspension having a solid mass percentage of 10%, and oxidized by passing air until the Fe Fe s is less than 1%. Oxidation is complete, filtered, and dried at 30 Torr to obtain a material containing amorphous iron oxyhydroxide.
  • the mass percentage of amorphous iron oxyhydroxide in the material is 88%, and the remaining components are KC1, water and unknown impurities. 6% ⁇
  • the sulfur content of the material was 54.6%.
  • the amorphous iron oxyhydroxide-containing material is desulfurized in a desulfurization reactor. After the H 2 S is penetrated, the waste agent is discharged, washed with water, and ground into 200 mesh particles in a wet ball mill to obtain a waste agent. Powder; The waste powder is formulated into an aqueous suspension having a solid content of 10% by mass, and compressed air is introduced into the air for a period of time, and then sampled and tested. When the sample taken is reacted with hydrochloric acid to form no S, the water suspension is carried out.
  • the iron sulfide in the liquid is completely converted into amorphous iron oxyhydroxide and elemental sulfur, forming a slurry containing the amorphous iron oxyhydroxide and elemental sulfur, filtering the slurry to obtain a solid material, and extracting the solid obtained by CS 2 extraction and filtration.
  • the material is extracted a total of three times, and the extracts are combined and recovered by distillation.
  • the agent simultaneously obtains crystallized elemental sulfur, and the remaining solid after the extract is separated is a material containing regenerated amorphous iron oxyhydroxide.
  • the sulphur content of the material after the second regeneration is 49.4%
  • the sulphur content of the second regenerated material is 49.4%.
  • the sulphur capacity of the material after the fourth regeneration is 46.1%, and the sulfur content of the material after the fourth regeneration is 46.3%.
  • the material containing amorphous iron oxyhydroxide is placed in a desulfurization reactor for desulfurization. After the H 2 S is penetrated, the waste agent is discharged, washed with water, and ground into a 200-mesh particle in a wet ball mill to obtain waste.
  • the powder of the waste agent is formulated into an aqueous suspension having a solid mass percentage of 10%, and is introduced into compressed air, and is sampled and tested after a reaction for a period of time, and when the sample taken out reacts with hydrochloric acid to form no H 2 S Then, the iron sulfide in the aqueous suspension is completely converted into amorphous iron oxyhydroxide and elemental sulfur to form a slurry containing the amorphous iron oxyhydroxide and elemental sulfur, and the slurry is filtered to obtain a solid material, and the solid is The material is placed in a flotation tank, water is added, and water glass and kerosene are added to the flotation tank as a flotation aid, and then air is introduced, and the water is overflowed due to the hydrophobicity of the elemental sulfur.
  • the lower precipitate is the material containing the regenerated amorphous iron oxyhydroxide.
  • the sulphur content of the material after the second regeneration is 48.8%
  • the sulfur content of the material after the third regeneration is 48.8%.
  • the capacity of the fourth regenerated material has a sulfur content of 45.2%.
  • the amount of the solid (N3 ⁇ 4) 2 C0 3 to be charged is controlled by controlling the pH of the reaction solution, that is, the feed ratio of the two materials is controlled, and the following examples are similar.
  • the amorphous iron oxyhydroxide-containing material is desulfurized in a desulfurization reactor, and after the S is penetrated, the waste agent is discharged, washed with water, and ground into a 300-mesh particle in a wet ball mill to obtain a waste agent.
  • Powder; the waste powder is formulated into a solid mass percentage: 15% aqueous suspension, compressed air is introduced, the reaction is sampled for a period of time, and when the sample is reacted with hydrochloric acid, no H 2 S is formed.
  • the iron sulfide in the aqueous suspension is completely converted into amorphous iron oxyhydroxide and elemental sulfur to form a slurry containing the amorphous iron oxyhydroxide and elemental sulfur, and the slurry is filtered to obtain a solid material, which is extracted and filtered by CC1 4 .
  • the solid material obtained afterwards is extracted three times in total, and the extract is combined, and the solvent is recovered by distillation to obtain crystallized elemental sulfur, and the remaining solid after the extract is separated is a material containing regenerated amorphous iron oxyhydroxide.
  • the material can be used as a desulfurizing agent after drying, the sulfur capacity of the material is 59%; the sulfur content of the second recycled material is 58%, and the sulfur content of the third recycled material is 56%.
  • the sulfur content of the fourth recycled material was 54%.
  • the amorphous iron oxyhydroxide-containing material is desulfurized in a desulfurization reactor, and after the S is penetrated, the waste agent is discharged, washed with water, and ground into a 300-mesh particle in a wet ball mill to obtain a waste agent.
  • Powder; the waste powder is formulated into an aqueous suspension having a solid mass percentage of 15%, and compressed air is introduced into the air for a period of time, and then sampled and tested. When the sample taken is reacted with hydrochloric acid to form no S, the water suspension is carried out.
  • the iron sulfide in the liquid is completely converted into amorphous iron oxyhydroxide and elemental sulfur to form a slurry containing the amorphous iron oxyhydroxide and elemental sulfur, the slurry is placed in a flotation tank, water is added, and Water glass and kerosene are added to the flotation tank as flotation aid, and then air is introduced, and the sediment of the lower part of the vessel is the material containing the regenerated amorphous iron oxyhydroxide.
  • the material can be used as a desulfurizing agent after drying, the sulfur capacity of the regenerated amorphous iron oxyhydroxide is 59%; the sulfur content of the second recycled material is 58%, after the third regeneration The sulfur capacity of the material is 56%, the fourth time The post-natal material has a sulfur capacity of 54%.
  • the solid FeCl 2 ⁇ 4 ⁇ 20 is formulated into an aqueous solution, and the solid NaHC0 3 is charged under stirring to control the solution at the end of the reaction.
  • the solution is filtered, and the filter cake is washed with water until the content of N in the filter cake is less than 0.5%, and then the filter cake is formulated into an aqueous suspension having a solid mass percentage of 5%.
  • the material is completely oxidized, filtered, and dried at 70 ⁇ , i.e., to obtain an amorphous material containing iron oxide hydroxide, the mass percentage of material in the non-crystal iron oxide hydroxide It is 92%, the remaining components are NaCl, water and unknown impurities, and the sulfur capacity of the material is 57%, wherein the content of C1 - is determined by a mercury thiocyanate colorimetric method.
  • the amorphous iron oxyhydroxide-containing material is desulfurized in a desulfurization reactor, and after the S is penetrated, the waste agent is discharged, washed with water, and ground into 400 mesh particles in a wet ball mill to obtain a waste agent powder;
  • the waste powder is formulated into an aqueous suspension having a solid mass percentage of 30%, and compressed air is introduced into the air for a period of time, and then sampled and tested. When the sample taken out reacts with hydrochloric acid to form no S, the aqueous suspension is prepared.
  • the iron sulfide in the complete conversion into amorphous iron oxyhydroxide and elemental sulfur forming a slurry containing the amorphous iron oxyhydroxide and elemental sulfur, filtering the slurry to obtain a solid material, and extracting the solid material obtained by CS 2 extraction and filtration.
  • the extract is extracted three times, and the extract is combined, and the solvent is recovered by distillation to obtain crystallized elemental sulfur, and the remaining solid after the extract is separated is a material containing regenerated amorphous iron oxyhydroxide.
  • the material can be used as a desulfurizing agent after drying, the sulfur capacity of the material is 55%; the sulfur capacity of the second recycled material is 53%, and the sulfur content of the third recycled material is 50%.
  • the sulfur content of the fourth recycled material was 48%.
  • the amorphous iron oxyhydroxide-containing material is desulfurized in a desulfurization reactor, and after the S is penetrated, the waste agent is discharged, washed with water, and ground into 400 mesh particles in a wet ball mill to obtain a waste agent powder;
  • the waste powder is formulated into an aqueous suspension having a solid mass percentage of 30%, and compressed air is introduced into the air for a period of time, and then sampled and tested. When the sample taken is reacted with hydrochloric acid to form no H 2 S, the water suspension is carried out.
  • the iron sulfide in the liquid is completely converted into amorphous iron oxyhydroxide and elemental sulfur to form a slurry containing the amorphous iron oxyhydroxide and elemental sulfur, the slurry is placed in a flotation tank, water is added, and Water glass and kerosene are added to the flotation tank as flotation aid, and then air is introduced, and the sediment of the lower part of the vessel is the material containing the regenerated amorphous iron oxyhydroxide. .
  • the material can be used as a desulfurizing agent after drying, the sulfur capacity of the material is 55%; the sulfur capacity of the second recycled material is 54%, and the sulfur content of the third recycled material is 52%, The material after four regenerations has a sulfur capacity of 50%.
  • the material is completely oxidized, filtered, and dried at 60 ° C to obtain a material containing amorphous iron oxyhydroxide, the mass of amorphous iron oxyhydroxide in the material. 8% ⁇ The content of the material is 90%, the remaining component is K 2 S0 4) Ti0 2 , water, the sulfur content of the material is 55.8%.
  • the amorphous iron oxyhydroxide-containing material is desulfurized in a desulfurization reactor, and after the S is penetrated, the waste agent is discharged, washed with water, and ground into 400 mesh particles in a wet ball mill to obtain a waste agent powder;
  • the waste powder is formulated into an aqueous suspension having a solid mass percentage of 10%, and compressed air is introduced into the air for a period of time, and then sampled and tested. When the sample taken is reacted with hydrochloric acid to form no S, the aqueous suspension is obtained.
  • the iron sulfide in the complete conversion into amorphous iron oxyhydroxide and elemental sulfur forming a slurry containing the amorphous iron oxyhydroxide and elemental sulfur, filtering the slurry to obtain a solid material, and extracting the solid obtained by CS 2 extraction and filtration
  • the materials are extracted three times in total, and the extracts are combined, and the solvent is recovered by distillation to obtain crystallized elemental sulfur, and the remaining solid after the extract is separated is a material containing regenerated amorphous iron oxyhydroxide.
  • the sulfur capacity of the material is 54%; the sulfur content of the second recycled material is 50.8%, and the sulfur capacity of the third recycled material is 48%, the sulfur content of the fourth recycled material is 46%.
  • the amorphous iron oxyhydroxide-containing material is desulfurized in a desulfurization reactor, and after the H 2 S is penetrated, the waste agent is discharged, washed with water, and ground into 400 mesh particles in a wet ball mill to obtain a waste agent.
  • Powder; the waste powder is formulated into an aqueous suspension having a solid mass percentage of 30%, and is introduced into compressed air, and is sampled and tested after a reaction for a period of time.
  • the water is Iron in suspension
  • the sulfide is completely converted into amorphous iron oxyhydroxide and elemental sulfur to form a slurry containing the amorphous iron oxyhydroxide and elemental sulfur
  • the slurry is placed in a flotation cell, water is added, and in the flotation Water glass and kerosene are added to the tank as flotation aids, and then air is introduced.
  • the elemental sulfur overflows due to hydrophobicity, and the precipitate in the lower part of the vessel is a material containing regenerated amorphous iron oxyhydroxide.
  • the material can be used as a desulfurizing agent after drying, the sulfur capacity of the material is 54%; the sulfur content of the second recycled material is 51%, and the sulfur content of the third recycled material is 49%.
  • the sulfur content of the fourth recycled material was 48%.
  • the solid FeS0 4 ⁇ 70 is placed in a reaction kettle, and the solid N3 ⁇ 4HC0 3 is charged under stirring.
  • the pH of the solution is controlled at the end of the reaction.
  • the solution is filtered, and the filter cake is washed with water until the NH in the filter cake.
  • the content of the filter cake is less than 0.5%, and then the filter cake is formulated into an aqueous suspension having a solid mass percentage of 15%, and is oxidized by passing air, until the Fe 2 7F is less than 1%, the material is completely oxidized, and filtered.
  • Drying at -5 ° C that is, a material containing amorphous iron oxyhydroxide, wherein the mass percentage of amorphous iron oxyhydroxide in the material is 80%, and the remaining components are ( H 4 ) 2 S0 4 , Ti0 2 ⁇ ⁇
  • the water content of the material is 49.6%.
  • the amorphous iron oxyhydroxide-containing material is desulfurized in a desulfurization reactor, and after the S is penetrated, the waste agent is discharged, washed with water, and ground into 400 mesh particles in a wet ball mill to obtain a waste agent powder;
  • the waste powder is formulated into an aqueous suspension having a solid mass percentage of 10%, and compressed air is introduced into the air for a period of time, and then sampled and tested. When the sample taken out reacts with hydrochloric acid to form no H 2 S, the water suspension is carried out.
  • the iron sulfide in the liquid is completely converted into amorphous iron oxyhydroxide and elemental sulfur, forming a slurry containing the amorphous iron oxyhydroxide and elemental sulfur, filtering the slurry to obtain a solid material, and extracting the solid material obtained by CS 2 extraction and filtration.
  • the extract is extracted three times, and the extract is combined to obtain the elemental sulfur which is crystallized by the distillation method, and the solid remaining after the extract is separated is the material containing the regenerated amorphous-shaped iron oxyhydroxide.
  • the sulphur content of the material after the second regeneration is 44.3%
  • the sulfur content of the material after the second regeneration is 44.3%.
  • the sulphur content of the material after the fourth regeneration is 41.0%.
  • the amorphous iron oxyhydroxide-containing material is desulfurized in a desulfurization reactor, and after the H 2 S is penetrated, the waste agent is discharged, washed with water, and ground into a 400-mesh-particle in a wet ball mill to obtain waste.
  • the powder of the waste agent is formulated into an aqueous suspension having a solid mass percentage of 30%, and is introduced into compressed air, and is sampled and tested after a reaction for a period of time.
  • the iron sulfide in the aqueous suspension is completely converted into amorphous iron oxyhydroxide and elemental sulfur to form a slurry containing the amorphous iron oxyhydroxide and elemental sulfur, and the slurry is filtered to obtain a solid material, and the solid material is placed.
  • water is added, and water glass and kerosene are added to the flotation cell as a flotation aid, and then air is introduced, and the elemental sulfur overflows due to hydrophobicity, and the precipitate in the lower part of the container is It is a material containing regenerated amorphous iron oxyhydroxide.
  • the sulphur content of the material after the second regeneration is 44.5%
  • the sulfur content of the material after the second regeneration is 44.5%.
  • the sulphur content of the material after the fourth regeneration is 41.2%.
  • the 152 g FeS0 4 ⁇ 7H 2 0 aqueous solution formulated into a reaction kettle was added under stirring an aqueous solution composed of 58 g of solid are dubbed Na 2 C0 3, and finally the mixture was adjusted to pH 8, the reaction 0.5 After 5%, the filter cake was washed with water until the content of Na + in the filter cake was less than 0.5%, and then the filter cake was formulated into an aqueous suspension having a solid mass percentage of 30% and passed through air. Oxidation until F e 2 7F e .
  • e is less than 1%, the material is completely oxidized, filtered, and dried at 100 ° C to obtain a material containing amorphous iron oxyhydroxide, the mass of amorphous iron oxyhydroxide in the material
  • the content of the fraction was 85%, the remaining components were N SO., water and Ti 2 2 (Ti0 2 is an impurity in the industrial FeS 0 4 ⁇ 7H 2 0, the same as in the following examples), and the sulfur capacity of the material was 53%.
  • the F in the examples refers to the total content of iron elements, and the measurement of F e 2 7F e .
  • e is determined by the o-phenanthroline spectrophotometry, and the Nef content is determined by flame photometry, the same as in the following examples.
  • the amorphous iron oxyhydroxide-containing material is desulfurized in a desulfurization reactor, and after the S is penetrated, the waste agent is discharged, and the strip is washed with water. After that, it is ground into a 100-mesh particle in a wet ball mill to obtain a waste powder; the waste powder is formulated into an aqueous suspension having a solid mass percentage of 5%, and compressed air is introduced, and the reaction is sampled for a period of time.
  • the iron sulfide in the aqueous suspension is completely converted into amorphous iron oxyhydroxide and elemental sulfur to form a slurry containing the amorphous iron oxyhydroxide and elemental sulfur, and filtered.
  • the slurry obtains a solid material, and the elemental sulfur in the solid material is extracted by CCL, and the extract is extracted three times, and the extract is combined, and the solvent is recovered by distillation to obtain crystallized elemental sulfur, and the remaining solid after the extract is separated It is a material containing regenerated amorphous iron oxyhydroxide.
  • the material containing the regenerated amorphous iron oxyhydroxide can be used as a desulfurizing agent after drying, the sulfur capacity of the material is 51%; the sulfur content of the second recycled material is 48%, the third regeneration The sulfur content of the latter material was 46%, and the sulfur content of the material after the fourth regeneration was 44%.
  • the amorphous iron oxyhydroxide-containing material is desulfurized in a desulfurization reactor, and after the S is penetrated, the waste agent is discharged, washed with water, and ground into a 100-mesh particle in a wet ball mill to obtain a waste powder;
  • the waste powder is formulated into an aqueous suspension having a solid mass percentage of 5%, and compressed air is introduced into the air for a certain period of time, and then sampled and tested.
  • the aqueous suspension is The iron sulfide is completely converted into amorphous iron oxyhydroxide and elemental sulfur to form a slurry containing the amorphous iron oxyhydroxide and elemental sulfur, and the slurry is filtered to obtain a solid material, and the solid material is placed in a flotation tank.
  • the precipitate in the lower portion of the container is a material containing regenerated amorphous iron oxyhydroxide.
  • the overflowed elemental sulfur may be purified by extraction or other methods; the material containing the regenerated amorphous iron oxyhydroxide may be used as a desulfurizing agent after drying, and the sulfur capacity of the material is 52%; The sulfur content of the recycled material was 50%, the sulfur capacity of the fourth recycled material was 48%, and the sulfur content of the fourth recycled material was 46%.
  • the amorphous iron oxyhydroxide-containing material is desulfurized in a desulfurization reactor, and after the H 2 S is penetrated, the waste agent is discharged, washed with water, and pulverized into 200 mesh particles by water in a wet ball mill.
  • the waste powder is obtained; the waste powder is formulated into an aqueous suspension having a solid mass percentage of 10%, and compressed air is introduced into the air for a period of time, and then sampled and tested. When the sample taken out reacts with hydrochloric acid, no S is formed.
  • the iron sulfide in the aqueous suspension is completely converted into amorphous iron oxyhydroxide and elemental sulfur to form a slurry containing the amorphous iron oxyhydroxide and elemental sulfur, and the slurry is filtered to obtain a solid material, which is extracted and filtered by CS 2 .
  • the solid material obtained afterwards is extracted three times in total, and the extract is combined, and the solvent is recovered by distillation to obtain crystallized elemental sulfur, and the remaining solid after the extract is separated is a material containing regenerated amorphous iron oxyhydroxide.
  • the material containing the regenerated amorphous iron oxyhydroxide can be used as a desulfurizing agent after drying, the sulfur capacity of the material is 48%; the sulfur content of the second recycled material is 46%, the third regeneration The sulfur content of the later material was 44.5%, and the sulfur content of the fourth recycled material was 42%.
  • the material containing amorphous iron oxyhydroxide is placed in a desulfurization reactor for desulfurization. After the S is penetrated, the waste agent is discharged, washed with water, and ground into a 200-mesh particle in a wet ball mill to obtain a waste agent. Powder; the waste powder is formulated into an aqueous suspension having a solid content of 10% by mass, and compressed air is introduced into the air for a period of time, and then sampled and tested.
  • the flotation aid is advantageous for the floating of the elemental sulfur, and the effect of separating the amorphous iron oxyhydroxide and the elemental sulfur is better, as in the following examples.
  • the 152 g FeS0 4 ⁇ 7 0 solution formulated into a reaction kettle was added an aqueous solution of 92 g of solid NaHC0 3 Suo formulated under stirring, after mixing the solution was adjusted to pH 8.5, 0.5 hours the reaction After that, the filter cake is washed with water until the content of the filter cake is less than 0.5%, and then the filter cake is formulated into an aqueous suspension having a solid mass percentage of 30%, and is oxidized by passing air.
  • the Fe 2 7Fe s is less than 1%, the material is completely oxidized, filtered, and dried at 45 Torr to obtain a material containing amorphous iron oxyhydroxide.
  • the mass percentage of amorphous iron oxyhydroxide in the material is 80%, and the remaining groups are is divided into N S0 4, water and Ti0 2, the feed sulfur content was 49.6%.
  • the amorphous iron oxyhydroxide-containing material is desulfurized in a desulfurization reactor. After the H 2 S is penetrated, the waste agent is discharged, washed with water, and ground into a 100-mesh particle in a wet ball mill to obtain a waste agent. Powder; the waste powder is formulated into an aqueous suspension having a solid mass percentage of 5%, and compressed air is introduced into the air for a period of time, and then sampled and tested.
  • the water is The iron sulfide in the suspension is completely converted into amorphous iron oxyhydroxide and elemental sulfur to form a slurry containing the amorphous iron oxyhydroxide and elemental sulfur, and the slurry is filtered to obtain a solid material, which is obtained by extracting and filtering with CC1 4 . Therefore, the material is pushed, extracted a total of three times, and the extracts are combined, and the solvent is recovered by distillation to obtain crystallized elemental sulfur, and the remaining solid after the extract is separated is a material containing regenerated amorphous iron oxyhydroxide.
  • the sulphur content of the second regenerated material is 46.0%, 4% ⁇
  • the sulfur content of the fourth regenerated material was 42.4%.
  • the amorphous iron oxyhydroxide-containing material is desulfurized in a desulfurization reactor. After the S is penetrated, the waste agent is discharged, washed with water, and ground into a 100-mesh particle in a wet ball mill to obtain a waste powder; The waste powder is formulated into an aqueous suspension having a solid mass percentage of 5%. The compressed air is introduced into the compressed air, and the reaction is sampled for a period of time. When the sample taken is reacted with hydrochloric acid to form no S, the aqueous suspension is obtained.
  • the iron sulfide in the complete conversion into amorphous iron oxyhydroxide and elemental sulfur forming a slurry containing the amorphous iron oxyhydroxide and elemental sulfur, placing the slurry in a flotation tank, adding water, and introducing air
  • the precipitate in the lower part of the container is a material containing regenerated amorphous iron oxyhydroxide.
  • the sulphur content of the material is 48.0%; the first part of the sulphur content of the material is as follows: the sulphur content of the material is 48.0%;
  • the sulphur capacity of the material after the fourth regeneration is 44.1%.
  • the sulfur content of the material after the fourth regeneration is 44.1%.
  • the amorphous iron oxyhydroxide-containing material is desulfurized in a desulfurization reactor. After the H 2 S is penetrated, the waste agent is discharged, washed with water, and ground into 200 mesh particles in a wet ball mill to obtain a waste agent. Powder; the waste powder is formulated into an aqueous suspension having a solid content of 10% by mass, and compressed air is introduced into the air for a period of time, and then sampled and tested.
  • the water is The iron sulfide in the suspension is completely converted into amorphous iron oxyhydroxide and elemental sulfur to form a slurry containing the amorphous iron oxyhydroxide and elemental sulfur, and the slurry is filtered to obtain a solid material, which is obtained by extraction and filtration with CS 2 .
  • the solid material is extracted three times in total, and the extract is combined, and the solvent is recovered by distillation to obtain crystallized elemental sulfur, and the remaining solid after the extract is separated is a material containing regenerated amorphous iron oxyhydroxide.
  • the second time after the second regeneration the sulfur content of the material is 49.2%
  • the third time the sulfur content of the material after the second regeneration is 49.2%
  • the sulphur capacity of the material after the fourth regeneration is 46.0%.
  • the material containing amorphous iron oxyhydroxide is placed in a desulfurization reactor for desulfurization. After the S is penetrated, the waste agent is discharged, washed with water, and ground into a 200-mesh particle in a wet ball mill to obtain a waste agent. Powder; the waste powder is formulated into an aqueous suspension having a solid content of 10% by mass, and compressed air is introduced into the air for a period of time, and then sampled and tested.
  • the iron sulfide in the aqueous suspension is completely converted into amorphous iron oxyhydroxide and elemental sulfur to form a slurry containing the amorphous iron oxyhydroxide and elemental sulfur, and the slurry is filtered to obtain a solid material, and the solid material is placed.
  • water is added, and water glass and kerosene are added to the flotation cell as a flotation aid, and then air is introduced, and the elemental sulfur overflows due to hydrophobicity, and the lower part of the container is precipitated.
  • the material is a material containing regenerated amorphous iron oxyhydroxide.
  • the sulphur content of the material after the second regeneration is 49.0%
  • the sulfur content of the material after the third regeneration is 49.0%. 8% ⁇
  • the capacity of the material after the fourth regeneration was 45.8%.
  • the solid Fe (N0 3) 2 solution formulated into a reaction vessel, made into a solid solution PH (NH 4) formulated as an aqueous solution of 2 C0 3, and controls the end of the reaction 7.5 under stirring,
  • the solution is filtered, and the filter cake is washed with water until the content of ⁇ 3 ⁇ 4' in the filter cake is less than 0.5%, and then the filter cake is formulated into an aqueous suspension having a solid mass percentage of 10%, and is passed through air.
  • the material containing amorphous iron oxyhydroxide is obtained, and the mass percentage of amorphous iron oxyhydroxide in the material is obtained.
  • the material has a sulfur capacity of 62%.
  • the content of N3 ⁇ 4 + was analyzed by using Nessler reagent.
  • the amount of (N3 ⁇ 4) 2 C0 3 to be fed is controlled by controlling the pH of the reaction solution, that is, the feed ratio of the two materials is controlled, and the following examples are similar.
  • the amorphous iron oxyhydroxide-containing material is desulfurized in a desulfurization reactor, and after the S is penetrated, the waste agent is discharged, washed with water, and ground into a 300-mesh particle in a wet ball mill to obtain a waste agent.
  • Powder; the waste powder is formulated into an aqueous suspension having a solid content of 15% by mass, passed into a compressed space, and sampled and tested after a period of reaction.
  • the iron sulfide in the water suspension_liquid is completely converted into amorphous iron oxyhydroxide and elemental sulfur to form a slurry containing the amorphous iron oxyhydroxide and elemental sulfur, and the slurry is filtered to obtain a solid material, which is extracted with CC1.
  • the solid material obtained after filtration is extracted three times in total, and the extract is combined, and the solvent is recovered by distillation to obtain crystallized elemental sulfur, and the remaining solid after the extract is separated is a material containing regenerated amorphous iron oxyhydroxide.
  • the material iron can be used as a desulfurizing agent after drying, the sulfur capacity of the material is 59%; the sulfur content of the second recycled material is 58%, and the sulfur content of the third recycled material is 56%. %, the sulfur content of the fourth recycled material is 54%.
  • the material containing amorphous iron oxyhydroxide is placed in a desulfurization reactor for desulfurization. After the S is penetrated, the waste agent is discharged, washed with water, and ground into 300 mesh particles in a wet ball mill to obtain a waste powder; The waste powder is formulated into an aqueous suspension having a solid mass percentage of 15%, and compressed air is introduced into the air for a period of time, and then sampled and tested.
  • the aqueous suspension is The iron sulfide is completely converted into amorphous iron oxyhydroxide and elemental sulfur to form a slurry containing the amorphous iron oxyhydroxide and elemental sulfur, the slurry is placed in a flotation tank, water is added and floated Water glass and kerosene are added to the tank as flotation aid, and then air is introduced, and the elemental sulfur overflows due to hydrophobicity, and the precipitate in the lower part of the vessel is a material containing regenerated amorphous iron oxyhydroxide. After drying the material, it can be used as a desulfurizing agent.
  • the sulfur capacity of the material is 59%; the sulfur content of the second recycled material is 58%, and the sulfur content of the third recycled material is 56%.
  • the sulfur content of the four regenerated materials is 54%. .
  • the mass percentage of amorphous iron oxyhydroxide in the material is 92%, the remaining components are NaCl, water and unknown impurities, and the sulfur capacity of the material is 57%, wherein the content is determined by mercury thiocyanate colorimetric method. Determination.
  • the amorphous iron oxyhydroxide-containing material is desulfurized in a desulfurization reactor, and after the S is penetrated, the waste agent is discharged, washed with water, and ground into 400 mesh particles in a wet ball mill to obtain a waste agent powder;
  • the waste powder is formulated into an aqueous suspension having a solid mass percentage of 30%, and compressed air is introduced into the air for a period of time, and then sampled and tested.
  • the aqueous suspension is The iron sulfide is completely converted into amorphous iron oxyhydroxide and elemental sulfur, forming a slurry containing the amorphous iron oxyhydroxide and elemental sulfur, filtering the slurry to obtain a solid material, and extracting and filtering the material obtained by CS 2 extraction and filtration.
  • the extract is extracted three times, and the extract is combined, and the solvent is recovered by distillation to obtain crystallized elemental sulfur, and the remaining solid after the extract is separated is a material containing regenerated amorphous iron oxyhydroxide.
  • the material can be used as a desulfurizing agent after drying, the sulfur capacity of the material is 55%; the sulfur capacity of the second recycled material is 53%, and the sulfur content of the third recycled material is 50%.
  • the sulfur content of the fourth recycled material was 48%.
  • the amorphous iron oxyhydroxide-containing material is desulfurized in a desulfurization reactor, and after the S is penetrated, the waste agent is discharged, and after being washed with water, it is ground into a 400-mesh particle in a wet ball mill to obtain a waste powder.
  • the waste powder is formulated into an aqueous suspension having a solid mass percentage of 30%, and compressed air is introduced into the air for a period of time, and then sampled and tested. When the sample taken out reacts with hydrochloric acid to form no S, the aqueous suspension is prepared.
  • the iron sulfide in the whole is completely converted into amorphous iron oxyhydroxide and elemental sulfur to form a slurry containing the amorphous iron oxyhydroxide and elemental sulfur, the slurry is placed in a flotation tank, water is added, and Water glass and kerosene are added to the flotation tank as flotation aid, and then air is introduced.
  • the elemental sulfur 'overflows due to hydrophobicity, the precipitate in the lower part of the vessel is a material containing regenerated amorphous iron oxyhydroxide.
  • the material can be used as a desulfurizing agent after drying, the sulfur capacity of the material is 55%; the sulfur capacity of the second regenerated material is 54%, and the sulfur content of the third recycled material is 52%, the fourth regenerated material has a sulfur capacity of 50%.
  • the solid FeSOd ⁇ 70 and the solid KHC0, respectively, are formulated into an aqueous solution, and then the FeSO., the solution and the KHC0: solution are co-currently mixed, and reacted in the reaction vessel.
  • the 5%, and then the filter cake is formulated into a solid mass percentage of 5 by weight.
  • the filter cake is filtered with water until the content of the filter cake is less than 0.5%.
  • aqueous suspension % aqueous suspension, and oxidized by air, until -Fe 2 7Fe s is less than 1%, the material is completely oxidized, filtered, and dried at 60 ° C to obtain a material containing amorphous iron oxyhydroxide, the material
  • the mass percentage of amorphous iron oxyhydroxide in the medium is 89%, the remaining components are K 2 S0 4 , water and unknown impurities, and the sulfur capacity of the material is 55%.
  • the material containing amorphous iron oxyhydroxide is placed in a desulfurization reactor for desulfurization. After the S is penetrated, the waste agent is discharged, washed with water, and ground into a 400-mesh particle in a wet ball mill to obtain a waste agent. Powder; the waste powder is formulated into an aqueous suspension having a solid content of 10% by mass, and compressed air is introduced into the air for a period of time, and then sampled and tested.
  • the water is The iron sulfide in the suspension is completely converted into amorphous iron oxyhydroxide and elemental sulfur; filtered, and a slurry containing the amorphous iron oxyhydroxide and elemental sulfur is formed, and the slurry is filtered to obtain a solid material, which is extracted by CS 2
  • the solid material obtained after filtration is extracted three times in total, and the extract is combined, and the solvent is recovered by distillation to obtain crystallized elemental sulfur, and the remaining solid after the extract is separated is a bucket containing regenerated amorphous iron oxyhydroxide.
  • the material can be used as a desulfurizing agent after drying, the sulfur capacity of the material is 53%; the sulfur content of the second recycled material is 51%, and the sulfur content of the third recycled material is 48%.
  • the sulfur content of the fourth recycled material was 46%.
  • the material containing amorphous iron oxyhydroxide is placed in a desulfurization reactor for desulfurization. After the S is penetrated, the waste agent is discharged, washed with water, and ground into a 400-mesh particle in a wet ball mill to obtain a waste agent. Powder; the waste powder is formulated into an aqueous suspension having a solid mass percentage of 30%, and compressed air is introduced into the air for a period of time, and then sampled and tested. When the sample taken out reacts with hydrochloric acid to form no S, the water suspension is carried out.
  • the iron sulfide in the liquid is completely converted into amorphous iron oxyhydroxide and elemental sulfur to form a slurry containing the amorphous iron oxyhydroxide and elemental sulfur.
  • the slurry is placed in a flotation tank, water is added, and water glass and kerosene are added as flotation aids in the flotation tank, and then air is introduced, and elemental sulfur overflows due to hydrophobicity, and the lower part of the vessel
  • the precipitate is a material containing regenerated amorphous iron oxyhydroxide.
  • the material can be used as a desulfurizing agent after drying, the sulfur capacity of the material is 53%; the sulfur content of the second recycled material is 51%, and the sulfur content of the third recycled material is 49%.
  • the sulfur content of the fourth recycled material was 48%.
  • the solid FeS0 4 ⁇ 70 and the solid N 3 ⁇ 4HC0 3 are separately prepared into an aqueous solution, and then the prepared FeS0 4 solution and the N 3 ⁇ 4 HC 0 3 solution are co-currently mixed, and the reaction is carried out in the reaction vessel to control the pH of the solution at the end of the reaction. 8.
  • the solution is filtered, and the filter cake is washed with water until the content of NH in the filter cake is less than 0.5%, and then the filter cake is formulated into an aqueous suspension having a solid mass percentage of 15% and is passed through the air.
  • Oxidation is carried out until the Fe 2 7Fe e is less than 1%, the material is completely oxidized, filtered, and dried at -5 ° C to obtain a material containing amorphous iron oxyhydroxide, and the mass percentage of amorphous iron oxyhydroxide in the material 6 ⁇
  • the content of the content is 80%, the remaining components are ( 3 ⁇ 4 ) 2 S0 4 , water and ferroferric oxide, the sulfur content of the material is 49.6 %.
  • the amorphous iron oxyhydroxide-containing material is desulfurized in a desulfurization reactor, and after the S is penetrated, the waste agent is discharged, washed with water, and ground into 400 mesh particles in a wet ball mill to obtain a waste agent powder;
  • the waste agent is formulated into an aqueous suspension having a solid content of 10% by mass, and compressed air is introduced into the air for a certain period of time, and then sampled and tested. When the sample taken is reacted with acid to form no S, the aqueous suspension is obtained.
  • the iron sulfide in the complete conversion into amorphous iron oxyhydroxide and elemental sulfur forming a slurry containing the amorphous iron oxyhydroxide and elemental sulfur, filtering the slurry to obtain a solid material, and extracting and filtering with 0 ⁇ 2
  • the obtained solid material is extracted three times in total, and the extract is combined, and the solvent is recovered by distillation to obtain crystallized elemental sulfur, and the remaining solid after the extract is separated is a material containing regenerated amorphous iron oxyhydroxide.
  • the sulphur capacity of the material after the second regeneration is 44.3 %, and the material after the third regeneration is used.
  • the sulfur content of the material after the fourth regeneration is 41.0%.
  • the amorphous iron oxyhydroxide-containing material is desulfurized in a desulfurization reactor, and after the H 2 S is penetrated, the waste agent is discharged, washed with water, and ground into 400 mesh particles in a wet ball mill to obtain a waste agent.
  • Powder; the waste powder is formulated into an aqueous suspension having a solid mass of 30%, and compressed air is introduced into the air for a period of time, and then sampled and tested.
  • the water is The iron sulfide in the suspension is completely converted into amorphous iron oxyhydroxide and elemental sulfur to form a slurry containing the amorphous iron oxyhydroxide and elemental sulfur, and the slurry is filtered to obtain a solid material, and the solid material is floated.
  • water is added, and water glass and kerosene are added to the flotation tank as a flotation aid, and then air is introduced, and the sediment of the lower part of the vessel is overflowed by the hydrophobicity of the elemental sulfur.
  • a material containing regenerated amorphous iron oxyhydroxide The sulphur content of the material after the second regeneration is 44.5%, and the sulfur content of the material after the second regeneration is 44.5%.
  • the sulphur content of the material after the fourth regeneration is 41.2%.
  • the material is completely oxidized, filtered, and dried at 100 ° C to obtain a material containing amorphous iron oxyhydroxide, which is oxidized by amorphous hydroxy groups in the material containing amorphous iron oxyhydroxide.
  • the mass percentage of iron is 85%, the remaining components are N S0 4 , water and Ti0 2 (Ti0 2 is industrial FeSO., ⁇ impurities in 7H 2 0, the same as in the following examples), the sulfur capacity of the material It is 53%.
  • the term "I” refers to the total content of iron.
  • the Fe Fe s is determined by the phenanthroline spectrophotometry. The content is determined by flame photometry.
  • the material containing amorphous iron oxyhydroxide is not.
  • the content of the shaped iron oxyhydroxide is determined by a titanium trichloride-potassium dichromate volumetric method, which is a national standard for iron ore analysis (GB6730. 5-86), the same as the following examples.
  • Preparation and regeneration of desulfurizer Weigh 500 grams of the above material containing amorphous iron oxyhydroxide, the particle size is 100 mesh, 40 grams of tianjing powder, 10 grams of wood chips, mix, add appropriate amount of water on a small kneader to complete the kneading, and then use small twin-screw extrusion The machine extrudes the strip type desulfurizing agent and bakes it at 70 ° C for 6 hours in an oven to measure the sulfur capacity of 50%, which is called a desulfurizing agent (A).
  • A desulfurizing agent
  • the desulfurizing agent (A) is placed in a desulfurization reactor for desulfurization. After the S is penetrated, the waste agent is discharged, washed with water, and ground into a 100-mesh particle in a wet ball mill to obtain a waste powder; The waste powder is formulated into an aqueous suspension having a solid content of 10% by mass, and compressed air is introduced into the air for a period of time, and then sampled and tested.
  • the waste agent is The iron sulfide is completely converted into amorphous iron oxyhydroxide and elemental sulfur to form a slurry containing the amorphous iron oxyhydroxide and elemental sulfur, the slurry is placed in a flotation tank, water is added, and then air is introduced, elemental Sulfur, additives and binders overflow the tank with air, and the precipitate in the lower part of the vessel is the material containing regenerated amorphous iron oxyhydroxide.
  • the overflowed elemental sulfur may be purified by extraction or other methods; the material containing the regenerated amorphous iron oxyhydroxide is dried at 80 ° C, and then blended into the phthalocyanine powder and wood chips according to the above ratio, and then formed according to the above The method, the preparation process and the control conditions are made into a new desulfurizing agent (B), and the sulfur content of the desulfurizing agent (B) is 48%.
  • the desulfurizing agent (B)_ is desulfurized in a desulfurization reactor, and after the H 2 S is penetrated, the (B) agent is discharged, and the same as the above-mentioned regeneration method, the regenerant of the desulfurizing agent (B) is obtained, and after drying,
  • the phthalocyanine powder and wood chips were blended according to the above ratio, and the new desulfurizing agent (C) was prepared according to the above-mentioned molding method, preparation process and control conditions, and the sulfur capacity of the desulfurizing agent (C) agent was 46%.
  • the 880 g of solid K 2 C0 3 solution formulated into a reaction vessel was charged with 1270 g of an aqueous solution of FeCl 2 is formulated under stirring, the mixture was adjusted to pH 8.0, after 0.5 hours the reaction, The filter cake is washed with water until the content of the filter cake is less than 0.5%, and then the filter cake is formulated into an aqueous suspension having a solid mass percentage of 15%, and oxidized by air to Fe Fe When s is less than 1%, the material is completely oxidized, filtered, and dried at 90 ° C to obtain an amorphous iron oxyhydroxide material.
  • the mass percentage of amorphous iron oxyhydroxide in the material containing amorphous iron oxyhydroxide is 2% ⁇
  • the sulfur content of the material is 50.2%.
  • the content of ruthenium was measured by flame photometry, and the following examples are the same. .
  • the desulfurizing agent (A) is placed in a desulfurization reactor for desulfurization. After the S is penetrated, the waste agent is discharged, washed with water, and ground into a 200-mesh particle in a wet ball mill to obtain a waste powder; The waste agent powder is formulated into an aqueous suspension having a solid mass percentage of 15%, and is introduced into compressed air. After a certain period of time, the sample is sampled and tested. When the sample taken out reacts with hydrochloric acid and does not form S, the iron sulfide in the waste agent is used.
  • the material is completely converted into amorphous iron oxyhydroxide and elemental sulfur, and a slurry containing the amorphous iron oxyhydroxide and elemental sulfur is formed, filtered, and the material obtained by extraction and filtration with CS 2 is extracted three times, and the extract is combined and distilled.
  • the method recovers the solvent while obtaining the crystallized elemental sulfur, and the remaining solid after the extract is separated is the material containing the regenerated amorphous iron oxyhydroxide.
  • the material containing the regenerated amorphous iron oxyhydroxide is dried at 70 ° C, and then blended with the phthalocyanine powder and the rice hull powder according to the above ratio, and then prepared according to the above molding method, the preparation process and the control conditions to form a new desulfurizing agent.
  • the sulfur content of the desulfurizing agent (B) is 43%.
  • the desulfurizing agent (B) is desulfurized in a desulfurization reactor, and after being penetrated by 3 ⁇ 4S, the agent (B) is discharged, and the regenerating agent of the desulfurizing agent (B) is obtained by the above-mentioned regeneration method, and is added to the field according to the above ratio. 5% ⁇
  • the sulphur content of the sulphur content of the desulfurizer (C) is 40.5%.
  • the 3040 g FeSO, ⁇ 7 ⁇ 2 0 solution formulated into a reaction vessel were added 1,840 grams of solid NaHC0 stirring: an aqueous solution of a dubbed, after mixing the solution was adjusted to pH 8.5, the reaction 0 After 5%, then the filter cake is washed with water until the content of Na' is less than 0.5%.
  • the filter cake is formulated into an aqueous suspension having a solid mass percentage of 30%, and is oxidized by air, until the Fe 2 7Fe.
  • the material is completely oxidized, filtered, and dried at 45 Torr, thereby obtaining A material of amorphous iron oxyhydroxide, wherein the amorphous iron oxyhydroxide-containing material has an amorphous iron oxyhydroxide content of 80% by mass, and the remaining components are Na 2 S0 4 , water and Ti0 2 , the material The sulfur capacity was 49.6%.
  • amorphous iron oxyhydroxide material weigh 1000 g of the above-mentioned amorphous iron oxyhydroxide material, the particle size is 100 mesh, 80 g of Tianjing powder, thoroughly mixed on the mixer, and the ⁇ 3- 5 spherical desulfurizing agent is rolled out on the mash machine. It was baked in an oven at 90 Torr for 4 hours, and its sulfur capacity was measured to be 48%, which was called a desulfurizing agent (A).
  • A desulfurizing agent
  • the desulfurizing agent (A) is placed in a desulfurization reactor for desulfurization. After the S is penetrated, the waste agent is discharged, washed with water, and then ground into a 400-mesh particle in a wet ball mill to obtain a waste powder; The waste powder is formulated into an aqueous suspension with a solid mass percentage of 5%. The compressed air is introduced into the compressed air, and the reaction is sampled and tested for a period of time. When the sample taken out reacts with hydrochloric acid and does not form S, the iron sulfide in the waste agent is used.
  • the material is completely converted into amorphous iron oxyhydroxide and elemental sulfur to form a slurry containing the amorphous iron oxyhydroxide and elemental sulfur, the slurry is placed in a flotation cell, water is added, and in the flotation cell Water glass and kerosene are added as flotation aids, and then air is introduced. Elemental sulfur and binder overflow into the tank with air, and the precipitate in the lower part of the vessel is a material containing regenerated amorphous iron oxyhydroxide.
  • the overflowed elemental sulfur may be purified by extraction or other methods; the material containing the regenerated amorphous iron oxyhydroxide is dried at 80 ° C, and then blended into the field cyanine powder according to the above ratio, and then according to the above molding method, The preparation process and the control conditions are made into a new desulfurizing agent (B), and the sulfur content of the desulfurizing agent (B) is 45%.
  • the desulfurizing agent (B) is desulfurized in a desulfurization reactor, and after the H 2 S is penetrated, the (B) agent is discharged, and the same as the above-mentioned regeneration method, the regenerant of the desulfurizing agent (B) is obtained, and after drying, press
  • the above ratio is blended into the field green powder, and the new desulfurizing agent (C) is prepared according to the above-mentioned molding method, preparation process and control conditions, and the sulfur capacity of the desulfurizing agent (C) agent is 42%.
  • the flotation aid functions to better separate the material containing the regenerated amorphous iron oxyhydroxide and the elemental sulfur, as in the following examples.
  • 2 7Fe s is less than 1%, the material is completely oxidized and dried at 30 ° C, that is, an amorphous iron oxyhydroxide material is obtained, and the mass percentage of amorphous iron oxyhydroxide in the amorphous iron oxyhydroxide-containing material is included. 6% ⁇ The sulphur content of the material is 54.6%.
  • the particle size is 100 mesh, sodium carboxymethyl cellulose (pre-dissolved) 45 g, wheat bran powder 10 g, mix, on a small kneader
  • the water is kneaded, and then extruded into a strip by a small twin-screw extruder.
  • a spherical desulfurizing agent is prepared on the pelleting machine, and baked in an oven at 75 ° C for 5 hours, and the sulfur capacity is 52%, which is called a desulfurizing agent.
  • A spherical desulfurizing agent
  • the desulfurizing agent (A) is placed in a desulfurization reactor for desulfurization. After the H 2 S is penetrated, the waste agent is discharged, washed with water, and ground into a 200-mesh particle in a wet ball mill to obtain a waste powder; The waste powder is formulated into an aqueous suspension having a solid mass percentage of 30%, and is introduced into compressed air, and is sampled and tested after a reaction for a period of time. When the sample taken out reacts with hydrochloric acid to form no S, the iron in the waste agent is used.
  • the sulfide is completely converted into an amorphous iron oxyhydroxide material and elemental sulfur to form a slurry containing the amorphous iron oxyhydroxide and elemental sulfur, and the slurry is filtered to obtain a solid material, and the solid material is placed in a flotation tank.
  • Adding water, adding water glass and kerosene as flotation aid to the flotation cell, and then introducing air, elemental sulfur, additives and binder overflowing with the air, the sediment in the lower part of the container is A material containing regenerated amorphous iron oxyhydroxide.
  • the overflowed elemental sulfur may be purified by extraction or other methods; the regenerated amorphous iron oxyhydroxide material is dried at 75 ° C, and then the carboxymethyl cellulose sodium salt is added in the above ratio (using Pre-dissolved), wheat bran powder, and then according to the above molding method, preparation process and control conditions to make a new desulfurizing agent (B), the sulfur content of the desulfurizing agent (B) is 49%.
  • the desulfurizing agent (B) is desulfurized in a desulfurization reactor, and after being penetrated by 3 ⁇ 4S, the agent (B) is discharged, and is also treated according to the above-mentioned regeneration method to obtain a regenerant of the desulfurizing agent (B), which is blended according to the above ratio.
  • the carboxymethyl cellulose sodium salt and the wheat bran powder are further prepared into a new desulfurizing agent (C) according to the above molding method, preparation process and control conditions, and the sulfur capacity of the desulfurizing agent (C) agent is 47%.
  • the above cycle was repeated, and the sulfur content of the fifth desulfurizing agent (e) obtained after four cycles of regeneration was 42%.
  • the material is completely oxidized, filtered, and dried at 85 ° C to obtain an amorphous iron oxyhydroxide material, and the quality of the amorphous iron oxyhydroxide in the amorphous iron oxyhydroxide material is obtained.
  • the percentage is 99%, the remaining components are water, and the sulfur content of the material is 59%. Among them, the content of NH was analyzed by using Nessler reagent.
  • the amount of N1 2 C0 3 (i.e., the feed ratio of the two materials) is controlled by controlling the pH of the reaction solution, which is similar to the following examples.
  • a pellet-type desulfurizing agent was prepared on a pelleting machine, and baked in an oven at 80 ° C for 4 hours, and its sulfur capacity was determined to be 56%, which was called a desulfurizing agent (A).
  • the desulfurizing agent (A) is desulfurized in a desulfurization reactor. After the H 2 S is penetrated, the waste agent is discharged, washed with water, and then ground into a 200-mesh particle in a wet ball mill to obtain a waste powder; The waste powder is formulated into an aqueous suspension having a solid mass percentage of 15%, and is introduced into compressed air. After a reaction for a period of time, a sample is taken for inspection. When the sample taken out reacts with hydrochloric acid to form no H 2 S, the waste agent is used.
  • the iron sulfide in the complete conversion into amorphous iron oxyhydroxide and elemental sulfur forming a slurry containing the amorphous iron oxyhydroxide and elemental sulfur, filtering, and extracting the material obtained by CC1 4 extraction and extraction, and extracting three times, combining
  • the extract is recovered by distillation to obtain crystallized elemental sulfur, and the solid remaining after the extract is separated is a material containing regenerated amorphous iron oxyhydroxide.
  • the material containing the regenerated amorphous iron oxyhydroxide is dried at 70 ° C, and then the cellulose powder is blended according to the above ratio, and then a new desulfurizing agent (B) is prepared according to the above molding method, preparation process and control conditions.
  • the sulfur content of the desulfurizing agent (B) is 54%.
  • Desulfurization agent (B) is placed in the desulfurization reactor for desulfurization. After the ftS is penetrated, the (B) agent is discharged and treated according to the above regeneration method. 4 The regenerant of the desulfurizer (B) is found. The above ratio is blended into the cellulose powder, and the new desulfurizing agent (C) is prepared according to the above-mentioned molding method, preparation process and control conditions, and the sulfur capacity of the desulfurizing agent (C) agent is 50%.
  • the content of amorphous iron oxyhydroxide in the amorphous iron oxyhydroxide containing material is 92% by mass, and the remaining component is NaCl. Water and unknown impurities, the material has a sulfur capacity of 57%.
  • the content of C1- is determined by a mercury thiocyanate colorimetric method.
  • the desulfurizing agent (A) is desulfurized in a desulfurization reactor. After the H 2 S is penetrated, the waste agent is discharged, washed with water, and then ground into a 200-mesh particle in a wet ball mill to obtain a waste powder; The waste powder is formulated into an aqueous suspension having a solid mass percentage of 30%, and is introduced into a compressed air. After a reaction for a period of time, a sample is taken for inspection. When the sample taken is reacted with hydrochloric acid to form no H 2 S, the waste agent is used.
  • the overflowed elemental sulfur may be purified by extraction or other methods; the material containing the regenerated amorphous iron oxyhydroxide is dried at 75 ° C, and then the cellulose powder and the rice husk powder are blended according to the above ratio, and then According to the above molding method, the preparation process and the control conditions are made into a new desulfurizing agent (B), and the sulfur content of the desulfurizing agent (B) is 51%.
  • the desulfurizing agent (B) is desulfurized in a desulfurization reactor, and after the H 2 S is penetrated, the (B) agent is discharged, and the same as the above-mentioned regeneration method, to obtain a regenerant of the desulfurizing agent (B), according to the above ratio
  • the cellulose powder and rice husk powder are blended, and the new desulfurizing agent (C) is prepared according to the above-mentioned molding method, preparation process and control conditions, and the sulfur capacity of the desulfurizing agent (C) agent is 47%.
  • the material is F e 2 7F e . & less than 10%, the oxidation is finished, and the obtained material is washed until the content of IT in the material.
  • the desulfurizing agent (A) is desulfurized in a desulfurization reactor. After the H 2 S is penetrated, the waste agent is discharged, washed with water, and then ground into a 200-mesh particle in a wet ball mill to obtain a waste powder; The waste powder is formulated into an aqueous suspension having a solid mass percentage of 30%, and is introduced into compressed air. After the reaction for a period of time, the sample is inspected. When the sample taken out reacts with hydrochloric acid to form no H 2 S, the waste agent is in the waste agent.
  • the iron sulfide is completely converted into amorphous iron oxyhydroxide and elemental sulfur, forming a slurry containing the amorphous iron oxyhydroxide material and elemental sulfur, filtering the slurry to obtain a solid material, and placing the solid material in flotation
  • water is added, and water glass and kerosene are added to the flotation tank as a flotation aid, and the air is introduced, and the elemental sulfur and the binder overflow into the tank with the air, and the sediment in the lower part of the vessel is It is a material containing regenerated amorphous iron oxyhydroxide.
  • the overflowed elemental sulfur may be purified by extraction or other methods; the regenerated amorphous amorphous iron oxyhydroxide material is dried at 75 ° C, and then sodium carboxymethyl cellulose is added in the above ratio (with Solubilized), according to the above molding method, preparation process and control conditions to make a new desulfurizer (B), the sulfur content of the desulfurizer (B) is 47%.
  • the desulfurizing agent (B) is desulfurized in a desulfurization reactor, and after the H 2 S is penetrated, the (B) agent is discharged, and the same as the above-mentioned regeneration method, to obtain a regenerant of the desulfurizing agent (B), according to the above ratio 5% ⁇
  • the sulphur content of the sulphur content of the sulphur content of the desulfurization agent (C) is 45.5%.
  • the solid FeS0 4 ⁇ 7 ⁇ 2 0 and the solid H 4 HC0 3 are separately prepared into an aqueous solution, and then the prepared FeS0 4 solution and the NH 4 HC0 3 solution are combined and mixed, and the reaction is carried out in the reaction vessel to control the reaction end point.
  • the pH of the solution is 8
  • the solution is filtered, and the obtained filter cake is naturally oxidized in the air.
  • the Fe 2 7Fe s in the material is less than 10%, the oxidation is finished, and the obtained material is washed with water until the material is ⁇ .
  • the content is less than 0.5%, filtered, and dried at -5 Torr to obtain a material containing amorphous iron oxyhydroxide, wherein the content of amorphous iron oxyhydroxide in the amorphous iron oxyhydroxide material is 75% by mass. 5% ⁇
  • the composition of the material is (N) 2 S0 4 , water and ferric oxide, the material has a sulfur capacity of 46.5%.
  • the desulfurizing agent (A) is placed in a desulfurization reactor for desulfurization. After the S is penetrated, the waste agent is discharged, washed with water, and ground with water to a 100-mesh particle in a wet ball mill to obtain a waste powder; The waste powder is formulated into an aqueous suspension having a solid mass percentage of 10%, and compressed air is introduced into the air for a certain period of time, and then sampled and tested. When the sample taken out reacts with hydrochloric acid to form no S, the iron sulfide in the waste agent is used.
  • the overflowed elemental sulfur may be purified by extraction or other methods; the material containing the regenerated amorphous iron oxyhydroxide is dried at 80 ° C, and then blended into the field cyanine powder and wheat bran powder according to the above ratio, and then pressed The above molding method, preparation process and control conditions are made into a new desulfurizing agent (B), and the sulfur content of the desulfurizing agent (B) is 41%.
  • the desulfurizing agent (B) is desulfurized in a desulfurization reactor, and after the H 2 S is penetrated, the (B) agent is discharged, and the same as the above-mentioned regeneration method, the regenerant of the desulfurizing agent (B) is obtained, and after drying, press
  • the above ratio is blended with Tianjing powder and wheat bran powder, and then a new desulfurizing agent (C) is prepared according to the above-mentioned molding method, preparation process and control conditions, and the sulfur capacity of the desulfurizing agent (C) agent is 38%.
  • the mass percentage of amorphous iron oxyhydroxide in the material is 85%, and the remaining components are .
  • Ti0 2 is FeSO., impurities in the salt, the same as in the following examples
  • the material has a sulfur capacity of 533 ⁇ 4.
  • the Fe s referred to in the examples refers to the total content of iron elements, the Fe 2 7Fe a is determined by phenanthroline spectrophotometry, and the Na + content is determined by flame photometry, which contains amorphous hydroxyl groups.
  • the content of amorphous iron oxyhydroxide in the iron material is determined by the titanium trichloride-potassium dichromate volumetric method, which is the national standard for iron ore analysis (GB6730. 5-86), the same as the following examples.
  • the desulfurizing agent (A) is placed in a desulfurization reactor for desulfurization. After the S is penetrated, the waste agent is discharged, washed with water, and then ground with water into a 100-mesh particle in a wet ball mill to obtain a waste powder; The waste powder is formulated into an aqueous suspension having a solid content of 10% by mass, and compressed air is introduced into the air for a period of time, and then sampled and tested. When the sample taken out reacts with hydrochloric acid to form no H 2 S, the iron in the waste agent is used.
  • the sulfide is completely converted into amorphous iron oxyhydroxide and monosulfide to form a slurry containing the amorphous iron oxyhydroxide and elemental sulfur, the slurry is placed in a flotation cell, water is added, and then air is introduced, elemental sulfur The additive and the binder overflow into the tank with the air, and the precipitate at the lower part of the vessel is a material containing the regenerated amorphous iron oxyhydroxide.
  • the overflowed elemental sulfur may be purified by extraction or other methods; the material containing the regenerated amorphous iron oxyhydroxide is dried at 80 ° C, and then blended into the phthalocyanine powder and wood chips according to the above ratio, and then formed according to the above The method, the preparation process and the control conditions are made into a new desulfurizing agent (B), and the sulfur content of the desulfurizing agent (B) is 48%.
  • the desulfurizing agent (B) is desulfurized in a desulfurization reactor, and after the H 2 S is penetrated, the (B) agent is discharged, and the same as the above-mentioned regeneration method, the regenerant of the desulfurizing agent (B) is obtained, and after drying, press
  • the above ratio is blended into the field green powder and wood chips, and the new desulfurizing agent (C) is prepared according to the above-mentioned molding method, preparation process and control conditions, and the sulfur capacity of the desulfurizing agent (C) agent is 46%.
  • the above cycle was repeated, and the sulfur content of the fifth desulfurizing agent (e) obtained after four cycles of regeneration was 40%.
  • the mass percentage of amorphous hydroxylated iron in the material is 80%, and the remaining components are KC1, moisture. 6% ⁇
  • the sulfur content of the material was 49.6%.
  • the content of ruthenium was measured by flame photometry, and the following examples are the same.
  • the desulfurizing agent (A) is placed in a desulfurization reactor for desulfurization. After the S is penetrated, the waste agent is discharged, washed with water, and then ground into a 200-mesh particle in a wet ball mill to obtain a waste powder; The waste powder is formulated into an aqueous suspension with a solid mass percentage of 15%, and compressed air is introduced into the air for a period of time after sampling.
  • the waste agent When the sample taken out reacts with hydrochloric acid to form no H 2 S, the waste agent is The iron sulfide is completely converted into amorphous iron oxyhydroxide and elemental sulfur, and a slurry containing the amorphous iron oxyhydroxide and elemental sulfur is formed, filtered, and the material obtained by extraction and filtration with CS 2 is extracted three times, and the extract is combined. The solvent is recovered by distillation to obtain crystallized elemental sulfur, and the solid remaining after the extract is separated is a material containing regenerated amorphous iron oxyhydroxide.
  • the material containing the regenerated amorphous iron oxyhydroxide is dried at 70 ° C, and then blended with the phthalocyanine powder and the rice husk powder according to the above ratio, and then the preparation process and the control conditions are used to prepare a new desulfurizing agent according to the above molding method.
  • 5% ⁇ (B) the sulfur content of the desulfurizer (B) was 44.5%.
  • the desulfurizing agent (B) is desulfurized in a desulfurization reactor, and after the S is penetrated, the (B) agent is discharged, and the regenerating agent of the desulfurizing agent (B) is obtained by the above-mentioned regeneration method, and is added to the field according to the above ratio. 5% ⁇
  • the sulphur content of the sulphur content of the desulfurizer (C) is 42.5%. .
  • the desulfurizing agent (A) is placed in a desulfurization reactor for desulfurization. After the S is penetrated, the waste agent is discharged, washed with water, and ground into a 400-mesh particle in a wet ball mill to obtain a waste powder; The waste powder is formulated into an aqueous suspension having a solid mass percentage of 5%, and compressed air is introduced into the air for a period of time, and then sampled and tested. When the sample taken out reacts with hydrochloric acid to form no H 2 S, the iron in the waste agent is used.
  • the sulfide is completely converted into amorphous iron oxyhydroxide and elemental sulfur to form a slurry containing the amorphous iron oxyhydroxide and elemental sulfur, the slurry is placed in a flotation cell, water is added, and in the flotation cell Water glass and kerosene are added as flotation aids, and then air is introduced. Elemental sulfur, additives and binders overflow into the tank with air, and the precipitate in the lower part of the vessel is a material containing regenerated amorphous iron oxyhydroxide.
  • the overflowed elemental sulfur may be purified by extraction or other methods; the material containing the regenerated amorphous iron oxyhydroxide is dried at 80 ° C, and then blended into the field cyanine powder according to the above ratio, and then according to the above molding method, The preparation process and control conditions were made into a new desulfurizing agent (B), and the sulfur content of the desulfurizing agent (B) was 46%. .
  • the desulfurizing agent (B) is placed in the desulfurization reactor for desulfurization.
  • the (B) agent is discharged, and the same as the above-mentioned regeneration method, to obtain the regenerant of the desulfurizing agent (B), and after drying, according to the above
  • the ratio is blended into Tianjing powder, and the new desulfurizing agent (C) is prepared according to the above molding method, preparation process and control conditions, and the sulfur capacity of the desulfurizing agent (C) agent is 44%.
  • the function of the flotation aid is to make the separation effect of the amorphous iron oxyhydroxide and elemental sulfur better, and the following embodiment is the same as the embodiment 29
  • a spherical desulfurizing agent is prepared on the pelletizing machine, and baked in an oven for 75 hours for 5 hours, and the sulfur capacity is 52%, which is called a desulfurizing agent (A). .
  • the waste agent is discharged, washed with water, and ground with water in a wet ball mill to form 200-mesh particles to obtain a waste powder; the waste powder is formulated into a water having a solid mass percentage of 30%.
  • the suspension is passed through compressed air. After a period of reaction, it is sampled and tested. When the sample taken out reacts with hydrochloric acid and does not form S, the iron sulfide in the waste agent is completely converted into amorphous iron oxyhydroxide and elemental sulfur to form a containing substance.
  • a slurry of amorphous iron oxyhydroxide and elemental sulfur filtering the slurry to obtain a solid material, placing the solid material in a flotation tank, adding water, and adding water glass and kerosene as float in the flotation tank
  • the auxiliaries are selected and then air is introduced. Elemental sulphur, additives and binders overflow into the tank with air, and the precipitate at the lower part of the vessel is a material containing regenerated amorphous iron oxyhydroxide.
  • the overflowed elemental sulfur may be purified by extraction or other methods; the material containing the regenerated amorphous iron oxyhydroxide is baked at 75 'C, and then the sodium carboxymethyl cellulose salt is added according to the above ratio (using Pre-dissolved), wheat bran powder, according to the above molding method, preparation process and control conditions to make a new desulfurizing agent (B), the sulfur content of the desulfurizing agent (B) is 49%.
  • the desulfurizing agent (B) is desulfurized in a desulfurization reactor, and after the S is penetrated, the (B) agent is discharged, and the regenerating agent of the desulfurizing agent (B) is obtained by the above-mentioned regeneration method, and is blended according to the above ratio.
  • the carboxymethyl cellulose sodium salt and the wheat bran powder are further prepared into a new desulfurizing agent (C) according to the above molding method, preparation process and control conditions, and the sulfur capacity of the desulfurizing agent (C) agent is 47%.
  • the filter cake is washed with water until the content of NH in the filter cake is less than 0.5%, and then the filter cake is formulated into an aqueous suspension having a solid mass percentage of 10%, and is oxidized by air to Fe 2 7Fe. If a is less than 1%, the material is completely oxidized, filtered, and dried at 85 ° C to obtain a material containing amorphous iron oxyhydroxide.
  • the mass percentage of amorphous iron oxyhydroxide in the material is ⁇ 99%, and the rest The composition was water and the material had a sulfur capacity of 59%. Among them, the content was analyzed by using Neisler reagent.
  • the amount of NEJ 2 C0 3 i.e., the feed ratio of the two materials is controlled by controlling the pH of the reaction solution, which is similar to the following examples.
  • a pellet-type desulfurizing agent was prepared on the pelleting machine, and baked in an oven at 80 Torr for 4 hours, and the sulfur capacity was measured to be 56%, which was called a desulfurizing agent (A).
  • the desulfurizing agent (A) is placed in a desulfurization reactor for desulfurization. After the S is penetrated, the waste agent is discharged, washed with water, and then subjected to water in a wet ball mill. Grinding into 200-mesh particles to obtain waste powder; the waste powder is formulated into an aqueous suspension having a solid mass percentage of 15%, and compressed air is introduced into the air for a period of time, and then sampled and tested, when the sample is taken out and hydrochloric acid is taken out.
  • the iron sulfide in the waste agent is completely converted into amorphous iron oxyhydroxide and elemental sulfur, and a slurry containing the amorphous iron oxyhydroxide and elemental sulfur is formed, filtered, and extracted by CC1 4 extraction and filtration.
  • the material is extracted three times in total, and the extract is combined, and the solvent is recovered by distillation to obtain crystallized elemental sulfur, and the remaining solid after the extract is separated is a material containing regenerated amorphous iron oxyhydroxide.
  • the material containing the regenerated amorphous iron oxyhydroxide is dried at 7 (TC), and then the cellulose powder is blended according to the above ratio, and then a new desulfurizing agent (B) is prepared according to the above molding method, preparation process and control conditions.
  • the sulfur content of the desulfurizing agent (B) is 54%.
  • the desulfurizing agent (B) is desulfurized in a desulfurization reactor, and after the S is penetrated, the (B) agent is discharged, and the regenerating agent of the desulfurizing agent (B) is obtained by the above-mentioned regeneration method, and is blended according to the above ratio.
  • the cellulose powder is further prepared into a new desulfurizing agent (C) according to the above molding method, preparation process and control conditions, and the sulfur content of the desulfurizing agent (C) agent is 50%.
  • the solid FeCl 2 ⁇ 40 is formulated into an aqueous solution, and the solid NaHC0 3 is charged under stirring, and the pH of the solution is controlled at the end of the reaction.
  • the solution is filtered, and the filter cake is washed with water until the filter cake is N.
  • the content of the cake is less than 0.5%, and then the filter cake is formulated into an aqueous suspension having a solid mass percentage of 5%, and is oxidized by passing through air until the Fe 2 7Fe s is less than 1%, and the material is completely oxidized, and filtered. Drying at 7 (TC) to obtain a material containing amorphous iron oxyhydroxide.
  • the mass percentage of amorphous iron oxyhydroxide in the material is 92%, and the remaining components are NaCl, water and unknown impurities.
  • the sulfur capacity is 57%.
  • the content of Cr is determined by the mercury thiocyanate colorimetric method.
  • the desulfurizing agent (A) is placed in a desulfurization reactor for desulfurization. After the S is penetrated, the waste agent is discharged, washed with water, and then ground into a 200-mesh particle in a wet ball mill to obtain a waste powder; The waste powder is formulated into an aqueous suspension having a solid mass percentage of 30%, and compressed air is introduced into the air for a certain period of time, and then sampled and tested. When the sample taken out reacts with hydrochloric acid to form no H : S, the waste agent is The iron sulfide is converted into gold.
  • the amorphous iron oxyhydroxide and the elemental sulfur form a slurry containing the amorphous iron oxyhydroxide and elemental sulfur, and the slurry is filtered to obtain a solid material, and the solid material is placed in a flotation tank.
  • Adding water, adding water glass and kerosene as flotation aid to the flotation cell, and then introducing air, elemental sulfur, additives and binder overflowing with the air, the sediment in the lower part of the container is It is a material containing regenerated amorphous iron oxyhydroxide.
  • the overflowed elemental sulfur may be purified by extraction or other methods; the material containing the regenerated amorphous iron oxyhydroxide is dried at 75 ° C, and then the cellulose powder and the rice husk powder are blended according to the above ratio, and then According to the above molding method, the preparation process and the control conditions are made into a new desulfurizing agent (B), and the sulfur content of the desulfurizing agent (B) is 51%.
  • the desulfurizing agent (B) is desulfurized in a desulfurization reactor, and after the H 2 S is penetrated, the (B) agent is discharged, and the same as the above-mentioned regeneration method, to obtain a regenerant of the desulfurizing agent (B), according to the above ratio
  • the cellulose powder and the rice husk powder are blended, and the new desulfurizing agent (C) is prepared according to the above-mentioned molding method, preparation process and control conditions, and the sulfur capacity of the desulfurizing agent (C) agent is 47%.
  • the solid FeSO., ⁇ 7H 2 0 is placed in a reaction kettle, and the solid KHC0 3 is charged under stirring, and the pH of the solution is controlled at the end of the reaction.
  • the solution is filtered to obtain the filter cake. It is naturally oxidized in the air.
  • the Fe 2 7Fe s in the material is less than 10%, the oxidation is finished.
  • the obtained material is washed with water until the content of IC in the material is less than 1%. It is filtered and dried at 60 Torr to obtain amorphous iron oxyhydroxide.
  • the material has a mass percentage of amorphous iron oxyhydroxide of 88%, and the remaining components are K 2 Sa, ⁇ , and moisture, and the sulfur content of the material is 56%. .
  • the particle size is 100 g, sodium carboxymethyl cellulose (pre-dissolved) 67 g, mix, add water on a small kneader to complete the kneading, and then use A small twin-screw extruder is extruded into a strip, and a spherical desulfurizing agent is formed on the pelletizing machine. It was baked in an oven at 75 ° C for 5 hours, and its sulfur capacity was measured to be 53%, which was called a desulfurizing agent (A).
  • A desulfurizing agent
  • the desulfurizing agent (A) is placed in a desulfurization reactor for desulfurization. After the S is penetrated, the waste agent is discharged, washed with water, and then ground into a 200-mesh particle in a wet ball mill to obtain a waste powder; The waste powder is formulated into an aqueous suspension having a solid mass percentage of 30%, and compressed air is introduced into the air for a period of time, and then sampled and tested.
  • the waste agent is The iron sulfide is completely converted into amorphous iron oxyhydroxide and elemental sulfur to form a slurry containing the amorphous iron oxyhydroxide and elemental sulfur, and the slurry is filtered to obtain a solid material, and the solid material is placed in a flotation tank. Water is added, and water glass and kerosene are added to the flotation tank as a flotation aid, and then air is introduced. Elemental sulfur, additives and binders overflow into the tank with air, and the sediment in the lower part of the vessel is contained. Recycled amorphous iron oxyhydroxide material.
  • the overflowed elemental sulfur may be purified by extraction or other methods; the regenerated amorphous iron oxyhydroxide is dried at 75 ° C, and then sodium carboxymethyl cellulose is added in the above ratio (pre-dissolved) Then, according to the above molding method, the preparation process and the control conditions, a new desulfurizing agent (B) is prepared, and the sulfur content of the desulfurizing agent (B) is 50%. .
  • the desulfurizing agent (B) is desulfurized in a desulfurization reactor, and after the S is penetrated, the (B) agent is discharged, and the regenerating agent of the desulfurizing agent (B) is obtained by the above-mentioned regeneration method, and is blended according to the above ratio.
  • the sodium carboxymethyl cellulose is further prepared into a new desulfurizing agent (C) according to the above-mentioned molding method, preparation process and control conditions, and the sulfur capacity of the desulfurizing agent (C) agent is 48%.
  • the material has a mass percentage of amorphous iron oxyhydroxide of 76%, and the remaining components are (H 4 ) 2 S0 4 , Ti0 2 , water and triiron tetroxide, and the sulfur capacity of the material is 47. 1%. .
  • the desulfurizing agent (A) is desulfurized in a desulfurization reactor, and after the S is penetrated, the waste agent is discharged, washed with water, and ground into a 100-mesh particle in a wet ball mill to obtain a waste powder;
  • the waste agent powder is formulated into an aqueous suspension having a solid mass percentage of 10%, and is introduced into compressed air.
  • the iron sulfide in the waste agent is The material is completely converted into amorphous iron oxyhydroxide and elemental sulfur to form a slurry containing the amorphous iron oxyhydroxide and elemental sulfur, the slurry is placed in a flotation cell, water is added, and then air is introduced, elemental sulfur, The additive and binder overflow into the tank with air, and the precipitate in the lower part of the vessel is a material containing regenerated amorphous iron oxyhydroxide.
  • the overflowed elemental sulfur may be purified by extraction or other methods; the material containing the regenerated amorphous iron oxyhydroxide is dried at 80 ° C, and then blended into the field cyanine powder and wheat bran powder according to the above ratio, and then pressed The above molding method, preparation process and control conditions are made into a new desulfurizing agent (B), and the sulfur content of the desulfurizing agent (B) is 43%.
  • the desulfurizing agent (B) is placed in the desulfurization reactor for desulfurization. After the S is penetrated, the (B) agent is discharged, and the same as the above-mentioned regeneration method, to obtain the regenerant of the desulfurizing agent (B), and after drying, according to the above The ratio is blended into Tianjing powder and wheat bran powder, and the new desulfurizing agent (C) is prepared according to the above molding method, preparation process and control conditions, and the sulfur capacity of the desulfurizing agent (C) agent is 41%.
  • the sulfur dream in the above embodiment is determined by the following method: at normal temperature (referring to ambient temperature, usually -5 ⁇ to 45 ° C) atmospheric pressure (ambient pressure, usually 1 atm), using a standard containing H 2 S of 40,000 ppm Gas is evaluated.
  • the instrument used is the domestic WK-2C integrated microcoulomb instrument ( ⁇ 2ppm ⁇ The lowest detection amount of the instrument is 0. 2ppm.
  • the soluble ferrous salt used is not limited to the one used in the examples, and other soluble ferrous salts can also achieve the object of the present invention.
  • the desulfurizing agent of the present invention can achieve the object of high sulfur content and repeated regeneration of the present invention as long as it comprises the material containing amorphous iron oxyhydroxide prepared by the method of the present invention and an organic binder, regardless of whether other components are added or not. Therefore, it is within the scope of the present invention to include a desulfurizing agent comprising the amorphous iron oxyhydroxide-containing material and a binder.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Compounds Of Iron (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Processing Of Solid Wastes (AREA)

Description

说 明 书
用于含无定形羟基氧化铁物料和含该物料的脱
硫剂的制备方法和再生方法
技术领域
本发明涉及一种含无定形羟基氧化铁物料的制备方法和其再生方法以及含该无定形羟基氧化铁 的脱硫剂的制备方法及其再生方法,属于脱硫剂技术领域。
背景技术
工业生产中的很多场合都会产生硫化物,如在以煤或石油制取化工原料的生产过程中以及工业生产 排放的废水或者废气中。其中,在以煤或石油制取化工原料的生产过程中,由于原料中含有较多的含硫物 质,这些含硫物质在生产过程中发生反应释放出硫化氢,从而直接导致后续生产工段中催化剂活性物质 中毒失活。 此外,工业生产中排放的废水或者废气中所含的硫化氢,如果直接排放会严重影响环境,甚至 于造成人畜中毒。
研究人员为了有效地减少硫化物尤其是硫化氢对工业生产以及环境的破坏,对脱硫剂的研发给予了 足够的重视。 现有技术中的用于脱除硫化氢的脱硫剂品种很多,其中比较传统和重要的一类为铁系脱硫 剂,该类型的脱硫剂主要是以铁氧化物作为脱硫剂的活性成分,所述铁氧化物包括四氧化三铁、三氧化二 铁以及羟基氧化铁 (Fe00H)。 然而现有技术中的铁系脱硫剂普遍存在硫容不高的缺点,如在美国专利文 献 US6664210A中公开了一种金属氧化物,该金属氧化物同样可以起到脱除硫化氢杂质的作用,该文献中 所述的粘合金属氧化物包括分子式为 MeA的金属氧化物中的一种或多种,其中 Me为选自周期表第 4、 5、 6 、 7周期的金属元素, X选自 1-3, y选自 1-4,另外,上述粘合金属氧化物还包括上述金属氧化物的水合物以 及憎水粘合剂。 很显然,当 Me选择 Fe时,该专利文献中公开的粘合金属氧化物可以由 Fe3(V、 Fe2(¾、 Fe203 • 0和憎水粘合剂构成。对该粘合金属氧化物进行硫容测试,表明该压缩金属氧化物颗粒能留住硫的平 均量等于粘合金属氧化物颗粒重量的 10%,更好的是 30%; 容纳硫化氢的量为每磅金属氧化物颗粒容纳
0. 27磅,可见,该粘合金属氧化物的硫容 (脱除硫化氢)只能达到' 27- 30%,因此硫容比较低,脱硫縣不理 相 '
另外,现有技术中的脱硫剂(包括铁系脱硫剂)还普遍存在使用后的废剂不能再生或再生困难,导致 只能将大 1:废剂填埋,不仅浪费原脱硫剂中的有效资源,而且造成新的 '环境污染问题。
羟基氧化铁 (FeOOH ) .因具有良好的脱硫性能在化学化工领域被广泛用作脱硫剂。 如在日本专利文 献 JP5329362 A中公开了一种用于脱除工业废水中的硫化氢的 β -FeOOH脱硫剂及其制备方法。 在题目为 《不同方法制备羟基氧化铁的脱硫活性研究》 (《煤炭转化》 第 29卷第 3期) 的文章中研究了不同晶态的 羟基氧化铁如 a -FeOOH, β -FeOOH, y -FeOOH和无定形羟基氧化铁的常温煤气脱硫活性,其中无定形羟基 氧化铁具有较高的脱硫活性,然而该文章主要探讨了用不同制备方法所得到的不同晶态羟基氧化铁的脱 硫活性,并没有研究可以稳定地得到较高纯度的无定形羟基氧化铁物料的方法,另一方面,所公开的制备 无定形羟基氧化铁的方法为实验室方法,需要氮气保护,工艺比较复杂,且用双氧水作为氧化剂存在所生 成的产物结构致密,孔道不发达,硫容不高的缺点,因此不符合工业化大批量生产的要求。另外,在该文章 中也没有公开关于羟基氧化铁可以再生以及再生方法的内容。
现有技术中,尤其是在工业应用方面,无定形羟基氧化铁脱硫剂较少,即使市场上销售有所谓的无定 形羟基氧化铁脱硫剂,因其中无定形羟基氧化铁的含量很低 (低于 40%) ,而其它不能再生的铁的氧化物 如四氧化三铁、 三氧化二铁或其它晶态的羟基氧化铁的含量高,导致这些无定形氧化铁脱硫剂产品不但 脱硫性能差,而且再生困难,即使再生也没有实用价值。
. 本申请人一直致力于无定形羟基氧化铁脱硫性能的研究,早在 2006年发表的题目为 《一种高硫容氧 化铁脱硫剂活性组分的表征》 (见全国气体净化信息站 2006年技术交流会论文集第 107至 111页)'的文章 中就己经公开了无定形羟基氧化铁的实验室制备思路,并对所得到的无定形羟基氧化铁的硫容进行了测 定,而且通过实验数据验证了所述无定形羟基氧化铁脱硫和再生的反应机理。
然而,上述研究还处于实验室摸索阶段,所制备的产物中仍含有较大量的四氧化三铁、三氧化二铁和 其它晶态的羟基氧化铁,无定形羟基氧化铁的含量没有达到理想的程度,而且对其再生方法也没有进行 深入研究,只公幵了所制备的含无定形羟基氧化铁的产物在自然状态下在空气中可以氧化再生,而并没 有对其在工业上的再生方法作研究。
本申请人进行上述研究的最终目的是为了实现在工业上可以大批量生产出纯度及硫容高的无定形 羟基氧化铁及所述无定形羟基氧化铁使用后在工业上的大批量再生,如果这两点能够实现对于脱硫剂领 域来说是一个重大的变革,可以解决现有技术中的脱硫剂所存在的以下两个缺点: (1 ) 由于羟基氧化铁 的制备受到反应条件如 ra值、 温度、 氧化剂等的强烈影响,不同的制备方法将得到不同晶相的羟基氧化 铁或得到其它铁的氧化物(如四氧化三铁,三氧化二铁),所以所制备的物料中无定形羟基氧化铁的含量 低(低于 40%) ,导致其硫容低、不能再生等; 如在公开号为 CN1944273A的中国专利文献中公开了一种 γ -FeOOH 的制备方法,其将硫酸亚铁饱和溶液与碳酸盐饱和溶液在反应罐内混合均匀,控制反应 PH值为 8 - 9反应,生成碳酸亚铁和硫酸盐,在反应罐内通入空气进行氧化、水洗、过滤,将过滤后的物料烘干即得 所述 Y -FeOOH;由于所控制的反应条件及步骤的不同,所以该方法制备的是主要成分为 Y -FeOOH的物料, 不是主要成分为无定形羟基氧化铁的物料,而 Y -FeOOH硫容低,再生性差;(2 )现在所用的其它类型的脱 硫剂不能再生或再生成本高,导致只能将大量废剂填埋,不仅浪费原脱硫剂中的有效资源,而且给环境造 成了严重的污染。
发明内容
为此,本发明所要解决的技术问题是现有技术中所制备的物料中无定形羟基氧化铁含量低的问题, 从而提出一种可在工业上大批量、 稳定地生产无定形羟基氧化铁含量高的物料的方法。
本发明所要解决的另一个技术问题在于提供所述含无定形羟基氧化铁的物料作为脱硫剂使用后 . 的重复再生的方法。 . . 本发明所要解决的再一个技术问题在于克服现有技术的脱硫剂硫容低,不能再生或再生困难的问 题,从而提出一种硫容高且可在工业上大批量生产和反复再生的脱硫剂。
本发明所要解决的另一个技术问题在于提出所述脱硫剂的制备方法。
本发明所要解决的再一个技术问题在于提出所述脱硫剂的重复再生的方法。
为解决上述技术问题本发明突破以下几个技术难点: 第一,可工业化规模地生产出纯度及硫容高 的含无定形羟基氧化铁的物料; 第二,所述脱硫剂使用后的废剂的快速再生及再生过程中产生的单质 硫的回收; 第三,除去单质硫后再生的物料可以制造出新的高硫容的脱硫剂。
为解决上述技术问题,本发明的一种含无定形羟基氧化铁的物料的制备方法,包括以下步骤: (1 )将 固体可溶性亚铁盐配制成溶液待用; (2 ) 将步骤 (1 ) 中得到的可溶性亚铁盐溶液与预先配制的可溶性 碳酸盐或可溶性酸式碳酸盐溶液混合使两者进行反应; 或者将步骤 (1 ) 中得到的可溶性亚铁盐溶液与 固体碳酸盐或者固体酸式碳酸盐混合使两者进行反应; (3 )将步骤(2 )所得到的物料过滤,滤去所生成 的可溶性盐,并用水洗所得到的滤饼; (4) 将所述滤饼配成悬浮液,通入含氧气的气体进行氧化,然后进 行过滤、 干燥,即得到含无定形羟基氧化铁的物料。
在所述步骤 (2 ) 中,所述固体碳酸盐为 N C03, ( N¾ ) 2C03或 K2C03,所述固体酸式碳酸盐为 NaHC03, HC03或 KHC03。在所述步骤(2 )中,控制反应终点时溶液的 PH值的范围为 7. 5- 8. 5。在所述步骤 ( 3 )中,滤饼用水洗,使所述滤饼中 Na'、 IT或 NH 的质量百分浓度小于 0. 5%。 在所述步骤(4) 中,所配制 的所述悬浮液中的固体质量百分含量为 5- 30%,优选 10-15%。在所述步骤(4 )中,所述干燥温度不超过 100
°C ,所述干燥温度为 80°C至 100'C。 在所述步骤(4 ) 中,所述含氧气的气体为空气。 在所述步骤(4 ) 中, 通入含氧气的气体进行氧化,直至悬浮液中亚铁离子与铁元素的质量比小于 1%。 所制备的物料中无定形 羟基氧化铁的质量百分含量为 65-100%,其余组分为水和反应副产物。
所述含无定形羟基氧化铁的物料作为脱硫剂使用后的再生方法,包括以下步骤: (a) 将所述含无定 形羟基氧化铁的物料作为脱硫剂使用后的废剂研磨成颗粒,得到废剂粉; (b)将所述废剂粉配成悬浮液, 通入含氧气的气体进行氧化,使所述悬浮液中的铁硫化物转化为无定形羟基氧化铁和单质硫,形成含所 述无定形羟基氧化铁和单质硫的浆液;(c)过滤所述浆液得到固体物料,用溶剂萃取所述固体物料中的单 质硫,萃取后剩余的固体即为含再生的无定形羟基氧化铁的物料。
所述物料的再生实际上是所含的无定形羟基氧化铁的再生,无定形羟基氧化铁脱硫及再生的原理为: 2Fe00H+3¾S = Fe2S3 · ¾0+3H20, Fe2S3 · 0+3/202=2Fe00H+3S。
在所述步骤(a)之前,还包括一个用水洗涤所述废剂的步骤。 在所述步骤(c )中,萃取后分出的溶 液经浓縮得到结晶的单质硫。在所述步骤(b)中,所配制的悬浮液中的固体质量百分含量为 5-30%,优选 10-15%。 在所述步骤 (b) 中,所述含氧气的气体为空气。 在所述步骤 (c) 中,所用溶剂为非极性溶剂。 所述非极性溶剂为四氯化碳或二硫化碳。 在所述步骤 (a) 中,废剂研磨为 100-400目的颗粒,优选为 200 目。
所述含无定形羟基氧化铁的物料作为脱硫剂使用后的再生方法,包括以下步骤: (I ) 将所述含无定 形羟基氧化铁的物料作为脱硫剂使用后的废剂研磨成颗粒,得到废剂粉;(II)将所述废剂粉配成悬浮液, 通入含氧气的气体进行氧化,使所述悬浮液中的铁硫化物转化为无定形羟基氧化铁和单质硫,形成含所 述无定形羟基氧化铁和单质硫的浆液;(III )将所述浆液或将所述浆液过滤后得到的固体物料置于容器 中,通入空气,使所述单质硫上浮,容器下部的沉淀物为再生的含无定形羟基氧化铁的物料。
在所述步骤(I )之前,还包括用水洗涤所述废剂的步骤。在所述步骤(III )之后,还包括将所述上 浮的单质硫分出的步骤。 在所述步骤 (II ) 中,所配制的悬浮液中的固体含量为 5- 30%,优选 10- 15%。 在 所述步骤 (Π ) 中,所述含氧气的气体为空气。 在所述步骤 (III ) 中,在所述容器中加入助剂以利于所 述单质硫的上浮。 所述助剂为水玻璃和煤油。 在所述步骤(III ) 中,所用的容器为浮选槽。在所述步骤 ( I ) 中.废剂研磨为 100-400目的颗粒。 将废剂研磨为 200目的颗粒。
本发明的无定形羟基氧化铁中的氧原子呈立方密堆积结构,铁离子位于氧原子形成的四面体或者八 面体空穴中,二者在整体结构上形成了归属为短程有序而长程无序的结构,该结构具有极强的和硫原子 结合的稳定性,因此硫容高,脱硫效果好; · 本发明了公开了一种可重复再生利用的脱硫剂,所述脱硫剂包括含无定形羟基氧化铁的物料以及有 机粘结剂,其中所述含无定形羟基氧化铁的物料通过以下步骤制备, (1 ) 将固体可溶性亚铁盐和固体可 溶性碳酸盐或可溶性酸式碳酸盐分别配制成溶液待用; (2 ) 将步骤 (1 ) 中得到的可溶性亚铁盐溶液与 预先配制的可溶性碳酸盐或可溶性酸式碳酸盐溶液混合使两者进行反应; 或者将步骤 (1 ) 中得到的可 溶性亚铁盐溶液与固体碳酸盐或者固体酸式碳酸盐混合使两者进行反应; (3) 将步骤 (2) 所得到的物 料过滤,滤去所生成的可溶性盐,得到滤饼;(4)对所述滤饼用含氧气的气体进行氧化得到所述含无定形 羟基氧化铁的物料。
所述脱硫剂还包括添加剂。
所述脱硫剂由 88wt%- 93^%的所述含无定形羟基氧化铁的物料和 7 wt%-12 wt%的所述有机粘结剂组 成。 所述脱硫剂由 88wt%- 92wt%的含无定形羟基氧化铁的物料, 7wt%-llwt%的所述有机粘结剂和 lwt%- 5wt%的所述添加剂组成。
所述有机粘结剂为羧甲基纤维素钠、 田菁粉、 纤维素粉中的一种或多种。所述添加剂为木屑粉、稻 壳粉、 麦麸中的一种或多种。
在所述步骤 (2 ) 中,所述固体碳酸盐为 Na2C03, ( Η,, ) 2C03或 K2C03,所述固体酸式碳酸盐为 NaHC03, NH.,HC0a或 KHC0:,。 在所述步骤 (2 ) 中,控制反应终点时溶液的 PH值的范围为 7. 5- 8. 5。 所述步骤 (4) 中的氧化通过以下方式实现: 先将步骤 (3 ) 中的滤饼配成悬浮液,然后通入空气 进行氧化,再过滤、 干燥得到所述含无定形羟基氧化铁的物料。 在该步骤中,滤饼先用水洗,使所述滤饼 中 Na'、 Γ或 H4 +的质量百分浓度小于 0. 5%; 所配制的所述悬浮液中的固体质量百分含量为 5- 30%,优选 10-15%;在该步骤中,通入空气进行氧化,直至悬浮液中亚铁离子与铁元素的质量比小于 1%;所述干燥温 度不超过 10CTC,优选 80- lOO'C。
所述步骤 (4) 中的氧化通过以下方式实现: 通过将步骤 (3) 中的滤饼放置在空气中自然氧化,然 后水洗、 过滤、 干燥得到所述含无定形羟基氧化铁物料。 在该步骤中,滤饼放置在空气中氧化直至物料 中的亚铁离子与铁元素的质量比小于 10%;在该步骤中水洗后的物料中 Na K'或 NI 的质量百分浓度小于 1%; 干燥温度不超过 100°C。
上述脱硫剂的制备方法,包括以下步骤: (A) 按要求称取所述含无定形羟基氧化铁的物料和有机粘 结剂,或称取所述含无定形羟基氧化铁的物料、有机粘结剂和添加剂,然后在混料机中进行固体物料的混 合; (B) 将混合好的固体物料成型成条形或球型或丸型; (C) 将上述成型物于- 5- 45'C下自然干燥或于 60-90°C供干即得到所述脱硫剂。 .
所述脱硫剂的再生卖际上是所含的无定形羟基氧化铁的物料中无定形羟基氧化铁的再生,无定形羟 基氧化铁的脱硫及再生的原理为: 2FeOOH+3H2S = Fe2S3 · H20+3¾0, Fe2S3 · 0+3/202=2Fe00H+3S。
所述脱硫剂使用后的重复再生方法,其特征在于包括以下步骤: (I ) 将所述脱硫剂使用后得到的废 剂研磨成颗粒,得到废剂粉;(Π )将所述废剂粉配成悬浮液,通入含氧气的气体进行氧化,使所述悬浮液 中的铁硫化物转化为无定形羟基氧化铁和单质硫,形成含所述无定形羟基氧化铁和单质硫的浆液; (III ) 将所述浆液或将所述桨液过滤后得到的固体物料置于容器中,通入空气,使所述单质硫上浮,取出容器 下部的沉淀物然后加入有机粘结剂或加入有机粘结剂和添加剂即制得再生后的脱硫剂。
在所述步骤 (I ) 之前,还包括一个用水洗涤所述废剂的步骤。 在所述步骤 (ΠΙ ) 之后,还包括将 所述上浮 单质硫分出的步骤。 在所述步骤 (II ) 中,所配制的悬浮液中的固体质量百分含掌为 5-'30%, 优选 10- 15%。 在所述步骤 (II ) 中,所述含氧气的气体为空气。 在所述步骤 (III ) 中,在所述容器中加 ..入助剂以利于所述单质硫的上浮,所述助剂为水玻璃和煤油。 在所述步骤 ( III ) 中,所用的容器为浮选 槽。 在所述步骤 (I ) 中,废剂研磨为 100-400目的颗粒,优选 200目的颗粒。
所述脱硫剂使用后的重复再生方法,包括以下步骤: (a) 将所述脱硫剂使用后得到的废剂研磨成颗 粒,得到废剂粉; (b) 将所述废剂粉配成悬浮液,通入含氧气的气体进行氧化,使所述悬浮液中的铁硫化 物转化为无定形羟基氧化铁和单质硫,形成含所述无定形羟基氧化铁和单质硫的浆液; (c ) 过滤所述浆 液得到固体物料,用溶剂萃取所述固体物料中的单质硫,萃取后在剩余的固体中加入有机粘结剂或加入 有机粘结剂和添加剂即制得再生后的脱硫剂。
在所述步骤(a)之前,还包括一个用水洗涤所述废剂的步骤。 在所述步骤(c)中,萃取后分出的溶 液经浓縮得到结晶的单质硫。在所述步骤(b)中,所配制的悬浮液中的固体质量百分含量为 5- 30%,优选 10-15%。 在所述步骤 (b) 中,所述含氧气的气体为空气。 在所述步骤 (c) 中,所用溶剂为非极性溶剂。 所述非极性溶剂为四氯化碳或二硫化碳。 在所述步骤 (a) 中,废剂研磨为 100-400目的颗粒,优选为 200 目。
本发明的上述技术方案与现有技术相比具有以下优点: (1)本发明的制备含无定形羟基氧化铁的 物料的方法不局限于实验室,可以在工业上大批量生产,且所生产的物料中无定形羟基氧化铁的含量高 (65-100%)、 硫容高 (可以达到 62%) ,解决了现有技术中不能稳定地、 大批量工业化生产纯度和脱硫 性能好的无定形羟基氧化铁的难题; (2 )经过长期研究,本申请人发现低温和氧化速度快有利于生成无 定形羟基氧化铁,而不利于生成四氧化三铁和其它晶态的羟基氧化铁;本发明通过可溶性亚铁盐溶液与 固体碳酸盐或酸式碳酸盐反应制备无定形羟基氧化铁,由于该反应不放热为常温反应,因此不需要刻意 控制温度即有利于无定形羟基氧化铁的生成,另外,本发明在可溶性亚铁盐和碳酸盐或酸式碳酸盐反应 后,过滤除去反应所生成的可溶性盐如硫酸钠、 氯化钠、 氯化钾等,该步骤是为了避免下一步通入空气 氧化所述悬浮液时氧气在悬浮液中的溶解度小,氧化速度慢,从而生成其它晶态的羟基氧化铁; 本发明 通过上述制备方法保证了物料反应后最终生成无定形羟基氧化铁,而不主要生成其它晶相的羟基氧化 铁或四氧化三铁、三氧化二铁等铁的其它铁的氧化物,从而提高了生产无定形羟基氧化铁的稳定性; ( 3 ) 本发明制备含无定形羟基氧化铁的物料的方法中,将滤饼配成悬浮液用空气进行氧化,这种氧化方法 的优点是氧化过程可控制,氧化效果好,另外,所配制的悬浮液中固体的质量百分含量优选 10- 15%,在该 范围内氧化速度快且能保证物料氧化完全; (4 ) 本发明的制备含无定形羟基氧化铁的物料的方法中, 控制反应终点溶液的 PH为 7. 5-8. 5,优选 ra为 8,第一是为了保证溶液中的亚铁离子完全沉淀下来,第二, 在该碱性条件下,亚铁离子容易氧化成铁离子,而不会生成四氧化三铁; (5 ) 本发明的制备含无定形羟 基氧化铁的方法中,控制干燥温度不超过 10CTC是为了避免所述无定形羟基氧化铁在高温下生成更多的 三氧化二铁; ( 6 )用本发明方法所制备的含无定形羟基氧化铁的物料和本发明的两种再生方法,可以使 所述物料作为脱硫剂使用后产生的废剂快速再生,再生后的所述物料仍保持高的硫容,而且再生后的物 料使用后还可以再生,如此循环使用,不仅节约了资源,减少了废剂不能使用对环境造成的污染,而且具 有重大的经济意义; ( 7 )使用本发明的两种再生方法除了获得再生的无定形羟基氧化铁外,还可以得到 结晶的单质硫,使资源的利用得到最大化; (8 )在本发明的两种再生方法的再生步骤之前都可以包括一 个用水洗涤所述废剂的步骤,该步骤是为了除去脱硫过程中附着在所述废剂表面的其它杂质,避免所述 杂质对后续再生步骤造成不良影响; (9) 在本发明的两种再生方法中将废剂粉配成悬浮液通入含氧气 的气体进行氧化的优点与上述第 (3 ) 项相同,所述悬浮液中固体质量百分含量优选 10-15%的优点也与 其相同; (10) 本发明将矿山选矿的浮选方法转用到脱硫剂再生领域,通过通入空气将所述再生的无定 形羟基氧化铁和单质硫分离,即通过完全物理的方法实现了所述再生无定形羟基氧化铁的分离提纯,因 此具有良好的经济意义和环境意义; (11)本发明的两种再生方法中,将废剂研磨成 100-400目的颗粒 ( 优选 200目) ,这样的粒度有助于所述废剂的氧化,也有利于后续的萃取步骤或浮选步骤; (12 ) 本发明 的制备含无定形羟基氧化铁物料的方法中,将滤饼放置在空气中进行自然氧化,这种氧化方法的优点是 成本低; (13 ) 本发明的脱硫剂包括含无定形羟基氧化铁的物料和有机粘结剂,其中使用本发明的制备 方法得到的含无定形羟基氧化铁的物料中无定形羟基氧化铁的含量高,因此,具有所述含无定形羟基氧 化铁的物料的脱硫剂的硫容高 (在无氧条件下,一次性穿透硫容可以达到 56%,而且再生容易; (14) 本 发明的脱硫剂中还可以加入添加剂,如木屑粉、 稻壳粉、 麦麸等,加入添加剂使得所述脱硫剂的结构疏 松,易吸收硫化物; (15 ) 本发明的有机粘结剂选用羧甲基纤维素钠盐、 田菁粉、 纤维素粉中的一种或 几种,这些有机粘结剂不会覆盖无定形羟基氧化铁物料的表面,所以不会影响无定形羟基氧化铁的脱硫 活性,从而使本发明的脱硫剂具有高硫容; ( 16 )使用本发明方法所制得的含无定形羟基氧化铁的物料, 也适用于现有技术中除了脱硫剂领域外的任何其它领域。
具体实施方式
实施例 1
含无定形羟基氧化铁的物料的制备:
将 152克 FeS04配成水溶液置于反应釜中,在搅拌条件下投入 58克固体 Na2C03,最后将混合水溶液 pH调 至 8,反应 0. 5小时后,过滤,滤饼用水洗,直至滤饼中^的含量小于 0. 5%,然后将所述滤饼配成固体质量 百分含量为 30%的水悬浮液,并通入空气进行氧化,直至 Fe2VFe.e小于 1%则物料氧化完全,过滤,在 100'C时 干燥,即得到含无定形羟基氧化铁的物料,所述物料中无定形羟基氧化铁的质量百分含量为 85%,其余组 分为 Na2S0.,,水和 Ti02 ( Ti02为 FeSO.,盐中的杂质,以下实施例同),所述物料的硫容为 53%。 实施例中所 说的 Fe¾指的是铁元素的总含量, Fe27Fe.e的测定采用邻菲啰啉分光光度法, Na-含量的测定采用火焰光度 法,以下实施例同。
再生方法 1 : 将所述含无定形羟基氧化铁的物料装在脱硫反应器中脱硫,待 S穿透后,将废剂卸出,用水洗涤后, 在湿式球磨机中带水研磨成 100目的颗粒,得到废剂粉;将所述废剂粉配成固体质量百分含量为 5%的水悬 浮液,通入压縮空气,反应一段时间后取样检验,当取出的样品与盐酸反应不生成 S时,则水悬浮液中的 铁硫化物完全转化为无定形羟基氧化铁和单质硫,形成含所述无定形羟基氧化铁和单质硫的浆液,过滤 所述浆液得到固体物料,用 CC14萃取过滤后得到的物料,共萃取三次,合并萃取液,用蒸馏的方法回收溶 剂同时得到结晶的单质硫,而萃取液分出后剩余的固体即为含再生的无定形羟基氧化铁的物料。 所述含 再生的无定形羟基氧化铁的物料烘干后又可以作为脱硫剂使用,所述物料的硫容为 51%;第二次再生后的 物料的硫容为 48%,第三次再生后的物料的硫容为 46%,第四次再生后的物料的硫容为 44%。
再生方法 2:
将所述含无定形羟基氧化铁的物料装在脱硫反应器中脱硫,待 S穿透后,将废剂卸出,用水洗涤后, 在湿式球磨机中带水研磨成 100目的颗粒,得到废剂粉;将所述废剂粉配成固体质量百分含量为 5%的水悬 浮液,通入压縮空气,反应一段时间后取样检验,当取出的样品与盐酸反应不生成 H2S时,则水悬浮液中的 铁硫化物完全转化为无定形羟基氧化铁和单质硫,形成含所述无定形羟基氧化铁和单质硫的浆液,过滤 所述浆液得到固体物料,将所述固体物料置于浮选槽中,加入水,然后通入空气,所述单质硫因其具有憎 水性而溢流出来,则容器下部的沉淀物即为含再生的无定形羟基氧化铁的物料。 所述溢流出的单质硫经 萃取或其它方法可以提纯; 所述含再生的无定形羟基氧化铁的物料烘干后又可以作为脱硫剂使用,所述 物料的硫容为 52% ; 第二次再生后的物料的硫容为 50%· ,第三次再生后的物料的硫容为 48%,第四次再 生后的物料的硫容为 46% 。
实施例 2
含无定形羟基氧化铁的物料的制备:
将 127克 FeCl2配成水溶液置于反应釜中,在搅拌条件下投入 88克固体 K2C03,进行反应将混合液 pH调 至 8. 0 1小时后,过滤,滤饼用水洗,直至滤饼中 的含量小于 0. 5%,然后将所述滤饼配成固体质量百分含 量为 15%的水悬浮液,并通入空气进行氧化,直至 Fe27Fe.a小于 1%则物料氧化完全,过滤,在 90'C时干燥,即 得到含无定形羟基氧化铁的物料,所述物料中无定形羟基氧化铁的质量百分含量为 80%,其余组分为 KC1,水份、 四氧化三铁以及未知杂质,所述物料的硫容为 49. 6%。 其中 K'含量的测定采用 火焰光度法, 以下实施例同。
再生方法 1 : ·
将所述含无定形羟基氧化铁的物料装在脱硫反应器中脱硫,待 S穿透后,将废剂卸出,用水洗涤后, 在湿式球磨机中研磨成 200目的颗粒,得到废剂粉; 将所述废剂粉配成固体质量百分含量为 10%的水悬浮 液,通入压縮空气,反应一段时间后取样检验,当取出的样品与盐酸反应不生成 H2S时,则水悬浮液中的铁 硫化物完全转化为无定形羟基氧化铁和单质硫,形成含所述无定形羟基氧化铁和单质硫的浆液,过滤所 述浆液得到固体物料,用 CS2萃取过滤后得到的固体物料,共萃取三次,合并萃取液,用蒸馏的方法回收溶 剂同时得到结晶的单质硫,而萃取液分出后剩余的固体即为含再生的无定形羟基氧化铁的物料。 所述含 再生的无定形羟基氧化铁的物料烘干后又可以作为脱硫剂使用,所述物料的硫容为 48% ;第二次再生后 的物料的硫容为 46%,第三次再生后的物料的硫容为 44. 5% ,第四次再生后的物料的硫容为 42% 。
再生方法 2:
将所述含无定形羟基氧化铁的物料装在脱硫反应器中脱硫,待 H2S穿透后,将废剂卸出,用水洗涤后, 在湿式球磨机中研磨成 200目的颗粒,得到废剂粉: 将所述废剂粉配成固体质量百分含量为 10%的水悬浮 液,通入压縮空气,反应一段时间后取样检验,当取出的样品与盐酸反应不生成 H2S时,则水悬浮液中的铁 硫化物完全转化为无定形羟基氧化铁和单质硫,形成含所述无定形羟基氧化铁和单质硫的浆液,将所述 浆液置于浮选槽中,加入水,并在所述浮选槽中加入水玻璃和煤油作为浮选助剂,然后通入空气,所述单 质硫因憎水性而溢流出来,则容器下部的沉淀物即为含再生的无定形羟基氧化铁的物料。 所述物料烘干 后又可以作为脱硫剂使用,所述物料的硫容为 48%;第二次再生后的物料的硫容为 46. 5%,第三次再生后的 物料的硫容为 45%,第四次再生后的物料的硫容为 44% 。
所述浮选助剂有利于单质硫的上浮,可以使所述无定形羟基氧化铁和单质硫分离的效果更好,以下 实施例同。
实施例 3
含无定形羟基氧化铁的物料的制备:
将 152克 FeS04 · 7 0配成水溶液置于反应釜中,在搅拌条件下投入 92克固体 NaHC03,进行反应将混合 液 pH调至 8, 0. 5小时后,过滤,滤饼用水洗,直至滤饼中 N 的含量小于 0. 5%,然后将所述滤饼配成固体质 量百分含量为 30%的水悬浮液,并通入空气进行氧化,直至 Fe27F 小于 1%则物料氧化完全,过滤,在 45Ό 时干燥,即得到含无定形羟基氧化铁的物料,所述物料中无定形羟基氧化铁的质量百分含量为 80%,其余 组分为 N S04,水, Ti02,所述物料的硫容为 49. 6%。
再生方法 1 :
将所述含无定形羟基氧化铁的物料装在脱硫反应器中脱硫,待 S穿透后,将废剂卸出,用水洗涤 后,在湿式球磨机中研磨成 100目的颗粒,得到废剂粉; 将所述废剂粉配成固体质量百分含量为 5%的水悬 浮液,通入压缩空气,反应一段时间后取样检验,当取出的样品与盐酸反应不生成 H2S时,则水悬浮液中的 铁硫化物完全转化为无定形羟基氧化铁和单质硫,形成含所述无定形羟基氧化铁和单质硫的浆液,过滤 所述桨液得到固体物料,用 ( 14萃取过滤后得到的固体物料,共萃取三次,合并萃取液,用蒸馏的方法回 收溶剂同时得到结晶的单质硫,而萃取液分出后剩余的固体即为含再生的无定形羟基氧化铁的物料。 所 述含再生的无定形羟基氧化铁的物料烘干后又可以作为脱硫剂使用,所述物料的硫容为 48. 3%;第二次再 生后的物料的硫容为 44. 6%,第三次再生后的物料的硫容为 42. 8%,第四次再生后的物料的硫容为 41. 2%。
再生方法 2:
将所述含无定形羟基氧化铁的物料装在脱硫反应器中脱硫,待 S穿透后,将废剂卸出,用水洗涤 后,在湿式球磨机中研磨成 100目的颗粒,得到废剂粉; 将所述废剂粉配成固体质量百分含量为 5%的水悬 浮液,通入压缩空气,反应一段时间后取样检验,当取出的样品与盐酸反应不生成 H2S时,则水悬浮液中的. 铁硫化物完全转化为无定形羟基氧化铁和单质硫,形成含所述无定形羟基氧化铁和单质硫的浆液,将所 述浆液置于浮选槽中,加入水, ffi入空气,因所述单质硫的憎水性所以溢流出来,则容器下部的沉淀物即^ 为含再生的无定形羟基氧化铁的物料。 '所述溢流出的单质硫经萃取或其它方法可以提纯;所述含再生的 无定形羟基氧化铁的物料烘干后又可以作为脱硫剂使用,所述物料的硫容为 47. 8% ; 第二次再生后的物 料的硫容为 44. 2%,第三次再生后的物料的硫容为 42. 8 %,第四次再生后的物料的硫容为 41. 2% 。
实施例 4
含无定形羟基氧化铁的物料的制备:'
将 127克 FeCl2 ·4Η20配成水溶液置于反应釜中,在搅拌条件下投入 128克固体 KHC03,混合液调至 pH为 8 反应 1. 5小时后,过滤,滤饼用水洗,直至滤饼中 Γ的含量小于 0. 5%,然后将所述滤饼配成固体质量百分含 量为 10%的水悬浮液,并通入空气进行氧化,直至 Fe Fes小于 1%则物料氧化完全,过滤,在 30Ό时干燥,即 得到含无定形羟基氧化铁的物料,所述物料中无定形羟基氧化铁的质量百分含量为 88%,其余组分为 KC1,水及未知杂质,所述物料的硫容为 54. 6%。
再生方法 1 :
将所述含无定形羟基氧化铁的物料装在脱硫反应器中脱硫,待 H2S穿透后,将废剂卸出,用水洗涤后, 在湿式球磨机中研磨成 200目的颗粒,得到废剂粉; 将所述废剂粉配成固体质量百分含量为 10%的水悬浮 液,通入压缩空气,反应一段时间后取样检验,当取出的样品与盐酸反应不生成 S时,则水悬浮液中的铁 硫化物完全转化为无定形羟基氧化铁和单质硫,形成含所述无定形羟基氧化铁和单质硫的浆液,过滤所 述浆液得到固体物料,用 CS2萃取过滤后得到的固体物料,共萃取三次,合并萃取液,用蒸馏的方法回收溶 剂同时得到结晶的单质硫,而萃取液分出后剩余的固体即为含再生的无定形羟基氧化铁的物料。 所述含 再生的无定形羟基氧化铁的物料烘干后又可以作为脱硫剂使用,所述物料的硫容为 52. 9 %; 第二次再生 后的物料的硫容为 49. 4%,第三次再生后的物料的硫容为 48. 1%,第四次再生后的物料的硫容为 46. 3% 。
再生方法 2:
― 将所述含无定形羟基氧化铁的物料装在脱硫反应器中脱硫,待 H2S穿透后,将废剂卸出,用水洗涤后, 在湿式球磨机中研磨成 200目的颗粒,得到废剂粉; 将所述废剂粉配成固体质量百分含量为 10%的水悬浮 液,通入压縮空气,反应一段时间后取样检验,当取出的样品与盐酸反应不生成 H2S时,则水悬浮液中的铁 硫化物完全转化为无定形羟基氧化铁和单质硫,形成含所述无定形羟基氧化铁和单质硫的桨液,过滤所 述浆液得到固体物料,将所述固体物料置于浮选槽中,加入水,并在所述浮选槽中加入水玻璃和煤油作为 浮选助剂,然后通入空气,因所述单质硫的憎水性而溢流出来,则容器下部的沉淀物即为含再生的无定形 羟基氧化铁的物料。所述物料烘干后又可以作为脱硫剂使用,所述物料的硫容为 52. 6%;第二次再生后的 物料的硫容为 48. 8%,第三次再生后的物料的硫容为 47. 0% ,第四次再生后的物料的硫容为 45. 2% 。
实施例 5
含无定形羟基氧化铁的物料的制备:
将固体 Fe (N03) 2 · 6H20配成水溶液置于反应釜中,在搅拌条件下投入固体 (N ) 2C03)并控制反应 终点时溶液的 PH=7. 5,过滤所述溶液,滤饼用水洗,直至滤饼中亂 +的含量小于 0. 5%,然后将所述滤饼配成 固体质量百分含量为 10%的水悬浮液,并通入空气进行氧化,直至 Fe27Fes小于 1%则物料氧化完全,过滤, 在 80 'C时干燥,即得到含无定形羟基氧化铁的物料,所述物料中无定形羟基氧化铁的质量百分含量为 100%,所述物料的硫容为 62% 。 其中, NH4 +的含量采用奈斯勒试剂分析。 ,
在本实施例中通过控制反应溶液的 PH值来控制所投入的固体 (N¾ ) 2C03的量,也就是控制两种物料 的加料比,以下实施例类同。
再生方法 1 :
将所述含无定形羟基氧化铁的物料装在脱硫反应器中脱硫,待 S穿透后,将废剂卸出,用水洗涤后, 在湿式球磨机中带水研磨成 300目的颗粒,得到废剂粉; 将所述废剂粉配成固体质量百分含量为 :15%的水 悬浮液,通入压縮空气,反应一段时间后取样检验,当取出的样品与盐酸反应不生成 H2S时,则水悬浮液中 的铁硫化物完全转化为无定形羟基氧化铁和单质硫,形成含所述无定形羟基氧化铁和单质硫的浆液,过 滤所述浆液得到固体物料,用 CC14萃取过滤后得到的固体物料,共萃取三次,合并萃取液,用蒸馏的方法 回收溶剂同时得到结晶的单质硫,而萃取液分出后剩余的固体即为含再生的无定形羟基氧化铁的物料。 所述物料烘干后又可以作为脱硫剂使用,所述物料的硫容为 59%;第二次再生后的物料的硫容为 58%,第三 次再生后的物料的硫容为 56%,第四次再生后的物料的硫容为 54%。
再生方法 2:
将所述含无定形羟基氧化铁的物料装在脱硫反应器中脱硫,待 S穿透后,将废剂卸出,用水洗涤后, 在湿式球磨机中带水研磨成 300目的颗粒,得到废剂粉; 将所述废剂粉配成固体质量百分含量为 15%的水 悬浮液,通入压缩空气,反应一段时间后取样检验,当取出的样品与盐酸反应不生成 S时,则水悬浮液中 的铁硫化物完全转化为无定形羟基氧化铁和单质硫,形成含所述无定形羟基氧化铁和单质硫的浆液,将 所述浆液置于浮选槽中,加入水,并在所述浮选槽中加入水玻璃和煤油作为浮选助剂,然后通入空气,因 单质硫的憎水性而溢流出来,则容器下部的沉淀物即为含再生的无定形羟基氧化铁的物料,所述物料烘 干后又可以作为脱硫剂使用,所述再生的无定形羟基氧化铁的硫容为 59%;第二次再生后的物料的硫容为 58%,第三次再生后的物料的硫容为 56%,第四次再生后的物料的硫容为 54% 。
实施例 6
含无定形羟基氧化铁的物料的制备:
将固体 FeCl2 ·4Η20配成水溶液置于反应釜中,在搅拌条件下投入固体 NaHC03,控制反应终点时溶液的 PH=8,过滤所述溶液,滤饼用水洗,直至滤饼中 N 的含量小于 0. 5%,然后将所述滤饼配成固体质量百分含 量为 5%的水悬浮液,并通入空气进行氧化,直至 Fe27Fe¾小于 1%则物料氧化完全,过滤,在 70Ό时干燥,即 得到含无定形羟基氧化铁的物料,所述物料中无定形羟基氧化铁的质量百分含量为 92%,其余组分为 NaCl,水及未知杂质,所述物料的硫容为 57%,其中 C1—的含量通过硫氰酸汞比色方法测定。
再生方法 1:
将所述含无定形羟基氧化铁的物料装在脱硫反应器中脱硫,待 S穿透后,将废剂卸出,用水洗涤后, 在湿式球磨机中研磨成 400目的颗粒,得到废剂粉; 将所述废剂粉配成固体质量百分含量为 30%的水悬浮 液,通入压縮空气,反应一段时间后取样检验,当取出的样品与盐酸反应不生成 S时,则水悬浮液中的铁 硫化物完全转化为无定形羟基氧化铁和单质硫,形成含所述无定形羟基氧化铁和单质硫的浆液,过滤所 述浆液得到固体物料,用 CS2萃取过滤后得到的固体物料,共萃取三次,合并萃取液,用蒸馏的方法回收溶 剂同时得到结晶的单质硫,而萃取液分出后剩余的固体即为含再生的无定形羟基氧化铁的物料。 所述物 料烘干后又可以作为脱硫剂使用,所述物料的硫容为 55%;第二次再生后的物料的硫容为 53%,第三次再 生后的物料的硫容为 50%,第四次再生后的物料的硫容为 48%。
再生方法 2:
将所述含无定形羟基氧化铁的物料装在脱硫反应器中脱硫,待 S穿透后,将废剂卸出,用水洗涤后, 在湿式球磨机中研磨成 400目的颗粒,得到废剂粉; 将所述废剂粉配成固体质量百分含量为 30%的水悬浮 液,通入压缩空气,反应一段时间后取样检验,当取出的样品与盐酸反应不生成 H2S时,则水悬浮液中的铁 硫化物完全转化为无定形羟基氧化铁和单质硫,形成含所述无定形羟基氧化铁和单质硫的浆液,将所述 浆液置于浮选槽中,加入水,并在所述浮选槽中加入水玻璃和煤油作为浮选助剂,然后通入空气,因单质 硫的憎水性而溢流出来,则容器下部的沉淀物即为含再生的无定形羟基氧化铁的物料。 所述物料烘干后 又可以作为脱硫剂使用,所述物料的硫容为 55%;第二次再生后的物料的硫容 54%,第三次再生后的物料的 硫容 52%,第四次再生后的物料的硫容为 50%。
实施例 7
含无定形羟基氧化铁的物料的制备: . ... . . . 将固体 FeS04 · 7 0配成水溶液置于反应釜中,在搅拌条件下投入固体 KHC03,控制反应终点时溶液的 PH=8. 5,过滤所述溶液,滤饼用水洗,直至滤饼中 IT的含量小于 0. 5%,然后将所述滤饼配成固体质量百分 含量为 5%的水悬浮液,并通入空气进行氧化,直至 6 2. 小于1%则物料氧化完全,过滤,在 60°C时干燥, 即得到含无定形羟基氧化铁的物料,所述物料中无定形羟基氧化铁的质量百分含量为 90%,其余组分为 K2S04) Ti02,水份,所述物料的硫容为 55. 8%。
再生方法 1 :
将所述含无定形羟基氧化铁的物料装在脱硫反应器中脱硫,待 S穿透后,将废剂卸出,用水洗涤后, 在湿式球磨机中研磨成 400目的颗粒,得到废剂粉; 将所述废剂粉配成固体质量百分含量为 10%的水悬浮 液,通入压縮空气,反应一段时间后取样检验,当取出的样品与盐酸反应不生成 S时,则水悬浮液中的铁 硫化物完全转化为无定形羟基氧化铁和单质硫,形成含所述无定形羟基氧化铁和单质硫的桨液,过滤所 述浆液得到固体物料,用 CS2萃取过滤后得到的固体物料,共萃取三次,合并萃取液,用蒸馏的方法回收溶 剂同时得到结晶的单质硫,而萃取液分出后剩余的固体即为含再生的无定形羟基氧化铁的物料。 所述物 料烘干后又可以作为脱硫剂使用,所述物料的硫容为 54%;第二次再生后的物料的硫容为 50. 8%,第三次 再生后的物料的硫容为 48%,第四次再生后的物料的硫容为 46%。
再生方法 2:
将所述含无定形羟基氧化铁的物料装在脱硫反应器中脱硫,待 H2S穿透后,将废剂卸出,用水洗涤后, 在湿式球磨机中研磨成 400目的颗粒,得到废剂粉; 将所述废剂粉配成固体质量百分含量为 30%的水悬浮 液,通入压縮空气,反应一段时间后取样检验,当取出的样品与盐酸反应不生成 S时,则水悬浮液中的铁 硫化物完全转化为无定形羟基氧化铁和单质硫,形成含所述无定形羟基氧化铁和单质硫的浆液,将所述 桨液置于浮选槽中,加入水,并在所述浮选槽中加入水玻璃和煤油作为浮选助剂,然后通入空气,单质硫 因憎水性而溢流出来,则容器下部的沉淀物即为含再生的无定形羟基氧化铁的物料。 所述物料烘干后又 可以作为脱硫剂使用,所述物料的硫容为 54%;第二次再生后的物料的硫容为 51%,第三次再生后的物料的 硫容为 49%,第四次再生后的物料的硫容为 48%。
实施例 8
含无定形羟基氧化铁的物料的制备:
将固体 FeS04 · 7 0配成水溶液置于反应釜中,在搅拌条件下投入固体 N¾HC03,控制反应终点时溶液 的 PH=8,过滤所述溶液,滤饼用水洗,直至滤饼中 NH 的含量小于 0. 5%,然后将所述滤饼配成固体质量百分 含量为 15%的水悬浮液,并通入空气进行氧化,直至 Fe27F 小于 1%则物料氧化完全,过滤,在- 5°C时干燥, 即得到含无定形羟基氧化铁的物料,所述物料中无定形羟基氧化铁的质量百分含量为 80%,其余组分为 ( H4) 2S04, Ti02,水和四氧化三铁,所述物料的硫容为 49. 6%。
再生方法 1 :
将所述含无定形羟基氧化铁的物料装在脱硫反应器中脱硫,待 S穿透后,将废剂卸出,用水洗涤后, 在湿式球磨机中研磨成 400目的颗粒,得到废剂粉; 将所述废剂粉配成固体质量百分含量为 10%的水悬浮 液,通入压缩空气,反应一段时间后取样检验,当取出的样品与盐酸反应不生成 H2S时,则水悬浮液中的铁 硫化物完全转化为无定形羟基氧化铁和单质硫,形成含所述无定形羟基氧化铁和单质硫的浆液 过滤所 述浆液得到固体物料,用 CS2萃取过滤后得到的固体物料,共萃取三次,合并萃取液,用蒸馏的方法回收溶 剂周时得到结晶的单质硫,而萃取液分出后剩余的固体即为含再生的无定-形羟基氧化铁的物料。 所述物 料烘干后又可以作为脱硫剂使用,所述物料的硫容为 48. 1%;第二次再生后的物料的硫容为 44. 3%,第三 次再生后的物料的硫容为 42. 5%,第四次再生后的物料的硫容为 41. 0% 。
再生方法 2:
将所述含无定形羟基氧化铁的物料装在脱硫反应器中脱硫,待 H2S穿透后,将废剂卸出,用水洗涤后, 在湿式球磨机中研磨成 400目的—颗粒,得到废剂粉; 将所述废剂粉配成固体质量百分含量为 30%的水悬浮 液,通入压缩空气,反应一段时间后取样检验,当取出的样品与盐酸反应不生成 H2S时,则水悬浮液中的铁 硫化物完全转化为无定形羟基氧化铁和单质硫,形成含所述无定形羟基氧化铁和单质硫的浆液,过滤所 述浆液得到固体物料,将所述固体物料置于浮选槽中,加入水,并在所述浮选槽中加入水玻璃和煤油作为 浮选助剂,然后通入空气,单质硫因憎水性而溢流出来,则容器下部的沉淀物即为含再生的无定形羟基氧 化铁的物料。 所述物料烘干后又可以作为脱硫剂使用,所述物料的硫容为 47. 9 % ; 第二次再生后的 物料的硫容为 44. 5% ,第三次再生后的物料的硫容为 42. 7% ,第四次再生后的物料的硫容为 41. 2% 。
实施例 9
含无定形羟基氧化铁的物料的制备:
将 152克 FeS04 · 7H20配成水溶液置于反应釜中,在搅拌条件下加入由 58克固体 Na2C03所配成的水溶 液,最后将混合液 pH调至 8,反应 0. 5小时后,过滤,滤饼用水洗,直至滤饼中 Na+的含量小于 0. 5%,然后将所 述滤饼配成固体质量百分含量为 30%的水悬浮液,并通入空气进行氧化,直至 Fe 27Fe.e小于l%则物料氧化 完全,过滤,在 100°C时干燥,即得到含无定形羟基氧化铁的物料,所述物料中无定形羟基氧化铁的质量百 分含量为 85%,其余组分为 N SO.,,水和 Ti02 ( Ti02为工业 FeS04 · 7H20中的杂质,以下实施例同) ,所述 物料的硫容为 53%。 实施例中所说的 F 指的是铁元素的总含量, Fe 27Fe.e的测定采用邻菲啰啉分光光度 法, Nef含量的测定采用火焰光度法,以下实施例同。
再生方法 1 :
将所述含无定形羟基氧化铁的物料装在脱硫反应器中脱硫,待 S穿透后,将废剂卸出,用水洗條 后,在湿式球磨机中研磨成 100目的颗粒,得到废剂粉; 将所述废剂粉配成固体质量百分含量为 5%的水悬 浮液,通入压縮空气,反应一段时间后取样检验,当取出的样品与盐酸反应不生成 S时,则水悬浮液中的 铁硫化物完全转化为无定形羟基氧化铁和单质硫,形成含所述无定形羟基氧化铁和单质硫的浆液,过滤 所述浆液得到固体物料,用 CCL萃取所述固体物料中的单质硫,共萃取三次,合并萃取液,用蒸馏的方法 回收溶剂同时得到结晶的单质硫,而萃取液分出后剩余的固体即为含再生的无定形羟基氧化铁的物料。 所述含再生的无定形羟基氧化铁的物料烘干后又可以作为脱硫剂使用,所述物料的硫容为 51%;第二次再 生后的物料的硫容为 48%,第三次再生后的物料的硫容为 46%,第四次再生后的物料的硫容为 44%。
再生方法 2:
将所述含无定形羟基氧化铁的物料装在脱硫反应器中脱硫,待 S穿透后,将废剂卸出,用水洗涤 后,在湿式球磨机中研磨成 100目的颗粒,得到废剂粉; 将所述废剂粉配成固体质量百分含量为 5%的水悬 浮液,通入压缩空气,反应一段时间后取样检验,当取出的样品与盐酸反应不生成 S时,则水悬浮液中的 铁硫化物完全转化为无定形羟基氧化铁和单质硫,形成含所述无定形羟基氧化铁和单质硫的浆液,过滤 所述浆液得到固体物料,将所述固体物料置于浮选槽中,加入水,通入空气,所述单质硫因具有憎水性而 溢流出来,则容器下部的沉淀物即为含再生的无定形羟基氧化铁的物料。 所述溢流出的单质硫经萃取或 其它方法可以提纯; 所述含再生的无定形羟基氧化铁的物料烘干后又可以作为脱硫剂使用,所述物料的 硫容为 52%; 第二次再生后的物料的硫容为 50%,第四次再生后的物料的硫容为 48%,第四次再生后的物料 的硫容为 46%。
实施例 10
含无定形羟基氧化铁的物料的制备:
将 88克固体 K2C03配成水溶液置于反应釜中,在搅拌条件下加入由 127克 FeCl2所配成的水溶液,将混 合液 pH调至 8. 0,反应 0. 5小时后,过滤,滤饼用水洗,直至滤饼中 K'的含量小于 0. 5%,然后将所述滤饼配成 固体质量百分含量为 15%的水暴浮液,并通入空气进行氧化,直至 Fe27Fe.s小于 1%则物料氧化完全,过滤, 在 90'C时干燥,即得到含无定形羟基氧化铁的物料,所述物料中无定形羟基氧化铁的质量百分含量为 81%,其余组分为 KC1,水份,四氧化三铁以及未知杂质,所述物料的硫容为 .50. 2%。 其中 K'含量的测定采 用 火焰光度法,以下实施例同。
再生方法 1 :
将所述含无定形羟基氧化铁的物料装在脱硫反应器中脱硫,待 H2S穿透后,将废剂卸出,用水洗涤后, 在湿式球磨机中带水硏磨成 200目的颗粒,得到废剂粉; 将所述废剂粉配成固体质量百分含量为 10%的水 悬浮液,通入压縮空气,反应一段时间后取样检验,当取出的样品与盐酸反应不生成 S时,则水悬浮液中 的铁硫化物完全转化为无定形羟基氧化铁和单质硫,形成含所述无定形羟基氧化铁和单质硫的浆液,过 滤所述浆液得到固体物料,用 CS2萃取过滤后得到的固体物料,共萃取三次,合并萃取液,用蒸馏的方法回 收溶剂同时得到结晶的单质硫,而萃取液分出后剩余的固体即为含再生的无定形羟基氧化铁的物料。 所 述含再生的无定形羟基氧化铁的物料烘干后又可以作为脱硫剂使用,所述物料的硫容为 48% ;第二次再 生后的物料的硫容为 46%,第三次再生后的物料的硫容为 44. 5%,第四次再生后的物料的硫容为 42%。
再生方法 2:
将所述含无定形羟基氧化铁的物料装在脱硫反应器中脱硫,待 S穿透后,将废剂卸出,用水洗涤后, 在湿式球磨机中带水研磨成 200目的颗粒,得到废剂粉; 将所述废剂粉配成固体质量百分含量为 10%的水 悬浮液,通入压缩空气,反应一段时间后取样检验,当取出的样品与盐酸反应不生成 H2S时,则水悬浮液中 的铁硫化物完全转化为无定形羟基氧化铁和单质硫,形成含所述无定形羟基氧化铁和单质硫的浆液,将 所述浆液置于浮选槽中,加入水,并在所述浮选槽中加入水玻璃和煤油作为浮选助剂,然后通入空气,所 述单质硫因憎水性而溢流出来,则容器下部的沉淀物即为含再生的无定形羟基氧化铁的物料。 所述物料 烘干后又可以作为脱硫剂使用,所述物料的硫容为 48%;第二次再生后的物料的硫容为 46. 5%,第三次再生 后的物料的硫容为 45%,第四次再生后的物料的硫容为 44%。
所述浮选助剂有利于单质硫的上浮,可以使所述无定形羟基氧化铁和单质硫分离的效果更好,以下 实施例同。
实施例 11
含无定形羟基氧化铁的物料的制备:
将 152克 FeS04 · 7 0配成水溶液置于反应釜中,在搅拌条件下加入由 92克固体 NaHC03所配成的水溶液, 混合后将溶液 pH调至 8. 5,反应 0. 5小时后,过滤,滤饼用水洗,直至滤饼中 的含量小于 0. 5%,然后将所 述滤饼配成固体质量百分含量为 30%的水悬浮液,并通入空气进行氧化,直至 Fe27Fes小于 1%则物料氧化 完全,过滤,在 45Ό时干燥,即得到含无定形羟基氧化铁的物料,所述物料中无定形羟基氧化铁的质量百 分含量为 80%,其余组分为 N S04,水和 Ti02,所述物料的硫容为 49. 6%。
再生方法 1:
将所述含无定形羟基氧化铁的物料装在脱硫反应器中脱硫,待 H2S穿透后,将废剂卸出,用水洗涤后, 在湿式球磨机中研磨成 100目的颗粒,得到废剂粉;将所述废剂粉配成固体质量百分含量为 5%的水悬浮液 ,通入压縮空气,反应一段时间后取样检验,当取出的样品与盐酸反应不生成 S时,则水悬浮液中的铁硫 化物完全转化为无定形羟基氧化铁和单质硫,形成含所述无定形羟基氧化铁和单质硫的浆液,过滤所述 浆液得到固体物料,用 CC14萃取过滤后得到的故推物料,共萃取三次,合并萃取液,用蒸馏的方法回收溶 剂同时得到结晶的单质硫,而萃取液分出后剩余的固体即为含再生的无定形羟基氧化铁的物料。 所述含 再生的无定形羟基氧化铁的物料烘干后又可以作为脱硫剂使用,所述物料的硫容为 48. 5%;第二次再生后 的物料的硫容为 46. 0%,第三次再生后的物料的硫容为 44. 8%,第四次再生后的物料的硫容为 42. 4%。
再生方法 2:
将所述含无定形羟基氧化铁的物料装在脱硫反应器中脱硫,待 S穿透后,将废剂卸出,用水洗涤后, 在湿式球磨机中研磨成 100目的颗粒,得到废剂粉;将所述废剂粉配成固体质量百分含量为 5%的水悬浮液 ,.通入压缩空气,反应一段时间后取样检验,当取出的样品与盐酸反应不生成 S时,则水悬浮液中的铁硫 化物完全转化为无定形羟基氧化铁和单质硫, .形成含所述无定形羟基氧化铁和单质硫的浆液,将所述浆 液置于浮选槽中,加入水,通入空气,所述单质硫因憎水性而溢流出来,则容器下部的沉淀物即为含再生 的无定形羟基氧化铁的物料。所述溢流出的单质硫经萃取或其它方法可以提纯;所述含再生的无定形羟 基氧化铁的物料烘干后又可以作为脱硫剂使用,所述物料的硫容为 48. 0%;第二次再生后的物料的硫容为 44. 5%,第三次再生后的物料的硫容为 43. 1%,第四次再生后的物料的硫容为 42. 4% 。
实施例 12
含无定形羟基氧化铁的物料的制备:
将 128克固体 KHC03配成水溶液置于反应釜中,在搅拌条件下加入由 127克 FeCl2所配成的水溶液,混合 后将溶液 pH调至 8. 0,反应 1. 5小时后,过滤,滤饼用水洗,直至滤饼中 IT的含量小于 0. 5%,然后将所述滤饼 配成固体质量百分含量为 10%的水悬浮液,并通入空气进行氧化,直至 Fe27Fe.s小于 1%则物料氧化完全,过 滤,在 3CTC时干燥,即得到含无定形羟基氧化铁的物料,所述物料中无定形羟基氧化铁的质量百分含量为 88%,其余组分为 KC1,水及未知杂质,所述物料的硫容为 54. 6%。
再生方法 1:
将所述含无定形羟基氧化铁的物料装在脱硫反应器中脱硫,待 H2S穿透后,将废剂卸出,用水洗涤后, 在湿式球磨机中研磨成 200目的颗粒,得到废剂粉; 将所述废剂粉配成固体质量百分含量为 10%的水悬浮 液,通入压縮空气,反应一段时间后取样检验,当取出的样品与盐酸反应不生成 S时,则水悬浮液中的铁 硫化物完全转化为无定形羟基氧化铁和单质硫,形成含所述无定形羟基氧化铁和单质硫的浆液,过滤所 述浆液得到固体物料,用 CS2萃取过滤后得到的固体物料,共萃取三次,合并萃取液,用蒸馏的方法回收溶 剂同时得到结晶的单质硫,而萃取液分出后剩余的固体即为含再生的无定形羟基氧化铁的物料。 所述含 再生的无定形羟基氧化铁的物料烘干后又可以作为脱硫剂使用,所述物料的硫容为 52. 8%;第二次再生后 的物料的硫容为 49. 2 %,第三次再生后的物料的硫容为 47. 9% ,第四次再生后的物料的硫容为 46. 0 % 。
再生方法 2 :
将所述含无定形羟基氧化铁的物料装在脱硫反应器中脱硫,待 S穿透后,将废剂卸出,用水洗涤后, 在湿式球磨机中带水研磨成 200目的颗粒,得到废剂粉; 将所述废剂粉配成固体质量百分含量为 10%的水 悬浮液,通入压縮空气,反应一段时间后取样检验,当取'出的样品与盐酸反应不生成 S时,则水悬浮液中 的铁硫化物完全转化为无定形羟基氧化铁和单质硫,形成含所述无定形羟基氧化铁和单质硫的浆液,过 滤所述浆液得到固体物料,将所述固体物料置于浮选槽中,加入水,并在所述浮选槽中加入水玻璃和煤油 作为浮选助剂,然后通入空气,所述单质硫因憎水性而溢流出来,则容器下部的沉淀物即为含再生的无定 形羟基氧化铁的物料。所述物料烘干后又可以作为脱硫剂使用,所述物料的硫容为 52. 8%;第二次再生后 的物料的硫容为 49. 0%,第三次再生后的物料的硫容为 47. 8 %,第四次再生后的物料的硫容为 45. 8% 。
实施例 13
含无定形羟基氧化铁的物料的制备:
将固体 Fe (N03) 2配成水溶液置于反应釜中,在搅拌条件下投入由固体(NH4) 2C03所配成的水溶液, 并控制反应终点时溶液的 PH=7. 5,过滤所述溶液,滤饼用水洗,直至滤饼中 Ν¾'的含量小于 0. 5%,然后将所 述滤饼配成固体质量百分含量为 10%的水悬浮液,并通入空气进行氧化,直至 Fe27Fes小于 1%则物科氧化 完全,过滤,在 80'C时干燥,即得到含无定形羟基氧化铁的物料,所述物料中无定形羟基氧化铁的质量百 分含量为 100%,所述物料的硫容为 62% 。 其中 , N¾+的含量采用奈斯勒试剂分析。
在本实施例中通过控制反应溶液的 PH值来控制所投入的 (N¾) 2C03的量,也就是控制两种物料的加 料比,以下实施例类同。
再生方法 1 :
将所述含无定形羟基氧化铁的物料装在脱硫反应器中脱硫,待 S穿透后,将废剂卸出,用水洗涤后, 在湿式球磨机中带水研磨成 300目的颗粒,得到废剂粉; 将所述废剂粉配成固体质量百分含量为 15%的水 悬浮液,通入压缩空氕,反应一段时间后取样检验,当取出的样品与盐酸反应不生成 H2S时,则水悬浮 _液中.. 的铁硫化物完全转化为无定形羟基氧化铁和单质硫,形成含所述无定形羟基氧化铁和单质硫的浆液,过 滤所述浆液得到固体物料,用 CC1萃取过滤后得到的固体物料,共萃取三次,合并萃取液,用蒸馏的方法 回收溶剂同时得到结晶的单质硫,而萃取液分出后剩余的固体即为含再生的无定形羟基氧化铁的物料。 所述物料铁烘干后又可以作为脱硫剂使用,所述物料的硫容为 59% ;第二次再生后的物料的硫容为 58%, 第三次再生后的物料的硫容为 56%,第四次再生后的物料的硫容为 54%。
再生方法 2:
将所述含无定形羟基氧化铁的物料装在脱硫反应器中脱硫,待 S穿透后,将废剂卸出,用水洗涤后, 在湿式球磨机中研磨成 300目的颗粒,得到废剂粉; 将所述废剂粉配成固体质量百分含量为 15%的水悬浮 液,通入压缩空气,反应一段时间后取样检验,当取出的样品与盐酸反应不生成 S时,则水悬浮液中的铁 硫化物完全转化为无定形羟基氧化铁和单质硫,形成含所述无定形羟基氧化铁和单质硫的浆液,将所述 桨液置于浮选槽中,加入水并在所述浮选槽中加入水玻璃和煤油作为浮选助剂,然后通入空气,单质硫因 憎水性而溢流出来,则容器下部的沉淀物即为含再生的无定形羟基氧化铁的物料,所述物料烘干后又可 以作为脱硫剂使用,所述物料的硫容为 59% ;第二次再生后的物料的硫容为 58%,第三次再生后的物料的 硫容为 56%,第四次再生后的物料的硫容为 54%。
实施例 14
含无定形羟基氧化铁的物料的制备:
将固体 NaHC03配成水溶液置于反应釜中,在搅拌条件下加入由固体 FeCL配成的水溶液,控制反应终 点时溶液的 PH=8,过滤所述溶液,滤饼用水洗,直至滤饼中 Na'的含量小于 0. 5%,然后将所述滤饼配成固体 质量百分含量为 5%的水悬浮液,并通入空气进行氧化,直至 ? ^小于1%则物料氧化完全,过滤,在 70°C 时干燥,即得到含无定形羟基氧化铁的物料,所述物料中无定形羟基氧化铁的质量百分含量为 92%,其余 组分为 NaCl,水及未知杂质,所述物料的硫容为 57%,其中 的含量通过硫氰酸汞比色方法测定。
再生方法 1 :
将所述含无定形羟基氧化铁的物料装在脱硫反应器中脱硫,待 S穿透后,将废剂卸出,用水洗涤后, 在湿式球磨机中研磨成 400目的颗粒,得到废剂粉; 将所述废剂粉配成固体质量百分含量为 30%的水悬浮 液,通入压缩空气,反应一段时间后取样检验,当取出的样品与盐酸反应不生成 S时,则水悬浮液中的铁 硫化物完全转化为无定形羟基氧化铁和单质硫,形成含所述无定形羟基氧化铁和单质硫的浆液,过滤所 述浆液得到固体物料,用 CS2萃取过滤后得到的故推物料,共萃取三次,合并萃取液,用蒸馏的方法回收溶 剂同时得到结晶的单质硫,而萃取液分出后剩余的固体即为含再生的无定形羟基氧化铁的物料。 所述物 料烘干后又可以作为脱硫剂使用,所述物料的硫容为 55%;第二次再生后的物料的硫容为 53%,第三次再 生后的物料的硫容为 50%,第四次再生后的物料的硫容为 48%。
再生方法 2:
将所述含无定形羟基氧化铁的物料装在脱硫反应器中脱硫,待 S穿透后,将废剂卸出, '用水洗涤后, 在湿式球磨机中研磨成 400目的颗粒,得到废剂粉; 将所述废剂粉配成固体质量百分含量为 30%的水悬浮 液,通入压缩空气,反应一段时间后取样检验,当取出的样品与盐酸反应不生成 S时,则水悬浮液中的铁 硫化物完全转化为无定形羟基氧化铁和单质硫,形成含所述无定形羟基氧化铁和单质硫的浆液,将所述 浆液置于浮选槽中,加入水,并在所述浮选槽中加入水玻璃和煤油作为浮选助剂,然后通入空气,单质硫' 因憎水性而溢流出来,则容器下部的沉淀物即为含再生的无定形羟基氧化铁的物料。 所述物料烘干后又 可以作为脱硫剂使用,所述物料的硫容为 55%;第二次再'生后的物料的硫容为 54%,第三次再生后的物料 的硫容为. 52%,第四次再生后的物料的硫容为 50%。
实施例 15
含无定形羟基氧化铁的物料的制备:
. . 将固—体 FeSOd · 7 0和固体 KHC0,.分别配成水溶液,然后将配好的所述 FeSO.,溶液和所述 KHC0:,溶液并流, 混合,并在反应釜中进行反应,控制反应终点时溶液的 PH=8. 5,过滤所述溶液,滤饼用水洗,直至滤饼中 的含量小于 0. 5%,然后将所述滤饼配成固体质量百分含量为 5%的水悬浮液,并通入空气进行氧化,直至 - Fe27Fes小于 1%则物料氧化完全,过滤,在 60'C时干燥,即得到含无定形羟基氧化铁的物料,所述物料中无 定形羟基氧化铁的质量百分含量为 89%,其余组分为 K2S04,水及未知杂质,所述物料的硫容为 55%。
再生方法 1 :
将所述含无定形羟基氧化铁的物料装在脱硫反应器中脱硫,待 S穿透后,将废剂卸出,用水洗涤后, 在湿式球磨机中带水研磨成 400目的颗粒,得到废剂粉; 将所述废剂粉配成固体质量百分含量为 10%的水 悬浮液,通入压縮空气,反应一段时间后取样检验,当取出的样品与盐酸反应不生成 S时,则水悬浮液中 的铁硫化物完全转化为无定形羟基氧化铁和单质硫;过滤,并,形成含所述无定形羟基氧化铁和单质硫的 浆液,过滤所述浆液得到固体物料,用 CS2萃取过滤后得到的固体物料,共萃取三次,合并萃取液,用蒸馏 的方法回收溶剂同时得到结晶的单质硫,而萃取液分出后剩余的固体即为含再生的无定形羟基氧化铁的 物斗。 所述物料烘干后又可以作为脱硫剂使用,所述物料的硫容为 53%; 第二次再生后的物料的硫容为 51%,第三次再生后的物料的硫容为 48%,第四次再生后的物料的硫容为 46%。
再生方法 2:
将所述含无定形羟基氧化铁的物料装在脱硫反应器中脱硫,待 S穿透后,将废剂卸出,用水洗涤后, 在湿式球磨机中带水研磨成 400目的颗粒,得到废剂粉; 将所述废剂粉配成固体质量百分含量为 30%的水 悬浮液,通入压缩空气,反应一段时间后取样检验,当取出的样品与盐酸反应不生成 S时,则水悬浮液中 的铁硫化物完全转化为无定形羟基氧化铁和单质硫,形成含所述无定形羟基氧化铁和单质硫的浆液,将 所述浆液置于浮选槽中,加入水,并在所述浮选槽中加入水玻璃和煤油作为浮选助剂,然后通入空气,单 质硫因憎水性而溢流出来,则容器下部的沉淀物即为含再生的无定形羟基氧化铁的物料。 所述物料烘干 后又可以作为脱硫剂使用,所述物料的硫容为 53% ;第二次再生后的物料的硫容为 51%,第三次再生后的 物料的硫容为 49%,第四次再生后的物料的硫容为 48%。
实施例 16
含无定形羟基氧化铁的物料的制备:
将固体 FeS04 · 7 0和固体 N¾HC03分别配成水溶液,然后将配好的所述 FeS04溶液和 N¾HC03溶液并流混 合,并在反应釜中进行反应,控制反应终点时溶液的 PH=8,过滤所述溶液,滤饼用水洗,直至滤饼中 NH 的 含量小于 0. 5%,然后将所述滤饼配成固体质量百分含量为 15%的水悬浮液,并通入空气进行氧化,直至 Fe27Fee小于 1%则物料氧化完全,过滤,在 -5'C时干燥,即得到含无定形羟基氧化铁的物料,所述物料中无 定形羟基氧化铁的质量百分含量为 80%,其余组分为( ¾) 2S04,水及四氧化三铁,所述物料的硫容为 49. 6 %。
再生方法 1:
将所述含无定形羟基氧化铁的物料装在脱硫反应器中脱硫,待 S穿透后,将废剂卸出,用水洗涤后, 在湿式球磨机中研磨成 400目的颗粒,得到废剂粉; 将所述废剂 配成固体质量百分含量为 10%的水悬浮 液,通入压縮空气,反应一段时间后取样检验,当取出的样品与 ^酸反应不生成 S时,则水悬浮液中的铁 硫化物完全转化为无定形羟基氧化铁和单质硫,形成含所述无定形羟基氧化铁和单质硫的浆液,过滤所 述桨液得到固体^!料,用 0≤2萃取过滤后得到的固体物料,共萃取三次,合并萃取液,用蒸馏的方法回收溶 剂同时得到结晶的单质硫,而萃取液分出后剩余的固体即为含再生的无定形羟基氧化铁的物料。 所述物 料'烘干后又可以作为脱硫剂使用,所述物料的硫容为 48. 1 %; 第二次再生后的物料的硫容为 44. 3 %,第三 次再生后的物料的硫容为 42. 5%,第四次再生后的物料的硫容为 41. 0 %。
再生方法 2:
将所述含无定形羟基氧化铁的物料装在脱硫反应器中脱硫,待 H2S穿透后,将废剂卸出,用水洗涤后, 在湿式球磨机中研磨成 400目的颗粒,得到废剂粉; 将所述废剂粉配成固体质量百.分含量为 30%的水悬浮 液,通入压缩空气,反应一段时间后取样检验,当取出的样品与盐酸反应不生成 S时,则水悬浮液中的铁 硫化物完全转化为无定形羟基氧化铁和单质硫,形成含所述无定形羟基氧化铁和单质硫的浆液,过滤所 述浆液得到固体物料,将所述固体物料置于浮选槽中,加入水,并在所述浮选槽中加入水玻璃和煤油作为 浮选助剂,然后通入空气,因单质硫的憎水性而溢流出来,则容器下部的沉淀物即为含再生的无定形羟基 氧化铁的物料。所述物料烘干后又可以作为脱硫剂使用,所述物料的硫容为 47. 9%;第二次再生后的物料 的硫容为 44. 5%,第三次再生后的物料的硫容为 42. 7 %,第四次再生后的物料的硫容为 41. 2% 。
实施例 17
含无定形羟基氧化铁的物料的制备:
将 3040克 FeSO ·7Η20配成水溶液置于反应釜中,在搅拌条件下加入由 1160克固体 Na2C03所配成的水溶 液,最后将混合液 pH调至 8,反应 0. 5小时后,过滤,滤饼用水洗,直至滤饼中 Na+的含量小于 0. 5%,然后将所 述滤饼配成固体质量百分含量为 30%的水悬浮液,并通入空气进行氧化,直至 Fe2-/Fea小于 1%则物料氧化 完全,过滤,在 100'C时干燥,即得到含无定形羟基氧化铁的物料,所述含无定形羟基氧化铁的物料中无定 形羟基氧化铁的质量百分含量为 85%,其余组分为 N S04,水和 Ti02 (Ti02为工业 FeSO., · 7H20中的杂质,以 下实施例同) ,所述物料的硫容为 53%。 实施例中所说的 ^指的是铁元素的总含量, Fe Fes的测定采用 邻菲啰啉分光光度法, 含量的测定采用火焰光度法,所述含无定形羟基氧化铁的物料中无定形羟基氧 化铁的含量通过三氯化钛-重铬酸钾容量法测定,该方法为铁矿石分析的国家标准(GB6730. 5-86 ) ,以下 实施例同。
脱硫剂的制备及再生: 称取 500克上述含无定形羟基氧化铁的物料,粒度为通过 100目,田菁粉 40克,木屑 10克,混匀,在小型 捏合机上加适量水完成捏合,再用小型双螺杆挤出机挤出条型脱硫剂,在烘箱中 70'C烘 6小时,测其硫容 为 50%,称为脱硫剂 (A)。
将脱硫剂 (A) 装在脱硫反应器中脱硫,待 S穿透后,将废剂卸出,用水洗涤后,在湿式球磨机中带 水研磨成 100目的颗粒,得到废剂粉;将所述废剂粉配成固体质量百分含量为 10%的水悬浮液,通入压縮空 气,反应一段时间后取样检验,当取出的样品与盐酸反应不生成 H2S时,则废剂中的铁硫化物完全转化为 无定形羟基氧化铁和单质硫,形成含所述无定形羟基氧化铁和单质硫的浆液,将所述浆液置于浮选槽中, 加入水,然后通入空气,单质硫、 添加剂和粘结剂随空气溢流出槽,则容器下部的沉淀物即为含再生的无 定形羟基氧化铁的物料。所述溢流出的单质硫经萃取或其它方法可以提纯;所述含再生的无定形羟基氧 化铁的物料在 80'C下烘干,然后按上述比例配入田菁粉和木屑,再按上述成型方法,制备过程和控制条件 制成新的脱硫剂 (B) ,脱硫剂 (B)的硫容为 48%。
将脱硫剂 (B) _装在脱硫反应器脱硫,待 H2S穿透后,将 (B)剂卸出,同样按上述再生方法处理,得到脱 硫剂(B)的再生剂,烘干后按上述的比例配入田菁粉和木屑,再按上述的成型方法,制备过程和控制条件 制成新的脱硫剂 (C) ,脱硫剂 (C) 剂的硫容为 46%。
重复上述循环,经过四次循环再生后得到的第五次的脱硫剂 (e ) 的硫容为 40%。
实施例 18
含无定形羟基氧化铁的物料的制备:
将 880克固体 K2C03配成水溶液置于反应釜中,在搅拌条件下加入由 1270克 FeCl2所配成的水溶液,将混 合液 pH调至 8. 0,反应 0. 5小时后,过滤,滤饼用水洗,直至滤饼中 的含量小于 0. 5%,然后将所述滤饼配成 固体质量百分含量为 15%的水悬浮液,并通入空气进行氧化,直至 Fe Fes小于 1%则物料氧化完全,过滤, 在 90'C时干燥,即得到含无定形羟基氧化铁物料,所述含无定形羟基氧化铁的物料中无定形羟基氧化铁 的质量百分含量为 81%,其余组分为 KC1,水份,四氧化三铁以及未知杂质,所述物料的硫容为 50. 2%。 其中 Γ含量的测定采用火焰光度法,以下实施例同。。
脱硫剂的制备及再生: . . ..
称取 400克上述含无定形羟基氧化铁物料,粒度为通过 100目,田菁粉 48克,稻壳粉 5克,混匀,在小型 捏合机上加水完成捏合,再用小型双螺杆挤出机挤成条,在成丸机上制成丸型脱硫剂,在烘箱中 60'C烘 7 小时,测其硫容为 47. 5%,称为脱硫剂 (A)。 ·
将脱硫剂 (A) 装在脱硫反应器中脱硫,待 S穿透后,将废剂卸出,用水洗涤后,在湿式球磨机中带水研 磨成 200目的颗粒,得到废剂粉; '将所述废剂粉配成固体质量百分含量为 15%的水悬浮液,通入压缩空气, 反应一段时间后取样检验,当取出的样品与盐酸反应不生成 S时,则废剂中的铁硫化物完全转化为无定 形羟基氧化铁和单质硫,形成含所述无定形羟基氧化铁和单质硫的浆液,过滤,并用 CS2萃取过滤后得到 的物料,共萃取三次,合并萃取液,用蒸馏的方法回收溶剂同时得到结晶的单质硫,而萃取液分出后剩余 的固体即为含再生的无定形羟基氧化铁的物料。 所述含再生的无定形羟基氧化铁的物料在 70°C下洪干, 然后按上述比例配入田菁粉和稻壳粉,再按上述成型方法,制备过程和控制条件制成新的脱硫剂 (B ) , 脱硫剂 (B)的硫容为 43%。
将脱硫剂 (B) 装在脱硫反应器脱硫,待 ¾S穿透后,将 (B)剂卸出,同样按上述再生方法处理,得到脱 硫剂(B)的再生剂,按上述的比例配入田菁粉和稻壳粉,再按上述的成型方法,制备过程和控制条件制成 新的脱硫剂 ( C) ,脱硫剂 (C ) 剂的硫容为 40. 5%。
实施例 19
. 含无定形羟基氧化铁的物料的制备:
将 3040克 FeSO., · 7Η20配成水溶液置于反应釜中,在搅拌条件下加入由 1840克固体 NaHC0:1所配成的水溶 液,混合后将溶液 pH调至 8. 5,反应 0. 5小时后,过滤,滤饼用水洗,直至滤饼中 Na'的含量小于 0. 5%,然后将 所述滤饼配成固体质量百分含量为 30%的水悬浮液,并通入空气进行氧化,直至 Fe27Fe.&小于 1%则物料氧 化完全,过滤,在 45Ό时干燥,即得到含无定形羟基氧化铁的物料,所述含无定形羟基氧化铁的物料中无 定形羟基氧化铁的质量百分含量为 80%,其余组分为 Na2S04,水和 Ti02,所述物料的硫容为 49. 6%。
脱硫剂的制备及再生:
称取 1000克上述含无定形羟基氧化铁物料,粒度为通过 100目,田菁粉 80克,在混料机上充分混匀,在 荸荠式糖衣机上滚出 Φ 3- 5的球型脱硫剂,在烘箱中 90Ό烘 4小时,测其硫容为 48%,称为脱硫剂 (A)。
将脱硫剂 (A) 装在脱硫反应器中脱硫,待 S穿透后,将废剂卸出,用水洗涤后,在湿式球磨机中带 水研磨成 400目的颗粒,得到废剂粉; 将所述废剂粉配成固体质量百分含量为 5%的水悬浮液,通入压縮空 气,反应一段时间后取样检验,当取出的样品与盐酸反应不生成 S时,则废剂中的铁硫化物完全转化为 无定形羟基氧化铁和单质硫,形成含所述无定形羟基氧化铁和单质硫的浆液,将所述浆液置于浮选槽中, 加入水,并在所述浮选槽中加入水玻璃和煤油作为浮选助剂,然后通入空气,单质硫和粘结剂随空气溢流 出槽,则容器下部的沉淀物即为含再生的无定形羟基氧化铁的物料。 所述溢流出的单质硫经萃取或其它 方法可以提纯;所述含再生的无定形羟基氧化铁的物料在 80°C下烘干,然后按上述比例配入田菁粉,再按 上述成型方法,制备过程和控制条件制成新的脱硫剂 (B),,脱硫剂 (B)的硫容为 45%。
将脱硫剂 (B) 装在脱硫反应器脱硫,待 H2S穿透后,将 (B)剂卸出,同样按上述再生方法处理,得到脱 硫剂(B)的再生剂,烘干后按上述的比例配入田菁粉,再按上述的成型方法,制备过程和控制条件制成新 的脱硫剂 (C) ,脱硫剂 (C) 剂的硫容为 42%。
所述浮选助剂的作用是为了使所述含再生的无定形羟基氧化铁的物料和单质硫的分离效果更好,以 下实施例同。
实施例 20
含无定形羟基氧化铁的物料的制备:
将 1280克固体 KHC03配成水溶液置于反应釜中,在搅拌条件下加入由 1270克 FeCl2所配成的水溶液,混 合后将溶液 pH调至 8. 0,反应 1. 5小时后,过滤,滤饼用水洗,直至滤饼中 K'的含量小于 0. 5%,然后将所述滤 饼配成固体质量百分含量为 10%的水悬浮液,并通入空气进行氧化,直至 Fe27Fes小于 1%则物料氧化完全 过滤,在 30°C时干燥,即得到含无定形羟基氧化铁物料,所述含无定形羟基氧化铁的物料中无定形羟基氧 化铁的质量百分含 A:为 88%,其余组分为 KC1,水及未知杂质,所述物料的硫容为 54. 6%。
脱硫剂的制备及再生: ·
称取 500克上述含无定形羟基氧化铁的物料,粒度为通过 100目,羧甲基纤维素钠盐 (用预先溶好的) 45克,麦麸粉 10克,混匀,在小型捏合机上加水完成捏合,再用小型双螺杆挤出机挤成条,在成丸机上制成 球型脱硫剂,在烘箱中 75°C烘 5小时,测其硫容为 52%,称为脱硫剂 (A)。
将脱硫剂 (A) 装在脱硫反应器中脱硫,待 H2S穿透后,将废剂卸出,用水洗涤后,在湿式球磨机中带水研 磨成 200目的颗粒,得到废剂粉; 将所述废剂粉配成固体质量百分含量为 30%的水悬浮液,通入压缩空气, 反应一段时间后取样检验,当取出的样品与盐酸反应不生成 S时,则废剂中的铁硫化物完全转化为含无 定形羟基氧化铁物料和单质硫,形成含所述无定形羟基氧化铁和单质硫的浆液,过滤所述浆液得到固体 物料,将所述固体物料置于浮选槽中,加入水,并在所述浮选槽中加入水玻璃和煤油作为浮选助剂,然后 通入空气,单质硫、添加剂和粘结剂随空气溢流出槽,则容器下部的沉淀物即为含再生的无定形羟基氧化 铁的物料。所述溢流出的单质硫经萃取或其它方法可以提纯;所述含再生的无定形羟基氧化铁的物料在 75'C下烘干,然后按上述比例配入羧甲基纤维素钠盐(用预先溶好的),麦麸粉,再按上述成型方法,制备 过程和控制条件制成新的脱硫剂 (B) ,脱硫剂 (B)的硫容为 49%。
将脱硫剂 (B) 装在脱硫反应器脱硫,待 ¾S穿透后,将 (B)剂卸出,同样按上述再生方法处理,得到脱 硫剂(B)的再生剂,按上述的比例配入羧甲基纤维素钠盐和麦麸粉,再按上述的成型方法,制备过程和控 制条件制成新的脱硫剂 (C) ,脱硫剂 (C) 剂的硫容为 47%。 重复上述循环,四次循环再生后得到的第五次的脱硫剂 (e ) 的硫容为 42%。
实施例 21
含无定形羟基氧化铁的物料的制备:
将固体 Fe (NOs) 2配成水溶液置于反应釜中,在搅拌条件下投入由固体 (NH4) 2C03所配成的水溶液, 并控制反应终点时溶液的 PH=7. 5,过滤所述溶液,滤饼用水洗,直至滤饼中 NH 的含量小于 0. 5%,然后将所 述滤饼配成固体质量百分含量为 10%的水悬浮液,并通入空气进行氧化,直至 Fe27Fe.s小于 1%则物料氧化 完全,过滤,在 85°C时干燥,即得到含无定形羟基氧化铁物料,所述含无定形羟基氧化铁物料中无定形羟 基氧化铁的质量百分含量为 99%,其余组分为水,所述物料的硫容为 59%。其中, NH 的含量采用奈斯勒试剂 分析。
在本实施例中通过控制反应溶液的 PH值来控制所投入的 (N1 2C03的量,也就是控制两种物料的加 料比,以下实施例类同。
脱硫剂的制备及再生:
称取 500克上述含无定形羟基氧化铁的物料,粒度为通过 100目,纤维素粉 50克,混匀,在小型捏合机上 加水完成捏合,再用小型双螺杆挤出机挤成条,在成丸机上制成丸型脱硫剂,在烘箱中 80'C烘 4小时,测其 硫容为 56%,称为脱硫剂 (A)。
将脱硫剂(A)装在脱硫反应器中脱硫,待 H2S穿透后,将废剂卸出,用水洗涤后,在湿式球磨机中带水研 磨成 200目的颗粒,得到废剂粉; 将所述废剂粉配成固体质量百分含量为 15%的水悬浮液,通入压縮空气, 反应一段时间后取样检验,当取出的样品与盐酸反应不生成 H2S时,则废剂中的铁硫化物完全转化为无定 形羟基氧化铁和单质硫,形成含所述无定形羟基氧化铁和单质硫的桨液,过滤,并用 CC14萃取过滤后得到 的物料,共萃取三次,合并萃取液,用蒸馏的方法回收溶剂同时得到结晶的单质硫,而萃取液分出后剩余 的固体即为含再生的无定形羟基氧化铁的物料。 所述含再生的无定形羟基氧化铁的物料在 70°C下烘干, 然后按上述比例配入纤维素粉,再按上述成型方法,制备过程和控制条件制成新的脱硫剂 (B),脱硫剂 (B) 的硫容为 54%。
. 将脱硫剂 (B).装在脱硫反应器脱硫,待 ftS穿透后,将 (B)剂卸出,同样按上述再生方法处理.; 4寻到脱 硫剂(B)的再生剂,按上述的比例配入纤维素粉,再按上述的成型方法,制备过程和控制条件制成新的脱 硫剂 (C ) ,脱硫剂 (C) 剂的硫容为 50%。
重复上述循环,四次循环再生后得到的第五次的脱硫剂 (e ) 的硫容为 45%。
实施例 22
含无定形羟基氧化铁的物料的制备:
将固体 NaHC03配成水溶液置于反应釜中,在搅拌条件下加入由固体 FeCl2配成的水溶液,控制反应终 点时溶液的 PH=8,过滤所述溶液,滤饼用水洗,直至滤饼中 Na+的含量小于 0. 5%,然后将所述滤饼配成固体 质量百分含量为 5%的水悬浮液,并通入空气进行氧化,直至 Fe27Fes小于 1%则物料氧化完全,过滤,在 70Ό 时干燥,即得到含无定形羟基氧化铁的物料,所述含无定形羟基氧化铁物料中无定形羟基氧化铁的质量 百分含量为 92%,其余组分为 NaCl,水及未知杂质,所述物料的硫容为 57%。其中 C1—的含量通过硫氰酸汞比 色方法测定。
脱硫剂的制备及再生:
称取 500克上述含无定形羟基氧化铁的物料,粒度为通过 100目,纤维素粉 40克,稻壳粉 6克,混匀,在 小型捏合机上加水完成捏合,再用小型双螺杆挤出机挤成条,在成丸机上制成球型脱硫剂,在室温下自然 干燥 20小时,测其硫容为 55%,称为脱硫剂 (A)。
将脱硫剂(A)装在脱硫反应器中脱硫,待 H2S穿透后,将废剂卸出,用水洗涤后,在湿式球磨机中带水研 磨成 200目的颗粒,得到废剂粉; 将所述废剂粉配成固体质量百分含量为 30%的水悬浮液,通入压縮空气, 反应一段时间后取样检验,当取出的样品与盐酸反应不生成 H2S时,则废剂中的铁硫化物完全转化为无定 形羟基氧化铁和单质硫,形成含所述无定形羟基氧化铁和单质硫的浆液,过滤所述浆液得到固体物料,将 所述固体物料置于浮选槽中,加入水,并在所述浮选槽中加入水玻璃和煤油作为浮选助剂,然后通入空气 ,单质硫、添加剂和粘结剂随空气溢流出槽,则容器下部的沉淀物即为含再生的无定形羟基氧化铁的物料 。所述溢流出的单质硫经萃取或其它方法可以提纯;所述含再生的无定形羟基氧化铁的物料在 75°C下烘 干,然后按上述比例配入纤维素粉和稻壳粉,再按上述成型方法,制备过程和控制条件制成新的脱硫剂(B ) ,脱硫剂 (B)的硫容为 51%。
将脱硫剂 (B) 装在脱硫反应器脱硫,待 H2S穿透后,将 (B)剂卸出,同样按上述再生方法处理,得到脱 硫剂(B)的再生剂,按上述的比例配入纤维素粉和稻壳粉,再按上述的成型方法,制备过程和控制条件制 成新的脱硫剂 (C) ,脱硫剂 (C) 剂的硫容为 47%。
实施例 23
含无定形羟基氧化铁的物料的制备:
将固体 FeS04 · 7 0和固体 KHC03分别配成水溶液,然后将配好的所述 FeSC溶液和所述 KHC03溶液并流 混合,并在反应釜中进行反应,控制反应终点时溶液的 ra=8. 5,过滤所述溶液,将所得到的滤饼放入空气 中 然氧化,当物料中 Fe 27Fe.&小于10%,氧化结束,所得物料水洗,直至物料中 IT的含量小于 1%,过滤,在 60Ό时干燥,即得到含无定形羟基氧化铁的物料,所述含无定形羟基氧化铁的物料中无定形羟基氧化铁 的质量百分含量为 86%,其余组分为 K2S04,水及未知杂质,所述物料的硫容为 53%。
脱硫剂的制备及再生:
' 称取 500克上述含无定形羟基氧化铁的物料,粒度为通过 100目,羧甲基纤维素钠盐 (用预先溶好的) 67克,混匀,在小型捏合机上加水完成捏合,再用小型双螺杆挤出机挤成条,在成丸机上制成球型脱硫剂, 在烘箱中 75°C烘 5小时,测其硫容为 49%,称为脱硫剂 (A)。
将脱硫剂(A)装在脱硫反应器中脱硫,待 H2S穿透后,将废剂卸出,用水洗涤后,在湿式球磨机中带水研 磨成 200目的颗粒,得到废剂粉; 将所述废剂粉配成固体质量百分含量为 30%的水悬浮液,通入压缩空气, 反应一段时间后取样检验,当取出的样品与盐酸反应不生成 H2S时,则废剂中的铁硫化物完全转化为无定 形羟基氧化铁和单质硫 ,形成含所述无定形羟基氧化铁的物料和单质硫的浆液,过滤所述浆液得到固体 物料,将所述固体物料置于浮选槽中,加入水,并在所述浮选槽中加入水玻璃和煤油作为浮选助剂,然启 通入空气,单质硫和粘结剂随空气溢流出槽,则容器下部的沉淀物即为含再生的无定形羟基氧化铁的物 料。所述溢流出的单质硫经萃取或其它方法可以提纯;所述含再生的无定形羟基氧化铁的物料在 75°C下 烘干,然后按上述比例配入羧甲基纤维素钠 (用预先溶好的) ,再按上述成型方法,制备过程和控制条件 制成新的脱硫剂 (B) ,脱硫剂 (B)的硫容为 47%。
将脱硫剂 (B) 装在脱硫反应器脱硫,待 H2S穿透后,将 (B)剂卸出,同样按上述再生方法处理,得到脱 硫剂(B)的再生剂,按上述的比例配入羧甲基纤维素钠,再按上述的成型方法,制备过程和控制条件制成 新的脱硫剂 (C) ,脱硫剂 (C) 剂的硫容为 45. 5%。
重复上述循环,四次循环再生后得到的第五次的脱硫剂 (e) 的硫容为 42%。
实施例 24
含无定形羟基氧化铁的物料的制备:
将固体 FeS04 ·7Η20和固体 H4HC03分别配成水溶液,然后将配好的所述 FeS04溶液和 NH4HC03溶液并流混 合,并在反应釜中进行反应,控制反应终点时溶液的 PH=8,过滤所述溶液,将所得到的滤饼放入空气中自 然氧化,当物料中 Fe27Fes小于 10%,氧化结束,所得物料水洗,直至物料中 ΝΗ.Γ的含量小于 0. 5%,过滤,在 - 5Ό时干燥,即得到含无定形羟基氧化铁的物料,其中含无定形羟基氧化铁物料中无定形羟基氧化铁的 质量百分含量为 75%,其余组分为 (N ) 2S04,水及四氧化三铁,所述物料的硫容为 46. 5%。
脱硫剂的制备及再生:
. 称取 485克上述含无定形羟基氧化铁的物料,粒度为通过 100目,田菁粉 40克,麦麸粉 25克,混匀,在小 型捏合机上加适量水完成捏合,再用小型双螺杆挤出机挤出条型脱硫剂,在烘箱中 30°C烘 15小时,测其硫 容为 42%,称为脱硫剂 (A)。
将脱硫剂(A)装在脱硫反应器中脱硫,待 S穿透后,将废剂卸出,用水洗涤后,在湿式球磨机中带水研 磨成 100目的颗粒,得到废剂粉; 将所述废剂粉配成固体质量百分含量为 10%的水悬浮液,通入压缩空气, 反应一段时间后取样检验,当取出的样品与盐酸反应不生成 S时,则废剂中的铁硫化物完全转化为无定 形羟基氧化铁物料和单质硫,形成含所述无定形羟基氧化铁和单质硫的桨液,将所述浆液置于浮选槽中, 加入水,然后通入空气,单质硫、 添加剂和粘结剂随空气溢流出槽,则容器下部的沉淀物即为含再生的无 定形羟基氧化铁的物料。所述溢流出的单质硫经萃取或其它方法可以提纯;所述含再生的无定形羟基氧 化铁的物料在 80'C下烘干,然后按上述比例配入田菁粉和麦麸粉,再按上述成型方法,制备过程和控制条 件制成新的脱硫剂 (B) ,脱硫剂 (B)的硫容为 41%。
将脱硫剂 (B) 装在脱硫反应器脱硫,待 H2S穿透后,将 (B)剂卸出,同样按上述再生方法处理,得到脱 硫剂(B)的再生剂,烘干后按上述的比例配入田菁粉和麦麸粉,再按上述的成型方法,制备过程和控制条 件制成新的脱硫剂 (C ) ,脱硫剂 (C) 剂的硫容为 38%。
实施例 25
称取实施例 1再生后的脱硫剂 (e ) 400克和新制备的实施例 1的含无定形羟基氧化铁的物料 100克, 粒度通过 100目,田菁粉 35克,木屑 20克,混匀。在小型捏合机上加适量水充分捏合。再用小型双螺杆挤出 机挤出条型脱硫剂,在空气中自然干燥 10小时,测其硫容为 43%。
实施例 26
含无定形羟基氧化铁的物料的制备:
将 3040克 FeSO.,配成水溶液置于反应釜中,在搅拌条件下投入 1160克固体 Na2C03,最后将混合水溶液 pH调至 8. 0,反应 0. 5小时后,过滤,滤饼用水洗,直至滤饼中 Na+的含量小于 0. 5%,然后将所述滤饼配成固 体质量百分含量为 30%的水悬浮液,并通入空气进行氧化,直至 Fe F 小于 1%则物料氧化完全,过滤,在 10CTC时干燥,即得到含无定形羟基氧化铁的物料,所述物料中无定形羟基氧化铁的质量百分含量为 85%, 其余组分为. Na2S04,水和 TiQ ( Ti02为 FeSO.,盐中的杂质,以下实施例同),所述物料的硫容为 53¾。 .实施 例中所说的 Fes指的是铁元素的总含量, Fe27Fea的测定采用邻菲啰啉分光光度法, Na+含量的测定采用火 焰光度法,所述含无定形羟基氧化铁的物料中无定形羟基氧化铁的含量通过三氯化钛-重铬酸钾容量法 测定,该方法为铁矿石分析的国家标准 (GB6730. 5-86 ) ,以下实施例同。
脱硫剂的制备及再生:
称取 500克上述含无定形羟基氧化铁的物料,粒度为通过 100目,田菁粉 40克,木屑 10克,混匀,在小型 捏合机上加适量水完成捏合,再用小型双螺杆挤出机挤出条型脱硫剂,在烘箱中 70'C烘 6小时,测其硫容 为 50%,称为脱硫剂 (A)。
将脱硫剂 (A) 装在脱硫反应器中脱硫,待 S穿透后,将废剂卸出,用水洗涤后,在湿式球磨机中带水研 磨成 100目的颗粒,得到废剂粉; 将所述废剂粉配成固体质量百分含量为 10%的水悬浮液,通入压缩空气, 反应一段时间后取样检验,当取出的样品与盐酸反应不生成 H2S时,则废剂中的铁硫化物完全转化为无定 形羟基氧化铁和单 硫,形成含所述无定形羟基氧化铁和单质硫的浆液,将所述浆液置于浮选槽中,加入 水,然后通入空气,单质硫、 添加剂和粘结剂随空气溢流出槽,则容器下部的沉淀物即为含再生的无定形 羟基氧化铁的物料。所述溢流出的单质硫经萃取或其它方法可以提纯;所述含再生的无定形羟基氧化铁 的物料在 80'C下烘干,然后按上述比例配入田菁粉和木屑,再按上述成型方法,制备过程和控制条件制成 新的脱硫剂 (B) , 脱硫剂 (B)的硫容为 48%。
将脱硫剂 (B ) 装在脱硫反应器脱硫,待 H2S穿透后,将 (B)剂卸出,同样按上述再生方法处理,得到脱 硫剂(B)的再生剂,烘干后按上述的比例配入田菁粉和木屑,再按上述的成型方法,制备过程和控制条件 制成新的脱硫剂 (C) ,脱硫剂 (C) 剂的硫容为 46%。 重复上述循环,经过四次循环再生后得到的第五次的脱硫剂 (e ) 的硫容为 40%。
实施例 27
含无定形羟基氧化铁的物料的制备:
将 1270克 FeCl:配成水溶液置于反应釜中,在搅拌条件下投入 880克固体 K2C03进行反应,将混合液 pH 调至 8. 0, 1小时后,过滤,滤饼用水洗,直至滤饼中 IC的含量小于 0. 5%,然后将所述滤饼配成固体质量百分 含量为 15%的水悬浮液,并通入空气进行氧化,直至 Fe27Fes小于 1%则物料氧化完全,过滤,在 90 'C时干燥, 即得到含无定形羟基氧化铁的物料,所述物料中无定形羟基 化铁的质量百分含量为 80%,其余组分为 KC1,水份、 四氧化三铁以及未知杂质,所述物料的硫容为 49. 6%。 其中 Γ含量的测定采用火焰光度法,以 下实施例同。
脱硫剂的制备及再生:
称取 400克上述含无定形羟基氧化铁的物料,粒度为通过 100目,田菁粉 48克,稻壳粉 5克,混匀,在小 型捏合机上加水完成捏合,再用小型双螺杆挤出机挤成条,在成丸机上制成丸型脱硫剂,在烘箱中 60°C烘 7小时,测其硫容为 47%,称为脱硫剂 (A)。.
将脱硫剂(A)装在脱硫反应器中脱硫,待 S穿透后,将废剂卸出,用水洗涤后,在湿式球磨机中带水研 磨成 200目的颗粒,得到废剂粉; 将所述废剂粉配成固体质量百分含量为 15%的水悬浮液,通入压縮空气, 反应一段时间后取样检验,当取出的样品与盐酸反应不生成 H2S时,则废剂中的铁硫化物完全转化为无定 形羟基氧化铁和单质硫,形成含所述无定形羟基氧化铁和单质硫的浆液,过滤,并用 CS2萃取过滤后得到 的物料,共萃取三次,合并萃取液,用蒸馏的方法回收溶剂同时得到结晶的单质硫,而萃取液分出后剩余 的固体即为含再生的无定形羟基氧化铁的物料。 所述含再生的无定形羟基氧化铁的物料在 70°C下烘干, 然后按上述比例配入田菁粉和稻壳粉,再按上述成型方法,制备过程和控制条件制成新的脱硫剂 (B), 脱 硫剂(B)的硫容为 44. 5%。
将脱硫剂 (B) 装在脱硫反应器脱硫,待 S穿透后,将 (B)剂卸出,同样按上述再生方法处理,得到脱 硫剂(B)的再生剂,按上述的比例配入田菁粉和稻壳粉,再按上述的成型方法,制备过程和控制条件制成 新的脱琉剂 C C) ,脱硫剂 ( C) 剂的硫容为 42. 5%。 .
实施例 28
含无定形羟基氧化铁的物料的制备:
将 1520克 FeSO · 7 0配成水溶液置于反应釜中,在搅拌条件下投入 920克固体 NaHC03,进行反应将混 合液 pH调至 8, 0. 5小时后,过滤,滤饼用水洗,直至滤饼中 Na+的含量小于 0. 5%,然后将所述滤饼配成固体 质量百分含量为 30%的水悬浮液,并通入空气进行氧化,直至 Fe27Fe 小于 1%则物料氧化完全,过滤,在 45 °C时干燥,即得到含无定形羟基氧化铁的物料,所述物料中无定形羟基氧化铁的质量百分含量为 80%,其 余组分为 Na2S04,水, Ti02,所述物料的硫容为 49. 6%。。
脱硫剂的制备及再生:
称取 1000克上述含无定形羟基氧化铁的物料,粒度为通过 100目,田菁粉 80克,在混料机上充分混匀, 在荸荠式糖衣机上滚出 Φ 3- 5的球型脱硫剂,在烘箱中 90Ό烘 4小时,测其硫容为 48%,称为脱硫剂 (A)。
将脱硫剂 (A) 装在脱硫反应器中脱硫,待 S穿透后,将废剂卸出,用水洗涤后,在湿式球磨机中带水 研磨成 400目的颗粒,得到废剂粉;将所述废剂粉配成固体质量百分含量为 5%的水悬浮液,通入压缩空气, 反应一段时间后取样检验,当取出的样品与盐酸反应不生成 H2S时,则废剂中的铁硫化物完全转化为无定 形羟基氧化铁和单质硫,形成含所述无定形羟基氧化铁和单质硫的浆液,将所述浆液置于浮选槽中,加入 水,并在所述浮选槽中加入水玻璃和煤油作为浮选助剂,然后通入空气,单质硫、 添加剂和粘结剂随空气 溢流出槽,则容器下部的沉淀物即为含再生的无定形羟基氧化铁的物料。 所述溢流出的单质硫经萃取或 其它方法可以提纯;所述含再生的无定形羟基氧化铁的物料在 80'C下烘干,然后按上述比例配入田菁粉, 再按上述成型方法,制备过程和控制条件制成新的脱硫剂 (B) , 脱硫剂 (B)的硫容为 46%。. 将脱硫剂 (B) 装在脱硫反应器脱硫,待 S穿透后,将 (B)剂卸出,同样按上述再生方法处理,得到脱 硫剂(B)的再生剂,烘干后按上述的比例配入田菁粉,再按上述的成型方法,制备过程和控制条件制成新 的脱硫剂 (C) ,脱硫剂 (C) 剂的硫容为 44%。
重复上述循环,经过四次循环再生后得到的第五次的脱硫剂 (e ) 的硫容为 40%。
所述浮选助剂的作用是为了使所述无定形羟基氧化铁和单质硫的分离效果更好,以下实施例同 实施例 29
含无定形羟基氧化铁的物料的制备:
将 1270克 FeCl2 · 4H20配成水溶液置于反应釜中,在搅拌条件下投入 1280克固体 KHC03,混合液调至 PH 为 8,反应 1. 5小时后,过滤,滤饼用水洗,直至滤饼中 K+的含量小于 0. 5%,然后将所述滤饼配成固体质量百 分含量为 10%的水悬浮液,并通入空气进行氧化,直至 Fe27Fes小于 1%则物料氧化完全,过滤,在 30'C时干 燥,即得到含无定形羟基氧化铁的物料,所述物料中无定形羟基氧化铁的质量百分含量为 88%,其余组分 为 KC1,水及未知杂质,所述物料的硫容为 54. 6%。
脱硫剂的制备及再生:
称取 500克上述含无定形羟基氧化铁的物料,粒度为通过 100目,羧甲基纤维素钠盐 (用预先溶好的) 45克,麦麸粉 10克,混匀,在小型捏合机上加水完成捏合,再用小型双螺杆挤出机挤成条,在成丸机上制成 球型脱硫剂,在烘箱中 75Ό烘 5小时,测其硫容为 52%,称为脱硫剂 (A)。
将脱硫剂 (A) 装在脱硫反应器中脱硫,待!^穿透后,将废剂卸出,用水洗涤后,在湿式球磨机中带 水研磨成 200目的颗粒,得到废剂粉;将所述废剂粉配成固体质量百分含量为 30%的水悬浮液,通入压缩空 气,反应一段时间后取样检验,当取出的样品与盐酸反应不生成 S时,则废剂中的铁硫化物完全转化为 无定形羟基氧化铁和单质硫,形成含所述无定形羟基氧化铁和单质硫的浆液,过滤所述浆液得到固体物 料,将所述固体物料置于浮选槽中,加入水,并在所述浮选槽中加入水玻璃和煤油作为浮选助剂,然后通 入空气,单质硫、添加剂和粘结剂随空气溢流出槽,则容器下部的沉淀物即为含再生的无定形羟基氧化铁 的物料。所述溢流出的单质硫经萃取或其它方法可以提纯;所述含再生的无定形羟基氧化铁的物料在 75 'C下烘千,然后按上述比例配入羧甲基纤维素钠盐(用预先溶好的),麦麸粉,再按上述成型方法,制备过 程和控制条件制成新的脱硫剂 (B) , 脱硫剂 (B)的硫容为 49%。
将脱硫剂 (B) 装在脱硫反应器脱硫,待 S穿透后,将 (B)剂卸出,同样按上述再生方法处理,得到脱 硫剂(B)的再生剂,按上述的比例配入羧甲基纤维素钠盐和麦麸粉,再按上述的成型方法,制备过程和控 制条件制成新的脱硫剂 (C) ,脱硫剂 (C) 剂的硫容为 47%。
重复上述循环,四次循环再生后得到的第五次的脱硫剂 (e ) 的硫容为 42%。
实施例 30
含无定形羟基氧化铁的物料的制备:
将固体 Fe ( NOa) · 6 0配成水溶液置于反应釜中,在搅拌条件下投入固体 (NH4) 2C03,并控制反应 终点时溶液的 ra=7. 5,过滤所述溶液,滤饼用水洗,直至滤饼中 NH 的含量小于 0. 5%,然后将所述滤饼配成 固体质量百分含量为 10%的水悬浮液,并通入空气进行氧化,直至 Fe27Fea小于 1%,则物料氧化完全,过滤, 在 85 'C时干燥,即得到含无定形羟基氧化铁的物料,所述物料中无定形羟基氧化铁的质量百分含量为 · 99%,其余组分为水,所述物料的硫容为 59%。其中, 的含量采用奈斯勒试剂分析。在本实施例中通过控 制反应溶液的 PH来控制所投入的固体 (NEJ 2C03的量,也就是控制两种物料的加料比,以下实施例类同。
脱硫剂的制备及再生:
称取 500克上述含无定形羟基氧化铁的物料,粒度为通过 100目,纤维素粉 50克,混匀,在小型捏合机上 加水完成捏合,再用小型双螺杆挤出机挤成条,在成丸机上制成丸型脱硫剂,在烘箱中 80Ό烘 4小时,测其 硫容为 56%,称为脱硫剂 (A)。
将脱硫剂 (A) 装在脱硫反应器中脱硫,待 S穿透后,将废剂卸出,用水洗涤后,在湿式球磨机中带水研 磨成 200目的颗粒,得到废剂粉; 将所述废剂粉配成固体质量百分含量为 15%的水悬浮液,通入压缩空气, 反应一段时间后取样检验,当取出的样品与盐酸反应不生成 S时,则废剂中的铁硫化物完全转化为无定 形羟基氧化铁和单质硫,形成含所述无定形羟基氧化铁和单质硫的浆液,过滤,并用 CC14萃取过滤后得到 的物料,共萃取三次,合并萃取液,用蒸馏的方法回收溶剂同时得到结晶的单质硫,而萃取液分出后剩余 的固体即为含再生的无定形羟基氧化铁的物料。 所述含再生的无定形羟基氧化铁的物料在 7(TC下烘干, 然后按上述比例配入纤维素粉,再按上述成型方法,制备过程和控制条件制成新的脱硫剂 (B) , 脱硫剂 (B)的硫容为 54%。
将脱硫剂 (B) 装在脱硫反应器脱硫,待 S穿透后,将 (B)剂卸出,同样按上述再生方法处理,得到脱 硫剂(B)的再生剂,按上述的比例配入纤维素粉,再按上述的成型方法,制备过程和控制条件制成新的脱 硫剂 (C) ,脱硫剂 (C) 剂的硫容为 50%。
实施例 31
含无定形羟基氧化铁的物料的制备:
将固体 FeCl2 ·4 0配成水溶液置于反应釜中,在搅拌条件下投入固体 NaHC03,控制反应终点时溶液的 PH=8,过滤所述溶液,滤饼用水洗,直至滤饼中 N 的含量小于 0. 5%,然后将所述滤饼配成固体质量百分含 量为 5%的水悬浮液,并通入空气进行氧化,直至 Fe27Fes小于 1%则物料氧化完全,过滤,在 7(TC时干燥,即 得到含无定形羟基氧化铁的物料,所述物料中无定形羟基氧化铁的质量百分含量 92%,其余组分为 NaCl, 水及未知杂质,所述物料的硫容为 57%。 其中 Cr的含量通过硫氛酸汞比色方法测定。
脱硫剂的制备及再生:
称取 500克上述含无定形羟基氧化铁的物料,粒度为通过 100目,纤维素粉 40克,稻壳粉 6克,混匀,在 小型捏合机上加水完成捏合,再用小型双螺杆挤出机挤成条,在成丸机上制成球型脱硫剂,在室温下自然 干燥 20小时,测其硫容为 55%,称为脱硫剂 (A)。
将脱硫剂 (A) 装在脱硫反应器中脱硫,待 S穿透后,将废剂卸出,用水洗涤后,在湿式球磨机中带 水研磨成 200目的颗粒,得到废剂粉;将所述废剂粉配成固体质量百分含量为 30%的水悬浮液,通入压缩空 气,反应一段时间后取样检验,当取出的样品与盐酸反应不生成 H:S时,.则废剂中的铁硫化物完金转化为 . 无定形羟基氧化铁和单质硫,形成含所述无定形羟基氧化铁和单质硫的浆液,过滤所述浆液得到固体物 料,将所述固体物料置于浮选槽中,加入水,并在所述浮选槽中加入水玻璃和煤油作为浮选助剂,然后通 入空气,单质硫、添加剂和粘结剂随空气溢流出槽,则容器下部的沉淀物即为含再生的无定形羟基氧化铁 · 的物料。所述溢流出的单质硫经萃取或其它方法可以提纯;所述含再生的无定形羟基氧化铁的物料在 75 °C下烘干,然后按上述比例配入纤维素粉和稻壳粉,再按上述成型方法,制备过程和控制条件制成新的脱 硫剂 (B) , 脱硫剂 (B)的硫容为 51%。
将脱硫剂 (B) 装在脱硫反应器脱硫,待 H2S穿透后,将 (B)剂卸出,同样按上述再生方法处理,得到脱 硫剂(B)的再生剂,按上述的比例配入纤维素粉和稻壳粉,再按上述的成型方法,制备过程和控制条件制 成新的脱硫剂 (C ) ,脱硫剂 (C) 剂的硫容为 47%。
实施例 32
含无定形羟基氧化铁的物料的制备:
将固体 FeSO., · 7H20配成水溶液置于反应釜中,在搅拌条件下投入固体 KHC03,控制反应终点时溶液的 PH=8. 5,过滤所述溶液,将所得到的滤饼放入空气中自然氧化,当物料中 Fe27Fes小于 10%,氧化结束,所得 物料水洗,直至物料中 IC的含量小于 1%,过滤,在 60Ό时干燥,即得到含无定形羟基氧化铁的物料,所述物 料中无定形羟基氧化铁的质量百分含量为 88%,其余组分为 K2Sa,, ΤΪΟ,,水份,所述物料的硫容为 56%。。
脱硫剂的制备及再生:
称取 500克上述含无定形羟基氧化铁的物料,粒度为通过 100目,羧甲基纤维素钠盐 (用预先溶好的) 67克,混匀,在小型捏合机上加水完成捏合,再用小型双螺杆挤出机挤成条,在成丸机上制成球型脱硫剂, 在烘箱中 75°C烘 5小时,测其硫容为 53%,称为脱硫剂 (A)。
将脱硫剂 (A) 装在脱硫反应器中脱硫,待 S穿透后,将废剂卸出,用水洗涤后,在湿式球磨机中带 水研磨成 200目的颗粒,得到废剂粉;将所述废剂粉配成固体质量百分含量为 30%的水悬浮液,通入压縮空 气,反应一段时间后取样检验,当取出的样品与盐酸反应不生成 H2S时,则废剂中的铁硫化物完全转化为 无定形羟基氧化铁和单质硫,形成含所述无定形羟基氧化铁和单质硫的浆液,过滤所述浆液得到固体物 料,将所述固体物料置于浮选槽中,加入水,并在所述浮选槽中加入水玻璃和煤油作为浮选助剂,然后通 入空气,单质硫、添加剂和粘结剂随空气溢流出槽,则容器下部的沉淀物即为含再生的无定形羟基氧化铁 的物料。所述溢流出的单质硫经萃取或其它方法可以提纯;所述含再生的无定形羟基氧化铁在 75'C下烘 干,然后按上述比例配入羧甲基纤维素钠 (用预先溶好的) ,再按上述成型方法,制备过程和控制条件制 成新的脱硫剂 (B) , 脱硫剂 (B)的硫容为 50%。.
将脱硫剂 (B) 装在脱硫反应器脱硫,待 S穿透后,将 (B)剂卸出,同样按上述再生方法处理,得到脱 硫剂(B)的再生剂,按上述的比例配入羧甲基纤维素钠,再按上述的成型方法,制备过程和控制条件制成 新的脱硫剂 ( C) ,脱硫剂 (C) 剂的硫容为 48%。
重复上述循环,四次循环再生后得到的第五次的脱硫剂 (e) 的硫容为 42%。
实施例 33
含无定形羟基氧化铁的物料制备:
将固体 FeS04 ·7 0配成水溶液置于反应釜中,在搅拌条件下投入固体 N HC03,控制反应终点时溶液的 PH=8,过滤所述溶液,将所得到的滤饼放入空气中自然氧化,当物料中 Fe27Fes小于 10%,氧化结束,所得物 料水洗,直至物料中 NH 的含量小于 1%,过滤,在 -5'C时干燥,即得到含无定形羟基氧化铁的物料,所述物 料中无定形羟基氧化铁的质量百分含量为 76%,其余组分为( H4) 2S04, Ti02,水和四氧化三铁,所述物料的 硫容为 47. 1 %。。
脱硫剂的制备及再生:
称取 485克上述含无定形羟基氧化铁的物料,粒度为通过 100目,田菁粉 40克,麦麸粉 25克,混勾,在小 型捏合机上加适量水完成捏合,再用小型双螺杆挤出机挤出条型脱硫剂,在烘箱中 30'C烘 15小时.测其硫 容为 45%,称为脱硫剂 (A)。
将脱硫剂 (A)装在脱硫反应器中脱硫,待 S穿透后 ·,将废剂卸出,用水洗涤后,在湿式球磨机中带水研 磨成 100目的颗粒,得到废剂粉; 将所述废剂粉配成固体质量百分含量为 10%的水悬浮液,通入压缩空气, 反应一段时间后取样检验,当取出的样品与盐酸反应不生成 S时,则废剂中的铁硫化物完全转化为无定 形羟基氧化铁和单质硫,形成含所述无定形羟基氧化铁和单质硫的浆液,将所述浆液置于浮选槽中,加入 水,然后通入空气,单质硫、 添加剂和粘结剂随空气溢流出槽,则容器下部的沉淀物即为含再生的无定形 羟基氧化铁的物料。所述溢流出的单质硫经萃取或其它方法可以提纯;所述含再生的无定形羟基氧化铁 的物料在 80°C下烘干,然后按上述比例配入田菁粉和麦麸粉,再按上述成型方法,制备过程和控制条件制 成新的脱硫剂 (B) , 脱硫剂 (B)的硫容为 43%。
将脱硫剂 (B) 装在脱硫反应器脱硫,待 S穿透后,将 (B)剂卸出,同样按上述再生方法处理,得到脱 硫剂(B)的再生剂,烘干后按上述的比例配入田菁粉和麦麸粉,再按上述的成型方法,制备过程和控制条 件制成新的脱硫剂 (C) ,脱硫剂 (C) 剂的硫容为 41%。
重复上述循环,经过四次循环再生后得到的第五次的脱硫剂 (e ) 的硫容为 36%。
实施例 34
称取实施例 1再生后的脱硫剂 (e ) 400克和新制备的实施例 1的含无定形羟基氧化铁的物料 100克, 粒度通过 100目,田菁粉 35克,木屑 20克,混匀。在小型捏合机上加适量水充分捏合。再用小型双螺杆挤出 机挤出条型脱硫剂,在空气中自然干燥 10小时,测其硫容为 43%。
以上实施例中的硫夢通过以下方法测定: 在常温 (指环境温度,通常为 -5Ό至 45'C )常压 (环境压力, 通常为 1大气压)下,用含 H2S为 40000ppm的标准气进行评价测试。所用仪器为国产 WK- 2C综合微库仑仪 (江 苏电分析仪器厂生产)进行检测,该仪器的最低检测量为 0. 2ppm。
. 需要指出的是,本发明的制备所述无定形羟基氧化铁的方法中,所用的可溶性亚铁盐不局限于实施 例中所使用的,其它可溶性亚铁盐也能实现本发明的目的,如 FeS04 · 7¾0, FeCl2 · 4 0, Fe (N03) 2 · 6H20 等。本发明的脱硫剂只要包括用本发明的方法制备出的含无定形羟基氧化铁的物料以及有机粘结剂即能 实现本发明的硫容高和反复再生的目的,而不论是否添加其它成分,因此只要包括所述含无定形羟基氧 化铁的物料和粘结剂的脱硫剂即在本发明的保护范围内。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。 对于所属领域的普 通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有 的实施方式予以穷举。 而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims

权 利 要 求 书
1. 一种含无定形羟基氧化铁的物料的制备方法,其特征在于包括以下步骤:
( 1 ) 将固体可溶性亚铁盐配制成溶液待用;
( 2 ) 将步骤 (1 ) 中得到的可溶性亚铁盐溶液与预先配制的可溶性碳酸盐或可溶性酸式碳酸盐溶 液混合使两者进行反应; 或者将步骤 (1 ) 中得到的可溶性亚铁盐溶液与固体碳酸盐或者固体酸式碳酸 盐混合使两者进行反应;
( 3 ) 将步骤 (2 ) 所得到的物料过滤,滤去所生成的可溶性盐,并用水洗所得到的滤饼;
(4 ) 将所述滤饼配成悬浮液,通入含氧气的气体进行氧化,然后进行过滤、 干燥,即得到含无定形 羟基氧化铁的物料。
2. 根据权利要求 1 所述的含无定形羟基氧化铁的物料的制备方法,其特征在于: 在所述步骤 ( 2 ) 中,所述固体碳酸盐为 Na2C03, ( H4) 2C03或 K2C03,所述固体酸式碳酸盐为 NaHC03, NH4HC03或 KHC03
3. 根据权利要求 1 所述的含无定形羟基氧化铁的物料的制备方法,其特征在于: 在所述步骤 ( 2 ) 中,控制反应终点时溶液的 1¾值的范围为 7. 5-8. 5。 .
4. 根据权利要求 2或 3所述的含无定形羟基氧化铁的物料的制备方法,其特征在于:在所述步 骤 (3) 中,滤饼用水洗,使所述滤饼中 Na IT或 NH4 +的质量百分浓度小于 0. 5%。
5. 根据权利要求 1 所述的含无定形羟基氧化铁的物料的制备方法,其特征在于: 在所述步骤 (4) 中,所配制的所述悬浮液中的固体质量百分含量为 5-30%。
6. 根据权利要求 5所述的含无定形羟基氧化铁的物料的制备方法,其特征在于:所配制的所述 悬浮液中的固体质量百分含量为 10- 15%。- '
7. 根据权利要求 1 所述的含无定形羟基氧化铁的物料的制备方法,其特征在于: 在所述步骤 ( 4) 中,所述干燥温度不超过 100°C。
8. 根据权利要求 7所述的含无定形羟基氧化铁的物料的制备方法,其特征在于:所述干燥温度 为 80。C至 100 °C .
9. 根据权利要求 1 所述的含无定形羟基氧化铁的物料的制备方法,其特征在于: 在所述步骤
(4) 中,所述含氧气的气体为空气。
10. 根据权利要求 1 所述的含无定形羟基氧化铁的物料的制备方法,其特征在于: 在所述步骤 (4 ) 中,通入含氧气的气体进行氧化,直至悬浮液中亚铁离子与铁元素的质量比小于 1%。
11. 权利要求 1-10 中任意一项所述的制备方法所得到的含无定形羟基氧化铁的物料中无定形 羟基氧化铁的质量百分含量为 65-100%,其余组分为水和反应副产物。
12. 权利要求 1-10 中任意一项所述的制备方法所得到的含无定形羟基氧化铁的物料作为脱硫 剂使用后的再生方法,其特征在于包括以下步骤:
( a) .将所述含无定形羟基氧化铁的物料作为脱硫剂使用后的废剂研磨成颗粒,得到废剂粉;
( b ) .将所述废剂粉配成悬浮液,通入含氧气的气体进行氧化,使所述悬浮液中的铁硫化物转化为 无定形羟基氧化铁和单质硫,形成含所述无定形羟基氧化铁和单质硫的浆液;
( c ) .过滤所述浆液得到固体物料,用溶剂萃取所述固体物料中的单质硫,萃^¾后剩余的固体即为 含再生的无定形羟基氧化铁的物料。
13. 权利要求 1-10 中任意一项所述的制备方法所得到的含无定形羟基氧化铁的物料作为脱硫 剂使用后的再生方法,其特征在于包括以下步骤:
( I ) .将所述含无定形羟基氧化铁的物料作为脱硫剂使用后的废剂研磨成颗粒,得到废剂粉;
( II ) .将所述废剂粉配成悬浮液,通入含氧气的气体进行氧化,使所述悬浮液中的铁硫化物转化 为无定形羟基氧化铁和单质硫,形成含所述无定形羟基氧化铁和单质硫的浆液;
( III ) .将所述浆液或将所述浆液过滤后得到的固体物料置于容器中,通入空气,使所述单质硫上 浮,容器下部的沉淀物为含再生的无定形羟基氧化铁的物料。
14. 一种可重复再生利用的脱硫剂,其特征在于:所述脱硫剂包括含无定形羟基氧化铁的物料以 及有机粘结剂,其中所述含无定形羟基氧化铁的物料通过以下步骤制备:
( 1 )将固体可溶性亚铁盐配制成溶液待用;
( 2 ) 将步骤 (1 ) 中得到的可溶性亚铁盐溶液与预先配制的可溶性碳酸盐或可溶性酸式碳,酸盐溶 液混合使两者进行反应; 或者将步骤 (1 ) 中得到的可溶性亚铁盐溶液与固体碳酸盐或者固体酸式碳酸. 盐混合使两者进行反应;
( 3 )将步骤 (2 ) 所得到的物料过滤,滤去所生成的可溶性盐,得到滤饼;
(4) 对所述滤饼用含氧气的气体进行氧化得到所述无定形羟基氧化铁。
15. 根据权利耍求 14所述的可重复再生利用的脱硫剂,其特征在于:所述脱硫剂还包括添加剂。 16. 根据权利要求 14所述的可重复再生利用的脱硫剂,其特征在于:所述脱硫剂由 88wt%- 93wt% 的所述含无定形羟基氧化铁的物料和 7wt%-12wt%的所述有机粘结剂组成。
17. 根据权利要求 15所述的可重复再生利用的脱硫剂,其特征在于:所述脱硫剂由 88wt%- 92wt% 的所述含无定形羟基氧化铁的物料,7wt%-l lwt%的所述有机粘结剂和 lwt%-5wt%的所述添加剂组成。 ·
18. 根据权利要求 14-17中任意一项所述的可重复再生利用的脱硫剂,其特征在于:所述有机粘 结剂为羧甲基纤维素钠、 田菁粉、 纤维素粉中的一种或多种。
19. 根据权利要求 15或 17所述的可重复再生利用的脱硫剂,其特征在于:所述添加剂为木屑粉、 稻壳粉、 麦麸中的一种或多种。
20. 根据权利要求 14所述的可重复再生利用的脱硫剂,其特征在于: 所述步骤(4 )中的氧化是 通过先将步骤 (3 ) 中的滤饼配成悬浮液; 然后通入空气进行氧化; 再过滤、 干燥得到所述含无定形羟 基氧化铁的物料。
21. 根据权利耍求 14所述的可重复再生利用的脱硫剂,其特征在于: 所述步骤(4)中的氧化是 通过将步骤^ 3 ) 中的滤饼放置在空气中自然氧化; 然后水洗、 过滤、 干燥得到所述含无定形羟基氧化 铁的物料。
22. 根据权利耍求 14所述的可重复再生利用的脱硫剂,其特征在于: 在所述步骤 (2 ) 中,控制 反应终点时溶液的 PH值的范围为 7. 5-8. 5。 量百分含量为 5-30%。
24. 根据权利要求 20所述的可重复再生利用的脱硫剂,其特征在于: 通入空气进行氧化直至悬 浮液中亚铁离子与铁元素的质量比小于 1%。
25. 权利要求 14-24中任意一项所述的脱硫剂的制备方法,其特征在于包括以下步骤:
(A) 按要求称取所述含无定形羟基氧化铁的物料和有机粘结剂,或称取所述含无定形羟基 氧化铁的物料、 有机粘结剂和添加剂,然后在混料机中进行固体物料的混合;
(B)将混合好的固体物料成型成条形、 球型或丸型;
(C)将上述成型物自然干燥或于 60-90Ό烘干即得到所述脱硫剂。
26. 权利要求 14-24中任意一项所述的脱硫剂使用后的重复再生方法,其特征在于包括以下步 骤:
( I )将所述脱硫剂使用后得到的废剂研磨成颗粒,得到废剂粉;
( II ) 将所述废剂粉配成悬浮液,通入含氧气的气体进行氧化,使所述悬浮液中的铁硫化物转化 为无定形羟基氧化铁和单质硫,形成含所述无定形羟基氧化铁和单质硫的浆液;
( III )将所述浆液或将所述浆液过滤后得到的固体物料置于容器中,通入空气,使所述单质硫上 浮,取出容器下部的沉淀物然后加入有机粘结剂或加入有机粘结剂和添加剂即制得再生后的脱硫剂。
27. 根据权利要求 26所述的脱硫剂使用后的重复再生方法,其特征在于:在所述步骤(I )之前, 还包括一个用水洗涤所述废剂的步骤。
28. 根据权利要求 26所述的脱硫剂使用后的重复再生方法,其特征在于: 在所述步骤(Π )中, 所配制的悬浮液中的固体质量百分含量为 5-30%。
29. 根据权利要求 28所述的脱硫剂使用后的重复再生方法,其特征在于: 所述悬浮液中的固体 质量百分含量为 10-15%。
30. 根据权利要求 26-29所述的脱硫剂使用后的重复再生方法,其特征在于:在所述步骤(III ) 中,在所述容器中加入助剂以利于所述单质硫的上浮。
31. 根据权利要求 30所述的脱硫剂使用后的重复再生方法,其特征在于:所用的容器为浮选槽。 32. 权利要求 14- 24中任意一项所述的脱硫剂使用后的重复再生方法,其特征在于包括以下步 骤:
(a)将所述脱硫剂使用后得到的废剂研磨成颗粒,得到废剂粉;
(b)将所述废剂粉配成悬浮液,通入含氧气的气体进行氧化,使所述悬浮液中的铁硫化物转化为 无定形羟基氧化铁和单质硫,形成含所述无定形羟基氧化铁和单质硫的浆液;
( c ) 过滤所述浆液得到固体物料,用溶剂萃取所述固体物料中的单质硫,萃取后在剩余的固体中 加入有机粘结剂或加入有机粘结剂和添加剂即制得再生后的脱硫剂。
PCT/CN2009/001595 2008-12-30 2009-12-30 用于含无定形羟基氧化铁物料和含该物料的脱硫剂的制备方法和再生方法 WO2010081287A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DK09838074.4T DK2384814T3 (en) 2008-12-30 2009-12-30 PROCEDURE FOR MANUFACTURING MATERIALS CONTAINING AMORPH IRON OXIDE HYDROXIDE
EA201170903A EA023831B1 (ru) 2008-12-30 2009-12-30 Способ получения состава, содержащего аморфный гидрат окиси железа
EP09838074.4A EP2384814B1 (en) 2008-12-30 2009-12-30 Method for preparing materials containing amorphous iron oxyhydroxide
US13/174,728 US8647600B2 (en) 2008-12-30 2011-06-30 Methods for preparing and regenerating materials containing amorphous iron oxide hydroxide and desulfurizer comprising the same
US14/147,007 US9283539B2 (en) 2008-12-30 2014-01-03 Methods for preparing and regenerating materials containing amorphous iron oxide hydroxide and desulfurizer comprising the same

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN200810247535.3A CN101767830B (zh) 2008-12-30 2008-12-30 含无定形羟基氧化铁的物料的制备及其再生方法
CN200810247535.3 2008-12-30
CN200810247537.2A CN101767832B (zh) 2008-12-30 2008-12-30 含无定形羟基氧化铁的物料的制备及其再生方法
CN200810247537.2 2008-12-30
CN200910086347.1A CN101898110B (zh) 2009-05-31 2009-05-31 一种可重复再生利用的脱硫剂及其制备方法以及再生方法
CN200910086347.1 2009-05-31
CN200910086348.6A CN101898111B (zh) 2009-05-31 2009-05-31 一种可重复再生利用的脱硫剂及其制备方法以及再生方法
CN200910086348.6 2009-05-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/174,728 Continuation US8647600B2 (en) 2008-12-30 2011-06-30 Methods for preparing and regenerating materials containing amorphous iron oxide hydroxide and desulfurizer comprising the same

Publications (1)

Publication Number Publication Date
WO2010081287A1 true WO2010081287A1 (zh) 2010-07-22

Family

ID=42339395

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/001595 WO2010081287A1 (zh) 2008-12-30 2009-12-30 用于含无定形羟基氧化铁物料和含该物料的脱硫剂的制备方法和再生方法

Country Status (5)

Country Link
US (2) US8647600B2 (zh)
EP (1) EP2384814B1 (zh)
DK (1) DK2384814T3 (zh)
EA (2) EA033886B1 (zh)
WO (1) WO2010081287A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113860385A (zh) * 2021-10-09 2021-12-31 四川天人能源科技有限公司 一种铁锰脱硫剂固体废弃物的资源化方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101898108B (zh) * 2009-05-31 2013-10-16 北京三聚环保新材料股份有限公司 一种可重复再生利用的脱硫剂及其制备方法以及再生方法
US8968692B2 (en) * 2008-10-16 2015-03-03 Cornell University Regenerable removal of sulfur from gaseous or liquid mixtures
EA033886B1 (ru) 2008-12-30 2019-12-05 Беиджинг Санджу Энвиронмент Протекшин Энд Нью Материал Ко., Лтд. Способ получения состава, содержащего аморфный гидрат окиси железа
US8404031B1 (en) 2009-10-06 2013-03-26 Michael Callaway Material and method for the sorption of hydrogen sulfide
US8759252B1 (en) 2010-10-06 2014-06-24 Michael D. and Anita Kaye Material and method for the sorption of hydrogen sulfide
CN103183387B (zh) 2011-12-29 2016-04-13 北京三聚环保新材料股份有限公司 一种制备无定形羟基氧化铁的方法
US11492563B2 (en) 2018-04-28 2022-11-08 Beijing Sanju Environmental Protection & New Materials Co., Ltd Conversion process for an inferior oil
CN112121753A (zh) * 2020-08-03 2020-12-25 江苏理工学院 一种磁性吸附材料的制备方法与应用
CN115400577B (zh) * 2022-09-01 2024-04-12 宁波大学 钢渣与黏土、石灰石混合制浆脱硫方法以及混合脱硫剂

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080047395A1 (en) * 2006-08-28 2008-02-28 Beijing Sj Environmental Protection And New Material Co., Ltd Composition for a desulfurizer with a high sulfur capacity and the process of making the same

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2202174A (en) * 1938-01-27 1940-05-28 Frank A Sullivan Method for manufacturing materials for purification of gases
AT173416B (de) * 1949-11-21 1952-12-27 Phrix Werke Ag Reinigung der Abgase von Viskosefabriken
BE565937A (zh) 1957-03-27 1900-01-01
SU528263A1 (ru) * 1972-10-05 1976-09-15 Предприятие П/Я Г-4236 Способ получени окислов железа
SU583550A1 (ru) * 1975-03-19 1999-04-10 Северо-Кавказский научно-исследовательский институт природных газов "СевКавНИИгаз" Абсорбент для очистки газа от сероводорода
JPS5939345A (ja) 1982-08-30 1984-03-03 Ishikawajima Harima Heavy Ind Co Ltd 石炭ガス化ガスの脱硫方法
SU1217787A1 (ru) * 1984-04-13 1986-03-15 Ленинградский Институт Авиационного Приборостроения Способ получени гидрата окиси железа
IN168471B (zh) 1985-08-23 1991-04-13 Shell Int Research
CN1006933B (zh) 1987-10-24 1990-02-21 国家机械工业委员会沈阳真空技术研究所 闭式真空热风干燥系统
JPH06262066A (ja) 1993-03-15 1994-09-20 Cosmo Sogo Kenkyusho:Kk 硫化水素吸着剤及びその製造方法並びにガス中の硫化水素除去方法及び除去装置
DK70693D0 (da) * 1993-06-14 1993-06-14 Niels Ole Vesterager Fremgangsmaade til fjernelse af uoenskede stoffer i en gasart
CN1121950A (zh) 1994-10-25 1996-05-08 上海市煤气公司研究所 干式成型脱硫剂及其制备和用途
CN1114462A (zh) 1994-11-17 1996-01-03 白村 高放大因数μ冷阴极真空器件
GB9507393D0 (en) 1995-04-10 1995-05-31 Bp Chem Int Ltd Polyolefin diols
CN1133817A (zh) 1996-02-17 1996-10-23 魏雄辉 加压铁-碱溶液脱碳脱硫
JPH10259026A (ja) * 1997-03-19 1998-09-29 Sony Corp 針状ゲーサイト微粒子の製造方法
CN1368537A (zh) 2001-02-09 2002-09-11 王铁钢 燃气高效脱硫剂
CN1312132A (zh) 2001-02-21 2001-09-12 马伟栋 常温氧化铁精脱硫剂
US7037876B2 (en) 2002-05-15 2006-05-02 Sud-Chemie Inc. High temperature shift catalyst prepared with a purity iron precursor
US6896813B1 (en) * 2003-03-31 2005-05-24 The United States Of America As Represented By The Secretary Of The Department Of The Interior Sorbant sequestration and removal of toxic metal ions
CN1539545A (zh) 2003-10-28 2004-10-27 王晓东 可反复再生脱硫剂及其制造方法
US7396522B2 (en) 2003-12-05 2008-07-08 Jayalekshmy Ayyer Catalyst useful for removal of hydrogen sulphide from gas stream and its conversion to sulphur, a process for preparing such catalyst and a method for removing of hydrogen sulphide using said catalyst
DE102004016601A1 (de) * 2004-04-03 2005-10-13 Bayer Chemicals Ag Stabile Adsorber-Granulate
CN1704144A (zh) 2004-05-28 2005-12-07 长春东狮科贸实业有限公司 一种常温氧化铁脱硫剂及其应用
JP4126399B2 (ja) 2005-02-16 2008-07-30 独立行政法人科学技術振興機構 オキシ水酸化鉄の製造方法及びオキシ水酸化鉄吸着材
CN101070491A (zh) 2006-05-09 2007-11-14 山东科技大学 一种常、低、中温脱硫剂活性组分制备方法
US8603215B2 (en) 2006-08-28 2013-12-10 Beijing Sanju Environmental Protection and New Material Co., Ltd. Composition of amorphous iron oxide hydroxide, desulfurizer comprising the same, and methods for preparing and regenerating the desulfurizer
JP2008239399A (ja) * 2007-03-27 2008-10-09 Tdk Corp オキシ水酸化鉄粒子の製造方法
US7910085B2 (en) * 2007-12-28 2011-03-22 Tdk Corporation Process for production of iron oxyhydroxide particles
CN101585556B (zh) * 2008-05-23 2012-05-09 北京三聚环保新材料股份有限公司 无定形羟基氧化铁制备方法及制得的羟基氧化铁脱硫剂
CN101584962B (zh) * 2008-05-23 2012-07-18 北京三聚环保新材料股份有限公司 一种高强度羟基氧化铁脱硫剂及其制备方法
CN101585557B (zh) 2008-05-23 2013-06-26 北京三聚环保新材料股份有限公司 一种磁性氧化铁制备方法及其制得的磁性氧化铁脱硫剂
WO2009150232A2 (en) * 2008-06-13 2009-12-17 Novartis Ag Manufacture process for the preparation of an iron containing phosphate adsorbent
WO2010081290A1 (zh) 2008-12-30 2010-07-22 北京三聚环保新材料股份有限公司 用于无定形羟基氧化铁及以其为活性组分的脱硫剂的再生方法
DK2383227T3 (en) 2008-12-30 2018-04-23 Beijing Sanju Environment Prot And New Material Co Ltd PREPARATION OF MATERIALS CONTAINING AMORPH IRON OXIDE HYDROXIDE
CN101766946B (zh) 2008-12-30 2012-11-28 北京三聚环保新材料股份有限公司 一种常温下脱除气体中的硫化氢的工艺
EA033886B1 (ru) 2008-12-30 2019-12-05 Беиджинг Санджу Энвиронмент Протекшин Энд Нью Материал Ко., Лтд. Способ получения состава, содержащего аморфный гидрат окиси железа
CN101767828B (zh) 2008-12-30 2012-09-26 北京三聚环保新材料股份有限公司 含无定形羟基氧化铁的物料的制备及其再生方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080047395A1 (en) * 2006-08-28 2008-02-28 Beijing Sj Environmental Protection And New Material Co., Ltd Composition for a desulfurizer with a high sulfur capacity and the process of making the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIU, ZHENYI ET AL.: "Characterization for Iron Oxide Desulfurizer Active Component with High Sulfur Content", NATIONAL INFORMATION CENTER OF GAS PURIFICATION 2006 TECHNICAL EXCHANGES PROCEEDINGS, December 2006 (2006-12-01), pages 107 - 108, XP008150134 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113860385A (zh) * 2021-10-09 2021-12-31 四川天人能源科技有限公司 一种铁锰脱硫剂固体废弃物的资源化方法
CN113860385B (zh) * 2021-10-09 2023-11-17 四川天人能源科技有限公司 一种铁锰脱硫剂固体废弃物的资源化方法

Also Published As

Publication number Publication date
US9283539B2 (en) 2016-03-15
DK2384814T3 (en) 2018-04-23
EP2384814A4 (en) 2012-07-25
EA201592237A1 (ru) 2016-06-30
EP2384814A1 (en) 2011-11-09
EP2384814B1 (en) 2018-01-24
US20110260103A1 (en) 2011-10-27
US20140117282A1 (en) 2014-05-01
EA201170903A1 (ru) 2011-12-30
EA033886B1 (ru) 2019-12-05
EA023831B1 (ru) 2016-07-29
US8647600B2 (en) 2014-02-11

Similar Documents

Publication Publication Date Title
WO2010081287A1 (zh) 用于含无定形羟基氧化铁物料和含该物料的脱硫剂的制备方法和再生方法
WO2010081288A1 (zh) 含无定形羟基氧化铁物料的制备方法和重复再生方法、包含该物料的脱硫剂及其制备方法和重复再生方法
WO2010139104A1 (zh) 一种可重复再生利用的脱硫剂及其制备方法以及再生方法
EP2383036B1 (en) Method for regenerating amorphous iron oxyhydroxide and desulfurizer containing amorphous iron oxyhydroxide as active component
CN101767828B (zh) 含无定形羟基氧化铁的物料的制备及其再生方法
US8603215B2 (en) Composition of amorphous iron oxide hydroxide, desulfurizer comprising the same, and methods for preparing and regenerating the desulfurizer
CN101898112B (zh) 一种可重复再生利用的脱硫剂及其制备方法以及再生方法
CN106512677B (zh) 一种氧化锌脱硫剂及其制备方法
CN101898110B (zh) 一种可重复再生利用的脱硫剂及其制备方法以及再生方法
CN101767832B (zh) 含无定形羟基氧化铁的物料的制备及其再生方法
CN101767831B (zh) 含无定形羟基氧化铁的物料的制备及其再生方法
CN111041247B (zh) 一种基于金属锰制液的常温氧化铁脱硫剂的制备方法
CN101898109B (zh) 一种可重复再生利用的脱硫剂及其制备方法以及再生方法
CN101898111B (zh) 一种可重复再生利用的脱硫剂及其制备方法以及再生方法
CN109078612A (zh) 一种利用低阶煤制备的炭基-纳米零价铁复合材料及方法
CN117654524A (zh) 缩短放硫时间的高温变换催化剂的制备方法
CN109289861A (zh) 一种废旧钴钼耐硫变换催化剂资源化再生利用方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09838074

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2009838074

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 201170903

Country of ref document: EA

NENP Non-entry into the national phase

Ref country code: DE