WO2010079692A1 - Method for manufacturing resistance substrate - Google Patents

Method for manufacturing resistance substrate Download PDF

Info

Publication number
WO2010079692A1
WO2010079692A1 PCT/JP2009/071406 JP2009071406W WO2010079692A1 WO 2010079692 A1 WO2010079692 A1 WO 2010079692A1 JP 2009071406 W JP2009071406 W JP 2009071406W WO 2010079692 A1 WO2010079692 A1 WO 2010079692A1
Authority
WO
WIPO (PCT)
Prior art keywords
pattern
resistance
resistor layer
layer
electrode
Prior art date
Application number
PCT/JP2009/071406
Other languages
French (fr)
Japanese (ja)
Inventor
寿 小松
Original Assignee
アルプス電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプス電気株式会社 filed Critical アルプス電気株式会社
Publication of WO2010079692A1 publication Critical patent/WO2010079692A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C10/00Adjustable resistors
    • H01C10/30Adjustable resistors the contact sliding along resistive element
    • H01C10/305Adjustable resistors the contact sliding along resistive element consisting of a thick film
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C10/00Adjustable resistors
    • H01C10/30Adjustable resistors the contact sliding along resistive element
    • H01C10/32Adjustable resistors the contact sliding along resistive element the contact moving in an arcuate path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/06Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base
    • H01C17/065Apparatus or processes specially adapted for manufacturing resistors adapted for coating resistive material on a base by thick film techniques, e.g. serigraphy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/22Apparatus or processes specially adapted for manufacturing resistors adapted for trimming
    • H01C17/23Apparatus or processes specially adapted for manufacturing resistors adapted for trimming by opening or closing resistor geometric tracks of predetermined resistive values, e.g. snapistors

Definitions

  • the present invention relates to a method of manufacturing a resistance substrate used for a variable resistor or the like.
  • FIG. 4 is a plan view showing an example of a resistance substrate.
  • a resistance pattern 2 is formed on the surface 1 a of the resistance substrate 1. As shown in FIG. 4, the resistance pattern 2 is formed in an arc shape.
  • the resistor layer 3 is directly formed on the shape of the resistor pattern 2 by screen printing using a mask for pattern printing (see FIG. 5).
  • the conventional resistance substrate manufacturing method has a problem that the film thickness variation of the resistor layer 3 constituting the resistance pattern 2 becomes large.
  • FIG. 5A and 5B are diagrams for explaining that the film thickness variation of the resistor layer 3 increases.
  • FIG. 5A is a partial plan view of the resistance pattern 2
  • FIG. 5B is a resistance pattern shown in FIG. 2 is a partial enlarged cross-sectional view showing a state in which the resistor layer 3 constituting the portion of the width dimension T1 of 2 is screen-printed
  • FIG. 5C constitutes the portion of the width dimension T2 of the resistance pattern 2 shown in FIG. It is a partial expanded sectional view which shows the state which screen-printed the resistor layer.
  • the width dimension in the X direction perpendicular to the printing direction varies depending on the location.
  • the width dimension T2 is wider than the width dimension T1. Therefore, as shown in FIG. 5C, when the resistor layer 3 constituting the portion of the width dimension T2 is screen-printed, the interval between the masks 4 and 4 becomes wider than that in FIG. The amount of bending of 5 became large.
  • the film thickness H1 of the resistor layer 3 in the width dimension T1 portion of the resistance pattern 2 is different from the film thickness H2 of the resistor layer 3 in the width dimension T2 portion of the resistance pattern 2.
  • the width dimension to a X direction changed gradually toward the printing direction (Y direction), and the film thickness fluctuation
  • the width dimension of the resistance pattern 2 is likely to fluctuate from the desired width dimension, and pattern deviation is likely to occur.
  • the output is a change characteristic of the output resistance value (resistance value from the end portion of the resistance pattern to the contact position of the slider) with respect to the angular change of the sliding position (contact position) of the slider on the resistance pattern 2.
  • the linearity deteriorated.
  • an object of the present invention is to provide a method of manufacturing a resistance substrate that can improve output linearity (linearity) as compared with the conventional technique.
  • the method of manufacturing a resistance substrate in the present invention is as follows.
  • a solid film shape is a problem when forming an arc-shaped resistance pattern, for example, a resistance that actually uses a rectangular printing pattern such as a rectangle or a square so that the amount of deflection of the printing squeegee does not change. Although it is preferable to print in a wider range than the pattern, it is not always necessary to have a rectangular shape.
  • the resistance pattern on the resistor layer using a laser.
  • the said resistance pattern can be formed with a desired width dimension and highly accurate pattern position accuracy.
  • various patterns can be formed simply by changing the laser drawing program, which is effective for the production of a small variety of products.
  • an unnecessary resistor layer separated from the resistor pattern can be left with a space around the resistor pattern.
  • an unnecessary resistor layer can be left as it is, so that the manufacturing process can be simplified and the manufacturing time can be shortened.
  • an electrode layer is formed between the base material and the resistor layer or on the resistor layer, and an unnecessary portion is removed from the electrode layer to form an electrode pattern.
  • the electrode pattern is formed by removing unnecessary portions from the electrode layer, the width dimension accuracy of the electrode pattern can be improved, and pattern deviation can be suppressed.
  • the present invention it is preferable to have a step of cutting unnecessary portions of the base material, and to determine the formation position of the resistance pattern and the cutting position of the base material using a common positioning means. Thereby, the position shift of a base material and a resistance pattern can be suppressed.
  • the base material is used as a transfer plate, the solid film-shaped resistor layer is formed on the transfer plate, and the electrode layer is further stacked on the resistor layer. Removing an unnecessary portion of the electrode layer to form an electrode pattern from the electrode layer; Forming the resistance pattern on the resistor layer; Forming a resin layer from above the electrode layer and resistor layer to the periphery; Peeling the transfer plate and transferring the electrode layer and the resistor layer to the insulating substrate made of the resin; Can have.
  • the present invention it is possible to suppress fluctuations in the thickness of the resistor layer constituting the resistance pattern as compared with the conventional case, and it is possible to manufacture a resistance substrate that is superior in output linearity (linearity) as compared with the conventional case.
  • FIG. 1 is a process diagram showing a resistance substrate manufacturing method in the first embodiment
  • FIG. 2 is a process diagram showing a resistance substrate manufacturing method in the second embodiment.
  • Each of the right diagrams in FIGS. 1 and 2 is a plan view of a resistance substrate (base material) during the manufacturing process
  • the left diagram is a cross-sectional view.
  • Each left figure is a cross-sectional view in which each corresponding right figure is cut from the position of line AA shown in the right figures of FIGS. 1 (a) and 2 (a).
  • an electrode layer 11 is formed on an insulating substrate 10 by screen printing.
  • the material of the electrode layer 11 is not ask
  • the electrode layer 11 is formed on the base material 10 in the form of a solid film having a large area.
  • an electrode layer 11 having a shape substantially along the outer periphery of the electrode pattern 13 is formed on the substrate 10.
  • the area of the electrode layer 11 indicated by a-2 in FIG. 1A is smaller than the area of the electrode layer 11 indicated by a-1 in FIG. .
  • the planar shape of the electrode layer 11 of a-1 in FIG. 1A is a substantially square shape, but the shape is not particularly limited.
  • positioning holes 10a are provided at the corners of the base material 10.
  • the positioning hole 10 a is used as a positioning means for determining the position where the electrode layer 11 is formed with respect to the base material 10.
  • unnecessary portions of the electrode layer 11 are removed using, for example, a laser, and the electrode layer 11 is left in the shape of the electrode pattern 13.
  • the positioning hole 10a is used as positioning means for determining the formation position of the electrode pattern 13.
  • the laser is preferably a YAG laser, particularly a fiber laser. Except for laser irradiation, the electrode pattern 13 can be formed by etching or the like.
  • the electrode layer 11 having a large area is printed and formed on the substrate 10, and then unnecessary portions of the electrode layer 11 are removed to form the electrode layer 11 as an electrode pattern. 13 shapes are left.
  • the electrode layer 11 is directly formed into the shape of the electrode pattern 13 using a pattern mask as in the conventional case, variation in dimensional accuracy occurs due to deflection of the mask during printing.
  • the width dimension of the electrode pattern 13 is likely to fluctuate with respect to the predetermined width, or pattern deviation may occur.
  • the resistance substrate is further reduced in size or more complicated in the shape of the electrode pattern, the variation in the width dimension and the ratio of the pattern deviation tend to increase.
  • the electrode layer 11 is not directly formed into the shape of the electrode pattern 13 using the pattern mask, but first, the electrode layer 11 having a large area is printed and formed on the substrate 10. Subsequently, unnecessary portions of the electrode layer 11 are removed and the electrode layer 11 is left in the shape of the electrode pattern 13, so that variations in width dimensions and pattern deviations based on variations in mask accuracy at the time of printing, etc., are conventionally caused. It can be suppressed in comparison.
  • the electrode layer 11 on the electrode pattern 13 by drawing the electrode layer 11 on the electrode pattern 13 using a laser, it is possible to form the electrode layer 11 with a more desired width and improve the pattern position accuracy. Note that, if the electrode layer 11 is simply drawn in the shape of the electrode pattern 13 and the unnecessary electrode layer 11 is left, problems such as destabilization of electrical characteristics occur. Thus, the unnecessary part of the electrode layer 11 is removed. In addition, various patterns can be formed simply by changing the laser drawing program, which is effective for the production of a small variety of products.
  • the electrode layers 11 having different shapes are presented in a-1 and a-2 in FIG. 1A, but electrodes having a shape substantially along the outer periphery of the electrode pattern 13 as in a-2.
  • the formation of the layer 11 can reduce the trouble of removing the unnecessary electrode layer 11 and can facilitate the formation of the electrode pattern 13.
  • a solid film is formed on the electrode layer 11 left in the shape of the electrode pattern 13, between the electrode layers 11, and on the base material 10 spreading around the electrode pattern 13.
  • the resistor layer 15 is formed by screen printing, for example.
  • the positioning hole 10a is used as positioning means for determining the formation position of the resistor layer 15.
  • the resistor layer 15 is dried by heating.
  • the resistor layer 15 is preferably made of a material containing carbon as a main component in a binder resin.
  • the planar shape of the resistor layer 15 is a rectangular shape having a substantially square shape.
  • the shape is not limited to a rectangular shape, and may be, for example, a trapezoidal shape or a rhombus shape. It doesn't matter.
  • the resistor layer 15 located on the separation line 17 is removed using a laser, and the arc-shaped resistor pattern 16 and the resistor pattern are formed on the resistor layer 15.
  • a drawing pattern 18 continuous with 16 is drawn.
  • the positioning hole 10a is used as positioning means for determining the formation position of the resistance pattern 16.
  • the resistance pattern 16 constituted by the resistor layer 15 has an inner periphery and an outer periphery, and both the inner periphery and the outer periphery are formed in an arc shape, and the inner periphery and the outer periphery are formed. The width dimension between them is substantially constant in the circumferential direction.
  • an unnecessary resistor layer 15a separated via the separation line 17 is left around the outer periphery of the resistor pattern 16 and the lead pattern 18.
  • the unnecessary resistor layer 15a is insulated from the resistor pattern 16 by the separation line 17, and can be left as it is.
  • An annular pattern in which the electrode layer 11 and the resistor layer 15 disposed via the separation line 17 are laminated on the inner peripheral side of the resistance pattern 16 is variable using the resistance substrate of this embodiment.
  • a current collector pattern (lead pattern) for taking out the output of the resistor is formed.
  • the unnecessary portion 10b of the base material 10 is cut and removed, whereby the outer shape of the base material 10 (resistive substrate) is processed.
  • the positioning hole 10a is used as positioning means for determining the cutting position of the substrate 10.
  • the substrate 10 can be cut by laser cutting or pressing.
  • steps other than the steps described above can be performed during or before any step.
  • the solid-state resistor layer 15 is printed and formed in the step of FIG. 1C, and then the inner side of the resistor layer 15 in the step of FIG. An arc-shaped resistance pattern 16 is formed in the region.
  • the film thickness variation of the resistor layer 15 can be reduced.
  • the film thickness of the resistor layer 15 overlaid on the electrode pattern 13 and the film thickness of the resistor layer 15 formed in contact with the substrate 10 are different.
  • the term “film thickness variation” refers to a variation in film thickness when viewed from the same formation surface.
  • the difference between the film thickness of the resistor layer 15 overlaid on the electrode pattern 13 and the film thickness of the resistor layer 15 formed in contact with the substrate 10 corresponds to the “film thickness variation” referred to herein. do not do.
  • the film thickness of the resistor layer 15 formed in contact with the base material 10 is important. That is, in this embodiment, the electrode pattern 13 is formed on the base material 10, and the arc-shaped resistance pattern 16 is formed from the electrode pattern 13 to the base material 10 on which the electrode pattern 13 is not formed. However, what is important is the film thickness of the resistance pattern 16 where the electrode pattern 13 does not overlap. This portion is a detection region for detecting a change in resistance value according to a sliding position of a slider (not shown).
  • the film thickness variation of the resistor layer 15 in the detection region of the resistor pattern 16 formed in the arc shape is conventionally changed. It can suppress effectively compared with. Therefore, according to this embodiment, compared to the conventional case, an output signal corresponding to a change in the contact position of the slider on the resistance pattern 16 (for example, contact between the electrode pattern 13 located at one end of the resistance pattern 16 and the slider).
  • a resistance substrate having excellent output linearity (linearity) indicated by a change in the resistance value of the resistance pattern 16 between the positions can be manufactured.
  • the contact part is divided into two parts, one contact part slides on the resistance pattern 16 and the other contact part slides on the current collector pattern, so that both patterns are short-circuited. Thus, it is rotationally moved with respect to the resistance pattern 16.
  • the peripheral portion is a thick portion called a saddle phenomenon, so that the arc-shaped resistor pattern 16 is placed at a location away from the edge 15 b of the resistor layer 15. It forms (refer the right figure of FIG.1 (d)).
  • the minimum distance between the edge 15b and the resistance pattern 16 is preferably 100 ⁇ m or more.
  • the unnecessary resistor layer 15a separated from the resistor pattern 16 is left, there is not much problem in terms of characteristics.
  • the resistor layer 15 can be drawn on the arc-shaped resistor pattern 16 to leave the unnecessary resistor layer 15a, and the manufacturing process can be simplified and the manufacturing time can be shortened.
  • the resistor layer 15 When the resistor layer 15 is formed in the form of a solid film as shown in FIG. 1C, the resistor layer 15 has a shape in which the width dimension orthogonal to the printing direction is substantially constant (the square shown in FIG. 1C). And other rectangular shapes). Thereby, it can form in a substantially uniform film thickness except the edge part of the resistor layer 15, and the film thickness fluctuation
  • the electrode layer 11 is formed (FIG. 1A), the electrode pattern 13 is formed (FIG. 1B), and the resistor layer 15 is formed using the common positioning hole 10a. Formation (FIG. 1C), formation of the resistance pattern 16 (FIG. 1D), and cutting of the substrate 10 (FIG. 1E) are performed. For this reason, it is possible to effectively improve the positional accuracy of the electrode pattern 13 and the resistance pattern 16 with respect to the substrate 10. Thereby, output linearity can be improved more effectively.
  • a solid film-like resistor layer 31 is formed by, for example, screen printing on a transfer plate 30 formed of, for example, a brass plate.
  • the transfer plate 30 constituting the substrate is preferably a metal.
  • the resistor layer 31 is preferably made of a material containing carbon as a main component in a binder resin, similarly to the resistor layer 15 in FIG. After the resistor layer 31 is formed by printing, it is dried by heating.
  • a solid film electrode layer 32 is formed on the resistor layer 31 by, for example, screen printing and dried by heating.
  • the electrode layer 32 is patterned into a shape along the electrode pattern 33 and a current collector pattern 35 described later using a laser, and the resistor layer 31 is changed to the resistance pattern 34.
  • the resistance pattern 34 has an arc shape, and electrode patterns 33 are provided at both ends thereof.
  • the region where only the electrode layer 32 is removed (the portion where the surface of the resistor layer 31 appears) and both the resistor layer 31 and the electrode layer 32 are removed.
  • a region to be removed (a portion where the surface of the transfer plate 30 appears) can be effectively produced.
  • the remaining resistor layer 31 and electrode layer 32 are baked (heat cured) in a heating furnace.
  • the transfer plate 30 is disposed on the mold 40 with the resistor layer 31 and the electrode layer 32 facing the cavity 43 side of the mold 40. Then, a molten resin is injected into the cavity 43 of the mold 40. Subsequently, the resin is cured by heating to form the insulating substrate 44.
  • a resistance pattern 34 appears on the surface of the insulating base 44, and the electrode pattern 33 (electrode layer 32) is embedded in the insulating base 44.
  • the resistance pattern 34 can be formed in substantially the same plane as the surface of the insulating substrate 44.
  • the arc-shaped pattern on the inner peripheral side of the resistance pattern 34 is a current collector pattern 35 for taking out an output signal by sliding a slider (not shown) on the pattern.
  • the current collector pattern 35 is configured by laminating a resistor layer 31 and an electrode layer 32.
  • a solid film-like resistor layer 31 is printed and formed (see FIG. 2A), and subsequently, the resistor layer 31 is formed in an arc shape.
  • the resistance pattern 34 is formed (see FIGS. 2C and 2F). Therefore, it is possible to suppress the film thickness variation of the resistor layer 31 constituting the arc-shaped resistance pattern 34 as compared with the conventional case. Therefore, according to the present embodiment, it is possible to manufacture a resistance substrate that is superior in output linearity (linearity) as compared with the prior art.
  • the resistance pattern 34 is formed in a substantially central region that is located inward from the edge of the resistor layer 31.
  • the electrode layer 32 is not formed in the form of a solid film having a large area, and the electrode layer 32 is formed of the electrode pattern 33 and the same as a-2 of FIG.
  • the current collector pattern 35 can also be formed in a shape substantially along the outer shape.
  • the common positioning means is used to form the resistor layer 31 (FIG. 2A), the electrode layer 32 (FIG. 2B), the resistance pattern 34, the electrode pattern 33, and By forming the current collector pattern 35 (FIG. 2C), the positional accuracy of the resistance pattern 34, the electrode pattern 33, and the current collector pattern 35 with respect to the transfer plate 30 and the insulating base 44 is effectively improved. It is possible to improve it.
  • a resistance substrate was formed using the manufacturing method of FIG. 1, and as a conventional example, a resistance substrate was formed directly using a pattern mask. These resistance substrates were incorporated in a variable resistor, and the linearity of the output based on the change in resistance value corresponding to the change in the angle of the sliding position of the slider was measured. The experimental results are shown in FIG. Note that FIG. 3 shows the ratio of the actual resistance value subtracted from the measured resistance value at the angular position of the slider to the total resistance value of the resistance pattern (resistance value between the electrodes at both ends of the resistance pattern). It is the characteristic view shown by.
  • FIG. 6C is a partially enlarged cross-sectional view showing a state in which the resistor layer constituting the screen is printed
  • FIG. 5C is a diagram showing the screen of the resistor layer 3 constituting the portion of the width T2 of the resistor pattern shown in FIG. Partial enlarged sectional view showing the state

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)

Abstract

Provided is a resistance substrate manufacturing method capable of improving, particularly, the output linearity compared to the prior art. An electrode layer (11) is formed on a substrate (10), and then an electrode pattern (13) is formed from the aforementioned electrode layer (11). Next, a solid film-type resistor layer (15) is formed, and then an arc-shaped resistance pattern (16) is drawn in the aforementioned resistor layer (15) using a laser. Then, the unnecessary portion (10b) of the substrate (10) is cut away. Thus, the arc-shaped resistance pattern (16) is formed from the solid film-type resistor layer (15) having little variation in film thickness, so in comparison with the prior art, film thickness variation for the resistor layer (15) which configures the aforementioned resistance pattern (16) can be controlled. Accordingly, a resistance substrate with better output linearity than that of the prior art can be manufactured.

Description

抵抗基板の製造方法Resistance board manufacturing method
 本発明は、可変抵抗器等に使用される抵抗基板の製造方法に関する。 The present invention relates to a method of manufacturing a resistance substrate used for a variable resistor or the like.
 図4は、抵抗基板の一例を示す平面図である。抵抗基板1の表面1aに、抵抗パターン2が形成されている。抵抗パターン2は図4に示すように、円弧状で形成される。 FIG. 4 is a plan view showing an example of a resistance substrate. A resistance pattern 2 is formed on the surface 1 a of the resistance substrate 1. As shown in FIG. 4, the resistance pattern 2 is formed in an arc shape.
 従来では、抵抗体層3を、パターン印刷用のマスクを用いて、直接、抵抗パターン2の形状に、スクリーン印刷にて形成していた(図5参照)。
実公平3-47289号公報 特開平10-65312号公報 特開2001-76569号公報 特開昭57-11125号公報
Conventionally, the resistor layer 3 is directly formed on the shape of the resistor pattern 2 by screen printing using a mask for pattern printing (see FIG. 5).
Japanese Utility Model Publication 3-47289 JP-A-10-65312 JP 2001-76569 A JP 57-11125 A
 しかしながら、従来の抵抗基板の製造方法では抵抗パターン2を構成する抵抗体層3の膜厚変動が大きくなる問題が生じた。 However, the conventional resistance substrate manufacturing method has a problem that the film thickness variation of the resistor layer 3 constituting the resistance pattern 2 becomes large.
 図5は、抵抗体層3の膜厚変動が大きくなることを説明するための図であり、(a)は、抵抗パターン2の部分平面図、(b)は、(a)に示す抵抗パターン2の幅寸法T1の部分を構成する抵抗体層3をスクリーン印刷している状態を示す部分拡大断面図、(c)は、(a)に示す抵抗パターン2の幅寸法T2の部分を構成する抵抗体層3をスクリーン印刷している状態を示す部分拡大断面図、である。 5A and 5B are diagrams for explaining that the film thickness variation of the resistor layer 3 increases. FIG. 5A is a partial plan view of the resistance pattern 2, and FIG. 5B is a resistance pattern shown in FIG. 2 is a partial enlarged cross-sectional view showing a state in which the resistor layer 3 constituting the portion of the width dimension T1 of 2 is screen-printed, and FIG. 5C constitutes the portion of the width dimension T2 of the resistance pattern 2 shown in FIG. It is a partial expanded sectional view which shows the state which screen-printed the resistor layer.
 図5(a)に示すように、抵抗パターン2は円弧状で形成されているため、印刷方向をY方向とすると、それに直交するX方向への幅寸法は場所により異なる。図5(a)では、幅寸法T1より幅寸法T2のほうが広くなっている。このため、図5(c)に示すように、幅寸法T2の部分を構成する抵抗体層3をスクリーン印刷するとき、マスク4,4間の間隔は、図5(b)より広くなり、スキージ5の撓み量が大きくなった。 As shown in FIG. 5A, since the resistance pattern 2 is formed in an arc shape, when the printing direction is the Y direction, the width dimension in the X direction perpendicular to the printing direction varies depending on the location. In FIG. 5A, the width dimension T2 is wider than the width dimension T1. Therefore, as shown in FIG. 5C, when the resistor layer 3 constituting the portion of the width dimension T2 is screen-printed, the interval between the masks 4 and 4 becomes wider than that in FIG. The amount of bending of 5 became large.
 その結果、抵抗パターン2の幅寸法T1の部分での抵抗体層3の膜厚H1と、抵抗パターン2の幅寸法T2の部分での抵抗体層3の膜厚H2が異なる。そして円弧状の抵抗パターン2であるため、X方向への幅寸法は印刷方向(Y方向)に向けて漸次的に変化し、抵抗体層3の膜厚変動が大きくなった。 As a result, the film thickness H1 of the resistor layer 3 in the width dimension T1 portion of the resistance pattern 2 is different from the film thickness H2 of the resistor layer 3 in the width dimension T2 portion of the resistance pattern 2. And since it is the circular-arc-shaped resistance pattern 2, the width dimension to a X direction changed gradually toward the printing direction (Y direction), and the film thickness fluctuation | variation of the resistor layer 3 became large.
 また、マスク精度の変動によって、抵抗パターン2の幅寸法も所望の幅寸法から変動しやくなり、またパターンずれも生じやすかった。 Also, due to the variation in mask accuracy, the width dimension of the resistance pattern 2 is likely to fluctuate from the desired width dimension, and pattern deviation is likely to occur.
 その結果、抵抗パターン2上における摺動子の摺動位置(接触位置)の角度変化に対する出力抵抗値(抵抗パターンの端部から摺動子の接触位置までの抵抗値)の変化特性である出力直線性(リニアリティ)が低下する問題があった。 As a result, the output is a change characteristic of the output resistance value (resistance value from the end portion of the resistance pattern to the contact position of the slider) with respect to the angular change of the sliding position (contact position) of the slider on the resistance pattern 2. There was a problem that the linearity deteriorated.
 そこで本発明は上記従来の課題を解決するためのものであり、特に、従来に比べて、出力直線性(リニアリティ)を向上させることができる抵抗基板の製造方法を提供することを目的としている。 Therefore, the present invention is for solving the above-described conventional problems, and in particular, an object of the present invention is to provide a method of manufacturing a resistance substrate that can improve output linearity (linearity) as compared with the conventional technique.
 本発明における抵抗基板の製造方法は、
 基材上に、ベタ膜状で抵抗体層を印刷形成する工程、
 前記抵抗体層の縁部から離れた箇所に、前記抵抗体層で構成される円弧状の抵抗パターンを形成する工程、
 を有することを特徴とするものである。
The method of manufacturing a resistance substrate in the present invention is as follows.
A step of printing and forming a resistor layer in a solid film form on the substrate;
Forming an arc-shaped resistance pattern composed of the resistor layer at a location away from the edge of the resistor layer;
It is characterized by having.
 ベタ膜状とは円弧状の抵抗パターンを形成する際の問題点である、印刷スキージの撓み量の変化が起こらないような、例えば長方形や正方形等の矩形状の印刷パターンを実際に使用する抵抗パターンよりも広い範囲で印刷することが好ましいが、必ずしも矩形状である必要はない。 A solid film shape is a problem when forming an arc-shaped resistance pattern, for example, a resistance that actually uses a rectangular printing pattern such as a rectangle or a square so that the amount of deflection of the printing squeegee does not change. Although it is preferable to print in a wider range than the pattern, it is not always necessary to have a rectangular shape.
 上記により、従来に比べて抵抗パターンを構成する抵抗体層の膜厚変動を抑制でき、従来に比べて、出力直線性(リニアリティ)に優れる抵抗基板を製造できる。 According to the above, it is possible to suppress the film thickness variation of the resistor layer constituting the resistance pattern as compared with the conventional case, and it is possible to manufacture a resistance substrate that is superior in output linearity (linearity) as compared with the conventional case.
 本発明では、レーザを用いて、前記抵抗体層に前記抵抗パターンを描画することが好ましい。これにより、所望の幅寸法及び高精度なパターン位置精度にて前記抵抗パターンを形成できる。また、レーザ描画のプログラムを変更するだけで様々なパターン形成が可能であり、少量多品種生産に有効である。 In the present invention, it is preferable to draw the resistance pattern on the resistor layer using a laser. Thereby, the said resistance pattern can be formed with a desired width dimension and highly accurate pattern position accuracy. In addition, various patterns can be formed simply by changing the laser drawing program, which is effective for the production of a small variety of products.
 また本発明では、前記抵抗パターンの周囲に間隔を空けて、前記抵抗パターンと分離された不要な前記抵抗体層を残すことが出来る。このように、本発明では、不要な抵抗体層をそのまま残しておくことが出来るので、製造工程を簡略化でき、製造時間を短縮できる。 In the present invention, an unnecessary resistor layer separated from the resistor pattern can be left with a space around the resistor pattern. As described above, in the present invention, an unnecessary resistor layer can be left as it is, so that the manufacturing process can be simplified and the manufacturing time can be shortened.
 また本発明では、前記基材と前記抵抗体層の間、あるいは前記抵抗体層上に電極層を形成し、前記電極層から不要な部分を除去して電極パターンを形成する工程を、有し、
 共通の位置決め手段を用いて、前記抵抗パターンの形成位置及び前記電極パターンの形成位置を決定することが好ましい。
In the present invention, an electrode layer is formed between the base material and the resistor layer or on the resistor layer, and an unnecessary portion is removed from the electrode layer to form an electrode pattern. ,
It is preferable to determine the formation position of the resistance pattern and the formation position of the electrode pattern using a common positioning means.
 これにより、抵抗パターン及び電極パターンの位置ずれを抑制できる。また、電極パターンを、電極層から不要な部分を除去して形成するため、前記電極パターンの幅寸法精度を向上させ、またパターンずれを抑制することができる。 Thereby, it is possible to suppress the displacement of the resistance pattern and the electrode pattern. In addition, since the electrode pattern is formed by removing unnecessary portions from the electrode layer, the width dimension accuracy of the electrode pattern can be improved, and pattern deviation can be suppressed.
 また本発明では、前記基材の不要部分を切断する工程を有し、共通の位置決め手段を用いて、前記抵抗パターンの形成位置及び前記基材の切断位置を決定することが好ましい。これにより、基材及び抵抗パターンの位置ずれを抑制できる。 In the present invention, it is preferable to have a step of cutting unnecessary portions of the base material, and to determine the formation position of the resistance pattern and the cutting position of the base material using a common positioning means. Thereby, the position shift of a base material and a resistance pattern can be suppressed.
 また本発明では、前記基材を転写板として、前記転写板上に、ベタ膜状の前記抵抗体層を形成し、さらに前記抵抗体層上に電極層を重ねて形成する工程、
 前記電極層の不要部分を除去して前記電極層から電極パターンを形成する工程、
 前記抵抗体層に、前記抵抗パターンを形成する工程、
 前記電極層及び抵抗体層上から周囲にかけて樹脂層を形成する工程、
 前記転写板を剥離して、前記電極層及び抵抗体層を前記樹脂からなる絶縁基材に転写する工程、
 を有することが出来る。
In the present invention, the base material is used as a transfer plate, the solid film-shaped resistor layer is formed on the transfer plate, and the electrode layer is further stacked on the resistor layer.
Removing an unnecessary portion of the electrode layer to form an electrode pattern from the electrode layer;
Forming the resistance pattern on the resistor layer;
Forming a resin layer from above the electrode layer and resistor layer to the periphery;
Peeling the transfer plate and transferring the electrode layer and the resistor layer to the insulating substrate made of the resin;
Can have.
 本発明によれば、従来に比べて抵抗パターンを構成する抵抗体層の膜厚変動を抑制でき、従来に比べて、出力直線性(リニアリティ)に優れる抵抗基板を製造できる。 According to the present invention, it is possible to suppress fluctuations in the thickness of the resistor layer constituting the resistance pattern as compared with the conventional case, and it is possible to manufacture a resistance substrate that is superior in output linearity (linearity) as compared with the conventional case.
 図1は、第1実施形態における抵抗基板の製造方法を示す工程図、図2は、第2実施形態における抵抗基板の製造方法を示す工程図、である。図1、図2の各右図は、製造工程中の抵抗基板(基材)の平面図を、左図は断面図を示している。なお各左図は、夫々対応する各右図を図1(a)及び図2(a)の右図に示すA-A線の位置から切断した断面図である。 FIG. 1 is a process diagram showing a resistance substrate manufacturing method in the first embodiment, and FIG. 2 is a process diagram showing a resistance substrate manufacturing method in the second embodiment. Each of the right diagrams in FIGS. 1 and 2 is a plan view of a resistance substrate (base material) during the manufacturing process, and the left diagram is a cross-sectional view. Each left figure is a cross-sectional view in which each corresponding right figure is cut from the position of line AA shown in the right figures of FIGS. 1 (a) and 2 (a).
 図1(a)に示す工程では、絶縁性の基材10上に電極層11をスクリーン印刷により形成する。電極層11の材質は問わないが、バインダー樹脂内に主成分として銀粉を含んだ電極層であることが好適である。電極層11のスクリーン印刷後、加熱することにより乾燥する。 In the step shown in FIG. 1A, an electrode layer 11 is formed on an insulating substrate 10 by screen printing. Although the material of the electrode layer 11 is not ask | required, it is suitable that it is an electrode layer which contained silver powder as a main component in binder resin. After the screen printing of the electrode layer 11, it is dried by heating.
 図1(a)のa-1に示すように、基材10上に電極層11を広い面積のベタ膜状で形成する。あるいは、図1(a)のa-2に示すように、基材10上に、ほぼ電極パターン13(図1(b)参照)の外周に沿った形状の電極層11を形成する。図1(a)のa-2に示す電極層11の面積は、図1(a)のa-1に示す電極層11の面積に比べて小さいが、電極パターン13よりも大きく形成されている。 As shown in a-1 of FIG. 1A, the electrode layer 11 is formed on the base material 10 in the form of a solid film having a large area. Alternatively, as shown by a-2 in FIG. 1A, an electrode layer 11 having a shape substantially along the outer periphery of the electrode pattern 13 (see FIG. 1B) is formed on the substrate 10. The area of the electrode layer 11 indicated by a-2 in FIG. 1A is smaller than the area of the electrode layer 11 indicated by a-1 in FIG. .
 図1(a)のa-1の電極層11の平面形態は略正方形状であるが、形状は特に限定されない。 The planar shape of the electrode layer 11 of a-1 in FIG. 1A is a substantially square shape, but the shape is not particularly limited.
 また、図1(a)に示すように基材10の隅には、位置決め穴10aが設けられている。本実施形態では、前記位置決め穴10aを、基材10に対する電極層11の形成位置を決定する位置決め手段として使用する。 Further, as shown in FIG. 1A, positioning holes 10a are provided at the corners of the base material 10. In the present embodiment, the positioning hole 10 a is used as a positioning means for determining the position where the electrode layer 11 is formed with respect to the base material 10.
 図1(b)の工程では、例えば、レーザを用いて、電極層11の不要部分を除去し、前記電極層11を電極パターン13の形状に残す。このとき、電極パターン13の形成位置を決定する位置決め手段として前記位置決め穴10aを使用する。 In the step of FIG. 1B, unnecessary portions of the electrode layer 11 are removed using, for example, a laser, and the electrode layer 11 is left in the shape of the electrode pattern 13. At this time, the positioning hole 10a is used as positioning means for determining the formation position of the electrode pattern 13.
 レーザはYAGレーザー、特にファイバーレーザーであることが好適である。レーザ照射以外ではエッチング等により、電極パターン13の形成を行うことが出来る。 The laser is preferably a YAG laser, particularly a fiber laser. Except for laser irradiation, the electrode pattern 13 can be formed by etching or the like.
 上記したように電極パターン13の形成では、まず基材10上に広い面積の電極層11を印刷形成し、続いて、前記電極層11の不要部分を除去して、前記電極層11を電極パターン13の形状に残している。例えば、従来のように、電極層11を、パターンマスクを用いて直接、電極パターン13の形状に形成しようとすると、印刷時におけるマスクのたわみにより寸法精度の変動が発生する。この結果電極パターン13の幅寸法が所定幅に対して変動しやすく、あるいはパターンずれを生じる可能性があった。特に、更なる抵抗基板の小型化や、より複雑な電極パターンの形状であると、幅寸法の変動やパターンずれの比率が大きくなりやすかった。これに対して本実施形態では、電極層11を、パターンマスクを用いて直接、電極パターン13の形状に形成せず、まず、基材10上に広い面積の電極層11を印刷形成する。続いて、前記電極層11の不要部分を除去して、前記電極層11を電極パターン13の形状に残すので、印刷時のマスク精度の変動等に基づく、幅寸法の変動やパターンずれを従来に比べて抑制することが出来る。 As described above, in the formation of the electrode pattern 13, first, the electrode layer 11 having a large area is printed and formed on the substrate 10, and then unnecessary portions of the electrode layer 11 are removed to form the electrode layer 11 as an electrode pattern. 13 shapes are left. For example, when the electrode layer 11 is directly formed into the shape of the electrode pattern 13 using a pattern mask as in the conventional case, variation in dimensional accuracy occurs due to deflection of the mask during printing. As a result, the width dimension of the electrode pattern 13 is likely to fluctuate with respect to the predetermined width, or pattern deviation may occur. In particular, when the resistance substrate is further reduced in size or more complicated in the shape of the electrode pattern, the variation in the width dimension and the ratio of the pattern deviation tend to increase. In contrast, in the present embodiment, the electrode layer 11 is not directly formed into the shape of the electrode pattern 13 using the pattern mask, but first, the electrode layer 11 having a large area is printed and formed on the substrate 10. Subsequently, unnecessary portions of the electrode layer 11 are removed and the electrode layer 11 is left in the shape of the electrode pattern 13, so that variations in width dimensions and pattern deviations based on variations in mask accuracy at the time of printing, etc., are conventionally caused. It can be suppressed in comparison.
 また特に、本実施形態では、レーザを用いて、電極層11を電極パターン13に描画することで、より所望の幅寸法にて形成できるとともにパターン位置精度を向上させることができる。なお電極層11を電極パターン13の形状に描画しただけで、不要な電極層11を残しておくと、電気特性が不安定化する等の問題が生じるので、図1(b)の点線に示すように、不要な電極層11の部分は除去する。またレーザ描画のプログラムを変更するだけで様々なパターン形成が可能であり、少量多品種生産に有効である。 In particular, in the present embodiment, by drawing the electrode layer 11 on the electrode pattern 13 using a laser, it is possible to form the electrode layer 11 with a more desired width and improve the pattern position accuracy. Note that, if the electrode layer 11 is simply drawn in the shape of the electrode pattern 13 and the unnecessary electrode layer 11 is left, problems such as destabilization of electrical characteristics occur. Thus, the unnecessary part of the electrode layer 11 is removed. In addition, various patterns can be formed simply by changing the laser drawing program, which is effective for the production of a small variety of products.
 本実施形態では、図1(a)のa-1,a-2に夫々形状の異なる電極層11を提示したが、a-2のように、ほぼ電極パターン13の外周に沿った形状の電極層11を形成したほうが、不要な電極層11を除去する手間を少なくでき、電極パターン13の形成を容易化できる。 In the present embodiment, the electrode layers 11 having different shapes are presented in a-1 and a-2 in FIG. 1A, but electrodes having a shape substantially along the outer periphery of the electrode pattern 13 as in a-2. The formation of the layer 11 can reduce the trouble of removing the unnecessary electrode layer 11 and can facilitate the formation of the electrode pattern 13.
 次に、図1(c)に示す工程では、電極パターン13の形状に残された電極層11上や電極層11の間、さらには電極パターン13の周囲に広がる基材10上にかけて、ベタ膜状の抵抗体層15を例えばスクリーン印刷により形成する。このとき、抵抗体層15の形成位置を決定する位置決め手段として前記位置決め穴10aを使用する。 Next, in the step shown in FIG. 1C, a solid film is formed on the electrode layer 11 left in the shape of the electrode pattern 13, between the electrode layers 11, and on the base material 10 spreading around the electrode pattern 13. The resistor layer 15 is formed by screen printing, for example. At this time, the positioning hole 10a is used as positioning means for determining the formation position of the resistor layer 15.
 そして、加熱することにより抵抗体層15を乾燥する。抵抗体層15は、バインダー樹脂内に主成分としてカーボンを含有した材質であることが好適である。図1(c)に示すように抵抗体層15の平面形状は略正方形状をなした矩形状となっているが、形状は、矩形状に限定されず、例えば、台形形状や菱形形状であっても構わない。 Then, the resistor layer 15 is dried by heating. The resistor layer 15 is preferably made of a material containing carbon as a main component in a binder resin. As shown in FIG. 1C, the planar shape of the resistor layer 15 is a rectangular shape having a substantially square shape. However, the shape is not limited to a rectangular shape, and may be, for example, a trapezoidal shape or a rhombus shape. It doesn't matter.
 次に、図1(d)の工程では、レーザを用いて、分離ライン17に位置する抵抗体層15を除去して、前記抵抗体層15に、円弧状の抵抗パターン16及び、前記抵抗パターン16と連続する引き出しパターン18を描画する。このとき、抵抗パターン16の形成位置を決定する位置決め手段として前記位置決め穴10aを使用する。図1(d)に示すように、抵抗体層15により構成される抵抗パターン16は、内周及び外周を備え、前記内周及び外周が共に円弧状で形成されて、前記内周及び外周の間の幅寸法が周方向に向けてほぼ一定となる形状である。 Next, in the step of FIG. 1D, the resistor layer 15 located on the separation line 17 is removed using a laser, and the arc-shaped resistor pattern 16 and the resistor pattern are formed on the resistor layer 15. A drawing pattern 18 continuous with 16 is drawn. At this time, the positioning hole 10a is used as positioning means for determining the formation position of the resistance pattern 16. As shown in FIG. 1D, the resistance pattern 16 constituted by the resistor layer 15 has an inner periphery and an outer periphery, and both the inner periphery and the outer periphery are formed in an arc shape, and the inner periphery and the outer periphery are formed. The width dimension between them is substantially constant in the circumferential direction.
 また図1(d)の右図に示すように、抵抗パターン16及び引き出しパターン18の外周側における周囲に分離ライン17を介して分離された不要な抵抗体層15aが残されている。この不要な前記抵抗体層15aは、分離ライン17によって抵抗パターン16とは絶縁されており、そのまま残しておくことが出来る。なお、抵抗パターン16の内周側に、分離ライン17を介して配設された電極層11と抵抗体層15とが積層されてなる環状のパターンは、本実施形態の抵抗基板を用いた可変抵抗器の出力を取り出すための集電体パターン(リードパターン)を構成している。 As shown in the right diagram of FIG. 1D, an unnecessary resistor layer 15a separated via the separation line 17 is left around the outer periphery of the resistor pattern 16 and the lead pattern 18. The unnecessary resistor layer 15a is insulated from the resistor pattern 16 by the separation line 17, and can be left as it is. An annular pattern in which the electrode layer 11 and the resistor layer 15 disposed via the separation line 17 are laminated on the inner peripheral side of the resistance pattern 16 is variable using the resistance substrate of this embodiment. A current collector pattern (lead pattern) for taking out the output of the resistor is formed.
 そして図1(e)の工程では、基材10のうち不要部分10bを切断して除去することにより、基材10(抵抗基板)の外形加工を行う。このとき、基材10の切断位置を決定する位置決め手段として前記位置決め穴10aを使用する。 In the step of FIG. 1 (e), the unnecessary portion 10b of the base material 10 is cut and removed, whereby the outer shape of the base material 10 (resistive substrate) is processed. At this time, the positioning hole 10a is used as positioning means for determining the cutting position of the substrate 10.
 図1(e)の工程では、基材10をレーザカット、あるいはプレス抜き等で切断できる。 In the step shown in FIG. 1 (e), the substrate 10 can be cut by laser cutting or pressing.
 なお、当然に、上記した工程以外の工程(焼成工程等)を、いずれかの工程中や工程前後に施すことが可能である。 Of course, steps other than the steps described above (such as a firing step) can be performed during or before any step.
 上記したように本実施形態では、図1(c)の工程で、ベタ膜状の抵抗体層15を印刷形成し、続いて、図1(d)の工程で、前記抵抗体層15の内側領域に、円弧状の抵抗パターン16を形成している。このように本実施形態では、ベタ膜状で抵抗体層15を印刷形成するため、抵抗体層15の膜厚変動を小さくできる。なお、この実施形態では、電極パターン13上に重ねられる抵抗体層15の膜厚と、基材10上に接して形成される抵抗体層15の膜厚とでは異なることになるが、ここでいう膜厚変動とは、同じ形成面から見たときの膜厚変動を指す。すなわち、電極パターン13上に重ねられる抵抗体層15の膜厚と、基材10上に接して形成される抵抗体層15の膜厚の違いは、ここで言う「膜厚変動」には該当しない。そして、本実施形態では、基材10上に接して形成される抵抗体層15の膜厚が重要である。すなわち、この実施形態では、基材10上に電極パターン13が形成され、前記電極パターン13上から前記電極パターン13が形成されていない基材10上にかけて円弧状の抵抗パターン16が形成されているが、重要なのは、下に電極パターン13が重なっていない部分での抵抗パターン16の膜厚である。この部分は、摺動子(図示せず)の摺動位置に応じた抵抗値の変化を検出するための検出領域である。そして本実施形態では、ベタ膜状の抵抗体層15から円弧状の抵抗パターン16を形成するから、円弧状で形成された抵抗パターン16の検出領域での抵抗体層15の膜厚変動を従来に比べて効果的に抑制することができる。したがって、本実施形態によれば、従来に比べて、抵抗パターン16上における摺動子の接触位置の変化に対する出力信号(例えば、抵抗パターン16の一端に位置する電極パターン13と摺動子の接触位置との間における抵抗パターン16の抵抗値)の変化で示される出力直線性(リニアリティ)に優れる抵抗基板を製造できる。なお、図示せぬ摺動子は、接点部が二股に分かれ、一方の接点部が抵抗パターン16上を、他方の接点部が前記集電体パターン上を摺動し、両パターンを短絡させるようにして、抵抗パターン16に対して、回転移動するものである。 As described above, in the present embodiment, the solid-state resistor layer 15 is printed and formed in the step of FIG. 1C, and then the inner side of the resistor layer 15 in the step of FIG. An arc-shaped resistance pattern 16 is formed in the region. Thus, in this embodiment, since the resistor layer 15 is printed and formed in a solid film shape, the film thickness variation of the resistor layer 15 can be reduced. In this embodiment, the film thickness of the resistor layer 15 overlaid on the electrode pattern 13 and the film thickness of the resistor layer 15 formed in contact with the substrate 10 are different. The term “film thickness variation” refers to a variation in film thickness when viewed from the same formation surface. That is, the difference between the film thickness of the resistor layer 15 overlaid on the electrode pattern 13 and the film thickness of the resistor layer 15 formed in contact with the substrate 10 corresponds to the “film thickness variation” referred to herein. do not do. In the present embodiment, the film thickness of the resistor layer 15 formed in contact with the base material 10 is important. That is, in this embodiment, the electrode pattern 13 is formed on the base material 10, and the arc-shaped resistance pattern 16 is formed from the electrode pattern 13 to the base material 10 on which the electrode pattern 13 is not formed. However, what is important is the film thickness of the resistance pattern 16 where the electrode pattern 13 does not overlap. This portion is a detection region for detecting a change in resistance value according to a sliding position of a slider (not shown). In this embodiment, since the arc-shaped resistor pattern 16 is formed from the solid-film resistor layer 15, the film thickness variation of the resistor layer 15 in the detection region of the resistor pattern 16 formed in the arc shape is conventionally changed. It can suppress effectively compared with. Therefore, according to this embodiment, compared to the conventional case, an output signal corresponding to a change in the contact position of the slider on the resistance pattern 16 (for example, contact between the electrode pattern 13 located at one end of the resistance pattern 16 and the slider). A resistance substrate having excellent output linearity (linearity) indicated by a change in the resistance value of the resistance pattern 16 between the positions can be manufactured. In the slider (not shown), the contact part is divided into two parts, one contact part slides on the resistance pattern 16 and the other contact part slides on the current collector pattern, so that both patterns are short-circuited. Thus, it is rotationally moved with respect to the resistance pattern 16.
 また、ベタ膜状の抵抗体層15でも周囲部分はサドル現象と呼ばれる膜厚が厚い部分となるため、円弧状の抵抗パターン16を、抵抗体層15の縁部15bから内側に離れた箇所に形成する(図1(d)の右図参照)。前記縁部15bと抵抗パターン16までの最小間隔は、100μm以上であることが好適である。 Further, even in the solid film-like resistor layer 15, the peripheral portion is a thick portion called a saddle phenomenon, so that the arc-shaped resistor pattern 16 is placed at a location away from the edge 15 b of the resistor layer 15. It forms (refer the right figure of FIG.1 (d)). The minimum distance between the edge 15b and the resistance pattern 16 is preferably 100 μm or more.
 上記したように、レーザを用いて、抵抗体層15を円弧状の抵抗パターン16に描画することで、より所望の幅寸法にて形成できるとともにパターン位置精度を向上させることができる。またレーザ描画のプログラムを変更するだけで様々なパターン形成が可能であり、少量多品種生産に有効である。 As described above, by drawing the resistor layer 15 on the arc-shaped resistance pattern 16 using a laser, it is possible to form the resistor layer 15 with a more desired width dimension and improve the pattern position accuracy. In addition, various patterns can be formed simply by changing the laser drawing program, which is effective for the production of a small variety of products.
 また本実施形態では、図1(d)に示すように、抵抗パターン16と分離された不要な抵抗体層15aを残しておいても特性上、さほど問題でないため、上記のように例えばレーザにより、抵抗体層15を円弧状の抵抗パターン16に描画して不要な抵抗体層15aを残しておくことができ、製造工程を簡略化でき、製造時間を短縮できる。 Further, in the present embodiment, as shown in FIG. 1D, even if the unnecessary resistor layer 15a separated from the resistor pattern 16 is left, there is not much problem in terms of characteristics. The resistor layer 15 can be drawn on the arc-shaped resistor pattern 16 to leave the unnecessary resistor layer 15a, and the manufacturing process can be simplified and the manufacturing time can be shortened.
 図1(c)に示すベタ膜状で抵抗体層15を形成するとき、前記抵抗体層15を印刷方向に対して直交する幅寸法がほぼ一定となる形状(図1(c)に示す正方形状やその他の矩形状)にて形成することが好ましい。これにより抵抗体層15の縁部を除いてほぼ均一な膜厚に形成でき、抵抗パターン16を構成する抵抗体層15の膜厚変動を効果的に小さくすることができる。 When the resistor layer 15 is formed in the form of a solid film as shown in FIG. 1C, the resistor layer 15 has a shape in which the width dimension orthogonal to the printing direction is substantially constant (the square shown in FIG. 1C). And other rectangular shapes). Thereby, it can form in a substantially uniform film thickness except the edge part of the resistor layer 15, and the film thickness fluctuation | variation of the resistor layer 15 which comprises the resistance pattern 16 can be made small effectively.
 また上記の抵抗基板の製造方法では、共通の位置決め穴10aを用いて、電極層11の形成(図1(a))、電極パターン13の形成(図1(b))、抵抗体層15の形成(図1(c))、抵抗パターン16の形成(図1(d))、基材10の切断(図1(e))を行っている。このため基材10に対する電極パターン13及び抵抗パターン16の各位置精度を効果的に向上させることが可能である。これにより、より効果的に出力直線性を向上させることができる。 Further, in the above resistance substrate manufacturing method, the electrode layer 11 is formed (FIG. 1A), the electrode pattern 13 is formed (FIG. 1B), and the resistor layer 15 is formed using the common positioning hole 10a. Formation (FIG. 1C), formation of the resistance pattern 16 (FIG. 1D), and cutting of the substrate 10 (FIG. 1E) are performed. For this reason, it is possible to effectively improve the positional accuracy of the electrode pattern 13 and the resistance pattern 16 with respect to the substrate 10. Thereby, output linearity can be improved more effectively.
 次に図2の抵抗基板の製造方法について説明する。
 図2(a)の工程では、例えば黄銅板で形成された転写板30上に、ベタ膜状の抵抗体層31を例えばスクリーン印刷にて形成する。基材を構成する転写板30は金属であることが好適である。転写板30を熱収縮しない金属で形成することにより、抵抗体層31の熱収縮の効果により最終工程で転写板30を剥離しやすい。上記した抵抗体層31は、図1(c)での抵抗体層15と同様にバインダー樹脂に主成分としてカーボンを含有した材質であることが好適である。抵抗体層31を印刷形成後、加熱することにより乾燥する。
Next, a method for manufacturing the resistance substrate of FIG. 2 will be described.
In the process of FIG. 2A, a solid film-like resistor layer 31 is formed by, for example, screen printing on a transfer plate 30 formed of, for example, a brass plate. The transfer plate 30 constituting the substrate is preferably a metal. By forming the transfer plate 30 from a metal that does not thermally contract, the transfer plate 30 can be easily peeled off in the final process due to the effect of thermal contraction of the resistor layer 31. The resistor layer 31 is preferably made of a material containing carbon as a main component in a binder resin, similarly to the resistor layer 15 in FIG. After the resistor layer 31 is formed by printing, it is dried by heating.
 次に図2(b)に示す工程では、抵抗体層31上にベタ膜状の電極層32を例えばスクリーン印刷にて形成して、加熱することにより乾燥する。 Next, in the step shown in FIG. 2B, a solid film electrode layer 32 is formed on the resistor layer 31 by, for example, screen printing and dried by heating.
 次に図2(c)に示す工程では、レーザを用いて、電極層32を電極パターン33及び後述する集電体パターン35に沿った形状にパターン加工すると共に、抵抗体層31を抵抗パターン34の形状にパターン加工する(図2(c)の右図参照)。ここで、抵抗パターン34は円弧状をしており、その両端部に電極パターン33がそれぞれ設けられる。 Next, in the step shown in FIG. 2C, the electrode layer 32 is patterned into a shape along the electrode pattern 33 and a current collector pattern 35 described later using a laser, and the resistor layer 31 is changed to the resistance pattern 34. (See the right figure in FIG. 2 (c)). Here, the resistance pattern 34 has an arc shape, and electrode patterns 33 are provided at both ends thereof.
 図2(c)の工程では、レーザの強度を調整することで、電極層32のみを除去する領域(抵抗体層31の表面が現れる部分)と、抵抗体層31及び電極層32の双方を除去する領域(転写板30の表面が現れる部分)とを、効果的に作製することができる。 In the step of FIG. 2C, by adjusting the intensity of the laser, the region where only the electrode layer 32 is removed (the portion where the surface of the resistor layer 31 appears) and both the resistor layer 31 and the electrode layer 32 are removed. A region to be removed (a portion where the surface of the transfer plate 30 appears) can be effectively produced.
 次に図2(d)の工程では、加熱炉にて、残された抵抗体層31及び電極層32を焼成(加熱硬化)する。 2D, the remaining resistor layer 31 and electrode layer 32 are baked (heat cured) in a heating furnace.
 次に、図2(e)に示す工程では、抵抗体層31及び電極層32を金型40のキャビティ43側に向けて転写板30を前記金型40に配置する。そして、金型40のキャビティ43に溶融状態の樹脂を射出する。続いて、加熱により樹脂を硬化させ絶縁基材44を成形する。 Next, in the step shown in FIG. 2 (e), the transfer plate 30 is disposed on the mold 40 with the resistor layer 31 and the electrode layer 32 facing the cavity 43 side of the mold 40. Then, a molten resin is injected into the cavity 43 of the mold 40. Subsequently, the resin is cured by heating to form the insulating substrate 44.
 そして、転写板30が付いた絶縁基材44を金型40から取り出し、図2(f)に示すように、転写板30を絶縁基材44から剥離し、抵抗体層31及び電極層32を絶縁基材44に転写する。図1(f)の右図に示すように、絶縁基材44の表面には抵抗パターン34が現れ、電極パターン33(電極層32)は絶縁基材44の内部に埋設された状態になる。この実施形態では、抵抗パターン34を絶縁基材44の表面と、ほぼ同一平面にて形成できる。なお、抵抗パターン34の内周側の円弧状のパターンは、そのパターン上を図示せぬ摺動子が摺動して、出力信号を取り出すための集電体パターン35である。この集電体パターン35は、抵抗体層31と電極層32とが積層されて構成されている。 Then, the insulating base 44 with the transfer plate 30 is taken out from the mold 40, and the transfer plate 30 is peeled off from the insulating base 44 as shown in FIG. 2 (f), and the resistor layer 31 and the electrode layer 32 are removed. Transfer to the insulating substrate 44. 1F, a resistance pattern 34 appears on the surface of the insulating base 44, and the electrode pattern 33 (electrode layer 32) is embedded in the insulating base 44. In this embodiment, the resistance pattern 34 can be formed in substantially the same plane as the surface of the insulating substrate 44. The arc-shaped pattern on the inner peripheral side of the resistance pattern 34 is a current collector pattern 35 for taking out an output signal by sliding a slider (not shown) on the pattern. The current collector pattern 35 is configured by laminating a resistor layer 31 and an electrode layer 32.
 図2に示す抵抗基板の製造方法でも、図1と同様に、ベタ膜状の抵抗体層31を印刷形成し(図2(a)参照)、続いて、前記抵抗体層31に、円弧状の抵抗パターン34を形成している(図2(c)(f)参照)。よって、従来に比べて、円弧状の前記抵抗パターン34を構成する抵抗体層31の膜厚変動を抑制することが可能になる。したがって、本実施形態によれば、従来に比べて、出力直線性(リニアリティ)に優れる抵抗基板を製造できる。 Also in the method of manufacturing the resistance substrate shown in FIG. 2, as in FIG. 1, a solid film-like resistor layer 31 is printed and formed (see FIG. 2A), and subsequently, the resistor layer 31 is formed in an arc shape. The resistance pattern 34 is formed (see FIGS. 2C and 2F). Therefore, it is possible to suppress the film thickness variation of the resistor layer 31 constituting the arc-shaped resistance pattern 34 as compared with the conventional case. Therefore, according to the present embodiment, it is possible to manufacture a resistance substrate that is superior in output linearity (linearity) as compared with the prior art.
 なお、図2の工程でも、サドル現象を考慮して、前記抵抗パターン34を、抵抗体層31の縁部から内側に離れた位置である略中央領域に形成する。 In the process of FIG. 2 also, in consideration of the saddle phenomenon, the resistance pattern 34 is formed in a substantially central region that is located inward from the edge of the resistor layer 31.
 図2(c)の右図に示すように、不要な抵抗体層31を全て除去したが、図1(d)と同様に不要な抵抗体層31を残しておくこともできる。 As shown in the right diagram of FIG. 2 (c), all unnecessary resistor layers 31 have been removed, but unnecessary resistor layers 31 can be left as in FIG. 1 (d).
 また図2(b)の右図に示すように、電極層32を面積の大きなベタ膜状で形成せず、図1(a)のa-2と同様に、電極層32を電極パターン33及び集電体パターン35のほぼ外形に沿った形状で形成することも出来る。これにより、図2(c)の工程で、不要な電極層32を削除する手間を少なく出来、製造工程を簡略化でき、製造時間を短縮することが出来る。 Further, as shown in the right diagram of FIG. 2B, the electrode layer 32 is not formed in the form of a solid film having a large area, and the electrode layer 32 is formed of the electrode pattern 33 and the same as a-2 of FIG. The current collector pattern 35 can also be formed in a shape substantially along the outer shape. Thereby, in the process of FIG.2 (c), the effort which deletes the unnecessary electrode layer 32 can be reduced, a manufacturing process can be simplified, and manufacturing time can be shortened.
 また図1と同様に、共通の位置決め手段を用いて、抵抗体層31の形成(図2(a))、電極層32の形成(図2(b))、抵抗パターン34、電極パターン33及び、集電体パターン35の形成(図2(c))を行うことで、転写板30及び絶縁基材44に対する抵抗パターン34、電極パターン33及び、集電体パターン35の各位置精度を効果的に向上させることが可能である。 Similarly to FIG. 1, the common positioning means is used to form the resistor layer 31 (FIG. 2A), the electrode layer 32 (FIG. 2B), the resistance pattern 34, the electrode pattern 33, and By forming the current collector pattern 35 (FIG. 2C), the positional accuracy of the resistance pattern 34, the electrode pattern 33, and the current collector pattern 35 with respect to the transfer plate 30 and the insulating base 44 is effectively improved. It is possible to improve it.
 実施例として、図1の製造方法を用いて抵抗基板を形成し、また従来例として、パターンマスクを用いて直接、抵抗パターンを形成した抵抗基板を形成した。これら抵抗基板を可変抵抗器に組み込み、摺動子の摺動位置の角度変化に応じた抵抗値変化に基づく出力の直線性(リニアリティ)を測定した。その実験結果を図3に示す。なお、図3は、摺動子の角度位置における抵抗値の実測値から理論上の抵抗値を差し引いた値を、抵抗パターンの全抵抗値(抵抗パターンの両端の電極間の抵抗値)に対する割合で示した特性図である。 As an example, a resistance substrate was formed using the manufacturing method of FIG. 1, and as a conventional example, a resistance substrate was formed directly using a pattern mask. These resistance substrates were incorporated in a variable resistor, and the linearity of the output based on the change in resistance value corresponding to the change in the angle of the sliding position of the slider was measured. The experimental results are shown in FIG. Note that FIG. 3 shows the ratio of the actual resistance value subtracted from the measured resistance value at the angular position of the slider to the total resistance value of the resistance pattern (resistance value between the electrodes at both ends of the resistance pattern). It is the characteristic view shown by.
 図3に示すように、実施例のほうが従来例に比べて効果的にリニアリティを向上させることができるとわかった。 As shown in FIG. 3, it was found that the linearity can be improved more effectively in the example than in the conventional example.
第1実施形態の抵抗基板の製造工程図、Manufacturing process diagram of the resistance substrate of the first embodiment, 第2実施形態の抵抗基板の製造工程図、The manufacturing process figure of the resistance substrate of 2nd Embodiment, 実施例及び従来例の出力直線性(リニアリティ)の実験結果を示すグラフ、The graph which shows the experimental result of the output linearity (linearity) of an Example and a prior art example, 抵抗基板の表面形状の一例を示す平面図、A plan view showing an example of the surface shape of the resistance substrate, 抵抗体層の膜厚変動が大きくなることを説明するための図であり、(a)は、抵抗パターンの部分平面図、(b)は、(a)に示す抵抗パターンの幅寸法T1の部分を構成する抵抗体層をスクリーン印刷している状態を示す部分拡大断面図、(c)は、(a)に示す抵抗パターンの幅寸法T2の部分を構成する抵抗体層3をスクリーン印刷している状態を示す部分拡大断面図、It is a figure for demonstrating that the film thickness fluctuation | variation of a resistor layer becomes large, (a) is a partial top view of a resistance pattern, (b) is the part of width dimension T1 of the resistance pattern shown to (a). FIG. 6C is a partially enlarged cross-sectional view showing a state in which the resistor layer constituting the screen is printed, and FIG. 5C is a diagram showing the screen of the resistor layer 3 constituting the portion of the width T2 of the resistor pattern shown in FIG. Partial enlarged sectional view showing the state
10 基材
10a 位置決め穴
11、32 電極層
13、33 電極パターン
15、31 抵抗体層
16、34 抵抗パターン
17 分離ライン
30 転写板
40 金型
44 絶縁基材
DESCRIPTION OF SYMBOLS 10 Base material 10a Positioning hole 11, 32 Electrode layer 13, 33 Electrode pattern 15, 31 Resistor layer 16, 34 Resistance pattern 17 Separation line 30 Transfer board 40 Mold 44 Insulation base material

Claims (6)

  1.  基材上に、ベタ膜状で抵抗体層を印刷形成する工程、
     前記抵抗体層の縁部から離れた箇所に、前記抵抗体層で構成される円弧状の抵抗パターンを形成する工程、
     を有することを特徴とする抵抗基板の製造方法。
    A step of printing and forming a resistor layer in a solid film form on the substrate;
    Forming an arc-shaped resistance pattern composed of the resistor layer at a location away from the edge of the resistor layer;
    A method for manufacturing a resistance substrate, comprising:
  2.  レーザを用いて、前記抵抗体層に前記抵抗パターンを描画する請求項1記載の抵抗基板の製造方法。 The method for manufacturing a resistance substrate according to claim 1, wherein the resistance pattern is drawn on the resistor layer using a laser.
  3.  前記抵抗パターンの周囲に間隔を空けて、前記抵抗パターンと分離された前記抵抗体層を残す請求項1又は2に記載の抵抗基板の製造方法。 The method for manufacturing a resistance substrate according to claim 1 or 2, wherein the resistor layer separated from the resistance pattern is left with a space around the resistance pattern.
  4.  前記基材と前記抵抗体層の間、あるいは前記抵抗体層上に電極層を形成し、前記電極層から不要な部分を除去して電極パターンを形成する工程を、有し、
     共通の位置決め手段を用いて、前記抵抗パターンの形成位置及び前記電極パターンの形成位置を決定する請求項1ないし3のいずれか1項に記載の抵抗基板の製造方法。
    Forming an electrode layer between the base material and the resistor layer or on the resistor layer, and removing an unnecessary portion from the electrode layer to form an electrode pattern,
    The method for manufacturing a resistance substrate according to claim 1, wherein a formation position of the resistance pattern and a formation position of the electrode pattern are determined using a common positioning means.
  5.  前記基材の不要部分を切断する工程を有し、共通の位置決め手段を用いて、前記抵抗パターンの形成位置及び前記基材の切断位置を決定する請求項1ないし4のいずれか1項に記載の抵抗基板の製造方法。 5. The method according to claim 1, further comprising a step of cutting an unnecessary portion of the base material, wherein a formation position of the resistance pattern and a cutting position of the base material are determined using a common positioning unit. Manufacturing method of the resistance substrate.
  6.  前記基材を転写板として、前記転写板上に、ベタ膜状の前記抵抗体層を形成し、さらに前記抵抗体層上に電極層を重ねて形成する工程、
     前記電極層の不要部分を除去して前記電極層から電極パターンを形成する工程、
     前記抵抗体層に、前記抵抗パターンを形成する工程、
     前記電極層及び抵抗体層上から周囲にかけて樹脂層を形成する工程、
     前記転写板を剥離して、前記電極層及び抵抗体層を前記樹脂からなる絶縁基材に転写する工程、
     を有する請求項1ないし4のいずれか1項に記載の抵抗基板の製造方法。
    Forming a solid film-like resistor layer on the transfer plate using the substrate as a transfer plate, and further forming an electrode layer on the resistor layer;
    Removing an unnecessary portion of the electrode layer to form an electrode pattern from the electrode layer;
    Forming the resistance pattern on the resistor layer;
    Forming a resin layer from above the electrode layer and resistor layer to the periphery;
    Peeling the transfer plate and transferring the electrode layer and the resistor layer to the insulating substrate made of the resin;
    The method for manufacturing a resistance substrate according to claim 1, comprising:
PCT/JP2009/071406 2009-01-08 2009-12-24 Method for manufacturing resistance substrate WO2010079692A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-002204 2009-01-08
JP2009002204 2009-01-08

Publications (1)

Publication Number Publication Date
WO2010079692A1 true WO2010079692A1 (en) 2010-07-15

Family

ID=42316461

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/071406 WO2010079692A1 (en) 2009-01-08 2009-12-24 Method for manufacturing resistance substrate

Country Status (1)

Country Link
WO (1) WO2010079692A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104347206A (en) * 2013-08-09 2015-02-11 阿尔卑斯电气株式会社 Resistor substrate, rotatable variable resistor and manufacturing method of resistor substrate
WO2016067769A1 (en) * 2014-10-31 2016-05-06 株式会社村田製作所 Rotation-type variable resistor and method for manufacturing same
JP2016136575A (en) * 2015-01-23 2016-07-28 アルプス電気株式会社 Resistor substrate integral support body, rotary variable resistor using the same and manufacturing method therefor
WO2017188103A1 (en) * 2016-04-27 2017-11-02 パナソニックIpマネジメント株式会社 Resistance substrate and rheostat comprising same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06163217A (en) * 1992-11-16 1994-06-10 Teac Corp Variable resistor
JPH0918068A (en) * 1995-06-30 1997-01-17 Mitsumi Electric Co Ltd Magneto-sensitive device and manufacture thereof
JP2005268797A (en) * 2004-03-17 2005-09-29 Samsung Electronics Co Ltd Method of manufacturing tape wiring substrate
JP2008152963A (en) * 2006-12-14 2008-07-03 Teikoku Tsushin Kogyo Co Ltd Rotary electronic component

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06163217A (en) * 1992-11-16 1994-06-10 Teac Corp Variable resistor
JPH0918068A (en) * 1995-06-30 1997-01-17 Mitsumi Electric Co Ltd Magneto-sensitive device and manufacture thereof
JP2005268797A (en) * 2004-03-17 2005-09-29 Samsung Electronics Co Ltd Method of manufacturing tape wiring substrate
JP2008152963A (en) * 2006-12-14 2008-07-03 Teikoku Tsushin Kogyo Co Ltd Rotary electronic component

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104347206A (en) * 2013-08-09 2015-02-11 阿尔卑斯电气株式会社 Resistor substrate, rotatable variable resistor and manufacturing method of resistor substrate
JP2015035508A (en) * 2013-08-09 2015-02-19 アルプス電気株式会社 Resistance substrate and rotary variable resistor, and method of manufacturing resistance substrate
WO2016067769A1 (en) * 2014-10-31 2016-05-06 株式会社村田製作所 Rotation-type variable resistor and method for manufacturing same
CN107077932A (en) * 2014-10-31 2017-08-18 株式会社村田制作所 Rotating type adjustable resistor and its manufacture method
US9916920B2 (en) 2014-10-31 2018-03-13 Murata Manufacturing Co., Ltd. Rotary variable resistor and method for manufacturing the same
JP2016136575A (en) * 2015-01-23 2016-07-28 アルプス電気株式会社 Resistor substrate integral support body, rotary variable resistor using the same and manufacturing method therefor
CN105825987A (en) * 2015-01-23 2016-08-03 阿尔卑斯电气株式会社 Resistor substrate integrated support body, manufacturing method thereof and sliding variable resistor
CN105825987B (en) * 2015-01-23 2019-03-08 阿尔卑斯电气株式会社 The one-piece type supporting mass of resistance substrate and its manufacturing method, rotary variable resistor
WO2017188103A1 (en) * 2016-04-27 2017-11-02 パナソニックIpマネジメント株式会社 Resistance substrate and rheostat comprising same
KR20190002455A (en) * 2016-04-27 2019-01-08 파나소닉 아이피 매니지먼트 가부시키가이샤 A resistive substrate and a variable resistor comprising the same
US10424425B2 (en) 2016-04-27 2019-09-24 Panasonic Intellectual Property Management Co., Ltd. Resistance substrate and rheostat comprising same
KR102259468B1 (en) * 2016-04-27 2021-06-01 파나소닉 아이피 매니지먼트 가부시키가이샤 Resistor substrate and variable resistor including same

Similar Documents

Publication Publication Date Title
WO2010079692A1 (en) Method for manufacturing resistance substrate
US10446304B2 (en) Resistor trimming method
JP6911386B2 (en) Manufacturing method of electronic parts
JP2008166385A (en) Manufacturing method of laminated inductor
JP6479361B2 (en) Chip resistor
JPWO2018225445A1 (en) Ceramic substrate with built-in coil
CN101364463A (en) Chip resistor and preparation thereof
JP5499518B2 (en) Method for manufacturing thin film chip resistor
JP2013058783A (en) Chip resistor
JP6615637B2 (en) Manufacturing method of chip resistor
JP2012059800A (en) Multilayer ceramic electronic component
JPWO2014125930A1 (en) Ceramic electronic component and manufacturing method thereof
JP5149599B2 (en) Manufacturing method of plate resistance element
JP6706942B2 (en) Circuit board with built-in components
JP2008187018A (en) Manufacturing method of chip resistor, and chip resistor
JP2007165358A (en) Chip-type capacitor
TWI817476B (en) Chip resistor and method of manufacturing chip resistor
JP2016225572A (en) Chip resistor and method of manufacturing the same
JP2007266028A (en) Ceramic circuit board and manufacturing method thereof
JP4461872B2 (en) Manufacturing method of multilayer ceramic electronic component
JP2007073755A (en) Method of manufacturing chip resistor
US20220084726A1 (en) Thermistor and method for producing said thermistor
JP5143386B2 (en) Resistor manufacturing method
JP2010165715A (en) Wiring substrate and method of manufacturing the same
JP2010124315A (en) Manufacturing method of chip antenna

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09837577

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 09837577

Country of ref document: EP

Kind code of ref document: A1