WO2010078683A1 - 霍尔旋转变压器及由其制成的霍尔转角编码器 - Google Patents

霍尔旋转变压器及由其制成的霍尔转角编码器 Download PDF

Info

Publication number
WO2010078683A1
WO2010078683A1 PCT/CN2008/073870 CN2008073870W WO2010078683A1 WO 2010078683 A1 WO2010078683 A1 WO 2010078683A1 CN 2008073870 W CN2008073870 W CN 2008073870W WO 2010078683 A1 WO2010078683 A1 WO 2010078683A1
Authority
WO
WIPO (PCT)
Prior art keywords
hall
rotary transformer
linear hall
permanent magnet
ring
Prior art date
Application number
PCT/CN2008/073870
Other languages
English (en)
French (fr)
Inventor
李铁才
周兆勇
漆亚梅
刘亚静
汤平华
杨贵杰
苏健勇
王治国
蓝维隆
廖志辉
Original Assignee
深圳航天科技创新研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳航天科技创新研究院 filed Critical 深圳航天科技创新研究院
Priority to US13/142,854 priority Critical patent/US8179126B2/en
Priority to PCT/CN2008/073870 priority patent/WO2010078683A1/zh
Priority to JP2011542645A priority patent/JP2012514185A/ja
Priority to CN200880132567.7A priority patent/CN102203545B/zh
Publication of WO2010078683A1 publication Critical patent/WO2010078683A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields

Definitions

  • Hall rotary transformer and Hall angle encoder made thereof
  • This invention relates to motor control techniques and, more particularly, to a Hall resolver and a Hall angle encoder made therefrom for use in a brushless DC servo motor. Background technique
  • a conventional resolver is an electromagnetic sensor, also known as a splitter. It is a rotatable sensor for measuring angles. It is used to measure the angular displacement and angular velocity of a rotating object. It consists of a stator and a rotor. The stator winding is used as the primary side of the transformer and receives the excitation voltage. The excitation frequency is usually 400, 3000 and 5000HZ. The rotor winding acts as the secondary side of the transformer and the induced voltage is obtained by electromagnetic coupling.
  • the working principle of the resolver is basically similar to that of the ordinary transformer.
  • the difference is that the primary and secondary windings of the common transformer are relatively fixed, so the ratio of the output voltage to the input voltage is constant, and the primary and secondary windings of the resolver follow
  • the angular displacement of the rotor changes relative position, so the magnitude of the output voltage changes with the angular displacement of the rotor.
  • the voltage amplitude of the output winding is sinusoidal and cosine-like with the rotor angle, or maintains a certain proportional relationship, or
  • the rotation angle is linear with the rotation angle.
  • a Hall rotary transformer which includes a linear Hall element, a permanent magnet magnetic ring, a hollow shaft rotor, a stator casing, a casing back cover, a stator core and a Hall integration.
  • the printed circuit board of the circuit has four linear Hall elements mounted on the stator core, which are offset by 90° from each other, and adopts a specific multi-pair permanent magnet magnetic ring with two ball bearings supporting the stator in the middle of the rotor.
  • the front end of the stator has a spring piece for coupling.
  • a Hall rotary transformer for improving the above problems is disclosed, which comprises a linear Hall element, a permanent magnet magnetic ring, a hollow shaft, a stator casing, a stator core and a Hall element.
  • the permanent magnet magnetic ring is fixed on the hollow shaft; its special
  • the stator core has a circular shape, and at least two mounting holes are arranged at a 90° spatial angle on the stator core, and the linear Hall element is fixed in the mounting hole to define the spatial position of the linear Hall element.
  • the position of the linear Hall element in the mounting hole on the stator core may be free, up, down, left, right, front, and back in the mounting hole due to the mounting gap, the outer dimensions of the Hall element, and the like.
  • the permanent magnet magnetic ring is fixed on the hollow shaft, there are positional deviations and vertical deviations, etc., which will cause amplitude error, phase error and function error of the rotary transformer output.
  • the quality and installation of the permanent magnet magnetic ring have a great relationship with the error.
  • the traditional Hall rotary transformer has large error and the error consistency is very poor.
  • the permanent magnet magnetic ring produces a three-dimensional magnetic field
  • the linear Hall element will be subjected to a tangential magnetic field component and a radial magnetic field component to produce a voltage output.
  • four linear Hall elements are used to subtract the output voltages of two linear Hall elements arranged at 180°, in an attempt to compensate for the eccentricity of the stator assembly, but the radial cannot be compensated at the same time.
  • the tangential magnetic field component so it can not play a good compensation effect, and is usually mistaken for the magnetic pole uniformity problem.
  • the switching type Hall angle encoder is a mature technology, its accuracy and resolution are also very low, generally only 100 lines, and the accuracy of the prior art Hall resolver is equivalent. Summary of the invention In view of the above drawbacks of the prior art, the present invention solves the problem of poor accuracy of the conventional Hall rotary transformer.
  • the present invention provides a Hall rotary transformer including a resolver stator, a linear Hall element, a printed circuit board, and a permanent magnet magnetic ring, characterized in that the printed circuit board is mounted There is a ring-shaped soft magnetic core, and a plurality of grooves having the same number and uniform distribution with the linear Hall elements are disposed on the inner annular surface of the annular soft magnetic core, and each linear Hall element is mounted corresponding thereto The recess is soldered to the printed circuit board; and the magnetically sensitive surface of each linear Hall element is aligned with the magnetic pole surface of the permanent magnet ring.
  • the annular soft magnetic core may have a thickness of l-4 mm, and is made of an electrical pure iron or a silicon steel sheet for a plurality of motors; the axial geometric center line of the annular soft magnetic core The center line of the magnetic sensitive surface of the linear Hall element is substantially coincident, and the deviation is not more than 0.5 mm.
  • each groove is 0. 05-0.
  • the depth of each groove is 0. 05-0. 2mm.
  • the permanent magnet magnetic ring may be made of a plastic bonded NdFeB material, or a ferrite material, or a NdFeB material; the permanent magnet magnetic ring has a sinusoidal distribution surface.
  • the magnetic field is fixed to the motor shaft by a sleeve, and when rotated, a sinusoidal distribution of the resolver rotor air gap magnetic field is generated; the air gap between the stator and the rotor of the resolver is 5-25 mm.
  • the outer casing of the resolver stator and the annular soft magnetic core may be of a unitary structure, and the sleeve for mounting the permanent magnet magnetic ring may be fixed to the rotation by a bearing On the outer casing of the transformer stator.
  • the number of the linear Hall elements is four
  • the inner annular surface of the annular soft magnetic core There are 4 grooves with 90° spacing, and the ideal output of each linear Hall element is ⁇ o+ sin ⁇
  • the inner ring surface of the soft magnetic core is correspondingly provided with three grooves with an electrical angle distribution of 120°.
  • the Hall corner encoder of the present invention can be implemented by a digital signal processor DSP or a microcontroller MCU, or by a purely hardware FPGA or ASIC.
  • the annular soft magnetic core corrects the waveform of the air gap magnetic field, and the position of each Hall element can be well fixed, and the accuracy of the entire Hall rotary transformer is higher than that of the conventional electromagnetic induction rotary transformer. Its amplitude error, phase error, and function error are small, it is not sensitive to installation deviation, and has good consistency. It is not only simple in structure and manufacturing process, but also can form a variety of output form corner encoders.
  • FIG. 1A is a partial structural view of a Hall resolver according to an embodiment of the present invention
  • FIG. 1B is a view taken along line C of FIG. 1A, in which some minor components are omitted;
  • FIG. 2 is a waveform diagram of an analog output of four linear Hall elements in one embodiment of the present invention
  • FIG. 3 is a waveform diagram of subtracted analog output shown in FIG. 2;
  • FIG. 4 is a schematic block diagram of a Hall corner encoder in an embodiment of the present invention.
  • Figure 5 is a 360° output digital quantity of the Hall angle encoder shown in Figure 4;
  • Figure 6 is an incremental pulse digital quantity of a Hall Corner Encoder in one embodiment of the present invention.
  • 1 is the resolver stator
  • 2 is the ring soft magnetic core
  • 3 is the linear Hall element
  • 4 is the printed circuit board
  • 5 is the permanent magnet magnetic ring
  • 6 is the bushing
  • 7 is the motor shaft
  • 8 is small Groove
  • the Hall rotary transformer of the present embodiment includes: a resolver stator 1, a linear Hall element 3, a printed circuit board 4 to which a Hall element is connected, and a rotor sleeve 6 mounted on the resolver.
  • the magnetic sensitive surface of the linear Hall element 3 is aligned with the magnetic pole surface of the permanent magnet ring 5 and maintains a uniform air gap between the stator and the rotor of the resolver.
  • Figure 2 is a waveform diagram of the analog output of four linear Hall elements.
  • the tangential component of the rotor air gap magnetic field generated by the permanent magnet magnetic ring 5 is converted into a radial component by the magnetic focusing action of the annular soft magnetic core 2 mounted on the printed circuit board 4; the annular soft magnetic core
  • the geometry determines the waveform of the air gap magnetic field, so the orthogonality of the four small grooves spaced 90 degrees apart on the ring soft magnetic core determines the orthogonality of the output signal of the linear Hall element, and the linear Hall element
  • the soldering deviation on the printed circuit board is basically irrelevant; the slot width of each small recess is based on just dropping the linear Hall element, so that the phase error of the Hall resolver is small.
  • the permanent magnet magnetic ring is made of plastic bonded NdFeB material.
  • the distance from the magnetic sensitive surface of the linear Hall element 3 to the pole surface of the permanent magnet magnetic ring 5 is 15 mm, due to the higher harmonics of the air gap magnetic field.
  • the amplitude and the harmonic order are attenuated by a higher power, so the sinusoidal relationship of the air gap magnetic field and the mass relationship of the permanent magnet ring 5 It is not so large, so the function error of the Hall resolver in this embodiment is extremely small, and is independent of the axial installation dimensions of the stator and the rotor.
  • the thickness of the annular soft magnetic core 2 is 3.5 legs, using electrical pure iron, the axial geometric center line of the annular soft magnetic core 2 and the center line of the magnetic sensitive surface of the linear Hall element 3 should substantially coincide, and the axial installation deviation is not greater than 0.5mm.
  • the air gap between the stator and the rotor of the resolver can be between 5-25mm, which is related to the saturation magnetic flux of the permanent magnet magnetic ring and the linear Hall element of different materials. The higher the magnetic energy of the permanent magnet magnetic ring, the air gap The larger the saturation magnetic density of the linear Hall element is, the larger the air gap is, which is 15 mm in this embodiment.
  • the above-mentioned Hall resolver and the corner conversion circuit are combined to form a corner encoder, wherein the outputs of the four linear Hall elements are connected to a corner conversion circuit, and the corner conversion circuit passes the A/D conversion module to four linear Huo
  • V 2 V 0 + iV+AV) cosB
  • Fig. 3 is a waveform diagram showing subtraction of the analog outputs of the four linear Hall elements in the present embodiment, which are independent of the mounting deviation.
  • CORDIC algorithm the vector rotation transformation
  • a circuit performing a vector rotation transformation operation with an output signal of a corner encoder fed back into the circuit, generating an output «( ⁇ - 0) deviation signal of the vector rotation conversion circuit; and sending the proportional integral ( ⁇ ) regulator to the regulator
  • the action makes the deviation signal tend to zero, the purpose of the encoder output signal completely tracking the input angle e, the proportional integral (PI) regulator output is proportional to the change of e; then sent to the filter to obtain the speed output signal ⁇ ;
  • the output signal of the encoder is obtained by the integration circuit, and the relationship of the 360-degree digital signal 0 of the Hall-angle encoder to the 360° mechanical rotation angle is shown in FIG.
  • the corner conversion circuit is implemented by a single-chip MCU including an A/D module, and the integration circuit obtains an output signal ⁇ of the encoder, which is a digital quantity, which is output through a digital port; Select, select the on-chip D/A conversion module to output analog.
  • the corner conversion circuit can be implemented by a pure hardware FPGA, and can also be implemented by a pure hardware ASIC, wherein the integration circuit obtains an output signal ⁇ of the encoder, which is a digital quantity, which is output through a digital port;
  • the on-chip D/A conversion module outputs in analog quantities.
  • the value of the mechanical corner signal is digitally reduced by the amount of information, converted to an incremental form of the corner signal and output through the digital port.
  • Figure 6 is the incremental pulse digital output signal waveform of the Hall corner encoder, where 3 ⁇ 4 is a 2-pulse signal, and U a and U b are two-phase incremental pulse signals.
  • the stator casing of the resolver is integral with the annular soft magnetic core 2, and the resolver rotor bushing 6 to which the permanent magnet ring 5 is mounted is fixed to the stator casing by bearings to form an assembled rotary transformer.
  • the accuracy of the Hall resolver of this embodiment can reach 1-3 angular points; the accuracy of the Hall angle encoder can reach 1-3 angular points, and the resolution can be as high as 16 or more.
  • V 3 V 0 +VsinN ( ⁇ - 240°)
  • V 2 V 0 +VsinN(e- 120°)
  • V 3 V 0 +VsinN(e_240.)
  • V 4 V 0 —VsinNe
  • V 5 V 0 _ VsinN(9- 120°)
  • V 6 Vo-VsinN
  • the accuracy of the multi-pole Hall resolver of this embodiment can reach 1-3 angular points; the accuracy of the Hall-angle encoder can reach 1-3 angular points, and the resolution can be as high as 16 or more.
  • the precision of the polar Hall resolver can reach 1_3 angular seconds.
  • the multipole Hall angle encoder has an accuracy of 1-3 angular seconds and a resolution of up to 21 bits.

Description

霍尔旋转变压器及由其制成的霍尔转角编码器 技术领域
本发明涉及电机控制技术,更具体地说,涉及一种霍尔旋转变压器及由其 制成的霍尔转角编码器, 可用于无刷直流伺服电动机。 背景技术
传统的旋转变压器 (resolver)是一种电磁式传感器, 又称同歩分解器。它是 一种测量角度用的可转动的传感器, 用来测量旋转物体的转轴角位移和角速 度, 由定子和转子组成。 其中定子绕组作为变压器的原边, 接受励磁电压, 励 磁频率通常用 400、 3000及 5000HZ等。 转子绕组作为变压器的副边, 通过电 磁耦合得到感应电压。旋转变压器的工作原理和普通变压器基本相似, 区别在 于普通变压器的原边、副边绕组是相对固定的,所以输出电压和输入电压之比 是常数, 而旋转变压器的原边、副边绕组则随转子的角位移发生相对位置的改 变, 因而其输出电压的大小随转子角位移而发生变化, 输出绕组的电压幅值与 转子转角成正弦、 余弦函数关系, 或保持某一比例关系, 或在一定转角范围内 与转角成线性关系。
在公告号为 CN2565123Y 的中国专利中, 公开了一种霍尔旋转变压器, 其中包括线性霍尔元件、 永磁体磁环、 空心轴转子、 定子机壳、 机壳后盖、 定 子芯和霍尔集成电路的印制板,在定子芯上安装有四个线性霍尔元件, 相互错 开 90° 电角度, 并采用特定的多对极的永磁体磁环, 转子中间有支撑定子的 二个滚珠轴承, 定子前端有联接用的弹簧片。 这种方案中存在问题是: (1) 需 采用特定多对极的永磁体磁环,对磁极均匀性要求高,对不同极对数的电动机 不能通用; (2)在一圈范围内, 难于做到有确定的唯一零位, 不方便绝对角位 置的检测; (3)整体式结构和工艺复杂, 难以实现小型化。
在公告号为 CN200972824Y 的中国专利中, 公开了一种改进上述问题的 霍尔旋转变压器, 其中包括线性霍尔元件、 永磁体磁环、 空心轴、 定子机壳、 定子芯和联接霍尔元件的印制电路板, 其永磁体磁环固定在空心轴上; 其特殊 之处在于: 定子芯呈圆环形, 在定子芯上间隔 90° 空间角度分布着至少二个 安装孔, 线性霍尔元件固定在安装孔内, 以便限定线性霍尔元件的空间位置。 然而, 线性霍尔元件在定子芯上的安装孔中的位置会因为安装间隙、霍尔元件 的外形尺寸等原因, 而在安装孔中的上、 下、 左、 右、 前、 后 6个自由度都存 在位置偏差。又由于永磁体磁环固定在空心轴上,存在位置偏差和垂直度偏差 等, 都会造成旋转变压器输出的幅值误差、 相位误差、 函数误差。 另外, 永磁 体磁环的质量、安装也对误差有极大关系,传统霍尔旋转变压器误差大且误差 的一致性很差。
若安装存在径向位置偏差 0.1mm, 设永磁体的外径 12mm, 那么 0.1mm 相对周长的相对位置偏差为: 0.1/( π Χ 12)=0.265%。 这个偏差与 Γ /360。 =0.278%相当, 说明该霍尔旋转变压器中单一项位置偏差就会产生 Γ 度的误 差。 所以前述技术方案中的霍尔旋转变压器技术的角度误差不可能优于 Γ 。 又例如, 永磁体磁环固定在空心轴上, 存在 0.5 ° 垂直度偏差, 就相当于径向 位置偏差为 12sin0.5 ° =0.1mm, 也会产生 Γ 度的误差。
永磁体磁环产生三维空间磁场,线性霍尔元件将受到切向磁场分量和径向 磁场分量的作用产生电压输出。 在公告号为 CN200972824Y 的中国专利中, 使用四个线性霍尔元件, 将 180° 布置的两个线性霍尔元件的输出电压相减, 试图补偿定、 转子装配偏心, 但由于无法同时补偿径向和切向磁场分量, 所以 不能起到良好的补偿效果, 而通常误认为是磁极均匀性问题。
由于上述原因, 事实上现有霍尔旋转变压器的位置偏差只能达到 2° -3 ° 左右, 且误差的一致性很差。
现有霍尔旋转变压器的精度和精度一致性都很差,其精度比传统电磁感应 式旋转变压器的精度低一个数量级, 所以只能在极低精度场合应用。
另外, 开关型霍尔转角编码器虽然是已有成熟技术,然而它的精度和分辨 率同样很低,一般只有 100线,现有技术中的霍尔旋转变压器的精度则与之相 当。 发明内容 针对现有技术的上述缺陷,本发明要解决现有霍尔旋转变压器的精度较差 的问题。
为解决上述技术问题, 本发明提供一种霍尔旋转变压器, 其中包括旋转变 压器定子、 线性霍尔元件、 印制电路板、 以及永磁体磁环, 其特征在于, 在所 述印制电路板上装有一个环形软磁铁芯,在所述环形软磁铁芯的内环面设有与 线性霍尔元件个数相同、并均匀分布的多个凹槽, 每个线性霍尔元件装于与之 对应的那一个凹槽内、并焊接于所述印制电路板上; 且每个线性霍尔元件的磁 敏感面与所述永磁体磁环的磁极表面相互对齐。
本发明的霍尔旋转变压器中, 所述环形软磁铁芯的厚度可为 l-4mm, 由电 工纯铁或多片电机用硅钢片制成;所述环形软磁铁芯的轴向几何中心线与线性 霍尔元件磁敏感面中心线基本重合, 偏差不大于 0.5mm。
本发明的霍尔旋转变压器中,所述环形软磁铁芯上的每个凹槽的尺寸正好 供一个线性霍尔元件紧配合放入, 且每个凹槽的深度尺寸为 0. 05-0. 2mm。
本发明的霍尔旋转变压器中, 所述永磁体磁环可由塑料粘结钕铁硼材料、 或铁氧体材料、或钕铁硼材料制成的; 所述永磁体磁环具有正弦分布的表面磁 场, 并通过轴套固定到电机轴上,在旋转时可产生正弦分布的旋转变压器转子 气隙磁场; 所述旋转变压器定子与转子间的气隙为 5-25mm。
本发明的霍尔旋转变压器中,所述旋转变压器定子的外壳与所述环形软磁 铁芯可为一体结构,用于安装所述永磁体磁环的所述轴套可通过轴承固定到所 述旋转变压器定子的外壳上。
本发明的霍尔旋转变压器中, 当所述永磁体磁环的磁极对数为 P=l时,所 述线性霍尔元件的个数为 4个,在所述环形软磁铁芯的内环面相应设有 4个间 隔 90°分布的凹槽, 各个线性霍尔元件的理想输出分别为 ^ o+ sin^
V2-V0+Vcose, 4= 0- cos6O
本发明的霍尔旋转变压器中, 当所述永磁体磁环的磁极对数为 P=N, N为 大于 1的自然数时,所述线性霍尔元件的个数为 3个,在所述环形软磁铁芯的 内环面相应设有 3个间隔 120°电角度分布的凹槽, 各个线性霍尔元件的理想 输出分别为 VfVo+VsinNe, V2=Vo+VsinN(9- 120°), V3=V0+VsinN (θ - 240°) 还可增设 3个附加的线性霍尔元件, 相应地,在所述环形软磁铁芯的内环面上 与原有的每个凹槽相对 180° 的位置各设有一个附加的凹槽, 进而共有 6个线 性霍尔元件及 6个凹槽, 所述 6个线性霍尔元件的理想输出分别为,
V尸 V0+VsinNe, V2=V0+VsinN(e- 120°), V3=V0+VsinN(e_240。), V4=V0_ VsinNB, V5=V0 - VsinN (Θ - 120°) , V6=V0 - VsinN (Θ - 240°)
本发明还提供一种霍尔转角编码器, 其包括转角变换电路,还包括前述霍 尔旋转变压器, 所述转角变换电路中包括: A/D转换模块, 用于将霍尔旋转变 压器输出的模拟输出电压转换成数字量,再通过运算获得两相带正负号的旋转 变压器数字量; 矢量旋转变换电路, 用于对所述 A/D转换模块的输出结果与 反馈回来转角编码器输出信号 Φ进行矢量旋转变换运算, 产生矢量旋转变换 电路的输出偏差信号; 比例积分调节器, 用于使偏差信号趋于零, 达到编码器 的输出信号 Φ完全跟踪输入转角 的目的;滤波器,用于获得速度输出信号 ω; 积分电路, 用于获得编码器的输出信号 Φ, 且 Φ=
本发明的霍尔转角编码器可采用数字信号处理器 DSP或单片机 MCU来实 现, 或者采用纯硬件的 FPGA或 ASIC来实现。
由于采取了上述技术方案, 本发明中, 环形软磁铁芯校正了气隙磁场的波 形, 且各个霍尔元件的位置能良好固定,整个霍尔旋转变压器的精度比传统电 磁感应式旋转变压器更高, 它的幅值误差、 相位误差、 函数误差很小, 对安装 偏差不敏感, 一致性好, 不仅结构、 制造工艺简单, 还可构成多种输出形式的 转角编码器。 附图说明
图 1A是本发明一个实施例中霍尔旋转变压器的局部结构示意图; 图 1B是图 1A的 C向视图, 其中省略了一些次要部件;
图 2是本发明一个实施例中四个线性霍尔元件的模拟输出的波形图; 图 3是图 2所示的模拟输出相减后的波形图;
图 4本发明一个实施例中霍尔转角编码器的原理框图;
图 5是图 4所示霍尔转角编码器的 360° 输出数字量; 图 6是本发明一个实施例中霍尔转角编码器的增量脉冲数字量。
图中, 1 是旋转变压器定子, 2 是环形软磁铁芯, 3 是线性霍尔元件, 4 是印制电路板, 5是永磁体磁环, 6是轴套, 7是电机轴, 8是小凹槽, 4个线 性霍尔元件 H0、 H90、 H180、 H270。 具体实施方式
下面将结合附图和具体实施例对本发明作进一歩的说明。如图 1A和图 1B 所示, 本实施例的霍尔旋转变压器包括: 旋转变压器定子 1、 线性霍尔元件 3、 联接霍尔元件的印制电路板 4、 安装在旋转变压器转子轴套 6上的永磁体磁环 5。 其中, 永磁体磁环 5具有正弦分布的表面磁场, 磁极对数为 P=l, 通过轴 套 6固定到电机轴 7上,电机旋转时就可产生正弦分布的旋转变压器转子气隙 磁场。 在印制电路板 4上装有一个环形软磁铁芯 2, 环形软磁铁芯上有 2P=4 个间隔 90 ° 分布的小凹槽 8, 2P=4个线性霍尔元件 H0、 H90、 H180、 H270互 差 90 ° 焊在印制电路板 4上, 并且靠紧小凹槽内。 线性霍尔元件 3的磁敏感 面与永磁体磁环 5的磁极表面相互对齐,并保持旋转变压器定子与转子间具有 均匀气隙。 2P=4个线性霍尔元件的理想输出分别为:
2= o+ cos6», 4= 0- cos6O 图 2是四个线性霍尔元件的模拟 输出的波形图。
其中, 利用装在印制电路板 4上的环形软磁铁芯 2的聚磁作用,将永磁体 磁环 5产生的转子气隙磁场中的切向分量都转换成径向分量;环形软磁铁芯的 几何形状决定了气隙磁场的波形, 因此环形软磁铁芯上间隔 90度的四个小凹 槽的正交性, 决定线性霍尔元件输出信号的正交性, 而与线性霍尔元件在印制 电路板上的焊接偏差基本无关;每个小凹槽的槽宽尺寸以正好放下线性霍尔元 件为准, 这样一来, 霍尔旋转变压器的相位误差会很小。其中的永磁体磁环采 用塑料粘结钕铁硼材料。
本实施例中, 利用环形软磁铁芯 2的聚磁作用, 使线性霍尔元件 3磁敏感 面至永磁体磁环 5的极面的距离为 15毫米, 由于气隙磁场的高次谐波的幅值 与谐波次数成高次幂衰减,因此气隙磁场的正弦性与永磁体磁环 5的质量关系 不大, 于是本实施例中霍尔旋转变压器的函数误差极小, 且与定、 转子轴向安 装尺寸无关。
其中, 环形软磁铁芯 2的厚度为 3.5腿, 采用电工纯铁, 环形软磁铁芯 2 的轴向几何中心线与线性霍尔元件 3磁敏感面中心线应基本重合,轴向安装偏 差不大于 0.5mm。 其中, 旋转变压器定子与转子间的气隙可在 5-25mm之间, 与采用不同材料的永磁体磁环、线性霍尔元件的饱和磁密有关, 永磁体磁环的 磁能越高、 气隙越大, 线性霍尔元件的饱和磁密越高、 气隙越大, 本实施例中 取 15毫米。
将上述霍尔旋转变压器与转角变换电路组合, 可构成转角编码器, 其中, 四个线性霍尔元件的输出与转角变换电路相连, 该转角变换电路通过 A/D转 换模块, 将四个线性霍尔元件的模拟输出电压 、 23、 ^(如图2所示), 换成数字量 D Vi、 D V2、 D V3、 D V4;再进行 c(we= D V—D V3和 Dsin = D V2 一/) 4数字运算, 获得 co 与/) «'«θ两相带正负号的旋转变压器数字量。 由 于环形软磁铁芯的作用和消除了极大部分转子气隙磁场中的切向分量,所以转 子相对定子存在少量径向、轴向安装偏差, 不会产生 Dcose与 Dsine两相信号 的幅值和相位偏差。
为了说明环形软磁铁芯的聚磁作用, 设径向安装偏差产生 、 v23、 V 的偏差为士 , 于是:
Figure imgf000008_0001
V2= V0+ iV+AV) cosB
3= V0- (V- AV sin(
4= V0- (V- AV) cosB
V2-V-2Vcos0
图 3 是本实施例中的四个线性霍尔元件的模拟输出相减后的波形图, 它 们与安装偏差无关。
如图 4所示, 然后将 V24= 2Vcos0和 - 3= 2Υύηθ的数字量 Dcos8 与 Ds 两相带正负号的旋转变压器数字量送到矢量旋转变换 ( CORDIC算法) 电路, 与反馈到该电路中的转角编码器的输出信号 做矢量旋转变换运算,产 生矢量旋转变换电路的输出 «(θ— 0)偏差信号; 再送到比例积分(ΡΙ)调节 器, 调节器的作用使偏差信号趋于零, 达到编码器的输出信号 完全跟踪输入 转角 e的目的, 比例积分(PI)调节器的输出正比 e的变化; 然后再送到滤波 器获得速度输出信号 ω; 再同时送到积分电路获得编码器的输出信号 , 且 在图 5中示出了霍尔转角编码器 360° 数字量信号 0与 360 ° 机械转角的 关系。
本实施例的霍尔转角编码器中,转角变换电路采用内含 A/D模块的单片机 MCU来实现,积分电路获得编码器的输出信号 Φ,是数字量,通过数字口输出; 也可利用片选, 选择片内 D/A变换模块以模拟量输出。
其中, 所述转角变换电路可采用纯硬件的 FPGA来实现, 还可采用纯硬件 的 ASIC来实现, 所述积分电路获得编码器的输出信号 Φ, 是数字量, 通过数 字口输出; 也可利用片内 D/A变换模块以模拟量输出。
本实施例中, 转子磁极对数为 P=l, 可以检测 360° 机械转角, 所以是绝 对值霍尔旋转变压器和霍尔转角编码器; 为了扩大其应用领域, 可将检测到的 360 ° 绝对值机械转角信号用数字的方法下降其信息量, 转换为增量形式的转 角信号并通过数字口输出。图 6是霍尔转角编码器增量脉冲数字量输出信号波 形, 其中 ¾是2脉冲信号, Ua、 Ub是两相增量脉冲信号。
本实施中,旋转变压器的定子外壳与环形软磁铁芯 2是一体的, 安装永磁 体磁环 5的旋转变压器转子轴套 6通过轴承固定到定子外壳上,形成组装式旋 转变压器。本实施例霍尔旋转变压器的精度可达 1-3角分; 霍尔转角编码器的 精度可达 1-3角分, 分辨率可高达 16位以上。
本发明的另一实施例是一个多极霍尔旋转变压器,其中的永磁体磁环具有 正弦分布的表面磁场, 磁极对数为 P=H 为 8极霍尔旋转变压器; 永磁体磁 环通过轴套固定到电机轴上,电机旋转时就可产生正弦分布的旋转变压器转子 气隙磁场; 在印制电路板上装有一个环形软磁铁芯, 环形软磁铁芯上有 3个间 隔 120° 电角度分布的小凹槽, 3个线性霍尔元件互差 120° 电角度焊在印制 电路板上、并且靠紧小凹槽内;线性霍尔元件的磁敏感面与磁极表面相互对齐, 并保持旋转变压器定子与转子间具有均匀气隙; 3个线性霍尔元件的理想输出 分别为, VfVo+Vsine, V2=V0+VsinN(e- 120°), V3=V0+VsinN (Θ - 240°) 为了补偿转子相对定子存在少量径向安装偏差对输出的影响,在环形软磁 铁芯 3个小凹槽相对的 180° 机械位置, 再增加 3个小凹槽, 相应再增加 3个 线性霍尔元件, 于是 6个线性霍尔元件的理想输出分别为,
Figure imgf000010_0001
V2=V0+VsinN(e- 120°), V3=V0+VsinN(e_240。), V4=V0— VsinNe, V5=V0_ VsinN(9- 120°), V6=Vo-VsinN 本实施例多极霍尔旋转变压器的 精度可达 1-3角分; 霍尔转角编码器的精度可达 1-3角分, 分辨率可高达 16 位以上。
本发明又一实施例中, 也是一个多极霍尔旋转变压器, 其永磁体磁环具有 正弦分布的表面磁场, 磁极对数为 P=180, 为 360极霍尔旋转变压器; 于是 6 个线性霍尔元件的理想输出分别为,
Figure imgf000010_0002
120°), V3=Vo+VsinN(9-240°), V4=V0— VsinNe, V5=V0 - VsinN (Θ - 120°) , V6=V0 -VsinN 本实施例多极霍尔旋转变压器的精度可达 1_3角秒。本多 极霍尔转角编码器的精度可达 1-3角秒, 分辨率可高达 21位。

Claims

权 利 要 求
1 、 一种霍尔旋转变压器, 其中包括旋转变压器定子(1)、 线性霍尔元件
(3)、 印制电路板 (4)、 以及永磁体磁环 (5), 其特征在于, 在所述印制电路板
(4)上装有一个环形软磁铁芯 (2),在所述环形软磁铁芯的内环面设有与线性霍 尔元件个数相同、 并均匀分布的多个凹槽 (8), 每个线性霍尔元件装于与之对 应的那一个凹槽内、并焊接于所述印制电路板上; 且每个线性霍尔元件的磁敏 感面与所述永磁体磁环的磁极表面相互对齐。
2、 根据权利要求 1所述的霍尔旋转变压器, 其特征在于, 所述环形软磁 铁芯的厚度为 l-4mm, 由电工纯铁或多片电机用硅钢片制成; 所述环形软磁铁 芯的轴向几何中心线与线性霍尔元件磁敏感面中心线基本重合, 偏差不大于 0.5mm。
3、 根据权利要求 2所述的霍尔旋转变压器, 其特征在于, 所述环形软磁 铁芯上的每个凹槽的尺寸正好供一个线性霍尔元件紧配合放入,且每个凹槽的 深度尺寸为 0. 05-0. 2mm。
4、 根据权利要求 1所述的霍尔旋转变压器, 其特征在于, 所述永磁体磁 环是由塑料粘结钕铁硼材料、或铁氧体材料、 或钕铁硼材料制成的; 所述永磁 体磁环具有正弦分布的表面磁场, 并通过轴套固定到电机轴上, 在旋转时可产 生正弦分布的旋转变压器转子气隙磁场;所述旋转变压器定子与转子间的气隙 为 5_25mm。
5、 根据权利要求 4所述的霍尔旋转变压器, 其特征在于, 所述旋转变压 器定子(1)的外壳与所述环形软磁铁芯是一体结构, 用于安装所述永磁体磁环 的所述轴套通过轴承固定到所述旋转变压器定子(1)的外壳上。
6、 根据权利要求 1-5中任一项所述的霍尔旋转变压器, 其特征在于, 所 述永磁体磁环的磁极对数为 P=l, 所述线性霍尔元件的个数为 4个, 在所述环 形软磁铁芯的内环面相应设有 4个间隔 90°分布的凹槽, 各个线性霍尔元件的 理想输出分别为 ^ = 。+ί¾η(, V2-V0+Vcose, 4= 0- cos6O
7、 根据权利要求 1-5中任一项所述的霍尔旋转变压器, 其特征在于, 所 述永磁体磁环的磁极对数为 P=N, N为大于 1的自然数; 所述线性霍尔元件的 个数为 3个, 在所述环形软磁铁芯的内环面相应设有 3个间隔 120°电角度分 布的凹槽,各个线性霍尔元件的理想输出分别为
Figure imgf000012_0001
V2=V0+VsinN (θ_ 120。), V3=V0+VsinN (θ - 240°)
8、 根据权利要求 7所述的霍尔旋转变压器, 其特征在于, 还包括 3个附 加的线性霍尔元件, 相应地,在所述环形软磁铁芯的内环面上与原有的每个凹 槽相对 180° 的位置各设有一个附加的凹槽, 进而共有 6个线性霍尔元件及 6 个凹槽, 所述 6个线性霍尔元件的理想输出分别为,
Figure imgf000012_0002
V2=V0+VsinN(e- 120°), V3=V0+VsinN(e_240。), V4=V0— VsinNe, V5=V0_ VsinN (Θ— 120。), V6=V0 - VsinN (Θ— 240。)。
9、 一种霍尔转角编码器, 其包括转角变换电路, 其特征在于, 还包括权 利要求 1-8中任一项所述的霍尔旋转变压器, 所述转角变换电路中包括: A/D 转换模块,用于将霍尔旋转变压器输出的模拟输出电压转换成数字量,再通过 运算获得两相带正负号的旋转变压器数字量; 矢量旋转变换电路,用于对所述 A/D转换模块的输出结果与反馈回来转角编码器输出信号 Φ进行矢量旋转变 换运算, 产生矢量旋转变换电路的输出偏差信号; 比例积分调节器, 用于使偏 差信号趋于零, 达到编码器的输出信号 Φ完全跟踪输入转角 的目的; 滤波 器, 用于获得速度输出信号 ω; 积分电路, 用于获得编码器的输出信号 Φ, 且 Φ=θ。
10、 根据权利要求 10所述的霍尔转角编码器, 其特征在于, 所述转角变 换电路采用数字信号处理器 DSP或单片机 MCU来实现,或者采用纯硬件的 FPGA 或 ASIC来实现。
PCT/CN2008/073870 2008-12-30 2008-12-30 霍尔旋转变压器及由其制成的霍尔转角编码器 WO2010078683A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/142,854 US8179126B2 (en) 2008-12-30 2008-12-30 Hall rotary transformer and hall rotation angle encoder made of it
PCT/CN2008/073870 WO2010078683A1 (zh) 2008-12-30 2008-12-30 霍尔旋转变压器及由其制成的霍尔转角编码器
JP2011542645A JP2012514185A (ja) 2008-12-30 2008-12-30 ホール回転トランス及びそれで作られたホール回転角エンコーダ
CN200880132567.7A CN102203545B (zh) 2008-12-30 2008-12-30 霍尔旋转变压器及由其制成的霍尔转角编码器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2008/073870 WO2010078683A1 (zh) 2008-12-30 2008-12-30 霍尔旋转变压器及由其制成的霍尔转角编码器

Publications (1)

Publication Number Publication Date
WO2010078683A1 true WO2010078683A1 (zh) 2010-07-15

Family

ID=42316183

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/073870 WO2010078683A1 (zh) 2008-12-30 2008-12-30 霍尔旋转变压器及由其制成的霍尔转角编码器

Country Status (4)

Country Link
US (1) US8179126B2 (zh)
JP (1) JP2012514185A (zh)
CN (1) CN102203545B (zh)
WO (1) WO2010078683A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8179126B2 (en) 2008-12-30 2012-05-15 Shenzhen Academy Of Aerospace Technology Hall rotary transformer and hall rotation angle encoder made of it
CN108896074A (zh) * 2018-06-04 2018-11-27 哈尔滨理工大学 八霍尔分布磁电编码器高分辨率角度值解算方法及装置

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102930966B (zh) * 2012-09-21 2015-02-04 谭成忠 一种无刷线性旋转变压器
WO2015090386A1 (de) * 2013-12-18 2015-06-25 Siemens Aktiengesellschaft Winkelgeber
DE102014219004A1 (de) 2014-09-22 2016-03-24 Continental Teves Ag & Co. Ohg Signalverarbeitungsvorrichtung zur Verarbeitung eines Messsignals in einem Kraftfahrzeug
US11139707B2 (en) 2015-08-11 2021-10-05 Genesis Robotics And Motion Technologies Canada, Ulc Axial gap electric machine with permanent magnets arranged between posts
JP2018529302A (ja) 2015-08-11 2018-10-04 ジェネシス ロボティクス エルエルピー 電気機械
US10168184B2 (en) * 2015-08-12 2019-01-01 Infineon Technologies Ag Angle sensing in an off-axis configuration
US10288698B2 (en) * 2016-06-13 2019-05-14 Allegro Microsystems, Llc Magnetic field sensor having alignment error correction
US10884092B2 (en) 2016-06-13 2021-01-05 Allegro Microsystems, Llc Non-orthogonality compensation of a magnetic field sensor
US11043885B2 (en) 2016-07-15 2021-06-22 Genesis Robotics And Motion Technologies Canada, Ulc Rotary actuator
CN106208539B (zh) * 2016-08-29 2018-10-16 华中科技大学 一种磁电式编码器
FR3055959B1 (fr) * 2016-09-13 2018-10-12 Ntn Snr Roulements Systeme de determination d’au moins un parametre de rotation d’un organe tournant
CN106989768B (zh) * 2017-04-19 2019-04-02 广东盈动高科自动化有限公司 编码器实时李莎育圆偏心处理方法
US11703314B2 (en) 2020-05-29 2023-07-18 Allegro Microsystems, Llc Analog angle sensor with digital feedback loop
CN111721329B (zh) * 2020-07-07 2021-11-23 哈尔滨理工大学 一种三霍尔磁电编码器及免反正切计算角度解算方法
CN112049965A (zh) * 2020-09-30 2020-12-08 广州腾龙健康实业股份有限公司 一种电动分水阀
CN112577529A (zh) * 2020-12-24 2021-03-30 华能海南发电股份有限公司电力检修分公司 一种旋转轴测量装置
CN114301352B (zh) * 2021-11-25 2023-12-26 广州极飞科技股份有限公司 电机的测速方法及其测速装置和测速系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62226012A (ja) * 1986-03-28 1987-10-05 Toshiba Corp レゾルバ
JPH08288160A (ja) * 1995-04-20 1996-11-01 Sony Corp ロータリートランス

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0648329Y2 (ja) * 1987-02-27 1994-12-12 日本サ−ボ株式会社 エンコ−ダを具えた電動機
US6762897B1 (en) * 1997-09-08 2004-07-13 Kabushiki Kaisha Yaskawa Denki Magnetic encoder apparatus
JP2000337924A (ja) * 1999-05-31 2000-12-08 Minebea Co Ltd R/dコンバータ
JP2003070284A (ja) * 2001-06-11 2003-03-07 Sony Corp サーボ・アクチュエータ並びにその位置検出装置
JP2003114138A (ja) * 2001-10-04 2003-04-18 Yaskawa Electric Corp エンコーダ
JP2005037317A (ja) * 2003-07-18 2005-02-10 Nsk Ltd 角度センサ
JP2008045881A (ja) * 2006-08-10 2008-02-28 Nsk Ltd 回転角度位置検出装置
WO2010078683A1 (zh) 2008-12-30 2010-07-15 深圳航天科技创新研究院 霍尔旋转变压器及由其制成的霍尔转角编码器
CN201348929Y (zh) * 2008-12-31 2009-11-18 深圳航天科技创新研究院 霍尔旋转变压器及由其制成的霍尔转角编码器

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62226012A (ja) * 1986-03-28 1987-10-05 Toshiba Corp レゾルバ
JPH08288160A (ja) * 1995-04-20 1996-11-01 Sony Corp ロータリートランス

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8179126B2 (en) 2008-12-30 2012-05-15 Shenzhen Academy Of Aerospace Technology Hall rotary transformer and hall rotation angle encoder made of it
CN108896074A (zh) * 2018-06-04 2018-11-27 哈尔滨理工大学 八霍尔分布磁电编码器高分辨率角度值解算方法及装置
CN108896074B (zh) * 2018-06-04 2020-11-03 哈尔滨理工大学 八霍尔分布磁电编码器高分辨率角度值解算方法及装置

Also Published As

Publication number Publication date
JP2012514185A (ja) 2012-06-21
CN102203545A (zh) 2011-09-28
US20110267041A1 (en) 2011-11-03
CN102203545B (zh) 2014-12-03
US8179126B2 (en) 2012-05-15

Similar Documents

Publication Publication Date Title
WO2010078683A1 (zh) 霍尔旋转变压器及由其制成的霍尔转角编码器
JP2012514185A5 (zh)
CN201348929Y (zh) 霍尔旋转变压器及由其制成的霍尔转角编码器
US7965004B2 (en) Electric motor
US8963540B2 (en) Hall-effect-based angular orientation sensor and corresponding methods and devices
JP4692923B2 (ja) レゾルバ装置及びレゾルバ装置を搭載したモータ装置
WO2010124595A1 (zh) 多节伺服潜油电机
JP4390348B2 (ja) 回転型位置検出装置
CN110932514B (zh) 一种无刷电机及电机转子位置的检测方法
CN111740672B (zh) 基于线性霍尔传感器的永磁同步电机角度检测方法和系统
JP5522845B2 (ja) 回転型位置検出装置
WO2013172315A1 (ja) 位置検出装置
WO2010124587A1 (zh) 位置检测装置及其信号处理装置和方法
Tolstykh et al. Research and development of the 4X-variable reluctance resolver
Bahari et al. The comparative analysis of AC-flux and DC-flux resolvers
CN114123902B (zh) 一种基于霍尔传感器的无轴承永磁薄片电机转子无位移方法
Bhandari et al. A Novel Variable Reluctance Resolver With Simplified Winding Arrangement and Adaptive PI Controller
JP4258831B2 (ja) 角度および角速度一体型検出装置およびこれを用いたサーボモータ
JP2018121404A (ja) レゾルバステータ、レゾルバ及びダイレクトドライブモータシステム
CN211178307U (zh) 一种磁阻式角度传感器
CN116222625B (zh) 一种多并列无磁钢的多圈编码器装置及其计数方法
JP5237210B2 (ja) 位置検出装置
CN116488534A (zh) 一种基于磁阻原理的磁电编码器角度解算方法及装置
Yang et al. Influence of Rotor Eccentricity on Electromagnetic Performance of Rotational Symmetrical Slotless PM Brushless Motor
JP2000105133A (ja) 位置検出装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880132567.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08879336

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011542645

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13142854

Country of ref document: US

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC - FORM 1205A (19.12.2011)

122 Ep: pct application non-entry in european phase

Ref document number: 08879336

Country of ref document: EP

Kind code of ref document: A1