WO2010074070A1 - スパークプラグ - Google Patents

スパークプラグ Download PDF

Info

Publication number
WO2010074070A1
WO2010074070A1 PCT/JP2009/071305 JP2009071305W WO2010074070A1 WO 2010074070 A1 WO2010074070 A1 WO 2010074070A1 JP 2009071305 W JP2009071305 W JP 2009071305W WO 2010074070 A1 WO2010074070 A1 WO 2010074070A1
Authority
WO
WIPO (PCT)
Prior art keywords
spark plug
metal shell
tip
insulating member
fitting
Prior art date
Application number
PCT/JP2009/071305
Other languages
English (en)
French (fr)
Inventor
次郎 弓野
彰 鈴木
守 無笹
Original Assignee
日本特殊陶業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本特殊陶業株式会社 filed Critical 日本特殊陶業株式会社
Priority to EP09834871.7A priority Critical patent/EP2383847B1/en
Priority to CN200980144888.3A priority patent/CN102210073B/zh
Priority to JP2010514173A priority patent/JP5363475B2/ja
Priority to US12/998,935 priority patent/US8633640B2/en
Publication of WO2010074070A1 publication Critical patent/WO2010074070A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/20Sparking plugs characterised by features of the electrodes or insulation
    • H01T13/36Sparking plugs characterised by features of the electrodes or insulation characterised by the joint between insulation and body, e.g. using cement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/02Details
    • H01T13/16Means for dissipating heat

Definitions

  • the present invention relates to a spark plug (ignition plug) for an internal combustion engine.
  • FIG. 10 As an example of a known spark plug used for ignition of an internal combustion engine such as an automobile engine, a structure shown in FIG. 10 is known (for example, see Patent Document 1).
  • the spark plug 201 is held in a form surrounding a hollow shaft-shaped (cylindrical) ceramic insulating member (insulator) 1 with a center electrode 5 protruding at the tip (lower end in FIG. 10).
  • the cylindrical metallic shell 21 is fixed.
  • the metal shell 21 is formed such that the inner peripheral surface (inner diameter) has a relatively large diameter from the front end side toward the rear end side, and the insulating member 1 is provided on the inner peripheral surface near the front end.
  • An annular receiving shelf 24 having a rear end-facing surface for supporting an annular butting portion 4 having a front-facing surface provided on the outer peripheral surface is provided.
  • tip in components and parts (or parts), such as the spark plug or the main metal fittings 21 and the insulating member 1 which are the constituent members those lower ends in FIG. When we say the opposite end (upper end).
  • the insulating member 1 includes an annular butting portion 4 having a tip-facing surface at the rear end of the tapered tip portion 7 that is tapered toward the tip portion. It is arranged inside the metal shell 21 so as to abut the receiving shelf 24.
  • An annular (tubular) insulating space K is formed between the distal end shaft portion 7 of the insulating member 1 and the inner peripheral surface of the metal shell 21.
  • a fitting shaft portion 10 having a larger diameter than this is provided behind the tip shaft portion 7 and is disposed in a fitting hole portion 30 in the metal shell 21 in a gap fitting state.
  • the insulating member 1 to which the center electrode 5 or the like is fixed is inserted into the inner side from the rear end side of the metal shell 21, and a receiving shelf on the inner peripheral surface. 24 is arranged so that the abutting portion 4 is abutted by interposing a ring-shaped flat packing (metal packing) 42 for airtightness. Then, the caulking portion 39 at the rear end of the metal shell 21 is bent toward the axis G side (inner side), and is placed on the rear end facing surface 14 of the flange-shaped large-diameter shaft portion 12 provided at the front and rear intermediate portion of the insulating member 1.
  • the caulking portion 39 is strongly compressed toward the distal end side, and the insulating member 1 is fixed in the metal shell 21. That is, a flat packing 42 is interposed between the receiving shelf 24 of the metal shell 21 and the butting portion 4 of the insulating member 1, and the airtightness is maintained by tightening the gap between them, and the insulating member 1 is placed on the distal end side of the metal shell 21. It is fixed in the pressed state.
  • the plug 201 having such a configuration is attached to a plug hole (screw hole) to an engine head (not shown) via a mounting screw 25 provided on the outer periphery, and is used for that purpose. Since the fuel gas (hereinafter simply referred to as gas) is hermetically maintained between the receiving shelf 24, the flat packing 42 and the butting portion 4, it is prevented from coming out to the outside. Further, the heat of the central electrode 5 and the insulating member 1 that are heated by gas ignition is propagated (transmitted) to the engine head through the flat packing 42 and the metal shell 21, and the like. High temperature prevention is aimed at.
  • gas fuel gas
  • the portion near the tip of the spark plug 201 is constantly exposed to a blast at a high temperature while the engine is running.
  • the metal shell 21 is usually made of iron-based metal, but the insulating member 1 is made of ceramic.
  • the coefficient of thermal expansion of the metal shell 21 is larger than that of the insulating member 1 because the coefficient of thermal expansion of the metal shell 21 is much larger than that of the insulating member 1. It will be much larger than that.
  • the spark plug 201 compresses and deforms the caulking portion 39 at the rear end of the metal shell 21 toward the front end side so that the insulating member 1 is always on the front end side. Since it is assembled in a state where it is strongly pressed, the influence of the thermal expansion difference does not usually appear immediately.
  • the present invention is made in view of the above problems in the spark plug having the structure or configuration as described above.
  • the plug having a structure in which the insulating member is compressed and held on the distal end side in the metal shell, and fixed.
  • the object is to prevent a decrease in airtightness between the metal shell and the insulating member.
  • the present invention according to claim 1 is characterized in that a shaft-shaped ceramic insulating member having a center electrode protruding at the tip, and a grounding electrode fixed to the tip so as to surround the insulating member.
  • a metal shell provided with The insulating member includes a tip shaft portion formed so as to hold an annular insulating space between an inner peripheral surface of the metal shell and a rear portion of the tip shaft portion.
  • the insulating member is inserted from the rear end side of the metal shell, and the movement toward the front end side at a predetermined position is stopped by a stopper means, and the caulking portion provided at the rear end of the metal shell is connected to the axis side.
  • An airtight holding filler is filled between the outer peripheral surface of the fitting shaft portion and the inner peripheral surface of the fitting hole portion.
  • a shaft-shaped ceramic insulating member having a center electrode projecting at a tip thereof, and a metal shell having a ground electrode provided at the tip thereof which is fixed so as to surround the insulating member Prepared,
  • the insulating member includes a tip shaft portion formed so as to hold an annular insulating space between an inner peripheral surface of the metal shell and a rear portion of the tip shaft portion.
  • the insulating member is inserted from the rear end side of the metal shell, and the movement toward the front end side at a predetermined position is stopped by a stopper means, and the caulking portion provided at the rear end of the metal shell is connected to the axis side.
  • the insulating member is provided with a butting portion made of a tip-facing surface having a larger diameter than the fitting shaft portion and having an annular shape behind the fitting shaft portion, and the metal fitting is provided with the fitting member.
  • a receiving shelf having a rear end-facing surface having an annular shape larger than the diameter of the fitting hole portion is provided behind the mating hole portion, and the abutting portion is directly or indirectly butted against the receiving shelf; Movement to the tip side of An airtight holding filler is filled between the outer peripheral surface of the fitting shaft portion and the inner peripheral surface of the fitting hole portion.
  • the present invention described in claim 3 is the spark plug according to claim 2, wherein the abutting portion is abutted against the receiving shelf via an annular airtight holding packing.
  • the present invention described in claim 4 is the spark plug according to any one of claims 1 to 3, wherein the filler is a heat-resistant adhesive.
  • the present invention described in claim 5 is the spark plug according to any one of claims 1 to 3, wherein the filler is a heat-resistant adhesive that cures at 350 ° C or lower.
  • the present invention described in claim 6 is the spark plug according to any one of claims 4 and 5, wherein the heat-resistant adhesive contains metal powder.
  • the present invention described in claim 7 is the spark plug according to any one of claims 4 to 6, wherein a filling region of the filler in an axial direction of the spark plug is 5 mm or more. Further, in the present invention according to claim 8, the filling region in the axial direction of the spark plug of the filler is 5 mm or more toward the rear starting from the fitting tip of the fitting shaft portion of the insulating member.
  • the spark plug according to any one of claims 4 to 6, wherein the spark plug is characterized in that:
  • the present invention according to claim 9 is characterized in that the filler is compressed with metal powder, and the metal shell is provided with outflow prevention means for preventing the metal powder from flowing out to the tip side of the spark plug.
  • the invention according to claim 10 is characterized in that the inner peripheral surface of the fitting hole is formed without reducing the diameter toward the tip of the metal shell.
  • the spark plug is provided with a mounting screw on the outer peripheral surface of the metal shell so that the spark plug can be screwed into the plug hole of the engine head, and the screw diameter is M12 or less.
  • the insulating member is relatively relative to the metallic shell in the axial direction due to the high temperature of the tip portion of the metallic shell and the insulating member and the difference in the coefficient of thermal expansion between the two parts. Even if it moves, the filler for airtightness is filled between the inner peripheral surface of the fitting hole portion of the metal shell and the outer peripheral surface of the fitting shaft portion of the insulating member. Therefore, even if such a movement occurs, the airtightness in the axial direction between both surfaces is maintained. That is, even if the metal shell expands more in the axial direction than the insulating member, only the slippage between the both surfaces of the outer peripheral surface only occurs in the axial direction through the filler. Is in close contact with the filler. Therefore, the airtightness between both surfaces is not impaired.
  • the heat of the center electrode and the insulating member can be released to the engine head via the filler and the metal shell without impairing heat transfer. Therefore, it is also effective for preventing the occurrence of pre-ignition (pre-ignition) and electrode melting.
  • pre-ignition pre-ignition
  • the expansion difference due to the difference in thermal expansion coefficient between the metal shell and the insulating member occurs not only in the length (axis) direction of the plug but also naturally in its radial direction. It is much smaller than the direction dimension. Therefore, the influence by the thermal expansion difference in the radial direction is negligible.
  • the airtight holding filler used in the present invention is preferable as it is excellent in heat resistance and heat transfer from the purpose of use and environment, and epoxy resin and wax are exemplified as typical ones. There are inorganic adhesives.
  • the abutting portion is abutted against the receiving shelf via a ring-shaped airtight retaining packing, higher airtightness is maintained. That is, in the present invention, the airtightness can be made dependent only on the filler. In addition, the airtight holding performance can be enhanced by interposing the airtight holding packing separately in the stopper means. In this case, the following effects can be obtained with the configuration of the invention according to claim 3. There is. That is, in the invention according to claim 3, the abutting portion and the receiving shelf in which the airtight holding packing is interposed are located behind the fitting shaft portion and the fitting hole portion.
  • the filler is a heat resistant adhesive
  • the outer peripheral surface of the fitting shaft portion Alternatively, by applying a heat-resistant adhesive to at least one of the inner peripheral surfaces of the fitting hole portions of the metal shell, it can be filled easily, so that the assembly workability can be improved.
  • An example of the heat resistant adhesive is an inorganic adhesive.
  • the filler when the filler is a heat-resistant adhesive that is cured at 350 ° C. or lower, the following effects can be obtained.
  • silver filler is used instead of such a heat-resistant adhesive as a filler, it is usually heated to a minimum of about 600 ° C. and kept at that temperature for a certain period of time, depending on its composition. It recurs (melts) and then hardens (solidifies) by slow cooling in the atmosphere.
  • the metal shell is usually made of a low carbon steel of 0.35% C or less (carbon steel for cold forging of 0.06 to 0.35% C) in the cold forging process, thread rolling, or partly. It is used as it is through the cutting process, surface treatment and the like.
  • the mechanical strength is usually lowered when the heat treatment is performed at such a high temperature.
  • heat-resistant adhesives epoxy resin adhesives or phenol resin adhesives
  • the brazing process when using brazing filler material, the inner peripheral surface of the fitting hole portion of the metal shell and the outer periphery of the fitting shaft portion of the insulating member, with the insulating member inserted inside the metal shell This is performed under the condition that the solder (silver solder) is arranged at a proper position between the surfaces.
  • the solder silver solder
  • this metal shell when this metal shell is passed through the brazing process, it must be heated to 600 ° C. at the minimum, resulting in a decrease in mechanical properties (strength).
  • the spark plug is attached to the plug hole (screw hole) of the engine head by a screwing method via an attachment screw formed on the outer peripheral surface of the metal shell.
  • the relationship between the heating temperature of the metal shell and the breaking torque at the time of screwing was confirmed by performing a "screw-in actual fracture test".
  • the metal fitting has no problem if the heating temperature it receives is 350 ° C. or lower, but its strength decrease is observed from 400 ° C., and it has been found that the strength decrease is large at 450 ° C. or higher. Therefore, when a heat-resistant adhesive that cures at 350 ° C. or lower is used, heat treatment at such a high temperature is not required, so that strength is not reduced.
  • Such a heat-resistant adhesive may be a resin having a heat-resistant temperature of 150 ° C. or higher, and examples thereof include an adhesive based on a thermosetting resin such as an epoxy resin type or a phenol resin type. However, it is not limited to these. Any thermoplastic resin may be used as long as it has heat resistance such as a softening point of 150 ° C. or higher (for example, nylon or fluororesin). That is, the filler may be any material that can withstand the temperature received in the environment in which the spark plug is used.
  • the thermal conductivity can be improved.
  • the following are illustrated as a metal (or alloy) which makes a metal powder here.
  • the metal powder is included in the heat-resistant adhesive in a mixed and stirred state, and the content ratio may be set as appropriate.
  • the content ratio may be set as appropriate.
  • the particle size of the metal powder may be appropriately set within a range that does not hinder the filling, but is preferably in the range of 1 to 10 ⁇ m.
  • a conductive adhesive is included in such a heat-resistant adhesive containing metal powder as a filler, and such an adhesive is similar to the above-described heat-resistant adhesive. What is necessary is just to fill.
  • the region filled with the filler (filling region) according to any one of claims 4 to 6, as described in claim 7, is 5 mm in the axial direction of the spark plug regardless of the type of the filler. That's enough. This is confirmed experimentally.
  • the filling region in the axial direction of the spark plug of the filler is 5 mm toward the rear starting from the fitting tip of the fitting shaft portion of the insulating member. It is preferable to have the above. In this way, if the filler is filled backward from the fitting tip of the fitting shaft portion of the insulating member, high temperature gas can be prevented from staying or remaining in the minute gap at the gap fitting portion. Because.
  • the filler is compressed metal powder
  • the outflow prevention means for preventing the metal powder from flowing out to the tip side of the spark plug is provided on the metal shell. Since it was provided in the inner peripheral surface or the outer peripheral surface of the said insulating member, the heat
  • the tip of the filled metal powder is irradiated in the circumferential direction (along the inner peripheral surface of the metallic shell or the outer circumferential surface of the insulating member) to irradiate the inner circumferential surface of the metallic shell and the metal.
  • the tip of the powder may be partially melted or welded to seal (or seal) the outer peripheral surface.
  • what is necessary is just to set the particle size, a packing density, or a compression degree so that airtightness can be ensured by filling a metal powder.
  • FIG. 2 is a sectional view taken along line AA in FIG.
  • the longitudinal cross-sectional view explaining the assembly process of the spark plug of FIG. The principal part enlarged view explaining another example of the filling area
  • FIG. 1 is a longitudinal sectional view for explanation and an enlarged view of a main part thereof.
  • the spark plug 101 is fixed to a hollow shaft (cylindrical) ceramic insulating member 1 with a center electrode 5 protruding from the tip 3 and surrounding the insulating member 1, and a ground electrode 26 is fixed to the tip 23. It is comprised from the cylindrical metal shell 21 provided with.
  • the metal shell 21 is made of low carbon steel (specifically, carbon steel for cold heading of 0.25% C).
  • the metal shell 21 is provided with a mounting screw (for example, M12 or M14) 25 for screwing it into the plug hole of the engine from the front end side toward the rear end side at a position closer to the front end, and substantially the entire length (
  • a mounting screw for example, M12 or M14
  • M12 or M14 for screwing it into the plug hole of the engine from the front end side toward the rear end side at a position closer to the front end, and substantially the entire length
  • a mounting screw for example, M12 or M14
  • M12 or M14 for screwing it into the plug hole of the engine from the front end side toward the rear end side at a position closer to the front end, and substantially the entire length
  • a flange-shaped seating ring portion 29 having a larger diameter is provided.
  • the receiving shelf 31 From the rear end of the fitting hole 30, which is the inner peripheral surface of the straight pipe portion 27, toward the rear, the receiving shelf 31 having a rear end-facing surface having a diameter larger than the diameter of the fitting hole 30 and forming an annular shape. It has.
  • the receiving shelf 31 is located at a portion corresponding to the inner peripheral surface of the seating ring portion 29, and the diameter of the receiving shelf 31 is increased in a tapered shape toward the rear end.
  • the intersecting portion 33 is formed in a convex round shape.
  • this receiving shelf 31 is good also as a flat ring-shaped seat surface instead of a taper.
  • a tool engaging portion 37 for screwing is provided behind the seating ring portion 29 in the metal shell 21 via a thin cylindrical portion 35, and a caulking cylindrical portion 39 as a caulking portion is provided at the rear end thereof. Is provided.
  • the inner diameter of the cylindrical portion from the thin-walled cylindrical portion 35 to the caulking cylindrical portion 39 is larger than the diameter of the fitting hole portion 30 before being assembled as a spark plug, and the receiving shelf inside the seating ring portion 29. 31 is substantially the same as the inner diameter of the outer edge (see FIGS. 5 and 6). In FIG. 1, it is in a state assembled as a spark plug, and has a deformed shape including the thin cylindrical portion 35 by caulking toward the tip side of the caulking cylindrical portion 39.
  • the caulking cylindrical portion 39 is bent to the plug axis G side and compressed to the distal end side by caulking, and the insulating member 1 is pushed to the distal end side, and the inner side of the metal shell 21 is pressed. It is in a fixed state.
  • the outer peripheral surface (contour) of the tool engaging portion 37 is formed in, for example, a hexagon or other polygons when viewed from the axis G direction.
  • the insulating member 1 has a distal end shaft portion 7 provided with a tapered portion 7a near the distal end, and a rear end of the distal end shaft portion 7, which is larger in diameter than the distal end shaft portion 7, and is fitted in the metal shell 21.
  • the hole portion 30 is provided with a fitting shaft portion 10 having an outer diameter that is in a gap fitting state with a predetermined gap.
  • the fitting shaft portion (cylindrical portion) 10 has the same diameter later, but its outer diameter is designed to be smaller by about 0.1 to 1 mm than the inner diameter of the fitting hole 30 ( The figure is exaggerated).
  • a heat-resistant adhesive for example, an epoxy resin-based adhesive (curing) is used as an airtight filler 41.
  • the temperature is 200 ° C.), which forms a cylindrical layer (see FIG. 2). The two surfaces are bonded to each other, and the airtightness in the direction of the axis G is maintained.
  • the filling material 41 has a dimension L1 region starting from the front end (fitting front end) P1 of the fitting shaft portion 10 and close to the rear end of the fitting shaft portion 10, that is, the axis G of the fitting shaft portion 10. It is filled over almost the entire area of the length.
  • the front end P1 of the fitting shaft portion 10 is set to be a substantially intermediate position in the direction of the axis G of the fitting hole portion 30 of the metal shell 21, and therefore, the front end P1 of the fitting shaft portion 10 is more distal.
  • An annular (cylindrical) space (insulating space) K is formed between the outer peripheral surface of the tip shaft portion 7 located on the side and the inner peripheral surface of the fitting hole portion 30.
  • the rear end of the fitting shaft portion 10 is set so as to be positioned at the portion of the receiving shelf 31 in the direction of the axis G.
  • the rear end 11 of the fitting shaft portion 10 is provided with a flange-like large-diameter shaft portion 12 having a larger diameter than the fitting shaft portion 10 and having an outer peripheral surface protruding outward.
  • the front end of the large-diameter shaft portion 12 and the rear end 11 of the fitting shaft portion 10 form an annular shape, and are connected by a butting portion 13 having a tapered front end surface that follows the receiving shelf 31.
  • a rear shaft portion 15 having a smaller diameter than the large diameter shaft portion 12 is provided behind the large diameter shaft portion 12 so as to protrude coaxially and rearward from the rear end of the metal shell 21. Further, a terminal (electrode terminal) 40 is disposed in a protruding manner at the rear end 17 of the rear shaft portion 15 in the insulating member 1.
  • the center electrode 5 protruding at the tip is fixed by a seal glass, and a resistor is disposed behind the seal glass, A terminal 40 protruding from the rear end is fixed with a seal glass.
  • the internal structure of the insulating member 1 is the same as that conventionally known.
  • the abutting portion 13 formed of the surface facing the distal end of the large-diameter shaft portion 12 of the insulating member 1 is abutted against the receiving shelf 31 of the metal shell 21 via a ring-shaped airtight holding packing (flat packing) 42.
  • the receiving shelf 31 and the abutting portion 13 constitute stopper means.
  • it is set as the structure by which airtightness is hold
  • the tip of the tip shaft portion 7 which is the tip 3 of the insulating member 1 protrudes from the tip 23 of the metal shell 21 by an appropriate amount, and a gap between the tip of the center electrode 5 and the ground electrode 26 is set. Is held to be a value.
  • the rear end of the large-diameter shaft portion 12 of the insulating member 1 (the boundary between the large-diameter shaft portion 12 and the rear shaft portion 15) is a caulking cylindrical portion 39 at the rear end of the metal shell 21.
  • the O-ring 44, the talc 45, and the O-ring are set on the rear end-facing surface 14 at the rear end of the large-diameter shaft portion 12 inside the caulking cylindrical portion 39. 44, and the caulking cylindrical portion 39 is compressed and deformed by caulking as described above, and the insulating member 1 is fixed in a pressed state.
  • Such a spark plug 101 of this embodiment is assembled as follows (see FIGS. 3 and 4).
  • An appropriate amount of a heat-resistant adhesive (in this example, an epoxy resin adhesive) is applied as the filler 41 to the outer peripheral surface of the fitting shaft portion 10 in the insulating member 1 to which the center electrode 5 and the like are fixed.
  • a packing 42 is placed on a receiving shelf 31 formed on the rear end facing surface inside the metal shell 21 (see FIG. 3).
  • the insulating member 1 to which the center electrode 5 and the like are fixed is inserted from the rear end side of the metal shell 21 to the inside thereof.
  • the fitting shaft portion 10 is fitted while being centered so that the fitting shaft portion 10 is inserted into the fitting hole portion 30 of the metal shell 21, and is fitted onto the packing 42 of the receiving shelf 31 from the surface facing the front end of the insulating member 1.
  • the abutting portion 13 is abutted.
  • the cylinder inside the caulking cylindrical portion 39 of the metal shell 21 is behind the rear end-facing surface 14 forming the annular shape of the rear end of the large-diameter shaft portion 12 of the insulating member 1.
  • An O-ring 44, a talc 45, and an O-ring 44 are loaded into the shaped space.
  • the mold 50 is pressed to the front end side, and the caulking cylindrical portion 39 at the rear end of the metal shell 21 is bent inward and compressed toward the front end side to be plastically deformed. Then, the spark plug 101 of this embodiment is obtained by solidifying the heat resistant adhesive 41.
  • the spark plug 101 of this embodiment shown in FIG. 1 the following effects can be obtained. That is, the spark plug 101 of this embodiment is installed by being screwed into a plug hole (screw hole) of an engine (not shown) via the mounting screw 25 of the metal shell 21 and used for that purpose. In this case, the tip of the plug 101 is exposed to a high temperature under a blast caused by the ignition of fuel gas, so that the metal shell 21 and the insulating member 1 expand together due to this heat change. At this time, the metal shell 21 tends to expand significantly more than the ceramic insulating member 1, so that the insulating member 1 contracts relative to the fixed metal shell 21 in the direction of the axis G. Will move (slide).
  • the heat of the center electrode 5 and the insulating member 1 can be transferred to the engine head via the filler 41 and the metal shell 21. Can escape without being damaged. Therefore, it is also effective in preventing preignition (premature ignition) and electrode melting damage.
  • the airtightness between the inner peripheral surface of the metal shell 21 and the outer peripheral surface of the insulating member 1 is maintained via the abutting portion 13 on the receiving shelf 31 and an annular airtight retaining packing 42. Since this is compressed by the press before and after this, airtightness by the packing is also secured. Therefore, it can be said that the structure is extremely reliable in terms of airtightness.
  • this airtightness is behind the fitting hole 30 and is secured by the receiving shelf 31 at a position far from the tip end portion of the plug 101, the temperature rise at this portion is relatively Low, and in that sense, poor airtightness due to thermal expansion hardly occurs. For this reason, it can be set as the spark plug 101 with extremely high reliability in airtight maintenance.
  • the filling region L1 of the filler 41 in the direction of the axis G of the spark plug 101 is provided to the rear starting from the fitting tip P1 of the fitting shaft portion 10 of the insulating member 1. For this reason, since a minute space (a minute space in the gap fitting) between the outer peripheral surface of the fitting shaft portion 10 and the inner peripheral surface of the fitting hole portion 30 is not generated, high-temperature gas does not stay in the minute space. Since it can be prevented from remaining, it is also effective in preventing high temperatures.
  • the portion closer to the tip of the metal shell 21 is a cylindrical straight pipe portion 27, and the inner peripheral surface thereof is a circle having the same diameter from the tip of the metal shell 21 toward the rear end of the straight pipe portion 27.
  • the fitting hole 30 is formed in a straight cross section. That is, the inner peripheral surface of the fitting hole 30 is formed without reducing the diameter toward the tip 23 of the metal shell 21. Therefore, in the inner peripheral surface of the fitting hole portion 30, there is no portion protruding from the fitting shaft portion 10 of the insulating member 1 toward the outer peripheral surface side (axis G side) of the distal end shaft portion 7.
  • the radial dimension of the insulating space K between the inner peripheral surface of the metal shell 21 (the fitting hole portion 30) and the outer peripheral surface of the distal end shaft portion 7 of the insulating member 1 is set to the root of the distal end shaft portion 7 ( The rear end) can be secured larger than the conventional one.
  • the insulating member 1 since the thickness in the radial direction of the distal end shaft portion 7 can be ensured, the voltage resistance can be improved. Therefore, the effect of preventing the occurrence of abnormal discharge can be increased accordingly. For this reason, it is difficult to secure such dimensions, and in the case of a particularly small screw diameter such as a spark plug of the mounting screw 25 such as M12 (metric screw having a nominal diameter of 12 mm), the effect is remarkable.
  • the thermal conductivity to the engine head is excellent.
  • the region along the axis G for filling the filler 41 may basically be a length region in which airtightness is sufficiently maintained. Therefore, the length depends on the type and material of the filler 41. It may be set appropriately according to the above.
  • the filler 41 may be a length region in which airtightness is safely and sufficiently maintained, and as shown in FIG. 5, the filler 41 is fitted starting from the tip (fitting tip) P1 of the fitting shaft portion 10. It is good also as a dimension L2 area
  • FIG. FIG. 5 is different from the above embodiment only in the configuration of the filler 41, and therefore, the same parts are designated by the same reference numerals. The same applies to the following.
  • the same dimension L2 region may be provided at the intermediate position of the fitting shaft portion 10.
  • a minute space K2 formed corresponding to the clearance fit is generated at the tip 41b of the filler 41, and this space K2 becomes a residual space of the high-temperature gas, which promotes an increase in the temperature of the plug tip. It becomes a factor. Therefore, even if the airtightness can be maintained in the dimension L2 region smaller than the dimension L1, as shown in FIG. 5, the filler 41 is rearward from the front end P1 (fitting front end) of the fitting shaft portion 10 as a starting point. It is preferable to fill over a predetermined area.
  • the heat-resistant adhesive is used as the filler 41.
  • a metal powder for example, iron powder
  • a metal powder having excellent thermal conductivity may be included. Good. In that case, the heat transfer between the insulating member 1 and the metal shell 21 is enhanced by the amount of the metal powder contained.
  • the spark plug is assembled as in the case of using a high melting point solder for the filler.
  • the process of heating the metal shell 21 to a high temperature is not required in the process. That is, when using, for example, silver solder instead of the heat-resistant adhesive as in the above-mentioned form for the filler, as described above, although it depends on the composition, it is usually heated to at least about 600 ° C., Reflow (melting) by holding for a certain period of time, and then curing (solidification) is required by slow cooling in the atmosphere.
  • a metal shell will receive heat processing under the high temperature, and receives the fall of mechanical strength.
  • a heat-resistant adhesive epoxy resin adhesive
  • it can be cured without requiring a heat treatment at such a high temperature. Decrease in mechanical strength can be prevented.
  • a brazing material having an appropriate shape between the outer peripheral surfaces of the insulating member 1 is inserted inside the metal shell 21 as described above.
  • the heating and melting are performed under the state where the is disposed. More specifically, when the insulating member 1 to which the center electrode 5 or the like is fixed is inserted into the inner side from the rear end side of the metal shell 21 on which the mounting screw 25 or the like is formed, it is fitted with the fitting shaft portion 10.
  • a brazing material formed in a ring shape is disposed at an appropriate position between the mating hole portions 30.
  • the caulking cylindrical portion 39 at the rear end of the metal shell 21 is bent inward and compressed toward the front end side to be plastically deformed to fix the insulating member 1 to obtain a spark plug work product.
  • the silver wax is heated so as to have a melting point or higher (600 ° C. or higher) and held for a certain period of time, and after melting, for example, it is solidified by slowly cooling in the atmosphere.
  • the metal shell 21 is made of the material as described above, and is manufactured through a cold forging process, a screw rolling process, and the like. Therefore, when such a metal shell 21 is subjected to the brazing process as described above, the mechanical properties (strength) are reduced by heat treatment there. Such a decrease in strength is caused when the spark plug as a product is screwed into the plug hole of the engine head due to torsional stress, tensile stress, or the like, due to the rear end (root portion) of the mounting screw 25 on the outer peripheral surface of the straight pipe portion 27. ) This causes a problem such that the metal shell 41 is broken in the vicinity so as to be cut or sheared.
  • a screw-in actual fracture test was conducted, and the screwing torque (rupture) when the metal shell broke Torque) was measured.
  • the results are as shown in FIG.
  • the heating conditions were heating with an electric furnace, and after holding for 1 hour, it was gradually cooled in the atmosphere. The number of samples is 10, and the data is the average value.
  • the breaking torque was approximately constant at 80 Nm.
  • the one at 400 ° C. was broken at 70 Nm.
  • it sharply decreased at 450 ° C. and fracture occurred at 45 Nm.
  • the fracture occurred at 40 Nm at 500 ° C., and the strength decreased to about half of the heating temperature of 350 ° C. or less.
  • a screw-in-the-machine destruction test was performed on a sample made of the same material with a mounting screw of M14, in that case, an approximately similar decrease in strength was observed. As described above, when the metal shell is heated to 400 ° C. or higher, the strength is clearly reduced.
  • the heating temperature is 350 ° C. or lower
  • the strength is not adversely affected. Therefore, there is no problem when the metal shell is made of a heat-resistant material that does not decrease in strength even under a brazing temperature environment.
  • the metal shell is made of the above material, it can be cured (solidified) at 350 ° C. or less.
  • a heat-resistant adhesive having a curing temperature of 350 ° C. or lower, which is a material and does not require a melting step by heat treatment.
  • the filler including a heat-resistant adhesive that cures at 350 ° C. or lower, can withstand the temperature (100 to 150 ° C.) that the filler receives when the spark plug is used. It may be selected based on whether or not, and is not limited to the above.
  • the outflow prevention means for preventing the metal powder 41b from flowing out (dropping out) to the tip end side of the spark plug the tip 41c of the filled metal powder 41b is circumferentially moved from the tip end side of the plug.
  • the filler 41 may be filled by melting and solidifying a brazing material such as a silver brazing material.
  • the entire closed space is filled. What is necessary is just to fill it.
  • the inner peripheral surface of the fitting hole portion 30 of the metal shell 21 and the fitting shaft portion of the insulating member 1 from the front end side of the metal shell 21. 10 is filled with the metal powder 41b while applying ultrasonic vibration, for example, to the gap between the outer peripheral surface and the metal powder near the tip along the inner peripheral surface of the fitting hole 30. It only has to be melted and solidified.
  • the spark plug according to the present invention is not limited to the one described above, and can be modified and embodied as appropriate.
  • the outflow prevention means can also be melted and solidified by loading a brazing material 41d instead of a laser at the tip portion of the filling material made of the metal powder 41b.
  • an adhesive or a resin can be filled and solidified. That is, two or more different types of fillers may be filled before and after the direction of the axis G. Incidentally, in this case, it is preferable to use a high heat resistance filler located on the tip side.

Landscapes

  • Spark Plugs (AREA)

Abstract

【目的】主体金具内に、中心電極を突出させた絶縁部材を先端側に圧縮して保持し、主体金具の後端をカシメにより固定した構成のスパークプラグで、主体金具と絶縁部材との熱膨張差による両者間における気密性の低下を防ぐ。 【解決手段】主体金具(21)の嵌め穴部(30)に、絶縁部材(1)の嵌め合い軸部(10)が、隙間嵌め状態にあるスパークプラグで、嵌め合い軸部(10)の外周面と嵌め合い穴部(30)の内周面との間に、気密保持用の充填材(41)としを充填した。熱膨張差があっても、その、内、外周面との間には、気密保持用の充填材(41)が充填されているから、気密性が保持される。

Description

スパークプラグ
 本発明は、内燃機関用のスパークプラグ(点火栓)に関する。
 自動車エンジン等の内燃機関の着火に使用される公知のスパークプラグの一例として、図10に示した構造のものが知られている(例えば、特許文献1参照)。このスパークプラグ201は、先端(図10下端)に中心電極5を突出させた中空軸状(筒状)のセラミック製の絶縁部材(絶縁碍子)1と、この絶縁部材1を包囲する形で保持、固定する筒状の主体金具21などから構成されている。この主体金具21は、内周面(内径)が、先端側より後端側に向けて相対的に大径をなすように形成されており、先端寄り部位の内周面には、絶縁部材1の外周面に設けられた先端向き面からなる環状の突合せ部4を支持させる後端向き面からなる環状の受棚24が設けられている。なお、本願において、スパークプラグ、又はその構成部材である主体金具21や絶縁部材1等の構成部品及び部位(又は部分)において、先端というときは、図10におけるそれらの下端を言い、後端というときはその逆の端(上端)を言うものとする。
 一方、絶縁部材1は、その先端寄り部位に位置する先細りテーパをなす先端軸部7の後端に、先端向き面からなる環状の突合せ部4を備えており、この突合せ部4を、上記した受棚24に突き合せるようにして主体金具21の内側に配置されている。なお、絶縁部材1の先端軸部7と、主体金具21の内周面との間には環状(筒状)の絶縁空間Kが形成されている。また、この先端軸部7の後方にはこれより大径の嵌め合い軸部10を備えており、主体金具21内の嵌め合い穴部30に隙間嵌め状態にて配置されている。
 このようなスパークプラグ(以下、単にプラグとも言う)201においては、中心電極5等を固定した絶縁部材1は、主体金具21の後端側からその内側に内挿され、内周面の受棚24に、気密保持用のリング状の平パッキン(金属パッキン)42を介在させて、突合せ部4を突き合せるようにして配置される。そして、主体金具21の後端のカシメ部39を軸線G側(内側)に折り曲げ、絶縁部材1の先後の中間部位に設けられたフランジ状の大径軸部12の後端向き面14に被せる様にし、そのカシメ部39を先端側に強く圧縮して、絶縁部材1を主体金具21内に固定している。すなわち、主体金具21の受棚24と絶縁部材1の突合せ部4との間に、平パッキン42を介在させ、その間を締め付けて気密を保持すると共に、絶縁部材1を主体金具21の先端側に押付けた状態で固定している。
 このような構成のプラグ201は、外周に設けられた取り付けネジ25を介して、図示しないエンジンヘッドへのプラグホール(ねじ穴)へ取り付けられてその使用に供されるが、その際、シリンダ内の燃料ガス(以下、単にガスという)は、受棚24、平パッキン42及び突合せ部4との間で気密保持が図られていることから、外部に抜け出ることが防止されている。また、ガスの発火により、高温となる中心電極5や絶縁部材1の熱は、平パッキン42、及び主体金具21を介して、エンジンヘッドへと伝播(伝達)され、絶縁部材1の先端等の高温防止が図られている。
特開2005-129398号公報
 ところで、スパークプラグ201の先端寄り部位は、エンジンの運転中は、常時、高温で、爆風に晒される。一方、主体金具21は通常、鉄系金属製であるが、絶縁部材1はセラミック製である。このため、スパークプラグ201の先端寄り部位が高温になると、主体金具21の熱膨張率が絶縁部材1のそれよりはるかに大きいことに起因し、主体金具21の熱膨張量は、絶縁部材1のそれより格段に大きくなる。両部品間にこのような熱膨張差があるとしても、スパークプラグ201は、主体金具21の後端のカシメ部39を先端側に向けて圧縮変形させて、絶縁部材1を常時、先端側に強く押している状態で組み立てられていることから、通常はその熱膨張差による影響が直ちに出ることはない。
 しかしながら、主体金具21の軸線G方向における膨張が、絶縁部材1のそれより格段に大きいことに起因し、絶縁部材1の突合せ部4が主体金具21の受棚24に押付けられている力は経年により不可避的に低下することになる。そして、このような状況が続くと、やがては気密性の低下を招いてしまう。そして、最終的には図11中に示したように、受棚24、平パッキン42及び突合せ部4との間に空隙(微小空隙)が発生し、その空隙をガスが通過して外部に噴出してしまうことがあった。このような問題は、主体金具21の軸線G長や取り付けネジ25が長くなるほど顕在化しやすい。
 また、こうした気密性の低下や空隙の発生は、絶縁部材1の先端側の熱をエンジンヘッドに逃がす熱伝達性の低下も招いてしまう。上記もしたように、絶縁部材1の先端側の熱は、この気密保持部である、突合せ部4、平パッキン42及び主体金具21を介してエンジンヘッドへ逃がすようにされているが、そこに空隙が発生することで熱伝達性は低下してしまう。その結果、絶縁部材1の先端寄り部位や中心電極5が過度に高温となり、プレイグニッション(過早点火)を招いたり、電極の溶損を生じたりすることもあった。
 本発明は、上記したような構造ないし構成のスパークプラグにおける、前記問題点に鑑みてなされたもので、主体金具内に絶縁部材を先端側に圧縮して保持し、固定する構成のプラグにおいて、その主体金具と絶縁部材との間における気密性の低下を防止することにある。
 上記課題を解決するため、請求項1に記載の本発明は、先端に中心電極を突出させた軸状のセラミック製の絶縁部材と、この絶縁部材を包囲する形で固定して先端に接地電極を設けた主体金具とを備え、
 前記絶縁部材は、その先端寄り部位に、前記主体金具の内周面との間に環状の絶縁空間を保持するように形成された先端軸部を備えていると共に、この先端軸部の後方には該先端軸部より大径で、前記主体金具内の嵌め合い穴部に隙間嵌め状態にある嵌め合い軸部を備えてなるスパークプラグであって、
 前記絶縁部材は、前記主体金具の後端側から挿入されて所定位置で先端側への移動がストッパ手段により止められていると共に、前記主体金具の後端に設けられたカシメ部を、軸線側に折り曲げると共に先端側に圧縮することで、前記絶縁部材が先端側に押された状態で前記主体金具の内側に固定されてなるスパークプラグにおいて、
 前記嵌め合い軸部の外周面と前記嵌め合い穴部の内周面との間に、気密保持用の充填材を充填してなることを特徴とする。
 請求項2に記載の本発明は、先端に中心電極を突出させた軸状のセラミック製の絶縁部材と、この絶縁部材を包囲する形で固定して先端に接地電極を設けた主体金具とを備え、
 前記絶縁部材は、その先端寄り部位に、前記主体金具の内周面との間に環状の絶縁空間を保持するように形成された先端軸部を備えていると共に、この先端軸部の後方には該先端軸部より大径で、前記主体金具内の嵌め合い穴部に隙間嵌め状態にある嵌め合い軸部を備えてなるスパークプラグであって、
 前記絶縁部材は、前記主体金具の後端側から挿入されて所定位置で先端側への移動がストッパ手段により止められていると共に、前記主体金具の後端に設けられたカシメ部を、軸線側に折り曲げると共に先端側に圧縮することで、前記絶縁部材が先端側に押された状態で前記主体金具の内側に固定されてなるスパークプラグにおいて、
 前記ストッパ手段として、前記絶縁部材には、前記嵌め合い軸部の後方に、該嵌め合い軸部より大径で環状をなす先端向き面からなる突合せ部を設け、前記主体金具には、前記嵌め合い穴部の後方に該嵌め合い穴部の穴径より大径で環状をなす後端向き面からなる受棚を設け、前記突合せ部を該受棚に直接又は間接に突き合わせて、前記絶縁部材の先端側への移動が止められ、
 前記嵌め合い軸部の外周面と前記嵌め合い穴部の内周面との間に、気密保持用の充填材を充填してなることを特徴とする。
 請求項3に記載の本発明は、前記突合せ部を前記受棚に、環状をなす気密保持用のパッキンを介して突き合わせていることを特徴とする、請求項2に記載のスパークプラグである。
 請求項4に記載の本発明は、前記充填材が、耐熱性接着剤であることを特徴とする請求項1~3のいずれか1項に記載のスパークプラグである。
 請求項5に記載の本発明は、前記充填材が、350℃以下で硬化する耐熱性接着剤であることを特徴とする、請求項1~3のいずれか1項に記載のスパークプラグである。
 請求項6に記載の本発明は、前記耐熱性接着剤に金属粉末が含まれていることを特徴とする請求項4又は5のいずれか1項に記載のスパークプラグである。
 請求項7に記載の本発明は、前記充填材のスパークプラグの軸線方向における充填領域が、5mm以上あることを特徴とする請求項4~6のいずれか1項に記載のスパークプラグである。また、請求項8に記載の本発明は、前記充填材のスパークプラグの軸線方向における充填領域が、前記絶縁部材の嵌め合い軸部の嵌め合い先端を起点として後方に向けて5mm以上あることを特徴とする請求項4~6のいずれか1項に記載のスパークプラグである。
 請求項9に記載の本発明は、前記充填材が金属粉末の圧縮されたものであり、該金属粉末がスパークプラグの先端側に流出するのを防止するための流出防止手段が、前記主体金具の内周面又は前記絶縁部材の外周面に設けられていることを特徴とする請求項1~3のいずれか1項に記載のスパークプラグである。
 請求項10に記載の本発明は、前記嵌め合い穴部の内周面を、前記主体金具の先端に向けて縮径することなく形成したことを特徴とする請求項1~9のいずれか1項に記載のスパークプラグである。
 請求項11に記載の本発明は、前記スパークプラグはエンジンヘッドのプラグホールにねじ込み方式で取付けられように前記主体金具の外周面に取付けネジを備えており、このネジ径がM12以下であることを特徴とする請求項1~10のいずれか1項に記載のスパークプラグである。
 請求項1及び2に記載の本発明では、主体金具と絶縁部材の先端部分の高温化と両部品間における熱膨張率の差に起因して、主体金具に対し絶縁部材が軸線方向に相対的に動くとしても、主体金具の嵌め合い穴部の内周面と絶縁部材の嵌め合い軸部の外周面の間には気密保持用の充填材が充填されている。したがって、このような動きが発生するとしてもその両面間における軸線方向の気密性は保持される。すなわち、主体金具が絶縁部材よりも軸線方向に大きく膨張したとしても、その内、外周面の両面間は、充填材を介して軸線方向に相対的にスベリが発生するだけであり、その両面間は充填材を介して密着していることに変わりはない。したがって、その両面間における気密性が損なわれることはない。
 また、同様の理由から、中心電極や絶縁部材の熱は、充填材、主体金具を介してエンジンヘッドへと、熱伝達性が損なわれることなく逃がすことができる。したがって、プレイグニッション(過早点火)や電極の溶損の発生防止にも有効である。なお、主体金具と絶縁部材との熱膨張率差による膨張差は、プラグの長さ(軸線)方向においてだけでなく当然にその径方向においても生じるが、これら各部品の径方向の寸法は軸線方向の寸法に比べて格段に小さい。したがって、径方向における熱膨張差による影響は無視できるものである。なお、本発明に用いる気密保持用の充填材は、その使用目的、環境からして、耐熱性及び伝熱性に優れるものほど好ましく、エポキシ樹脂、ロウが代表的なものとして例示されるが、その他、無機接着剤がある。
 請求項3に記載の発明では、前記突合せ部を前記受棚に、環状をなす気密保持用のパッキンを介して突き合わせていることから、より高い気密性が保持される。すなわち、本発明においては、気密保持を充填材にのみ依存させることもできる。また、別途、気密保持用のパッキンをストッパ手段において介在させることで、気密保持性能を高めることもできるが、この場合においては、請求項3に記載の発明の構成とすると、次のような効果がある。すなわち、請求項3に記載の発明では、気密保持用のパッキンが介在される前記突合せ部と前記受棚は、嵌め合い軸部及び嵌め合い穴部の後方に位置している。そして、この位置は、絶縁部材や主体金具の先端から大きく離れた部位となる。このため、気密保持用のパッキンが介在される突合せ部と受棚とはいえ、プラグの先端側に位置する場合に比べると、比較的、低温に保持される。したがって、そのパッキンの部位において、熱膨張差によって気密性が損なわれるような空隙が発生することも極めて少ないことから、万一、充填材による気密性に問題が発生したとしても、そのパッキンの部位において気密性が保持される。このように、極めて高い気密保持性能が確保される。
 請求項4に記載の発明では、充填材を耐熱性接着剤としたことから、例えば、プラグの組み立てにおいて、主体金具の内側に絶縁部材を挿入する前に、その嵌め合い軸部の外周面、又は主体金具の嵌め合い穴部の内周面の少なくとも一方に、耐熱性接着剤を塗布しておくことで、容易にその充填できるため、組み立ての作業性の向上が図られる。なお、耐熱性接着剤としては、無機接着剤がある。
 また、請求項5に記載の本発明のように、前記充填材を、350℃以下で硬化する耐熱性接着剤とした場合には次のような効果が得られる。充填材に、このような耐熱性接着剤ではなく、例えば銀ロウを用いる場合には、その組成にもよるが、通常は、最低でも600℃程度まで加熱し、その温度で一定時間保持してリフロー(溶融)し、その後、大気中で徐冷することで硬化(固化)させることになる。一方、主体金具は通常、0.35%C以下の低炭素鋼(0.06~0.35%Cの冷間圧造用炭素鋼)の素材を冷間鍛造工程、ネジ転造、或いは一部の切削工程、表面処理等の工程を経てそのまま使用される。したがって、主体金具が耐熱鋼製や耐熱合金製であるような場合を除き、このような高温での熱処理を経た場合には、通常、その機械的強度が低下する。これに対し、350℃以下で硬化する耐熱性接着剤(エポキシ樹脂系接着剤やフェノール樹脂系接着剤)を用いる場合には、そのような高温での熱処理を要しないから、機械的強度の低下を防止できる。詳しくは次のようである。
 すなわち、充填材にロウを用いる場合のロウ付け工程は、主体金具の内側に絶縁部材を挿入した状態において、主体金具の嵌め合い穴部の内周面と、絶縁部材の嵌め合い軸部の外周面との間の適所にそのロウ(銀ロウ)を配置した状態の下で行うことになる。一方、この主体金具がロウ付け工程を通される場合には、最低でも600℃には加熱する必要があり、結果として機械的性質(強度)が低下する。他方、スパークプラグは、主体金具の外周面に形成された取付けネジを介してエンジンヘッドのプラグホール(ネジ穴)にねじ込み方式で取り付けられる。したがって、主体金具がこのような熱処理工程を経て製造されてなるスパークプラグを、プラグホールにねじ込む際には、強度低下に起因して、比較的低いねじ込みトルクで、取付けネジの後端(根元部位)近傍で主体金具が切断ないし破断してしまうなどの不具合が発生することがある。
 本願発明者において、主体金具の加熱温度と、ねじ込み時の破断トルクとの関係について「ねじ込み実物破壊試験」を行い確認したところによれば、上記のような通常の素材、製法で製造された主体金具は、それが受ける加熱温度が350℃以下であれば問題ないが、400℃からその強度低下が認められ、450℃以上ではその強度低下が大きいことが判明している。したがって、350℃以下で硬化する耐熱性接着剤を用いる場合には、そのような高温での熱処理を要しないから、強度低下も招かない。スパークプラグを構成する主体金具の小径化(例えば、M12以下の小径ネジ化)の要請の高い中、肉厚の確保が困難なことを考えると、強度低下を防止できるという前記効果は注目されるべきものである。なお、このような耐熱性接着剤としては、150℃以上の耐熱温度を有する樹脂であればよく、エポキシ樹脂系、フェノール樹脂系などの熱硬化性樹脂をベースとする接着剤が例示されるが、これらに限定されるものではない。熱可塑性樹脂でも、軟化点が150℃以上あるような耐熱性を有するもの(例えば、ナイロン、フッ素樹脂)であればよい。すなわち、その充填材が、スパークプラグの使用環境下で受ける温度に耐え得るものであればよい。
 請求項6に記載の発明では、充填材をなす耐熱性接着剤に金属粉末を含有させたため、熱伝導性を高めることができる。ここに金属粉末をなす金属(又は合金)としては次のものが例示される。鉄の粉体、アルミニウム又はアルミニウム合金の粉体、銅又は銅合金の粉体がある。なお金属粉末は、耐熱性接着剤に混合、攪拌した状態で含めることになるが、その含有比は、適宜に設定すればよい。熱伝導性を高める上では金属粉末を多くするのが好ましい。耐熱性接着剤100質量%に対し、試験結果からすると、鉄の粉体を用いる場合には20質量%以上とするのが好ましい。なお、金属粉末の粒径は、充填に支障がない範囲で適宜に設定すればよいが、1~10μmの範囲とするのが好ましい。また、このように充填材として耐熱性接着剤に金属粉末を含めたものには、導電性接着剤が含まれるが、このような接着剤は、上記した耐熱性接着剤と同様にして、その充填を行えばよい。
 請求項4~6のいずれか1項において、前記充填材を充填する領域(充填領域)は、請求項7に記載したように、スパークプラグの軸線方向において、充填材の種類にかかわらず、5mm以上あれば十分である。これは、実験的にも確認される。なお、この場合には、請求項8に記載したように、前記充填材のスパークプラグの軸線方向における充填領域が、前記絶縁部材の嵌め合い軸部の嵌め合い先端を起点として後方に向けて5mm以上あるようにするのが好ましい。このように、前記絶縁部材の嵌め合い軸部の嵌め合い先端を起点として、後方に充填材を充填しておけば、隙間嵌め部位における微小隙間に高温のガスが滞留ないし残存するのを防止できるためである。
 請求項9に記載の発明では、前記充填材が金属粉末の圧縮されたものであり、該金属粉末がスパークプラグの先端側に流出するのを防止するための流出防止手段が、前記主体金具の内周面又は前記絶縁部材の外周面に設けられていることとしたため、絶縁部材の熱の主体金具への伝達性を一層高めることができる。なお、流出防止手段は、金属粉末がスパークプラグの先端側に流出するのを防止できればよい。したがって、プラグの先端側から、充填された金属粉末の先端を周方向に(主体金具の内周面又は絶縁部材の外周面に沿って)レーザーを照射して、主体金具の内周面と金属粉末の先端とを部分的に溶融又は溶接して、その内、外周面間を封止(又は封着)するようにしてもよい。なお、金属粉末はそれを充填することで、気密性が確保できるように、その粒径と充填密度ないし圧縮度を設定すればよい。
 なお、本発明では請求項10に記載の発明のように、前記嵌め合い穴部の内周面を、前記主体金具の先端に向けて縮径することなく形成しておくとよい。このようにしておけば、絶縁部材のうち、嵌め合い軸部より先端に位置する部分の外周面と、主体金具の内周面との間の空隙(絶縁空間)又は絶縁部材の厚みを大きく確保できるため、耐電圧性を高めることができる。すなわち、本発明を具体化する場合においては、主体金具の内周面のうち、充填材の先端側にも受棚を設け、この受棚に絶縁部材に設けた突合せ部を、気密保持用のパッキンを介在させて突き合わせることとして、さらに気密性を高めることも可能である。しかし、このようにすると、その受棚を設ける分、主体金具の内周面と絶縁部材の先端寄り部位の外周面との距離が小さくなるか、絶縁部材の厚みを確保できなくなる。
 他方、スパークプラグの小型化(小径化)の要請により、その主体金具の外周面の取り付けネジ径もM12とすることが要請されているなど、益々、小径化の要請がある。こうした状況下からして、絶縁部材の厚さ確保が困難となってきている。すなわち、こうした状況下において、充填材よりも先端寄り部位に受棚を設ける場合には、この受棚と絶縁部材との絶縁空間や絶縁部材の肉厚が小さくなる結果、その間での異常放電が発生したり、絶縁部材に穴が開くなどの損傷を発生させるという耐電圧性の問題がある。これに対して、請求項11に記載の発明では、前記嵌め合い穴部の内周面を、前記主体金具の先端に向けて縮径することなく形成しておくこととしたため、絶縁部材の厚みを大きく確保できることから、耐電圧性を高めることができる。そして、このような効果は、請求項12に記載の本発明のように、主体金具の外周面の取付けネジ径がM12(外径12mmのメートルネジ)以下のように小さいスパークプラグにおいて大きいものとなる。
本発明の実施形態例のスパークプラグの縦断面図、及びその要部拡大図。 図1におけるA-A線断面図。 図1のスパークプラグの組立て工程を説明する縦断面図。 図1のスパークプラグの組立て工程を説明する縦断面図。 充填材の充填領域の別例を説明する要部拡大図。 充填材の充填領域の別例を説明する要部拡大図。 主体金具の加熱温度と、ねじ込み時の破断トルクとの関係を示す図。 充填材の別例を説明する要部拡大図。 充填材の別例を説明する要部拡大図。 従来のスパークプラグの縦断面図、及びその要部拡大図。 図10のスパークプラグにおける問題点を説明する、その要部のさらなる拡大図。
 本発明に係る、スパークプラグを具体化した実施の形態例について、図1、図2に基づいて詳細に説明する。このうち、図1は、説明用の縦断面図及びその要部拡大図である。スパークプラグ101は、先端3に中心電極5を突出させた中空軸状(筒状)のセラミック製の絶縁部材1と、この絶縁部材1を包囲する形で固定して、先端23に接地電極26を備えた筒状の主体金具21などから構成されている。なお、本例では主体金具21は低炭素鋼製(具体的には0.25%Cの冷間圧造用炭素鋼製)とされている。
 このうち、主体金具21は、先端寄り部位に、先端側から後端側に向かって、エンジンのプラグホールへのねじ込み用の取り付けネジ(例えば、M12又はM14)25を、外周面に略全長(本例では18mm以上ある)にわたって備えた円筒状の直管部27と、そのねじ込みにおいて、ガスケット(シールワッシャ)28を介して、エンジンヘッドに着座されるように、この直管部27の外径より大径に形成されたフランジ状の着座リング部29を備えている。この直管部27の内周面は、本形態では、主体金具21の先端23から直管部27の後端に向けて、同一径で形成されており、嵌め合い穴部30を構成している。直管部27の内周面であるその嵌め合い穴部30の後端から後方に向けては、嵌め合い穴部30の穴径より大径で環状をなす後端向き面からなる受棚31を備えている。この受棚31は、本形態では着座リング部29の内周面に対応する部位に位置しており、後端に向けてテーパ状に拡径し、縦断面において、嵌め合い穴部30との交差部33は凸アール状に形成されている。なお、この受棚31は、テーパでなく平坦なリング状の座面としてもよい。
 また、主体金具21におけるこの着座リング部29の後方には、薄肉円筒部35を介し、ねじ込み用の工具係合部37が設けられており、その後端には、カシメ部としてカシメ用円筒部39が設けられている。なお、薄肉円筒部35からカシメ用円筒部39までの円筒部の内径は、スパークプラグとして組立てられる前は、嵌め合い穴部30の穴径より大径で、着座リング部29の内側の受棚31における外縁の内径と略同一とされている(図5、図6参照)。図1では、スパークプラグとして組立てられた状態であり、カシメ用円筒部39の先端側へのカシメにより、薄肉円筒部35も含めて変形した形状を呈している。すなわち、スパークプラグ101完成品では、カシメ用円筒部39を、カシメにより、プラグの軸線G側に折り曲げると共に先端側に圧縮して、絶縁部材1を先端側に押した状態で主体金具21の内側に固定した状態をなしている。なお、工具係合部37の外周面(輪郭)は、例えば軸線G方向から見て、六角形又はその他の多角形に形成されている。
 一方、絶縁部材1は、先端寄り部位に先細りテーパ部7aを備えた先端軸部7と、この先端軸部7の後方において、この先端軸部7より大径で、主体金具21内の嵌め合い穴部30に、所定の隙間で隙間嵌め状態となる外径の嵌め合い軸部10を備えている。この嵌め合い軸部(円筒部)10は、先後に同一径とされているが、その外径は、嵌め合い穴部30の内径より、設計上、0.1~1mm程度小さくされている(図は誇張して示している)。そして、嵌め合い穴部30の内周面と嵌め合い軸部10の外周面との間には、気密保持用の充填材41として、耐熱性接着剤(例えば、エポキシ樹脂系の接着剤(硬化温度200℃))が充填され、これが円筒状の層を成しており(図2参照)、この両面間を接着して、軸線G方向における気密が保持されている。
 なお、充填材41は、嵌め合い軸部10の先端(嵌め合い先端)P1を起点として、嵌め合い軸部10の後端の近くまでの寸法L1領域、すなわち、嵌め合い軸部10の軸線G長の略全領域にわたり充填されている。一方、嵌め合い軸部10の先端P1は、主体金具21の嵌め合い穴部30の軸線G方向の略中間位置となるように設定されており、したがって、嵌め合い軸部10の先端P1より先端側に位置する先端軸部7の外周面と、嵌め合い穴部30の内周面との間は、環状(円筒状)の空間(絶縁空間)Kが形成されている。
 また、本例では、嵌め合い軸部10の後端は、軸線G方向において受棚31の部位に位置するように設定されている。そして、この嵌め合い軸部10の後端11においては、嵌め合い軸部10より大径をなし、外周面が外方に突出する形態のフランジ状の大径軸部12を備えている。この大径軸部12の先端と、嵌め合い軸部10の後端11とは、環状をなし、受棚31に倣うテーパの先端向き面からなる突合せ部13で連なっている。なお、大径軸部12の後方には、大径軸部12より小径の後方軸部15が、主体金具21の後端から同軸で後方に突出状に設けられている。また、絶縁部材1におけるこの後方軸部15の後端17には端子(電極端子)40が突出状に配置されている。
 なお、絶縁部材1の内側(中空部内)では、先端に突出している中心電極5を、図示はしないが、シールガラスによって固定しており、このシールガラスより後方には、抵抗体が配置され、シールガラスにて後端から突出している端子40を固定している。このような絶縁部材1の内部の構成は従来公知のものと同じである。
 本例では、絶縁部材1の大径軸部12の先端向き面からなる突合せ部13は、主体金具21の受棚31に、リング状で気密保持用のパッキン(平パッキン)42を介して突き合わせられて、絶縁部材1の先端への移動が止められるように構成されている。すなわち、本形態では、受棚31と突合せ部13とでストッパ手段を構成している。そして、気密保持用のパッキン(SPCC製パッキン)42を介して、この間においても気密が保持される構成とされている。なお、この突合せ状態で、絶縁部材1の先端3である先端軸部7の先端は、主体金具21の先端23より適量、突出しており、中心電極5の先端と接地電極26とのギャップが設定値となるように保持されている。
 また、このような突合せ状態において、絶縁部材1の大径軸部12の後端(大径軸部12と後方軸部15との境界)は、主体金具21の後端のカシメ用円筒部39より先端側に位置するように設定されており、カシメ用円筒部39の内側であってこの大径軸部12の後端における後端向き面14には、Oリング44、滑石45、Oリング44を介在させ、上記したようにカシメ用円筒部39をカシメによる圧縮変形して、絶縁部材1を先端側に押した状態で固定している。なお、ここにOリングや滑石を用いることなく、絶縁部材1を固定することも可能である。
 このような本形態のスパークプラグ101は、次のようにして組立てられる(図3、図4参照)。中心電極5等を固定した絶縁部材1における嵌め合い軸部10の外周面に、充填材41として耐熱性接着剤(本例では、エポキシ樹脂系の接着剤)を適量、塗布する。一方、主体金具21の内側の後端向き面からなる受棚31には、パッキン42を載置しておく(図3参照)。次いで、中心電極5等を固定した絶縁部材1を、主体金具21の後端側からその内側に内挿する。このときは、その嵌め合い軸部10が主体金具21の嵌め合い穴部30に内挿されるようにセンタ出ししながら嵌め合わせ、受棚31のパッキン42上に、絶縁部材1の先端向き面からなる突合せ部13を突き合せる。そして、図4に示したように、絶縁部材1の大径軸部12の後端の環状をなす後端向き面14の後方であつて、主体金具21のカシメ用円筒部39の内側の円筒状空間には、Oリング44、滑石45、Oリング44を装填する。次いで、金型50を先端側にプレスし、主体金具21の後端のカシメ用円筒部39を内側に折り曲げると共に先端側に向けて圧縮して塑性変形させる。その後、耐熱性接着剤41を固化させることで、本形態のスパークプラグ101が得られる。
 このような図1に示した本形態例のスパークプラグ101においては、次のような効果が得られる。すなわち、本形態のスパークプラグ101は、主体金具21の取付けネジ25を介して、図示しないエンジンのプラグホール(ねじ穴)にねじ込まれて取付けられ、その用に供せられる。この場合においては、そのプラグ101の先端部が燃料ガスの点火による爆風下において高温さらされるため、主体金具21や絶縁部材1はこの熱変化により共に膨張する。このとき、主体金具21は、セラミック製の絶縁部材1に比べて格段に大きく熱膨張しようとするため、固定された主体金具21に対し絶縁部材1は、軸線G方向において相対的に収縮するように動く(すべる)ことになる。一方、主体金具21の嵌め合い穴部30の内周面と絶縁部材1の嵌め合い軸部10の外周面との間には、気密保持用の充填材41として耐熱性接着剤が充填されている。したがって、この両面間において、熱膨張率の差によって軸線G方向に相対的な動きが生じたとしても、その両面間の密着は、充填材41である耐熱性接着剤を介して保持されたままであるから、その両面間における気密性は損なわれない。
 また、その両面間の密着は耐熱性接着剤を介して保持されたままであるから、中心電極5や絶縁部材1の熱は、充填材41、主体金具21を介してエンジンヘッドへと熱伝達性が損なわれることなく逃がすことができる。したがって、プレイグニッション(過早点火)や電極の溶損の防止にも有効である。
 加えて本形態では、主体金具21の内周面と絶縁部材1の外周面との間の気密性の保持は、突合せ部13を受棚31に、環状をなす気密保持用のパッキン42を介して突き合わせて、プレスによりこの間は先後に圧縮されているため、同パッキンによる気密も確保されている。したがって、気密性において極めて信頼性の高い構造のものといえる。とくに、本形態では、この気密が、嵌め合い穴部30の後方にあり、プラグ101の先端部位から遠く離れた部位の受棚31で確保されているため、この部位の温度上昇は相対的に低く、その意味においても熱膨張に起因する気密不良が起こりにくい。このため、気密保持において著しく高い信頼性のあるスパークプラグ101となすことができる。
 さらに本形態では、スパークプラグ101の軸線G方向における充填材41の充填領域L1が、絶縁部材1の嵌め合い軸部10の嵌め合い先端P1を起点として後方まで設けられている。このため、嵌め合い軸部10の外周面と、嵌め合い穴部30の内周面との間の微小空間(隙間嵌めにおける微小空間)を発生させないから、この微小空間に高温のガスが滞留ないし残存するのを防止できるため、高温防止化にも奏功する。
 また、本形態では、主体金具21の先端寄り部位を円筒状の直管部27とし、その内周面を、主体金具21の先端から直管部27の後端に向けて、同一径の円断面でストレートに形成して嵌め合い穴部30としている。すなわち、嵌め合い穴部30の内周面を、主体金具21の先端23に向けて縮径することなく形成している。したがって、その嵌め合い穴部30の内周面においては、絶縁部材1の嵌め合い軸部10より先端の先端軸部7の外周面側(軸線G側)に向かって突出している部位はない。このため、主体金具21(嵌め合い穴部30)の内周面と、絶縁部材1の先端軸部7の外周面との間の絶縁空間Kの半径方向の寸法を先端軸部7の根元(後端)まで、従来に比べて大きく確保できる。また、絶縁部材1についていえば、先端軸部7の半径方向の肉厚を厚く確保できるため、耐電圧性を高めることができる。したがって、その分、異常放電の発生防止効果を高いものとすることができる。このため、こうした寸法が確保し難い、M12(呼び径12mmのメートルねじ)のような取り付けねじ25のスパークプラグのように、そのネジ径が特に小さいものにおいては、その効果に著しいものがある。
 なお、前記形態では、充填材41を充填する軸線Gに沿う領域を、嵌め合い軸部10の軸線G長の略全領域としたため、絶縁部材1と主体金具21との密着部分(密着面積)が大きく、したがって、エンジンヘッドへの熱伝導性に優れる。ただし、この充填材41を充填する軸線Gに沿う領域は、基本的には、気密が十分に保持される長さ領域であればよく、したがって、その長さは、充填材41の種類、材質等に応じて、適宜に設定すればよい。
 すなわち、充填材41は、気密が安全かつ十分に保持される長さ領域であればよく、図5に示したように、嵌め合い軸部10の先端(嵌め合い先端)P1を起点として、嵌め合い軸部10の中間位置の近くまでの寸法L2領域としてもよい。図5は、前記形態と、充填材41の構成のみが異なるだけのため、同一の部位には同一の符号を付すに止める。以下についても同様とする。また、気密性の点では、図6に示したように、嵌め合い軸部10の中間位置において、同じ寸法L2領域としてもよい。ただし、この場合には、充填材41の先端41bに、隙間嵌めに対応して形成される微小空間K2が発生し、この空間K2が高温ガスの残留空間となり、プラグ先端の高温化を助長する要因となる。したがって、寸法L1よりも小さい寸法L2領域で気密性が保持できるとしても、図5に示したように、充填材41は、嵌め合い軸部10の先端P1(嵌め合い先端)を起点として後方に向けて所定領域にわたり充填するのが好ましい。
 なお、上記の形態では充填材41として耐熱性接着剤としたが、本発明では、上記もしたように、これに熱伝導性に優れる金属粉末(例えば、鉄粉)を含有させたものとしてもよい。そして、その場合には、金属粉末が含有させられている分、絶縁部材1と主体金具21間の熱伝達性が高められる。
 また、上記形態では、充填材41に耐熱性接着剤として硬化温度が350℃以下のエポキシ樹脂系の接着剤を用いたため、充填材に高融点のロウを用いる場合のように、スパークプラグの組立て工程で主体金具21を高温に加熱する工程を要しない。すなわち、充填材に、上記形態におけるような耐熱性接着剤ではなく、例えば銀ロウを用いる場合には、上記もしたように、その組成にもよるが通常は最低でも600℃程度まで加熱し、一定時間保持してリフロー(溶融)し、その後、大気中で徐冷することで硬化(固化)させることを要する。このため、主体金具は、その高温下で熱処理を受けることとなり、機械的強度の低下を受ける。これに対し、上記形態では、350℃以下で硬化する耐熱性接着剤(エポキシ樹脂系接着剤)を用いたため、そのような高温での熱処理を要することなく、それを硬化させることができるから、機械的強度の低下を防止できる。
 すなわち、上記形態におい充填材にロウを用いる場合には、上記もしたように主体金具21の内側に絶縁部材1を挿入した状態において、それらの内、外周面の間に適当な形状のロウ材を配置した状態の下で、その加熱溶融を行うことになる。より具体的には、中心電極5等を固定した絶縁部材1を、取付けネジ25等の形成された主体金具21の後端側からその内側に内挿したとき、その嵌め合い軸部10と嵌め合い穴部30の間の適所に、例えばリング状に形成したロウ材を配置しておく。そして、その内挿後、主体金具21の後端のカシメ用円筒部39を内側に折り曲げると共に先端側に向けて圧縮して塑性変形させて絶縁部材1を固定してスパークプラグ仕掛品とした後で、銀ロウが融点以上(600℃以上)となるように加熱して一定時間保持し、その溶融後に、例えば、大気中で徐冷することで固化させることになる。
 一方、主体金具21は、上記のような素材からなり、冷間鍛造工程、ネジの転造工程等を経て製造される。したがって、このような主体金具21が、上記のようなロウ付け工程を通される場合には、そこでの熱処理により機械的性質(強度)が低下する。このような強度の低下は、製品としてのスパークプラグをエンジンヘッドのプラグホールにねじ込む際には、ねじり応力や引張り応力等により、直管部27の外周面の取付けネジ25の後端(根元部位)近傍で主体金具41が切断ないしせん断されるように破断してしまうなどの不具合が発生する原因となる。これに対して、上記形態では、350℃以下で硬化する耐熱性接着剤(エポキシ樹脂系接着剤)を用いたため、そのような高温での熱処理を要しない。このため、機械的強度の低下を招くこともなく、こうした問題を発生させないという効果も得られる。主体金具21の小型化、小径化により、主体金具の肉厚の確保が困難なことを考慮すると、その効果には著しいものがある。
 ここで、上記形態(図1)のスパークプラグ101において、150℃~500℃の範囲(50度間隔)で加熱したSWRCH25K製の主体金具を用いて組立ててなるサンプル(取付けネジ:M12)で、主体金具の加熱温度と、ねじ込み時において上記の破断が発生するときの締付けトルク(破断トルク)との関係について確認すべく、ねじ込み実物破壊試験を行い、主体金具が破断したときのねじ込みトルク(破断トルク)を測定した。結果は図7に示したとおりである。なお、加熱条件は電気炉による加熱で、1時間保持後、大気中で徐冷した。各サンプル数は10であり、データはその平均値である。
 図7に示したように、加熱温度が350℃以下であれば、その破断トルクは80Nmで略一定であった。これに対し、400℃のものでは70Nmで破断した。しかも、450℃では急減して45Nmで破断が発生し、とくに、500℃では40Nmで破断し、その強度は、加熱温度が350℃以下の約半分まで低下した。なお、同素材製の主体金具で取付けネジがM14のサンプルでのねじ込み実物破壊試験も行ったが、その場合にも略同様の低下率の強度低下がみられた。このように、主体金具を400℃以上に加熱する場合には、明らかに強度低下が見られる一方、加熱温度が350℃以下であれば、強度への悪影響がないことが判明した。したがって、主体金具が、ロウ付け温度環境下でも強度低下しない耐熱性のある素材からなる場合は問題ないが、上記のような素材からなる場合には、350℃以下で硬化(固化)させ得る充填材であり、熱処理により溶融工程を要しない硬化温度が350℃以下の耐熱性接着剤を用いるのが好ましいといえる。なお、350℃以下で硬化する耐熱性接着剤を含め、充填材は、その耐熱性が、スパークプラグが使用されている際に、充填材の部位が受ける温度(100~150℃)に耐え得るか否かを基準にして選択すればよく、上記したものに限定されるものではない。
 さて、次に別形態について、図8に基づいて説明する。ただし、このものは充填材41として、接着剤を用いることなく、金属粉末のみを用いた点が、図1の形態と異なるのみであるため、その相違点についてのみ説明する。すなわち、本例では、粒径5μmの金属粉末(鉄粉)41bを、上記形態における耐熱性接着剤に代えて、主体金具21の嵌め合い穴部30の内周面と、絶縁部材1の嵌め合い軸部10の外周面との間の隙間に、所定の圧縮状態で充填したものである。ただし、本形態では、金属粉末41bがスパークプラグの先端側に流出(脱落)するのを防止するための流出防止手段として、プラグの先端側から、充填された金属粉末41bの先端41cを周方向に(主体金具21の内周面又は絶縁部材1の外周面に沿って)レーザーを照射して、主体金具21の内周面と金属粉末41bの先端とを溶接又は溶融して、その内、外周面間を封止(又は封着)するようにしてある。このことより理解されるが、充填材41としては、銀ロウなどのロウ(ロウ材)を溶融、固化させて充填してもよい。
 なお、この金属粉末41bからなる充填材の後端側は、主体金具21の受棚31、パッキン42及び絶縁部材1の突合せ部13にて閉塞されているため、この閉塞空間の全体に充填されるように充填すればよい。因みに、この形態のスパークプラグとして組立てる際には、組立工程の最後に、主体金具21の先端側から、主体金具21の嵌め合い穴部30の内周面と、絶縁部材1の嵌め合い軸部10の外周面との間の隙間に、例えば超音波振動を付与しつつ、金属粉末41bを充填し、その後で、嵌め合い穴部30の内周面に沿って、先端寄り部位の金属粉末を溶融し、固化させるようにすればよい。
 本発明に係るスパークプラグは、上記した内容のものに限定されるものではなく、適宜に、変更して具体化できる。例えば、前記の流出防止手段についても、図9に示したように、金属粉末41bからなる充填材の先端部位に、レーザーに代えて、ロウ材41dを装填して溶融、固化させることもできる。さらに、レーザーに代えて、接着剤や樹脂を充填して固化させることもできる。すなわち、軸線G方向の先後において異なる種類の2以上の充填材を充填してもよい。因みに、この場合には、先端側に位置する充填材に耐熱性の高いものを使用するのが好ましい。
 1 絶縁部材
 3 絶縁部材の先端
 5 中心電極
 7 先端軸部
10 嵌め合い軸部
13 突合せ部
21 主体金具
23 主体金具の先端
25 取付けネジ
26 接地電極
30 嵌め合い穴部
31 受棚
39 カシメ用円筒部(カシメ部)
41 充填材(耐熱性接着剤充填材)
41b 金属粉末(充填材)
42 気密保持用のパッキン
101 スパークプラグ
K 絶縁空間
G 軸線

Claims (11)

  1.  先端に中心電極を突出させた軸状のセラミック製の絶縁部材と、この絶縁部材を包囲する形で固定して先端に接地電極を設けた主体金具とを備え、
     前記絶縁部材は、その先端寄り部位に、前記主体金具の内周面との間に環状の絶縁空間を保持するように形成された先端軸部を備えていると共に、この先端軸部の後方には該先端軸部より大径で、前記主体金具内の嵌め合い穴部に隙間嵌め状態にある嵌め合い軸部を備えてなるスパークプラグであって、
     前記絶縁部材は、前記主体金具の後端側から挿入されて所定位置で先端側への移動がストッパ手段により止められていると共に、前記主体金具の後端に設けられたカシメ部を、軸線側に折り曲げると共に先端側に圧縮することで、前記絶縁部材が先端側に押された状態で前記主体金具の内側に固定されてなるスパークプラグにおいて、
     前記嵌め合い軸部の外周面と前記嵌め合い穴部の内周面との間に、気密保持用の充填材を充填してなることを特徴とするスパークプラグ。
  2.  先端に中心電極を突出させた軸状のセラミック製の絶縁部材と、この絶縁部材を包囲する形で固定して先端に接地電極を設けた主体金具とを備え、
     前記絶縁部材は、その先端寄り部位に、前記主体金具の内周面との間に環状の絶縁空間を保持するように形成された先端軸部を備えていると共に、この先端軸部の後方には該先端軸部より大径で、前記主体金具内の嵌め合い穴部に隙間嵌め状態にある嵌め合い軸部を備えてなるスパークプラグであって、
     前記絶縁部材は、前記主体金具の後端側から挿入されて所定位置で先端側への移動がストッパ手段により止められていると共に、前記主体金具の後端に設けられたカシメ部を、軸線側に折り曲げると共に先端側に圧縮することで、前記絶縁部材が先端側に押された状態で前記主体金具の内側に固定されてなるスパークプラグにおいて、
     前記ストッパ手段として、前記絶縁部材には、前記嵌め合い軸部の後方に、該嵌め合い軸部より大径で環状をなす先端向き面からなる突合せ部を設け、前記主体金具には、前記嵌め合い穴部の後方に該嵌め合い穴部の穴径より大径で環状をなす後端向き面からなる受棚を設け、前記突合せ部を該受棚に直接又は間接に突き合わせて、前記絶縁部材の先端側への移動が止められ、
     前記嵌め合い軸部の外周面と前記嵌め合い穴部の内周面との間に、気密保持用の充填材を充填してなることを特徴とするスパークプラグ。
  3.  前記突合せ部を前記受棚に、環状をなす気密保持用のパッキンを介して突き合わせていることを特徴とする、請求項2に記載のスパークプラグ。
  4. 前記充填材が、耐熱性接着剤であることを特徴とする請求項1~3のいずれか1項に記載のスパークプラグ。
  5.  前記充填材が、350℃以下で硬化する耐熱性接着剤であることを特徴とする、請求項1~3のいずれか1項に記載のスパークプラグ。
  6.  前記耐熱性接着剤に金属粉末が含まれていることを特徴とする請求項4又は5のいずれか1項に記載のスパークプラグ。
  7.  前記充填材のスパークプラグの軸線方向における充填領域が、5mm以上あることを特徴とする請求項4~6のいずれか1項に記載のスパークプラグ。
  8.  前記充填材のスパークプラグの軸線方向における充填領域が、前記絶縁部材の嵌め合い軸部の嵌め合い先端を起点として後方に向けて5mm以上あることを特徴とする請求項4~6のいずれか1項に記載のスパークプラグ。
  9.  前記充填材が金属粉末の圧縮されたものであり、該金属粉末がスパークプラグの先端側に流出するのを防止するための流出防止手段が、前記主体金具の内周面又は前記絶縁部材の外周面に設けられていることを特徴とする請求項1~3のいずれか1項に記載のスパークプラグ。
  10.  前記嵌め合い穴部の内周面を、前記主体金具の先端に向けて縮径することなく形成したことを特徴とする請求項1~9のいずれか1項に記載のスパークプラグ。
  11.  前記スパークプラグはエンジンヘッドのプラグホールにねじ込み方式で取付けられように前記主体金具の外周面に取付けネジを備えており、このネジ径がM12以下であることを特徴とする請求項1~10のいずれか1項に記載のスパークプラグ。
PCT/JP2009/071305 2008-12-25 2009-12-22 スパークプラグ WO2010074070A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP09834871.7A EP2383847B1 (en) 2008-12-25 2009-12-22 Spark plug
CN200980144888.3A CN102210073B (zh) 2008-12-25 2009-12-22 火花塞
JP2010514173A JP5363475B2 (ja) 2008-12-25 2009-12-22 スパークプラグ
US12/998,935 US8633640B2 (en) 2008-12-25 2009-12-22 Spark plug

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-329197 2008-12-25
JP2008329197 2008-12-25

Publications (1)

Publication Number Publication Date
WO2010074070A1 true WO2010074070A1 (ja) 2010-07-01

Family

ID=42287679

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/071305 WO2010074070A1 (ja) 2008-12-25 2009-12-22 スパークプラグ

Country Status (5)

Country Link
US (1) US8633640B2 (ja)
EP (1) EP2383847B1 (ja)
JP (1) JP5363475B2 (ja)
CN (1) CN102210073B (ja)
WO (1) WO2010074070A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130139907A (ko) * 2010-12-14 2013-12-23 페더럴-모굴 이그니션 컴퍼니 개선된 코로나 제어를 가진 코로나 점화 장치
WO2015159918A1 (ja) * 2014-04-18 2015-10-22 株式会社デンソー 内燃機関用点火プラグ
DE102017111898A1 (de) 2016-07-29 2018-02-01 Ngk Spark Plug Co., Ltd. Zündkerze

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5721859B2 (ja) * 2012-07-17 2015-05-20 日本特殊陶業株式会社 スパークプラグ
JP5346404B1 (ja) * 2012-11-01 2013-11-20 日本特殊陶業株式会社 点火プラグ
US9225150B2 (en) * 2012-07-17 2015-12-29 Ngk Spark Plug Co., Ltd. Spark plug
US9568689B2 (en) * 2015-02-18 2017-02-14 US Conec, Ltd Spring push and push-pull tab for tightly spaced fiber optic connectors
DE102016203465A1 (de) * 2016-03-03 2017-09-07 Robert Bosch Gmbh Zündkerze mit separatem Wärmeleitelement und separatem Dichtelement
US10418789B2 (en) 2016-07-27 2019-09-17 Federal-Mogul Ignition Llc Spark plug with a suppressor that is formed at low temperature
JP6559740B2 (ja) 2017-07-13 2019-08-14 日本特殊陶業株式会社 スパークプラグ
US11041823B2 (en) * 2017-07-20 2021-06-22 Ngk Spark Plug Co., Ltd. Gas sensor
DE102018201354A1 (de) * 2018-01-30 2019-08-01 Robert Bosch Gmbh Zündkerze mit verkürztem Einspannbereich
AT523772B1 (de) * 2020-03-31 2022-01-15 Pges Gmbh Zündkerze für Verbrennungskraftmaschinen
GB2608652B (en) * 2021-07-09 2023-08-30 Caterpillar Energy Solutions Gmbh Spark plug
DE102023133962A1 (de) 2022-12-06 2024-06-06 Innio Jenbacher Gmbh & Co Og Zündkerze für eine Brennkraftmaschine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0696836A (ja) * 1990-10-11 1994-04-08 Cooper Ind Inc スパークプラグ及びその製造方法
JP2008091322A (ja) * 2006-09-07 2008-04-17 Ngk Spark Plug Co Ltd スパークプラグ

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3612931A (en) * 1970-03-11 1971-10-12 William P Strumbos Multiple heat range spark plug
US3743877A (en) * 1971-10-12 1973-07-03 W Strumbos Multiple heat range spark plug
JPS5492226U (ja) * 1977-12-14 1979-06-29
JPS5492226A (en) 1977-12-29 1979-07-21 Konishiroku Photo Ind Co Ltd Optical scanning device for magnification variable type copier
DE3616668A1 (de) * 1986-05-16 1987-11-19 Bosch Gmbh Robert Zuendkerze mit gleitfunkenstrecke
US4810929A (en) * 1987-03-30 1989-03-07 Strumbos William P Spark plug temperature control
GB2219041A (en) * 1988-05-28 1989-11-29 Ford Motor Co Spark plug
JPH04329283A (ja) * 1991-04-30 1992-11-18 Ngk Spark Plug Co Ltd 内燃機関用スパークプラグ
JP2625307B2 (ja) * 1992-01-28 1997-07-02 日本特殊陶業株式会社 スパークプラグ
US6111345A (en) * 1996-08-29 2000-08-29 Denso Corporation Spark plug for apparatus for detecting ion current without generating spike-like noise on the ion current
JP2001135457A (ja) * 1999-11-05 2001-05-18 Denso Corp スパークプラグ
DE10047498A1 (de) * 2000-09-26 2002-04-18 Bosch Gmbh Robert Zündkerze kompakter Bauart und Herstellungsverfahren
JP2005129398A (ja) 2003-10-24 2005-05-19 Denso Corp 内燃機関用点火プラグ
US7420139B2 (en) * 2004-02-19 2008-09-02 Ngk Spark Plug Co., Ltd. Glow plug
JP4741316B2 (ja) * 2005-08-22 2011-08-03 日本特殊陶業株式会社 スパークプラグ
JP4658871B2 (ja) * 2005-09-01 2011-03-23 日本特殊陶業株式会社 スパークプラグ
JP2007184194A (ja) * 2006-01-10 2007-07-19 Denso Corp 内燃機関用のスパークプラグ

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0696836A (ja) * 1990-10-11 1994-04-08 Cooper Ind Inc スパークプラグ及びその製造方法
JP2008091322A (ja) * 2006-09-07 2008-04-17 Ngk Spark Plug Co Ltd スパークプラグ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2383847A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130139907A (ko) * 2010-12-14 2013-12-23 페더럴-모굴 이그니션 컴퍼니 개선된 코로나 제어를 가진 코로나 점화 장치
JP2014505329A (ja) * 2010-12-14 2014-02-27 フェデラル−モーグル・イグニション・カンパニー 改良されたコロナ制御を用いるコロナ点火装置
KR101868416B1 (ko) * 2010-12-14 2018-06-18 페더럴-모굴 이그니션 컴퍼니 개선된 코로나 제어를 가진 코로나 점화 장치
WO2015159918A1 (ja) * 2014-04-18 2015-10-22 株式会社デンソー 内燃機関用点火プラグ
JP2015207401A (ja) * 2014-04-18 2015-11-19 株式会社日本自動車部品総合研究所 内燃機関用点火プラグ
DE102017111898A1 (de) 2016-07-29 2018-02-01 Ngk Spark Plug Co., Ltd. Zündkerze
DE102017111898B4 (de) 2016-07-29 2023-11-02 Ngk Spark Plug Co., Ltd. Zündkerze

Also Published As

Publication number Publication date
US20110254428A1 (en) 2011-10-20
CN102210073B (zh) 2014-05-14
US8633640B2 (en) 2014-01-21
EP2383847A4 (en) 2015-04-22
JPWO2010074070A1 (ja) 2012-06-21
EP2383847A1 (en) 2011-11-02
JP5363475B2 (ja) 2013-12-11
CN102210073A (zh) 2011-10-05
EP2383847B1 (en) 2019-09-18

Similar Documents

Publication Publication Date Title
JP5363475B2 (ja) スパークプラグ
WO2007023790A1 (ja) スパークプラグ
KR20100084176A (ko) 내연 엔진용 스파크 플러그
US8410403B2 (en) Glow plug with improved seal, heater probe assembly therefor and method of construction thereof
JP4685817B2 (ja) スパークプラグおよびその製造方法
CN101442186B (zh) 火花塞
CN108352680B (zh) 火花塞
WO2015163112A1 (ja) セラミックスヒータ型グロープラグの製造方法及びセラミックスヒータ型グロープラグ
WO2009084565A1 (ja) スパークプラグ
EP1247317B1 (en) Ignition plug and method of manufacture
JP6245716B2 (ja) セラミックスヒータ型グロープラグの製造方法及びセラミックスヒータ型グロープラグ
JP4741323B2 (ja) スパークプラグ
JP6436942B2 (ja) 点火プラグ
JP4813965B2 (ja) スパークプラグ
US10113744B2 (en) Ceramic heater-type glow plug
JP2010165698A (ja) スパークプラグ
JP2010165698A5 (ja)
JP2019124367A (ja) グロープラグ
JP2018054160A (ja) グロープラグ
JP2007317448A (ja) スパークプラグ
JP2007059078A (ja) スパークプラグ及びその製造方法
EP3396249A1 (en) Glow plug
JP2018156909A (ja) 点火プラグ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980144888.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2010514173

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09834871

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12998935

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009834871

Country of ref document: EP