WO2010073699A1 - 固体高分子形燃料電池 - Google Patents

固体高分子形燃料電池 Download PDF

Info

Publication number
WO2010073699A1
WO2010073699A1 PCT/JP2009/007247 JP2009007247W WO2010073699A1 WO 2010073699 A1 WO2010073699 A1 WO 2010073699A1 JP 2009007247 W JP2009007247 W JP 2009007247W WO 2010073699 A1 WO2010073699 A1 WO 2010073699A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
gas
exhaust gas
catalyst
methanol
Prior art date
Application number
PCT/JP2009/007247
Other languages
English (en)
French (fr)
Inventor
西村勝憲
安藤慎輔
中原貢
菅野正義
吉田紀子
藤村秀和
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP2010543909A priority Critical patent/JPWO2010073699A1/ja
Publication of WO2010073699A1 publication Critical patent/WO2010073699A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • H01M8/0668Removal of carbon monoxide or carbon dioxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1009Fuel cells with solid electrolytes with one of the reactants being liquid, solid or liquid-charged
    • H01M8/1011Direct alcohol fuel cells [DAFC], e.g. direct methanol fuel cells [DMFC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a polymer electrolyte fuel cell using a liquid organic compound as a fuel.
  • a polymer electrolyte fuel cell using a liquid organic compound such as methanol, ethanol or dimethyl ether as a fuel has features such as low noise, low operating temperature (approximately 70 to 80 ° C.), and easy refueling. . Therefore, a wide range of applications are expected as a portable power source, a power source for an electric vehicle, or a power source for an electric motorcycle, an assisted bicycle, a light vehicle such as a wheelchair or a senior car for medical care.
  • a direct methanol fuel cell (hereinafter referred to as DMFC) using methanol as a fuel can eliminate a reformer, can supply fuel at room temperature, and has a fuel cost relative to output such as gasoline. It has advantages such as a cheaper point and a short start-up time because it can generate power at a low temperature of 50-60 ° C.
  • an “active” DMFC that forcibly distributes fuel using a pump or the like can provide a high output of several tens to several hundreds of watts, and is suitable for feeding relatively low power devices such as electronic devices and lighting equipment. ing.
  • the present invention can be applied to a moving body.
  • Patent Documents 1 to 3 Conventional techniques include, for example, a method of removing methanol and its incomplete oxides (formaldehyde, formic acid, etc.) described in Patent Documents 1 to 3.
  • the catalyst is not configured to take in enough oxygen to oxidize organic gas components. Therefore, a method for removing an organic gas component when an organic gas component to be processed in a high output DMFC system of several tens of watts or more is not considered. For example, in a structure in which oxygen is taken into the catalyst by natural diffusion, oxygen is insufficient and the reaction stops. In addition, a technique for suppressing the evaporation amount of a substance to be removed such as methanol as much as possible is also necessary.
  • the organic gas component is mixed with the total amount of the oxidant gas, the amount of gas passing through the catalyst is large, and the amount of catalyst increases accordingly.
  • a mechanism for raising the inlet temperature of the gas when first contacting the catalyst to a predetermined catalytic reaction starting temperature is not considered.
  • the gas temperature is cooled to the oxidant gas temperature, and the oxidation reaction cannot be started or sustained without a mechanism that always heats the catalyst.
  • the object of the present invention is to overcome the above four technical problems and to provide a fuel cell having a mechanism for removing methanol or the like that is more compact and more reliable than before.
  • the inventors have constructed a novel structure of a polymer electrolyte fuel cell.
  • the first solving means comprises a solid polymer electrolyte membrane, electrodes joined to both surfaces of the solid polymer electrolyte membrane, and a flow path for supplying fuel or an oxidant to each of the electrodes through circulation.
  • a solid polymer electrolyte membrane In the polymer electrolyte fuel cell using a liquid organic compound as the fuel, an organic gas component composed of unused fuel or an incomplete oxide of the fuel and carbon dioxide contained in the exhaust gas of the fuel and carbon dioxide are used.
  • the second solving means is to provide a molecular discriminating separation membrane having different permeation speeds for the organic gas component and carbon dioxide in the separator in the polymer electrolyte fuel cell according to the first solving means.
  • first and second solving means particularly contribute to the solution of the first problem (an efficient method for oxidizing organic gas components).
  • the gas that has passed through the catalytic reactor and the remaining exhaust gas of the oxidizing agent that has not been taken into the separator are merged. It is to add piping. This particularly contributes to the solution of the second problem (reduction of the amount of catalyst used).
  • the fourth solution is to add a member for transferring the heat of the catalyst to the gas upstream portion of the catalyst reactor in the catalyst reactor in the polymer electrolyte fuel cell according to the first solution. .
  • the fifth solving means has a solid polymer electrolyte membrane, electrodes joined to both surfaces of the solid polymer electrolyte membrane, and a flow path for supplying a fuel or an oxidant to each of the electrodes through circulation.
  • a solid polymer fuel cell using the liquid organic compound as the fuel comprising a manifold for discharging the exhaust gas of the oxidant, wherein the manifold is an organic gas component comprising the fuel or an incomplete oxide of the fuel A catalyst that oxidizes the catalyst.
  • the organic compound is efficiently removed by separating the oxidant exhaust gas from the fuel exhaust gas and treating it independently. It contributes particularly to the solution of the fourth problem (treatment of organic substances in oxidant exhaust gas).
  • the first problem is to efficiently oxidize methanol even if the exhaust gas flow rate increases.
  • the fuel exhaust gas is mainly composed of carbon dioxide by the following reaction (see Formula 1).
  • This reaction (Formula 1) is the sum of the half-cell reaction formula of the oxidation reaction on the anode (Formula 2) and the reduction reaction on the cathode (Formula 3). Of CO 2 is produced.
  • FIG. 1 shows a basic configuration of a fuel cell (DMFC) system 101 that does not have a mechanism for oxidizing methanol in exhaust gas.
  • DMFC fuel cell
  • DMFC main body In the center of the fuel cell system 101, there is a polymer electrolyte fuel cell (hereinafter referred to as DMFC main body) 102.
  • the methanol-containing fuel used for power generation of the DMFC main body 102 is filled in a methanol container (fuel tank) 103 and stored.
  • the methanol stored in the methanol container 103 may be 100% methanol, but generally an aqueous methanol solution diluted with water is used.
  • a required amount of methanol is introduced into the fuel tank 108 by the fuel supply means 104 including a valve and a pump. It is assumed that the fuel supply unit 104 operates when the methanol concentration becomes a predetermined concentration or less.
  • an automatic control mechanism such as a microcomputer is used.
  • the pure water supply means 107 is operated and necessary water is supplied from the pure water container 106 to the fuel tank 108.
  • the methanol concentration is maintained in an appropriate range by supplying water.
  • a known methanol concentration sensor capable of quantifying the methanol concentration based on the density, refractive index, or infrared absorption amount of the fuel is incorporated.
  • the aqueous methanol solution controlled to a predetermined concentration range is guided from the fuel tank 108 to the fuel circulation line 105 by the fuel circulation pump 109 and supplied to the DMFC main body 102.
  • Methanol is oxidized on the anode of the DMFC body 102 (Formula 2). Thereafter, the methanol drainage is returned to the fuel tank 108 again.
  • Carbon dioxide generated by the oxidation reaction of methanol exists in the DMFC main body 102 as dissolved or fine bubbles.
  • the carbon dioxide moves to the fuel tank 108 via the fuel circulation line 105 and diffuses into the gas phase. Further, when the pressure in the gas phase increases, the gas is discharged to the outside of the fuel cell system 101 through the gas-liquid separator 110 equipped with the gas-liquid separation membrane.
  • the air is supplied from the fan or other air supply means 111 to the DMFC main body 102 via the oxidant supply pipe 116 to generate water on the cathode (Formula 3).
  • the exhaust gas after power generation is released to the outside of the fuel cell system 101 via the oxidant exhaust gas pipe 114.
  • the main methanol release source to the outside is a fuel tank 108.
  • the DMFC main body 102 is normally kept at a temperature of 50 to 60 ° C., and the methanol aqueous solution in the fuel circulation line 105 and the fuel tank 108 are in the same temperature range, so that methanol has a saturated vapor pressure at that temperature. Because it is.
  • the saturated vapor pressure of methanol is about 56 kPa.
  • the saturated vapor pressure of water is about 12 kPa at 50 ° C. and about 20 kPa at 60 ° C. Therefore, it can be seen that the methanol vapor pressure is relatively large and can be evaporated.
  • High vapor pressure methanol exists in the gas phase of the fuel tank 108, and when carbon dioxide permeates the gas-liquid separator 110, it may be released together with the fuel cell system 101.
  • methanol vapor pressure decreases to the ratio of methanol concentration.
  • the liquid temperature is calculated to be about 3 kPa at 50 ° C. and about 4 kPa at 60 ° C.
  • the water vapor pressure is about 11 kPa at a liquid temperature of 50 ° C. and about 19 kPa at 60 ° C., which is 4 to 5 times the methanol vapor pressure.
  • the methanol permeation amount of the gas-liquid separator 110 is an important design item.
  • the generation rate of carbon dioxide generated from the single cell is calculated as about 35 ⁇ mol / s from Equation 2.
  • the power becomes 100 W, and the carbon dioxide generation rate at that time increases to about 860 ⁇ mol / s.
  • this generation rate is converted into a flow rate at 60 ° C., it is about 24 cc / s and 85 L / hour per hour.
  • the pressure of the entire exhaust gas discharged from the fuel cell system 101 is atmospheric pressure (101 kPa)
  • the liquid temperature is 60 ° C.
  • the methanol concentration of the aqueous solution is 5%
  • the methanol, water, and carbon dioxide determined from the partial pressure The theoretical molar ratio is 4:19:77. Therefore, when the methanol vaporized from the 5% methanol aqueous solution is discharged out of the battery as it is, it becomes 45 ⁇ mol / s. That is, 0.16 mol (0.5 g) of methanol is released every hour.
  • This value is high in evaporation rate from 5% methanol aqueous solution, the vapor pressure of methanol and water in the exhaust gas is always saturated, and methanol permeates through the gas-liquid separation membrane through which methanol and water pass. It is a value under an extreme condition assuming that there is no suppression function.
  • the “passive” DMFC which uses the diffusion of reactants and omits auxiliary equipment, uses the natural diffusion of fuel and air. Therefore, the general output is several watts due to electrode size constraints. In accordance with the small output, the amount of fuel exhaust gas also decreases. As a result, the theoretical methanol release of the “passive” DMFC is on the order of 1/100 of the theoretical value of the above-mentioned 100 W class DMFC, so methanol removal from the fuel exhaust gas is possible with a relatively simple method. Become. For example, as in the methods of Patent Documents 1 and 2, a structure in which oxygen is taken into the catalyst layer by natural diffusion is sufficient.
  • the present invention provides a method for efficiently removing methanol even under conditions where the amount of evaporation of methanol is an extreme value and the exhaust gas flow rate of carbon dioxide is large.
  • the second problem is the reduction of the amount of catalyst used, which is solved by satisfying the following two requirements.
  • the first requirement is to reduce the amount of air supplied to oxidize methanol on the catalyst as much as possible.
  • the theoretical methanol release contained in the fuel exhaust gas is increased in the “active” DMFC. This is because, if the catalyst is not designed based on the amount of oxygen necessary for the oxidation of methanol and an excessive amount of air is supplied, the amount of catalyst used increases and the catalyst volume cannot be made compact.
  • the next requirement is to remove the heat generated by the catalytic reaction, so that the temperature of the catalytic reactor does not exceed the allowable temperature inside the system, and furthermore, the temperature of the gas treated with the catalyst exceeds the allowable temperature of the exhaust gas of the system. So that there is no cooling. Increasing the gas flow rate supplied to the catalyst makes it easier to cool the catalyst and exhaust gas. Therefore, this requirement is in a trade-off relationship with the above-described catalyst usage with respect to the gas flow rate, and it is important to balance both requirements.
  • a common noble metal oxidation catalyst includes a catalyst (such as Al 2 O 3 ) in which platinum fine particles are supported on an oxide. Any kind of oxidation catalyst can be used as long as it has a function of oxidizing an organic compound such as methanol at 100 ° C. or lower.
  • the SV values of these catalysts are about 20000 for the granular catalyst and 30000 to 40000 for the honeycomb catalyst.
  • the carbon dioxide generation rate in the 100 W class DMFC described above was about 85 L / hour (excluding the amount of methanol vapor and water vapor).
  • the amount of methanol and water vapor released is equivalent to the partial pressure at 60 ° C. (4 kPa and 19 kPa, respectively). Therefore, when the pressure of the fuel exhaust gas is approximated to the atmospheric pressure (101 kPa), the exhaust gas flow rate is a value obtained by multiplying the ratio of atmospheric pressure / carbon dioxide partial pressure by 85 L / hour. That is, the exhaust gas flow rate is 110 L / hour.
  • the catalyst volume is calculated to be about 6 cc. This value is a stoichiometric calculated value based on Equation 1, and is a theoretical minimum value. If a high performance catalyst having a large SV value is used, a smaller catalyst volume is preferable.
  • the air exhaust gas flow rate of DMFC main body 102 will be a very large value of about 3000 L / hour (60 ° C. converted value). Therefore, when the entire amount of the air exhaust gas is mixed with the fuel exhaust gas, the gas flow rate passed through the catalyst is increased by about 30 times, and the catalyst volume is increased by 30 times accordingly.
  • the conventional gas-liquid separation membrane cannot suppress methanol vapor permeation by a physical method (a method utilizing selectivity based on the pore size), and is equivalent to a saturated vapor pressure at the fuel tank temperature. There is concern about the release of methanol. If the methanol evaporation amount can be suppressed as much as possible, the catalyst volume can be reduced.
  • the ratio of the air mixed into the fuel exhaust gas may be controlled so as to be within an appropriate temperature range (allowable temperature range of the catalytic reaction vessel or system).
  • the temperature of the gas brought into contact with the catalyst is set to be equal to or higher than the reaction starting temperature.
  • a noble metal catalyst supported on a normal oxide carrier exhibits oxidation activity at a gas inlet temperature of around 40 ° C. and exhibits almost 100% activity at about 120 ° C. 100% activity means that the methanol conversion is 100%. In the temperature range at both ends, the methanol conversion tends to increase so as to form an S-shaped curve. That is, the third problem is that a mechanism for increasing the catalyst inlet temperature must be provided in order to start the catalytic reaction. Therefore, if the fuel exhaust gas is simply mixed with the air supplied to the DMFC, the air flow rate is more than 10 times that of the exhaust gas. Therefore, even if the fuel exhaust gas temperature is 50 to 60 ° C., the catalyst reaction start temperature (40 The reaction does not start.
  • the fourth problem is to prevent the release of methanol or the like from the oxidant exhaust gas when a small amount of organic matter such as methanol leaks into the oxidant exhaust gas. Possible causes of this leakage are methanol crossover through the electrolyte membrane or leakage from the seal portion.
  • the first to fourth problems can be solved simultaneously by treating the fuel exhaust gas and the oxidant exhaust gas separately.
  • the solution to the first problem is made possible by a design that does not increase the flow rate of the fuel exhaust gas as much as possible when processing the fuel exhaust gas.
  • the implementation method and the structure for realizing the method will be described below.
  • FIG. 2 shows a basic configuration of a fuel cell system 201 which is an embodiment of the present invention.
  • the DMFC main body 202 is located substantially in the center of the figure.
  • the basic configuration of the auxiliary machine and the like is the same as that of the fuel cell system 101 shown in FIG. 1, but the gas-liquid separator 110 in FIG. 1 is changed to the gas-liquid separator 210 according to the present invention, and the catalytic reactor 215 Have been added.
  • the other configuration of the fuel cell system 201 is almost the same as that of the fuel cell system 101 shown in FIG.
  • the fuel stock solution is stored in the fuel tank 203, and the fuel is supplied to the fuel tank 208 by the fuel supply means 204. Pure water is replenished to the fuel tank 208 by the pure water supply means 207 from the pure water container 206.
  • the concentration of the fuel stored in the fuel tank 208 is controlled within a predetermined range by the supply amount of fuel or pure water.
  • the fuel stored in the fuel tank 208 is supplied to the DMFC main body 202 via the fuel circulation line 205 by the operation of the fuel circulation pump 209.
  • the remaining fuel consumed in the DMFC main body 202 is returned to the fuel tank 208 via the fuel circulation line 205.
  • the air is supplied to the DMFC main body 202 through the oxidant supply pipe 216 by the air supply means 211. After oxygen is consumed in the DMFC main body 202, the air exhaust gas is led to the main pipe 214 of the oxidant exhaust gas. On the way, a part of the air exhaust gas is introduced into the gas-liquid separator 210 through the branch pipe 212, and the rest is discharged out of the fuel cell system 201 from the main pipe 217 of the oxidant exhaust gas.
  • Carbon dioxide present in the gas phase portion of the fuel tank 208 is discharged to the gas-liquid separator 210 of the present invention along with a small amount of methanol vapor and water vapor.
  • the permeation amount of methanol vapor is suppressed by the molecularly discriminating separation membrane (302 in FIG. 3 described later) installed in the gas-liquid separator 210.
  • the gas-liquid separator 210 In the gas-liquid separator 210, a part of the air exhaust gas is supplied from the branch pipe 212, and oxygen is added to the fuel exhaust gas. This mixed gas is transferred from the gas-liquid separator 210 to the catalytic reactor 215, and methanol is oxidized by the catalyst.
  • processing gas after passing through the catalytic reactor 215 merges with the air exhaust gas passing through the main pipe 217 of the oxidant exhaust gas through the recovery pipe 213 and is discharged to the outside of the fuel cell system 201.
  • the molecular discriminating separator 301 has the configuration shown in FIG. FIG. 3 shows a cross-sectional structure of the molecular discriminating separator 301.
  • the basic shape is a T-shaped pipe.
  • the fuel exhaust gas is supplied from a fuel tank (208 in FIG. 2) at the bottom of FIG. 3, and the passage of methanol vapor and related substances (formaldehyde, formic acid, etc.) is suppressed by the molecularly distinguishable separation membrane 302 of the present invention.
  • carbon dioxide is mainly permeated.
  • the exhaust gas is mixed with the air flowing from the T-shaped branch pipe 303 and flows upward in FIG.
  • the air supplied from the left side of FIG. 3 is the air that has passed through the branch pipe 212 of FIG.
  • the catalytic reactor 215 of FIG. 2 is connected above the molecular distinguishing separator 301 in FIG.
  • the air mixed in the molecular discriminating separator 301 is preheated to the catalytic reaction start temperature.
  • a part of the exhaust gas at 40 ° C. or higher is diverted from the DMFC main body 202 of FIG. 2, and the gas is introduced into the molecular discriminating separator 301 of FIG.
  • the catalyst inlet temperature which will be described later, can be increased, the catalytic oxidation reaction (same as in Formula 1) can be started, and the reaction can be continued.
  • the molecularly discriminating separation membrane 302 according to the present invention is a porous material, and a polymer membrane having a melting point equal to or higher than the temperature of the fuel exhaust gas, a plastic sheet, a ceramic sheet, or the like can be used.
  • Non-patent Document 1 a polymer film, a polyethylene film, a fluorine-based film, or the like can be selected.
  • these conventional membranes those having an average pore diameter of 1/10 to several tens of microns are used. If these materials are used as they are, it is theoretically known that they have only gas separation ability depending on the molecular weight (Non-patent Document 1).
  • the permeation rate of molecules is inversely proportional to the square root of the molecular weight (molar weight) of the gas.
  • the ratio of the transmission rate of methanol (molecular weight 32) to carbon dioxide (molecular weight 44) is 1.17, and methanol is more permeable than carbon dioxide.
  • the size of the molecule is a small value in the unit of nanometers, so that it is not possible in principle to selectively separate the gas only by the pore diameter.
  • molecular sieves or zeolite having nanometer pores can be separated in principle by physical size, although there is a problem in the gas capacity required for separation.
  • a gas such as methanol trapped in the pores of the molecular sieve reaches an allowable amount, it becomes necessary to replace the molecular sieve, and the system cannot be easy to use.
  • the present invention proposes a new separation method using a more chemical action without adopting the conventional selective separation method of molecules by pore size.
  • the molecular discriminating separation membrane according to the present invention uses a polymer film of polyethylene or fluorine film, a porous carbon plate, or a porous ceramic plate as a basic sheet (base material sheet).
  • the surface of these base materials is modified with an oxygen-containing polymer and trapped by hydrogen bonding with methanol and related substances.
  • oxygen-containing polymer celluloses such as ethyl cellulose, cellulose acetate, and cellulose propionate, or thermoplastic polymers such as polyester, polymethyl methacrylate, polyetherimide, polyacetal, and polyphenylene oxide can be used.
  • a polymer hybrid material obtained by blending these oxygen-containing polymers can also be applied.
  • thermosetting resin such as an epoxy resin or a phenol resin
  • it is formed into a plate with a binder by pulverization, or pores of 1/10 to several tens of microns are provided by other methods. Materials can be used.
  • the amount of oxygen-containing polymer added is limited so that the pore diameter of the base material is not significantly reduced.
  • a porous polyethylene sheet can be used as a base material.
  • a typical porous polyethylene sheet having a thickness of 50 microns, a pore diameter of 10 to 20 microns, and a time for passing 100 cc of air (so-called air permeability) of 1 to 10 seconds is used as a base material.
  • a molecule-discriminating separation membrane is prepared by preparing a solution with a concentration of several percent using 1-methyl-2-pyrrolidone as a solvent and cellulose acetate as a solution, and applying the solution to the base material sheet and drying. Can do. If this is applied to the present invention, the ratio of the methanol permeation rate to the carbon dioxide permeation rate can be made smaller than the permeation rate estimated by Graham's outflow law.
  • Cellulose acetate is excellent in affinity with methanol, so it may be applied to the surface of the base material, preferably the pipe side connected to the fuel tank.
  • Cellulose such as cellulose acetate has both a hydrophobic property derived from a carbon-carbon bond or a carbon-hydrogen bond and a hydrophilic property derived from a C—O bond. If this amphoteric function is utilized, a hydrogen bond with a gas molecule such as methanol is formed in a hydrophilic portion and captured, and the rate of permeation through the separation membrane is reduced.
  • the hydrophobic part excludes water and methanol liquid and does not permeate the membrane.
  • Such a specific function of cellulose is particularly suitable as a molecularly discriminating separation membrane.
  • the whole molecule discriminating separator 301 in FIG. 3 is kept warm so that the temperature of the fuel exhaust gas does not decrease.
  • the atmosphere temperature of the molecularly distinguishable separator 301 may be set to be equal to or higher than the fuel exhaust gas temperature by setting the temperature of the air introduced from the branch pipe 303 to be equal to or higher than the fuel exhaust gas temperature. If it does in this way, it will become possible to prevent dew condensation of water, methanol, etc. obstruct
  • the outflow of the liquid itself can be prevented by setting the pore diameter of the porous sheet as the base material to a range of 1/10 ⁇ to several tens of microns. This may be achieved by selecting the pore diameter in consideration of the internal pressure of the liquid fuel in accordance with the capillary force equation (Equation 4).
  • is the density of the liquid
  • g is the acceleration of gravity
  • h is the height of the liquid surface in contact with the porous sheet
  • is the surface tension of the liquid
  • is the contact angle.
  • D is the diameter of the tube, but the average pore diameter of the membrane may be substituted instead.
  • the solution to the second problem is to reduce the amount of air mixed into the fuel exhaust gas as much as possible. At this time, the above two requirements that the temperature after the catalytic reaction and the exhaust gas temperature when discharged to the outside of the system must be taken into consideration are satisfied.
  • the catalyst volume can be reduced by taking the minimum amount of oxygen without using the method of mixing the fuel exhaust gas with the entire amount of the oxidant gas.
  • the implementation method and the structure for realizing it will be described below (FIGS. 2 and 3).
  • the fuel exhaust gas is introduced into the gas-liquid separator 210 (corresponding to the molecular discriminating separator 301 in FIG. 3) due to the increase in the internal pressure of the fuel tank 208. At this time, necessary air is supplied from the branch pipe 303 and mixed with the fuel exhaust gas.
  • the temperature of the supplied air is preferably higher than the temperature of the fuel exhaust gas. This is because if the temperature is low, the above-mentioned poor ventilation due to condensation and the third problem (reduction in gas temperature) are caused. Therefore, the branch pipe 212 is provided in the middle of the main pipe 214 of the oxidant (air) exhaust gas of the DMFC main body 202, and air is introduced into the molecular discriminating separator 301.
  • a constant flow pump is provided in the middle of the oxidant exhaust line and the molecularly distinguishable separation membrane 302, so that a fixed amount of air exhaust gas can be mixed with the fuel exhaust gas. That is, a constant flow pump is installed in the middle of the branch pipe 212 in FIG.
  • the pipe diameter (inner diameter) of the branch pipe 212, the recovery pipe 213, and the air exhaust main pipe 214 is constant 10 mm
  • the catalyst particle diameter is 1 mm to 3 mm
  • the catalyst reactor inner diameter is 20 mm to 30 mm
  • the length of the catalyst layer Is 100 mm to 200 mm
  • the pressure loss applied to the branch pipe 212 with respect to the pressure loss of the air exhaust main pipe 214 can be adjusted to a range of 1:10 to 1:30.
  • This makes it possible to reduce the flow rate of the gas to be processed by the catalyst to 1/10 or less, compared with the case where the fuel exhaust gas is mixed with the entire amount of air as in the conventional case.
  • the air flow rate mixed with the fuel exhaust gas flow rate is controlled to an appropriate value, and an increase in the amount of catalyst used can be suppressed.
  • the temperature of the air exhaust gas due to heat radiation from the pump and the formation of condensed water can be avoided, and an auxiliary machine is not required, which is a more desirable embodiment.
  • the gas temperature after the catalytic reaction may increase significantly from 100 ° C. This is the second requirement in the second problem.
  • the reaction heat of Formula 1 is 1080 kJ / mol
  • the methanol reaction amount is 1 g / hour
  • the total flow rate of the gas passing through the catalyst is 250 L / hour
  • the specific heat of the gas is 33 J / mol ⁇ K
  • the catalyst temperature reaches about 170 ° C.
  • the catalyst temperature and the gas outlet temperature were the same, and no heat was released to the outside of the catalyst reactor (adiabatic conditions).
  • the exhaust gas temperature can be lowered by joining the high temperature exhaust gas after the catalytic reaction with the oxidant exhaust gas and diluting with the low temperature gas.
  • the temperature of the catalytic reaction vessel is set to 100 to 150 ° C., it is easy to solve the heat problem, so a more realistic solution is proposed.
  • the flow rate of air added to the fuel exhaust gas may be increased. For example, if the flow rate of gas passing through the catalyst layer is 250 L / hour and the calculation result when the gas temperature reaches about 170 ° C., the air flow rate is increased by 60 L / hour so that the gas flow rate becomes 310 L / hour. The gas temperature can be lowered to 150 ° C. Even in this case, since the gas flow rate is increased only by 24%, the amount of catalyst used can be greatly reduced as compared with the case where the entire amount of the air exhaust gas is mixed with the fuel exhaust gas.
  • the exhaust gas temperature passing through the catalytic reactor 215 is set to 100 to 150 ° C.
  • the oxidant exhaust gas passing through the gas is combined, it becomes possible to cool to 60 to 65 ° C.
  • the third problem is that a mechanism for raising the gas inlet temperature to a predetermined temperature at the time of first contact with the catalyst is not considered in order to start the catalytic reaction or to maintain the catalytic reaction. is there.
  • a mechanism for raising the gas inlet temperature to a predetermined temperature at the time of first contact with the catalyst is not considered in order to start the catalytic reaction or to maintain the catalytic reaction. is there.
  • the gas temperature after mixing is cooled to near the oxidant gas temperature.
  • the gas inlet temperature necessary for starting the catalytic reaction cannot be satisfied, and the catalytic reaction is stopped. According to such a method, it is difficult to sustain the catalytic reaction unless there is a mechanism for constant heating before the catalyst.
  • a part of the oxidant gas is taken in without introducing the whole amount of the oxidant exhaust gas into the catalytic reactor 215.
  • the catalyst inlet temperature can be prevented from becoming lower than the reaction start temperature.
  • FIG. 4 is a cross-sectional view showing the structure of the catalytic reactor 401 equipped with a heating unit.
  • an organic substance such as methanol can be rapidly oxidized and removed.
  • a catalyst holding part 403 for preventing the catalyst layer 402 from dropping is provided at the gas inlet (lower side in FIG. 4).
  • a porous plate made of a refractory metal or ceramics can be used for the catalyst holding component 403, for example.
  • the material is not limited to metal as long as the melting point is higher than the catalytic reaction temperature.
  • the fuel exhaust gas contains water vapor, the corrosive material is desirable, and a carbonaceous porous sheet is particularly suitable.
  • the pore size is smaller than the particle size of the catalyst. In the case of using a catalyst layer sintered in a honeycomb shape, it is sufficient that a single hole is formed so that the catalyst does not fall, so that it is not essential to be porous.
  • a catalyst holding component 404 is also provided on the upper part of the catalyst layer 402 so that the catalyst layer is not collapsed by vibrations or the catalyst particles are not scattered.
  • the lower part of the catalytic reactor 401 is connected to the gas-liquid separator 210 in FIG. 2.
  • the fuel exhaust gas to which air has been added is introduced from the lower part of the catalyst reactor 401 and passes through the catalyst layer 402, whereby the reaction of Formula 1 proceeds. After removing methanol and the like, the gas is discharged from the upper part of the catalytic reactor 401 in FIG. 4 and sent to the recovery pipe 213 in FIG.
  • a heating means 405 such as a preheater heater can be used to preheat the gas only at the start of the catalyst reaction.
  • the catalyst has heat transfer from the downstream side to the upstream side of the gas, so that the gas inlet temperature can be increased. If necessary, it is possible to raise the temperature of the exhaust gas at the catalyst inlet with a small amount of power over the operation time of the DMFC. Even if such a configuration is adopted, it is possible to reduce the power consumption as compared with the case where the entire amount of the oxidant exhaust gas is mixed.
  • the catalytic reactor 401 in FIG. 4 is provided with heating means 405 on the outer periphery.
  • the heating means 405 may be installed in the gap between the inner wall of the reactor 401 and the catalyst layer 402.
  • the heating means 405 is desirably made of a corrosion resistant material such as carbon. If the catalyst holding component 403 is an electron conductive resistor, power can be supplied to the catalyst holding component 403 and the heating means 405 can be omitted. Also in this case, it is desirable to use a carbonaceous heater that is not easily corroded by moisture.
  • FIG. 5 illustrates the cross-sectional structure.
  • the catalyst layer 502 was installed almost at the center of the catalyst reactor 501.
  • the heat transfer member 506 is installed in close contact with the outer periphery of the catalyst layer 502.
  • the side surface in contact with the reactor 501 of the heat transfer member 506 is made of a dense material. This is to prevent exhaust gas from flowing from the catalyst layer 502 to the gap between the catalyst reactor 501 and passing through the catalyst reactor 501 in an unreacted state.
  • the catalyst holding component 504 is for preventing the catalyst from dropping from the upper part in FIG.
  • the heat transfer member 506 was extended to the lower part of the catalyst in FIG. 5 and then connected to a porous member 507 installed in front of the catalyst inlet. Here, heat can be applied to the fuel exhaust gas for preheating.
  • the porous member 507 By using the porous member 507, the catalyst holding component 403 shown in FIG. 4 can be omitted.
  • the heating means 505 can significantly reduce power consumption by using it only for a short time as necessary. If the gas inlet temperature is higher than the catalyst reaction start temperature, the heating means 505 can be omitted.
  • FIG. 6 shows a typical cross-sectional structure of a stack of DMFC bodies.
  • Formula 2 or Formula 3 proceeds on any electrode surface of the membrane-electrode assembly (hereinafter referred to as MEA) 602, respectively.
  • MEA membrane-electrode assembly
  • a structure in which the MEA 602 is sandwiched between two separators 604 (the same kind of separators 604 is in contact with both surfaces of the MEA 602) is referred to as a single cell 601.
  • a flow path through which fuel flows is formed on one surface of the separator 604, and a flow path through which oxidant flows is formed on the other surface.
  • the gasket 605 Between the two separators 604, the gasket 605, the electrolyte membrane portion of the MEA 602, and the gasket 605 are laminated and pressed to prevent leakage of fuel and oxidant.
  • an elastic body having oxidation resistance, reduction resistance, and water resistance such as ethylene / propylene rubber, fluorine rubber, or silicon rubber can be used.
  • An epoxy resin may be used as an adhesive and cured to replace the gasket.
  • a plurality of single cells 601 are connected in series, current collector plates 613 and 614 are installed at both ends, and further, the two end plates 609 are tightened from the outside via an insulating plate 607. If the end plate is an insulating material, the insulating plate 607 can be omitted. Bolts 616, springs 617, and nuts 618 are used as fastening parts.
  • the fuel is supplied from a fuel gas piping connector 610 provided on the left end plate 609 shown in FIG. 6, passes through each single cell 601, is oxidized on the anode of the MEA, and then the right end plate 609. It is discharged from the connector 622 for the fuel gas piping on the discharge side.
  • a liquid organic fuel such as methanol can be used as the fuel.
  • a liquid fuel such as a methanol aqueous solution.
  • the oxidant is supplied from the oxidant gas pipe connector 611 provided on the left end plate 609 and discharged from the oxidant gas pipe connector 623 of the right end plate 609. Air is supplied through a pipe from an air fan installed outside the battery.
  • the current collector plates 613 and 614 are connected to an external DC-DC converter or DC-AC inverter (both expressed as 620) via an external power line 619, and can supply power to the external load 621. It is like that.
  • a cell stack composed of 25 single cells 601 was manufactured with such a component structure.
  • FIG. 7 is an enlarged cross-sectional view of the single cell 601 of the cell stack of FIG.
  • the cell stacking direction is displayed by being rotated by 90 °.
  • the separator 701 has an oxidant channel 710.
  • the oxidant channel 710 is in contact with the cathode 703.
  • the cathode 703 includes a catalyst layer and a gas diffusion layer.
  • the catalyst layer is fixed and bonded to the surface of the solid polymer electrolyte membrane 702.
  • the catalyst layer is generally one in which platinum fine particles are supported on graphite powder, but other catalysts may be used. Such catalyst particles are bound by an electrolyte binder.
  • a gas diffusion layer is provided on the upper surface of the catalyst layer.
  • a fuel flow path 711 is formed in the separator 707.
  • the fuel flow path 711 is in contact with the anode 704.
  • the anode 704 is also composed of a catalyst layer and a gas diffusion layer.
  • the catalyst layer is fixed and bonded to the surface of the solid polymer electrolyte membrane 702.
  • the catalyst layer has platinum fine particles supported on graphite powder, or fine particles obtained by alloying platinum with a cocatalyst such as lutite that has the function of oxidizing and removing carbon monoxide generated in the process of fuel oxidation. It is supported and further bonded with an electrolyte binder. Other catalysts may be used for the catalyst layer.
  • a gas diffusion layer is provided on the catalyst layer.
  • the solid polymer electrolyte membrane 702 having both the anode 704 and the cathode 703 bonded to each other is referred to as a membrane-electrode assembly (hereinafter referred to as MEA).
  • MEA membrane-electrode assembly
  • a gas diffusion function for example, a gas diffusion layer is included in the anode 704 and the cathode 703.
  • the solid polymer electrolyte membrane 702 serves as a medium for transporting hydrogen ions (H + ) generated at the anode 704 to the cathode 703.
  • the fuel cell reaction begins with the extraction of electrons at the anode 704 when hydrogen ions are generated from liquid organic fuel such as methanol.
  • the electrons are transferred to the separator 707 and transmitted to the separator 701 after passing through an external circuit. Finally, the same number of electrons generated at the anode 704 are sent to the cathode 703.
  • Oxidant is supplied from the oxidant flow path 710 to the cathode 703 and reacts with hydrogen ions that have permeated the solid polymer electrolyte membrane 702 to generate produced water.
  • Fuel and oxidant are separated by MEA and separator to prevent direct chemical reaction. These reactants are prevented from leaking to the outside by gaskets 705, 712, and 713.
  • an oxidant supply manifold 708 is provided so as to penetrate a part of the separators 701 and 707.
  • the oxidant is supplied from the oxidant supply manifold 708 to each single cell, oxidized at the cathode 703, and then discharged to the outside of the battery via the oxidant discharge manifold 709.
  • the gaskets 705, 712, and 713 are inserted between the separators 701 and 707 and the solid polymer electrolyte membrane 702 to prevent leakage of the oxidant and the fuel.
  • a passage communicating from the oxidant supply manifold 708 to the oxidant flow path 710 is formed in the plane of the separator 701. However, when it is shown in a plan view, it seems to overlap with a part of the gasket 712 on the left side of FIG.
  • the flow path from the oxidant flow path 710 to the oxidant discharge manifold 709 is also formed in the plane of the separator 701, but when drawn on a plan view, it seems to overlap with a part of the gasket 713, It is omitted in FIG.
  • FIG. 8 shows the installation structure of the oxidant exhaust gas treatment catalyst according to the present invention.
  • the catalyst layer 814 is a sintered porous catalyst such as a honeycomb and is housed in the space of the manifold 809 that discharges the oxidizing agent. This is because if a powder or granular catalyst is simply used as the catalyst layer, it may be scattered inside the manifold 809 and come out of the battery.
  • the catalyst layer 814 is filled in the manifold 809 on the exhaust gas side of the oxidant and is not used for the oxidant supply side manifold 808. Since FIG. 8 is a repetitive structure of the single cell of FIG. 7, other component names are the same as those of FIG.
  • the separator 801 is a separator having an oxidant channel 810
  • the separator 807 is a separator having a fuel channel 811.
  • the separators 801 and 807 face the cathode 803 and the anode 804, respectively, and constitute a single cell 815.
  • the cathode 803 and the anode 804 have a three-layer structure with an electrolyte membrane 802 interposed therebetween. Gaskets 805, 812, and 813 are used to prevent leakage of fuel and oxidant.
  • the catalyst layer 814 By incorporating the catalyst layer 814 in the battery, it is not necessary to provide a special catalyst reactor for the treatment of the oxidant, and the space for the catalyst reaction vessel for the oxidant treatment can be reduced in the system.
  • the DMFC system according to the present invention is designated as S1.
  • S2 does not include the catalytic reactors of the present invention (210 and 215 in FIG. 2) and the internal catalyst layer (FIG. 8), and other parts have the same specifications. .
  • the concentration of the methanol aqueous solution stored in the fuel tank 103 (FIG. 1) and the fuel tank 203 (FIG. 2) was 50%, and the methanol aqueous solution when flowing through the fuel circulation lines 105 and 205 was 3-6%.
  • the voltage of the air supply means (fans) 111 and 211 was set so that the oxidant utilization rate would be 10%.
  • the fuel exhaust gas and the oxidant exhaust gas were analyzed, and the amount of methanol released was measured.
  • the amount of methanol released was measured at 0.8 g / h from the fuel exhaust gas and 0.5 g / h from the oxidant exhaust gas.
  • the amount of methanol released was 0.1 g per hour from the fuel exhaust gas and 0.2 g per hour from the oxidant exhaust gas.
  • the amount of methanol released can be greatly reduced.
  • Fuel cell system 102,202 which uses a liquid organic compound as a fuel Solid polymer fuel cell 103,203 Fuel tank 104,204 Fuel supply means 105,205 Fuel circulation lines 106,206 Pure water containers 107,207 Pure water Supply means 108, 208 Fuel tank 109, 209 Fuel circulation pumps 110, 210 Gas-liquid separators 111, 211 Air supply means 212 Branch pipe 213 Recovery pipes 114, 214, 217 Oxidant exhaust gas main pipes 116, 216 Oxidant supply pipe 215 , 401, 501 Catalytic reactor 301 Molecular discriminating separator 302 Molecular discriminating membrane 303 Branch pipe (connect to branch pipe 212 in FIG.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

 液体有機燃料を用いる固体高分子形燃料電池から排出されるガスの中に、未利用の燃料蒸気あるいはその不完全酸化物が含まれる。これらの有機物質を効率的に除去する方法が必要である。本発明は、固体高分子電解質膜と、固体高分子電解質膜の両面に接合された電極と、燃料または酸化剤を流通させて電極のそれぞれに供給する流路とを有し、液体有機化合物を燃料とする固体高分子形燃料電池において、燃料の排ガスに含まれる未利用の燃料または燃料の不完全酸化物からなる有機ガス成分と二酸化炭素とを燃料の液体成分から分離し、かつ、固体高分子形燃料電池を通過した酸化剤の排ガスの一部を取り込む分離器と、分離器から取り込んだガスの有機ガス成分を酸化する触媒を有する触媒反応器とを備えることを特徴とする。燃料排ガスと酸化剤排ガスを別々に触媒によって処理することによって、排ガス中に含まれる有機化合物を酸化、除去することができる。

Description

固体高分子形燃料電池
 本発明は、液体有機化合物を燃料とする固体高分子形燃料電池に関する。
 メタノール、エタノール、ジメチルエーテルなどの液体有機化合物を燃料とする固体高分子形燃料電池は、騒音が小さい、運転温度が低い(約70~80℃)、燃料の補給が容易であるなどの特徴を有する。そのため、可搬式電源、電気自動車の電源、または電動バイクやアシスト式自転車、さらには医療介護用の車椅子やシニアカーなどの軽車両用電源として、幅広い用途が期待されている。
 これらの用途の中で、メタノールを燃料とする直接メタノール形燃料電池(以下、DMFCと称する。)は、改質器を省略できる点、燃料を室温で補給できる点、出力に対する燃料コストがガソリン等よりも安い点、50~60℃の低温で発電できるので起動時間が短い点などの利点を有している。特に、燃料をポンプ等により強制的に流通させる“アクティブ式”DMFCは、数十Wから数百Wの高い出力が得られ、電子機器、照明器具などの比較的低電力の機器の給電に適している。また、セルサイズの大型化、積層セル数の増加により1kW以上のDMFCを用いれば、移動体にも適用可能である。
 DMFCを車内や室内などの密閉空間で使用するためには、メタノール蒸気が環境基準以下になるような構造、機構を設けることが必要である。数十ワット以上、特に100W以上のDMFCの場合は、燃料および空気の排ガス流量が多いために、特別なメタノール除去装置が必要となる場合がある。
 従来の技術には、例えば、特許文献1から3に記載されたメタノールおよびその不完全酸化物(ホルムアルデヒド、ギ酸など)を除去する方法がある。
特開2003-346862号公報 特開2005-276588号公報 特許4084296号公報 特開2008-41375号公報
東京化学同人、アトキンス著、物理化学(第6版)下巻、789ページ
 しかしながら、これらの従来技術では、以下の4つの項目が十分に考慮されていない。
 第一に、有機ガス成分を酸化するために、触媒に十分な酸素を取り込む構成になっていない。したがって、数十W以上の大出力DMFCシステムにて処理すべき有機ガス成分が増大したときの、有機ガス成分の除去方法が考慮されていない。例えば、酸素が自然拡散によって触媒に取り込まれる構造では、酸素不足となり反応が停止する。また、メタノール等の除去されるべき物質の蒸発量をできるだけ抑制する技術も必要である。
 第二に、燃料排ガス中に含まれる有機ガス成分を酸化するために酸化剤ガスを混合する方式の場合、酸化剤ガスの混合量を低減し、触媒使用量を削減することが考慮されていない。例えば、酸化剤ガスの全量に有機ガス成分を混合すると、触媒を通過させるガス量が大きく、それに応じて触媒量が増大する。
 第三に、触媒反応を開始させるために、または、触媒反応を持続させるために、触媒に最初に接触する際のガスの入口温度を所定の触媒反応開始温度に高める機構が考慮されていない。例えば、有機ガス成分が多量の酸化剤ガスに混合されると、ガス温度が酸化剤ガス温度まで冷却され、触媒の前に常時加熱する機構がないと酸化反応を開始あるいは持続することができない。
 第四に、酸化剤排ガスにメタノール等の有機物が極微量に漏洩したときの処理方法が考慮されていない。DMFCの場合、膜-電極接合体(以下、MEAと称する。)にフッ素膜を用いると、メタノールの透過速度が大きく、電圧低下および出力低下となることが知られている。炭化水素系電解質膜(例えば、特許文献4)を用いると、メタノール透過量を著しく減少させることができる。
 ここで、さらにメタノール透過量を徹底的に削減するには、本来的には電解質膜の改良が必要である。しかしながら、MEAのマニホールド周りのシール部からメタノール等がリークすることがあった場合には、酸化剤排ガス中に含まれるメタノール等を除去する必要性がある。よって、その必要性がある場合に、第四の課題を解決することが求められる。
 本発明の目的は、上述の4つの技術課題を克服し、従来よりもコンパクトで信頼性の高いメタノール等の除去機構を備える燃料電池を提供するものである。
 そこで、発明者らは、4つの課題を解決するために鋭意検討した結果、固体高分子形燃料電池の新規な構造を構築するに至った。
 第一の解決手段は、固体高分子電解質膜と、前記固体高分子電解質膜の両面に接合された電極と、燃料または酸化剤を流通させて前記電極のそれぞれに供給する流路とを有し、液体有機化合物を前記燃料とする固体高分子形燃料電池において、前記燃料の排ガスに含まれる未利用の前記燃料または前記燃料の不完全酸化物からなる有機ガス成分と二酸化炭素とを前記燃料の液体成分から分離し、かつ、前記固体高分子形燃料電池を通過した前記酸化剤の排ガスの一部を取り込む分離器と、前記分離器から取り込んだガスの有機ガス成分を酸化する触媒を有する触媒反応器とを備えることである。
 第二の解決手段は、第一の解決手段による固体高分子形燃料電池において、前記分離器に、前記有機ガス成分と二酸化炭素とで透過速度が異なる分子識別性分離膜を設けることである。
 これらの第一および第二の解決手段は、第一の課題(有機ガス成分の効率的な酸化処理方法)の解決に対し、特に貢献するものである。
 第三の解決手段は、第一の解決手段による固体高分子形燃料電池において、前記触媒反応器を通過したガスと、前記分離器に取り込まれなかった残りの前記酸化剤の排ガスとを合流させる配管を付加することである。これは、第二の課題(触媒使用量の削減)の解決に対し、特に貢献するものである。
 第四の解決手段は、第一の解決手段による固体高分子形燃料電池において、前記触媒反応器に、前記触媒の熱を前記触媒反応器のガス上流部に伝達させる部材を付加することである。これは、第三の課題(ガス入口温度を触媒反応開始温度以上とすること)の解決に対し、特に貢献するものである。
 第五の解決手段は、固体高分子電解質膜と、前記固体高分子電解質膜の両面に接合された電極と、燃料または酸化剤を流通させて前記電極のそれぞれに供給する流路とを有し、液体有機化合物を前記燃料とする固体高分子形燃料電池において、前記酸化剤の排ガスを排出するためのマニホールドを備え、前記マニホールドは、前記燃料または前記燃料の不完全酸化物からなる有機ガス成分を酸化する触媒を備えることである。これは、酸化剤の排ガスを燃料排ガスから分離し、独立に処理することによって、有機化合物を効率的に除去しようとするものである。第四の課題(酸化剤排ガス中の有機物の処理)の解決に対し、特に貢献する。
 本発明の構造を固体高分子形燃料電池に適用することによって、液体有機化合物からなる燃料およびその関連物質の放出を抑制することが可能となる。
燃料排ガスの処理機構を有しない燃料電池システムの基本構成を示す図である。 本発明の一実施例である燃料電池システムの基本構成を示す図である。 本発明の分子識別性分離器の断面構造を示す図である。 本発明の、加熱部を装着させた触媒反応器の断面構造を示す図である。 本発明の、反応熱を利用する触媒反応器の断面構造を示す図である。 本発明の固体高分子形燃料電池(DMFC本体)スタックの断面構造を示す図である。 本発明の単セルを拡大して示した断面図である。 本発明の酸化剤排ガス処理用触媒の設置構造を示す図である。
 以下の説明では、燃料および酸化剤のそれぞれの排ガスに含まれるメタノールの酸化除去に焦点を当てて説明する。同様に、ホルムアルデヒド、ギ酸を酸化除去することも可能である。さらに、エタノール等の他の液体有機燃料を用いた燃料電池の排ガス処理にも応用可能である。
 まず、上述した4つの課題について詳細に説明する。
 第一の課題は、排ガス流量が増加しても効率的にメタノールを酸化することである。燃料排ガスは、以下の反応による二酸化炭素が主成分となる(式1を参照。)。この反応(式1)は、アノード上の酸化反応(式2)とカソード上での還元反応(式3)の半電池反応式の和となっており、1セル当たり6電子の授受により1モルのCO2が生成されることを意味する。
  CH3OH+3/2O2 → CO2+2H2O  ・・・・・ (式1)
  CH3OH+H2O → CO2+6H++6e-  ・・・・・ (式2)
  3/2O2+6H++6e- → 3H2O    ・・・・・ (式3)
 図1は、排ガス中のメタノールを酸化する機構を有しない燃料電池(DMFC)システム101の基本構成を示す。
 燃料電池システム101のほぼ中央に、固体高分子形燃料電池(以下、DMFC本体という。)102がある。このDMFC本体102の発電に使われるメタノール含有燃料は、メタノール容器(燃料タンク)103に充填され、貯蔵されている。メタノール容器103に貯蔵されているメタノールは、100%のメタノールでも良いが、一般的には水で希釈されたメタノール水溶液が用いられる。この中から必要量のメタノールが、バルブやポンプからなる燃料供給手段104によって燃料タンク108に導入される。燃料供給手段104は、メタノール濃度が所定濃度以下になったときに動作するものとする。これらの制御には、マイコン等の自動制御機構が用いられる。
 また、燃料タンク108のメタノール濃度が上限値を超えたときには、純水供給手段107が作動し、純水容器106から必要な水が燃料タンク108に供給される。メタノール濃度は、水の供給によって適正な範囲に維持される。燃料タンク108の中には、燃料の密度、屈折率、または赤外吸収量等によりメタノール濃度を定量可能な公知のメタノール濃度センサが組み込まれている。
 所定の濃度範囲に制御されたメタノール水溶液は、燃料循環ポンプ109によって燃料タンク108から燃料循環ライン105に導かれ、DMFC本体102に供給される。DMFC本体102のアノード上において、メタノールが酸化される(式2)。その後、メタノールの排液は、再び燃料タンク108に戻される。
 メタノールの酸化反応(式2)によって発生した二酸化炭素は、DMFC本体102では、溶存あるいは微小な気泡として存在する。その二酸化炭素は、燃料循環ライン105を経由して燃料タンク108に移り、その気相に拡散する。さらに、その気相の圧力が増加すると、気液分離膜を装着した気液分離器110を通して、燃料電池システム101の外部に放出される。
 空気は、ファンその他の空気供給手段111から酸化剤供給管116を経由して、DMFC本体102に供給され、カソード上で水を生成する(式3)。発電後の排ガスは、酸化剤排ガス管114を経由して、燃料電池システム101の外部に放出される。
 図1の燃料電池システム101において、外界に対する主なメタノール放出源は、燃料タンク108である。なぜならば、DMFC本体102は、通常50~60℃の温度に保持され、燃料循環ライン105および燃料タンク108のメタノール水溶液もほぼ同じ温度範囲にあるため、メタノールがその温度での飽和蒸気圧を有しているからである。
 例えば、純メタノールの液温が50℃のとき、メタノールの飽和蒸気圧は約56kPaである。液温が60℃になると、約85kPaに増大し、大気圧に対し84%に達する。これに対し、水の飽和蒸気圧力は50℃で約12kPa、60℃で約20kPaである。したがって、メタノール蒸気圧は相対的に大きく、蒸発しうる状態にあることがわかる。
 高い蒸気圧のメタノールは、燃料タンク108の気相に存在し、二酸化炭素が気液分離器110を透過する際に、一緒に燃料電池システム101の外に放出される場合がある。
 メタノール水溶液になると、メタノール蒸気圧はメタノール濃度の比率相当にまで減少する。メタノール蒸気圧(分圧)がラウールの法則に従うと仮定すると、メタノール濃度5%の場合は、液温50℃で約3kPa、60℃で約4kPaと計算される。一方、水蒸気圧力は、液温50℃で約11kPa、60℃で約19kPaであり、メタノール蒸気圧の4~5倍になる。
 しかしながら、これでもメタノールの蒸気圧は残っているため、燃料タンク108の気相部分に含まれるメタノール蒸気が気液分離器110を透過すると、外界に排出される場合がある。そこで、気液分離器110のメタノール透過量が重要な設計事項となる。
 気液分離器110にメタノールの透過を抑制する効果がないものと仮定すると、式2に基づく発電電気量から計算される二酸化炭素量とともに、飽和蒸気圧相当のメタノールが燃料電池システム101の外に放出されることになる。
 電流0.2A/cm2、アノード面積100cm2、セル電圧0.4Vとすると、単セル当たりの出力は8Wである。このとき、単セルから発生する二酸化炭素の発生速度は、式2より、約35μmol/sと計算される。この単セルを25セル積層すると100Wになるが、そのときの二酸化炭素発生速度は、約860μmol/sに増大する。この発生速度を60℃での流量に換算すると約24cc/s、1時間当たりでは85L/hourとなる。
 このときに燃料電池システム101から放出される排ガス全体の圧力を大気圧(101kPa)、液温を60℃、水溶液のメタノール濃度を5%とすると、分圧から求められるメタノールと水と二酸化炭素の理論的モル比は、4:19:77となる。よって、5%メタノール水溶液から気化したメタノールがそのまま電池の外に放出されたときには、45μmol/sになる。すなわち、毎時0.16mol(0.5g)相当のメタノールが放出されることになる。
 なお、この値は、5%メタノール水溶液からの蒸発速度が速く、常に排ガス中のメタノールと水の蒸気圧が飽和値となっており、かつ、メタノールと水が通過する気液分離膜にメタノール透過抑制機能がないと仮定した極限条件での値である。
 以上の説明では、図1に示すポンプ等の補機(燃料供給手段104、純水供給手段107、燃料循環ポンプ109、空気供給手段111)を用いたDMFC、すなわち“アクティブ式”DMFCの出力が100Wとしたときに、燃料側排ガス量が多く、それに伴って放出される理論的メタノール放出量が多くなる場合があることを示した。
 補機を省略し反応物質の拡散を利用した“パッシブ式”DMFCでは、燃料や空気の自然拡散を利用する。そのため、電極サイズの制約により一般的な出力は数Wになる。その小さな出力に応じて、燃料排ガス量も小さくなる。その結果、“パッシブ式”DMFCの理論的メタノール放出量は、上述の100W級DMFCでの理論値に対し1/100オーダーとなるため、燃料排ガス中のメタノール除去は比較的簡易な方法で可能となる。例えば、特許文献1、2の方法のように、酸素を自然拡散によって触媒層に取り込まれる構造で充分である。
 しかし、本発明が対象とする“アクティブ式”DMFCでは、理論的メタノール放出量が増大するため、自然拡散による酸素量ではメタノール酸化処理に不充分である。よって、格段に高効率なメタノール処理技術が必須となる。
 以上のことを鑑み、メタノールの蒸発量が極限値であって、かつ、二酸化炭素の排ガス流量が多い条件においても、効率的にメタノールを除去する方法を本発明にて提示していく。
 次に、第二の課題は触媒使用量の低減であり、以下で述べる2つの要件を充足することにより解決される。
 その最初の要件は、触媒上でメタノールを酸化するために供給する空気量を、可能な限り少なくすることである。先に述べたように、燃料排ガス中に含まれる理論的メタノール放出量は、“アクティブ式”DMFCで多くなる。そのメタノールの酸化に必要な酸素量に基づいた触媒設計を行わないで、過剰な空気を供給すると、触媒使用量の増加をもたらし、触媒容積のコンパクト化を図ることができなくなるからである。
 次の要件は、触媒反応によって生じた熱を除去し、触媒反応容器の温度をシステム内部の許容温度を超えないように、さらには、触媒で処理したガスの温度がシステムの排ガス許容温度を超えないように冷却することである。触媒に供給するガス流量を増加させれば、触媒や排ガスを冷却しやすくなる。したがって、本要件は、ガス流量に関して上述の触媒使用量とトレードオフの関係にあり、両要件のバランスを採ることが重要である。
 以上の2つの要件を充足させることができれば、第二の課題を解決することができる。
 まず、最初の要件について検討する。燃料排ガスを通過させる触媒上では、メタノールが式1の反応式にしたがって酸化される。これに必要な酸素量は、メタノール1モルに対し3/2モルとなる。酸素源に空気を用いる場合の空気量は、その5倍に相当する流量である。よって、メタノールの酸化に必要な酸素が少なければ、未処理のメタノールがシステム外に放出されることになる。逆に、酸素が過剰になれば、触媒のSV(Space Velocity)値に基づく触媒容積、すなわち触媒使用量が増大してしまう。
 例えば、一般的な貴金属酸化触媒には、白金微粒子を酸化物に担持させた触媒(Al23など)がある。触媒の種類は、100℃以下でメタノール等の有機化合物を酸化する機能を有すれば、いずれの酸化触媒を利用することが可能である。
 これらの触媒のSV値は、粒状触媒で20000程度、ハニカム触媒で30000から40000である。先に述べた100W級DMFCでの二酸化炭素発生速度は、約85L/hour(メタノール蒸気と水蒸気の量を除く。)であった。また、メタノールと水蒸気の放出量は、60℃における分圧相当(それぞれ、4kPaおよび19kPa)の流量になる。したがって、燃料排ガスの圧力を大気圧(101kPa)と近似すると、排ガス流量は、85L/hourに大気圧/二酸化炭素分圧の比を掛けた値となる。すなわち、排ガス流量は、110L/hourである。よって、粒状触媒を用いた場合で、SV値が20000とすると、触媒容積は約6ccと計算される。この値は、式1に基づく化学量論的な計算値であり、理論的な最小値となる。SV値の大きな高性能触媒を用いれば、さらに小さな触媒容積となり、好適である。
 仮に、100W級DMFCの酸化剤の利用率を20%とすると、DMFC本体102の空気排ガス流量は、約3000L/hour(60℃換算値)と非常に大きな値となる。したがって、燃料排ガスに空気排ガスの全量を混合すると、触媒に通過させるガス流量が約30倍も増加し、これに伴い触媒容積も30倍に大きくなる。
 したがって、燃料排ガスの流量、すなわち排ガス中に含まれるメタノール量に対し、燃料排ガスに添加すべき最適な空気流量が存在し、そのような適切な触媒反応器の設計をしないと、触媒容積が増大し、システムのコンパクト化を図ることができなくなる。
 また、従来の気液分離膜は、物理的方法(細孔のサイズに基づく選択性を利用する方法)では、メタノール蒸気の透過を抑制することができず、燃料タンク温度における飽和蒸気圧相当のメタノールが放出されることが懸念される。このメタノール蒸発量をできるだけ抑制することができれば、触媒容積を小さくすることが可能となる。
 第二の要件を検討するには、燃料排ガスに空気を混合し、触媒反応器を通過したときの排ガス温度に着目すれば良い。DMFCの燃料排ガス中に含まれるメタノール量は、二酸化炭素に対し相当少ないので、化学量論的な酸素を供給すると、式1にて計算されるわずかな量の酸素で十分である。
 しかし、メタノールの酸化反応による発熱によって、触媒層を通過するガスの熱容量だけでは、十分に除熱することができず、触媒反応器の温度あるいは触媒反応器通過後の排気ガス温度が高くなりすぎる場合がある。
 この第二の要件を解決するために、燃料排ガスに混合する空気の比率を適切な温度範囲(触媒反応容器またはシステムの許容温度範囲)になるように制御すれば良い。
 次に、第三の課題(触媒反応開始温度の制御)について説明する。触媒反応を開始させるために、触媒に接触させるガスの温度を反応開始温度以上にすることである。
 通常の酸化物担体に担持した貴金属触媒は、ガス入口温度が40℃付近から酸化活性を示し、約120℃でほぼ100%の活性を発現する。100%の活性とは、メタノール転化率が100%となることを意味する。その両端の温度範囲では、メタノール転化率がS字状の曲線になるように増加する傾向を示す。すなわち、触媒反応を開始させるために、触媒入口温度を高める機構を設けなければならないことが、第三の課題である。したがって、単にDMFCに供給する空気に燃料排ガスを混合しただけでは、空気流量が排ガスに対し10倍以上も多いために、燃料排ガス温度が50~60℃であっても、触媒反応開始温度(40℃)よりも低くなり、反応が開始しない。
 仮に予熱ヒータを設け、DMFCの発電開始直後にヒータにより触媒入口のガス温度を触媒反応開始温度以上にすると、極短時間では触媒反応が進んだとしても、徐々に触媒層の温度が低下し、ついには反応が停止する。したがって、DMFCの運転時間に常にそのヒータを作動させていることが必須の条件となる。そのために電力を消費するのは、システムの発電効率の損失になり、望ましい方法ではない。
 第四の課題は、酸化剤排ガスにメタノール等の有機物が微量に漏洩したときに、酸化剤排ガスからのメタノール等の放出を防止することである。この漏洩の原因として、電解質膜を介したメタノールのクロスオーバー、またはシール部からの漏洩が考えられる。
 本発明では、燃料排ガスと酸化剤排ガスを個別に処理することによって、第一ないし第四の課題を同時に解決できるようにした。
 第一の課題の解決方法は、燃料排ガスを処理するときには、燃料排ガスの流量を可能な限り増大させないようにする設計によって可能となる。以下、その実施の方法およびそれを実現するための構造を説明する。
 図2は、本発明の一実施例である燃料電池システム201の基本構成を示す。DMFC本体202は、図のほぼ中央に位置している。補機等の基本構成は、図1に示した燃料電池システム101と同じであるが、図1の気液分離器110が本発明による気液分離器210に変更され、さらに触媒反応器215が追加されている。
 燃料電池システム201のその他の構成は、図1に示した燃料電池システム101とほぼ同様である。燃料原液は燃料タンク203に蓄えられ、燃料供給手段204によって燃料タンク208に燃料が補給される。純水容器206から純水供給手段207によって、純水が燃料タンク208に補充される。燃料タンク208に貯蔵される燃料の濃度は、燃料または純水の供給量によって、所定の範囲に制御される。燃料タンク208に蓄えられた燃料は、燃料循環ポンプ209の運転により、燃料循環ライン205を経由して、DMFC本体202に供給される。DMFC本体202にて消費された燃料の残りは、燃料循環ライン205を経て、燃料タンク208に戻される。
 空気は、空気供給手段211によって酸化剤供給管216を通じて、DMFC本体202に供給される。DMFC本体202にて酸素が消費された後、空気排ガスは、酸化剤排ガスの主管214に導き出される。その途中で、空気排ガスの一部は、分岐管212にて気液分離器210に導入され、残りは酸化剤排ガスの主管217から燃料電池システム201の外に放出される。
 燃料タンク208の気相部分に存在する二酸化炭素は、微量のメタノール蒸気と水蒸気を伴って、本発明の気液分離器210に排出される。ここで、気液分離器210に設置した分子識別性分離膜(後述の図3の302)によって、メタノール蒸気の透過量が抑制される。
 気液分離器210では、空気排ガスの一部が分岐管212から供給され、燃料排ガスに酸素が添加される。この混合ガスは、気液分離器210から触媒反応器215に移され、メタノールは触媒によって酸化される。
 また、触媒反応器215を通過した後の処理ガスは、回収管213を経て、酸化剤排ガスの主管217を通過する空気排ガスと合流し、燃料電池システム201の外部に排出される。
 本発明による分子識別性分離器301は、図3に示した構成をとる。図3は、分子識別性分離器301の断面構造を示している。基本的形状は、T字配管状となっている。燃料排ガスは、図3の下方にある燃料タンク(図2の208)から供給され、本発明の分子識別性分離膜302にてメタノール蒸気およびその関連物質(ホルムアルデヒド、ギ酸など)の通過を抑制する。ここでは二酸化炭素が主に透過する。その排ガスは、T字部の枝管303から流れてくる空気と混合され、図3の上方に流れる。図3の左側から供給される空気は、図2の分岐管212を通過した空気である。また、分子識別性分離器301の図3における上方には、図2の触媒反応器215が接続されている。
 分子識別性分離器301で混合される空気は、触媒反応開始温度まであらかじめ加熱されていることが望ましい。例えば、図2のDMFC本体202から40℃以上の排ガスの一部を分流させ、そのガスを図3の分子識別性分離器301に導入する。これによって、後述の触媒入口温度を高め、触媒酸化反応(式1と同じ。)を開始させ、かつ、反応を持続させることができる。
 本発明による分子識別性分離膜302は、多孔質材料であって、燃料排ガス温度以上の融点を有する高分子膜、プラスチックシート、セラミックスシートなどを用いることができる。
 高分子膜の場合は、ポリエチレン膜、フッ素系膜などを選択することができる。ここで、従来のこれらの膜には、1/10ミクロンから数十ミクロンの平均細孔径を有しているものが利用されている。これらの材料をそのまま用いると、分子量に依存したガス分離能しか有しないことが理論的にわかっている(非特許文献1)。
 非特許文献1に記載されたグレアムの流出の法則に基づくと、分子の透過速度は、ガスの分子量(モル重量)の平方根に反比例する。例えば、二酸化炭素(分子量44)に対するメタノール(分子量32)の透過速度の比は1.17となり、メタノールの方が二酸化炭素よりも透過しやすい。これは、分離膜の細孔サイズを利用した物理的な方法での原理的制約であり、ナノメートル単位の分子サイズまで細孔径を小さくしない限り、分子の選択的分離効果は得られないことを意味する。
 したがって、細孔径を1/10ミクロンまで小さくしたとしても、分子のサイズはナノメートルの単位の小さな値であるので、細孔径だけで選択的にガスを分離することは原理的にできない。例えば、ナノメートル単位の細孔を有するモレキュラーシーブ(あるいはゼオライト)であれば、分離に要するガス容量に課題があるものの、物理的なサイズによる分子の分離は原理的に可能である。しかしながら、モレキュラーシーブの細孔に捕捉されたメタノール等のガスが許容量に達すると、モレキュラーシーブを交換する必要性が生じ、使い勝手の良いシステムになりえない。
 以上の観点により、本発明では、従来の細孔サイズによる分子の選択的分離方法は採用せずに、より化学的な作用を利用した新たな分離方法を提案する。
 本発明による分子識別性分離膜は、基本シート(母材シート)としてポリエチレンやフッ素膜の高分子膜、多孔質炭素板、または多孔質セラミックス板を用いる。これらの母材シートに含酸素ポリマーで表面を修飾し、メタノールやその関連物質と水素結合によるトラッピングを行う。含酸素ポリマーには、エチルセルロース、酢酸セルロース、プロピオン酸セルロースなどのセルロース類、またはポリエステル、ポリメタクリル酸メチル、ポリエーテルイミド、ポリアセタール、ポリフェニレンオキシドなどの熱可塑性ポリマーを用いることができる。また、これらの含酸素ポリマーをブレンドさせたポリマーハイブリッド材料も適用可能である。
 基本シートとして、エポキシ樹脂、フェノール樹脂などの熱硬化性樹脂を用いる場合には、粉砕によりバインダーで板状にしたもの、またはその他の方法により1/10ミクロンから数十ミクロンの細孔を設けた材料を用いることができる。
 含酸素ポリマーの添加量は、母材の細孔径を顕著に小さくしないように、制限する。例えば、多孔質ポリエチレンシートを母材に用いることができる。代表的な多孔質ポリエチレンシートである、厚さが50ミクロン、細孔径が10から20ミクロン、100ccの空気を通過させるときの時間(いわゆる通気度)が1から10秒のシートを、母材として用いることができる。溶媒として1-メチル-2ピロリドンを、溶液として酢酸セルロースを用いて数%濃度にした溶液を作成し、この母材シートに、塗布して、乾燥させることによって、分子識別性分離膜とすることができる。これを、本発明に適用すれば、二酸化炭素の透過速度に対するメタノール透過速度の比を、グレアムの流出の法則で見積もられる透過速度よりも小さくすることができる。
 酢酸セルロースは、メタノールとの親和性に優れているので、母材の表面、望ましくは燃料タンクに連絡される配管側に塗布すると良い。酢酸セルロース等のセルロースは、炭素-炭素結合または炭素-水素結合に由来する疎水性と、C-O結合に由来する親水性の両方の性質を有する。この両性の機能を利用すると、メタノール等のガス分子とは親水性の部分で水素結合を形成し、補足され、分離膜を透過する速度が小さくなる。他方、疎水性の部分は、水やメタノールの液体を排除し、膜を透過させない。このようなセルロースの特異的な機能によって、分子識別性分離膜として特に適している。
 さらに、分子識別性分離膜での結露を防止することが望ましい。例えば、図3の分子識別性分離器301の全体を燃料排ガス温度が低下しないように保温する。または、枝管303から導入される空気温度を燃料排ガス温度以上にすることによって、分子識別性分離器301の雰囲気温度を燃料排ガス温度以上にしても良い。このようにすれば、水やメタノール等の結露が細孔を閉塞し、排ガスの通気性を悪化させることを防止することが可能となる。
 以上のような工夫により、メタノール等の物質の透過を抑制し、二酸化炭素を選択的に透過させることができる。なお、二酸化炭素の酸素は、含酸素ポリマーの酸素と化学的親和性を示さないため、ポリマーに捕捉されず、速やかに分離膜を透過する。
 図2の気液分離器210を透過したメタノール蒸気は、二酸化炭素等とともに触媒反応器215に移動する。ここで、本発明による触媒にて酸化分解される。
 さらに、母材となる多孔質シートの細孔径を1/10μから数十ミクロンの範囲にすることによって、液体自体の流出を防止することができる。これは、毛管力の式(式4)に従い、液体燃料の内圧を考慮した細孔径を選択すれば良い。
  ρgh=4γcosθ/D  ・・・・・ (式4)
 なお、式4に記載されているρは液体の密度、gは重力加速度、hは多孔質シートに接触する液面高さ、γは液体の表面張力、θは接触角である。Dは管の直径であるが、近似的に膜の平均細孔径を代用しても良い。hは、燃料電池システム201が上下反転したと仮定し、気液分離器210の多孔質シートを基準面としたときに、燃料タンク208に含まれる燃料全体の液面高さとして計算する。多孔質シートに加わる液体圧力が最大となる場合は、燃料の全重量が多孔質シートに加わったときであるからである。
 第二の課題の解決方法は、燃料排ガスに混合する空気をできるだけ少なくすることである。この際、触媒反応後の温度とシステム外部に放出されるときの排ガス温度を考慮しなければならないという前述の2つの要件を充足させる。
 従来のように、酸化剤ガスの全量に燃料排ガスを混合する方式を採らず、必要最小限度の酸素を取り込むことによって、触媒容積を小さくすることができる。以下、その実施の方法およびそれを実現するための構造を説明する(図2、図3)。
 図2において、燃料排ガスは、燃料タンク208の内圧の増加により、気液分離器210(図3では分子識別性分離器301に相当する。)に導入される。このとき、枝管303から必要な空気を供給し、燃料排ガスと混合する。
 この供給される空気の温度は、燃料排ガスの温度以上であることが望ましい。温度が低いと、前述の結露による通気不良と第三の課題(ガス温度の低下)を引き起こすからである。よって、DMFC本体202の酸化剤(空気)排ガスの主管214の途中に分岐管212を設け、分子識別性分離器301に空気を導入する。
 このときに、定流量ポンプを、酸化剤の排気ラインと分子識別性分離膜302の途中に設けて、決った量の空気排ガスを燃料排ガスに混合することができる。すなわち、図2の分岐管212の途中に定流量ポンプを設置する。
 さらに望ましい方法として、図2の分岐管212、気液分離器210、触媒反応器215、回収管213の圧損の合計と、空気排ガスの主管214、217の圧損との差を利用して、必要な流量とされる空気を分子識別性分離器301に導入することが可能である。
 例えば、分岐管212、回収管213、空気排ガスの主管214の配管径(内径)を10mm一定とし、触媒の粒径を1mmから3mm、触媒反応器の内径を20mmから30mm、触媒層の長さを100mmから200mmとすると、空気排ガスの主管214の圧損に対する分岐管212にかかる圧損を、1:10から1:30の範囲に調整することができる。これによって、従来のように空気の全量に燃料排ガスを混合した場合よりも、触媒にて処理するガスの流量を1/10以下にすることが可能となる。その結果、燃料排ガス流量に混合する空気流量は適正値に制御され、触媒使用量の増加を抑制することができる。
 この方法によると、ポンプからの放熱による空気排ガスの低温化と、結露水の形成を回避することができ、補機を必要としないので、より望ましい実施形態となる。
 化学量論的な酸素量のみを燃料排ガスに添加したとき、触媒反応後のガス温度が100℃から大幅に高くなる場合がある。これは、第二の課題における2つ目の要件である。
 例えば、式1の反応熱は1080kJ/molであるので、メタノール反応量を1g/hour、触媒を通過させるガスの総流量を250L/hour、ガスの比熱を33J/mol・K、触媒反応前のガス入口温度を60℃とした場合、ガス温度は約170℃に達する。ここで、触媒温度とガス出口温度は同じとし、触媒反応器の外への熱の放出はない(断熱条件)とした。
 そこで、触媒反応後の高温排ガスを酸化剤排ガスと合流させ、低温ガスによる希釈を行えば、排ガス温度を下げることができる。
 ただ、現実の問題として、このように触媒を通過させる排ガス流量が少ないと、式1のメタノール酸化によって発生する熱を排ガスに伝達しても、触媒温度が150から200℃と高温になるため、触媒反応器215の断熱材が大きくなる問題や、触媒反応器215からの放熱によりシステム内部が高温になる問題が生じやすく、触媒反応器をシステムに組み込みにくい。また、図1の構成のように、そのまま熱を燃料電池システム101の外部に放出できない問題を、さらに解決しにくくする場合もある。
 そこで、触媒反応容器の温度を100~150℃にすると、熱の問題を解決しやすいので、より現実的な解決手段を提案する。これを実現するには、燃料排ガスに添加する空気流量を増加させれば良い。例えば、触媒層を通過させるガス流量が250L/hourの場合にガス温度が約170℃に到達した計算結果に対し、ガス流量が310L/hourとなるように空気流量を60L/hourだけ増量すれば、ガス温度を150℃に下げることができる。このようにしても、ガス流量は24%しか増加しないので、空気排ガスの全量を燃料排ガスに混合させた場合よりも、触媒使用量を大幅に削減することができる。
 例えば、先の100W級DMFCにおいて、酸化剤利用率10~20%にて発電を行った場合、触媒反応器215を通過した排ガス温度を100~150℃とし、この排ガスと酸化剤排ガスの主管217を通過する酸化剤排ガスとを合流させると、60~65℃にまで冷却することが可能となる。
 次に、第三の課題の解決方法を説明する。
 第三の課題は、触媒反応を開始させるために、または、触媒反応を持続させるために、触媒に最初に接触する際のガスの入口温度を所定の温度に高める機構が考慮されていないことである。例えば、燃料排ガスを多量の酸化剤排ガスと混合すると、混合後のガス温度が酸化剤ガス温度付近まで冷却されてしまう。その結果、触媒反応を開始するために必要なガス入口温度を満足することができなくなり、触媒反応が停止してしまう。このような方法によると、触媒の前に常時加熱する機構がない限り、触媒反応を持続することが困難である。
 第三の課題の解決手段の一つとして、図2に示すように、酸化剤排ガスの全量を触媒反応器215に導入することはせずに、一部の酸化剤ガスを取り込んで、それを燃料排ガスの酸化に供することにした。この方法によって、触媒入口温度が反応開始温度より低くならないようにすることができる。
 さらに、触媒反応器215に導入されるガスの温度を触媒反応開始温度以上になるように加熱すれば、触媒酸化反応を速やかに開始させることが可能になる。図4は、加熱部を装着させた触媒反応器401の構造を示す断面図である。このような触媒反応器401にて、メタノール等の有機物質を迅速に酸化、除去することができる。
 図4の触媒反応器401の詳細な構成は、以下のようになっている。ガス入口部(図4の下方)には、触媒層402の落下を防止するための、触媒保持部品403がある。触媒保持部品403には、例えば、高融点金属またはセラミックスからなる多孔質板を用いることができる。触媒反応温度よりも融点が高い材料であれば、金属に限定されない。燃料排ガスが水蒸気を含んでいることを考慮すると、腐食性材料であることが望ましく、炭素質の多孔質シートが特に適している。また、孔のサイズは、触媒の粒径よりも小さくする。触媒層をハニカム状に焼結したものを用いる場合は、単一の孔を開けて、触媒が落下しないようになっていれば良いので、多孔質であることは必須ではない。
 図4において触媒層402の上部にも、触媒保持部品404を設け、触媒層が振動により崩壊したり、触媒粒子が飛散したりしないように工夫する。
 図4において触媒反応器401の下部は、図2の気液分離器210に連絡されている。空気を添加した燃料排ガスは、触媒反応器401の下部から導入され、触媒層402を通過することによって、式1の反応が進行する。メタノール等を除去した後に、触媒反応器401の図4における上部からガスが排出され、図2の回収管213に送られる。
 空気排ガスの混合によって、触媒入口温度が触媒反応開始温度にわずかに足りない場合には、予熱ヒータ等の加熱手段405を使用し、触媒反応開始時のみガスの予熱に使うことができる。触媒反応が進行し始めたら、触媒ではガスの下流から上流方向に熱の伝達があるので、ガスの入口温度を高めることができる。必要に応じて、DMFCの運転時間にわたって、わずかの電力によって、触媒入口での排ガスを昇温することも可能である。このような構成を採っても、酸化剤排ガスの全量を混合した場合に比べ、電力消費量を削減することができる。
 図4の触媒反応器401は、一例として、外周に加熱手段405を設けている。この代案として、加熱手段405を反応器401の内壁と触媒層402の隙間に設置しても良い。この場合は、加熱手段405は炭素などの耐食性材料を用いることが望ましい。また、触媒保持部品403を電子伝導性の抵抗体とすれば、それに電力を供給し、加熱手段405を省略することができる。この場合も、水分によって腐食されにくい炭素質ヒータを用いることが望ましい。
 触媒反応器のさらに望ましい形態として、触媒層での反応熱を利用する触媒反応器501を考案した。図5にその断面構造を例示する。
 触媒層502は、触媒反応器501のほぼ中央に設置した。触媒層502の外周に密着させて伝熱部材506を設置する。伝熱部材506の反応器501に接する側面は、緻密な材質とする。これは、触媒層502から触媒反応器501の隙間に排ガスが流通し、この排ガスが未反応の状態で、触媒反応器501を通過してしまうことを防止するためである。触媒保持部品504は、触媒が図5における上部より脱落しないようにするためのものである。
 伝熱部材506は、図5において触媒の下部まで延長した後に、触媒入口の前方に設置した多孔質部材507に連結させた。ここで、燃料排ガスに熱を与え、予熱することができる。多孔質部材507を用いることで、図4に示した触媒保持部品403を省略することができる。
 本構造によって、ガス下流の方にある触媒反応熱を、伝熱部材506を介してガス上流部の触媒まで熱を移動させ、その熱を多孔質部材507にて排ガスの加熱に利用することができる。その結果、加熱手段505は、必要に応じて短時間のみ使用することで、消費電力を大幅に低減することができる。また、ガス入口温度が触媒反応開始温度よりも高ければ、加熱手段505を省略することも可能となる。
 最後に、第四の課題の解決方法を説明する。すなわち、酸化剤排ガスにメタノール等の有機物が漏洩したときに、酸化剤排ガスからのメタノール等の放出を防止しようとするものである。
 酸化剤ガスを処理するための触媒の設置場所を説明する前に、図2に示したDMFC本体202の構造を説明する。図6は、DMFC本体のスタックの代表的な断面構造を示す。
 式2または式3は、膜-電極接合体(以下、MEAと称する。)602のいずれかの電極面上でそれぞれ進行する。MEA602を2枚のセパレータ604(MEA602の両面に同種のセパレータ604が接している。)で挟持させたものを単セル601と称する。セパレータ604の一方の面に、燃料を流通させる流路を形成し、他方の面には酸化剤を流通させる流路を形成する。
 2枚のセパレータ604の間に、ガスケット605、MEA602の電解質膜部分、ガスケット605を積層し、圧着させることによって、燃料や酸化剤の漏洩を防止している。ガスケット605には、エチレン・プロピレンゴム、フッ素ゴム、シリコンゴム等の耐酸化性、耐還元性、耐水性を有する弾性体を用いることができる。エポキシ樹脂を接着剤として用い、硬化させてガスケットの代用としても良い。
 複数の単セル601を直列に接続し、両末端に集電板613、614を設置し、さらに絶縁板607を介して外側より2枚の端板609で締め付ける。端板が絶縁性の材料であれば、絶縁板607を省略することができる。締め付け部品として、ボルト616、ばね617、ナット618を用いる。
 燃料は、図6に示す左側の端板609に設けた燃料ガス配管用コネクター610から供給され、各単セル601を通過して、MEAのアノード上にて酸化された後に、右側の端板609に設けた排出側の燃料ガス配管用コネクター622から排出される。ここで、燃料は、メタノール等の液体有機燃料を用いることができる。さらに、メタノール水溶液などの液体燃料を用いることも可能である。
 同様に、酸化剤は、左側の端板609に設けた酸化剤ガス配管用コネクター611から供給され、右側の端板609の酸化剤ガス配管用コネクター623から排出される。空気は、電池の外部に設置した空気ファンから配管を通じて供給する。
 集電板613、614は、外部電力線619を介して外部に設けたDC-DCコンバータまたはDC-ACインバータ(いずれも620と表記されている。)に連絡され、外部負荷621に電力を供給できるようになっている。
 このような部品構成にて、25個の単セル601からなるセルスタックを製作した。
 図7は、図6のセルスタックの単セル601を拡大して示した断面図である。説明の都合によりセルの積層方向を90°回転して表示している。
 セパレータ701は、酸化剤流路710を有する。酸化剤流路710は、カソード703に接している。
 カソード703は、触媒層とガス拡散層から構成される。触媒層は、固体高分子電解質膜702の表面に固定されて接合されている。触媒層は、白金微粒子を黒鉛粉体に担持させたものが一般的であるが、他の触媒を用いても良い。このような触媒粒子は、電解質バインダーで結合されている。さらに、触媒層の上面には、ガス拡散層が設けられている。
 セパレータ707には、燃料流路711が形成されている。燃料流路711は、アノード704に接している。
 アノード704も、触媒層とガス拡散層から構成される。触媒層は、固体高分子電解質膜702の表面に固定されて接合されている。触媒層は、白金微粒子を黒鉛粉体に担持させ、または、燃料酸化の過程で生じる一酸化炭素を酸化除去する機能を有するルニテウム等の助触媒と白金とを合金にした微粒子を黒鉛粉体に担持させ、さらに電解質バインダーで結合させたものである。触媒層には、他の触媒を用いても良い。この触媒層の上に、ガス拡散層を設ける。
 本形態では、固体高分子電解質膜702の両面にアノード704とカソード703とを接合したものを、膜-電極接合体(以下、MEAと称する。)と称する。ガス拡散機能を有するもの、例えばガス拡散層は、アノード704やカソード703に含まれるものとする。固体高分子電解質膜702は、アノード704で生じた水素イオン(H+)をカソード703へ輸送する媒体として働く。
 燃料電池の反応(式2と式3)は、まず、アノード704において、メタノール等の液体有機燃料から水素イオンが生成する際に、電子も引き抜かれることから始まる。この電子は、セパレータ707に受け渡され、外部回路を経由した後にセパレータ701に伝達され、最終的にアノード704で生じた同数の電子がカソード703に送られる。
 酸化剤(酸素)は、酸化剤流路710からカソード703に供給され、固体高分子電解質膜702を透過した水素イオンと反応し、生成水を生じさせる。
 燃料と酸化剤は、MEAとセパレータにより分離され、直接、化学反応が起こらないようにしている。また、これらの反応物質は、ガスケット705、712、713によって外部へ漏れないようにしている。
 各単セルに酸化剤を供給するために、酸化剤供給マニホールド708を、セパレータ701、707の一部を貫通するように設けている。酸化剤は、この酸化剤供給マニホールド708からそれぞれの単セルに供給され、カソード703にて酸化された後に、酸化剤排出マニホールド709を経由して、電池の外部に排出される。ガスケット705、712、713は、セパレータ701、707と固体高分子電解質膜702の間に挿入され、酸化剤と燃料の漏洩を防止している。
 なお、酸化剤供給マニホールド708から酸化剤流路710までを連通する通路は、セパレータ701の面内に形成されている。しかし、それを平面図に示すと、図7の左側にあるガスケット712の一部と重なるように見えるため、図7では省略した。
 また、酸化剤流路710から酸化剤排出マニホールド709に至るまでの流路も、セパレータ701の面内に形成されているが、平面図に描くとガスケット713の一部と重なるように見えるため、図7では省略した。
 同様に、燃料の供給マニホールドと排出マニホールドは、図7の単セル断面に図示すると酸化剤供給マニホールド708と酸化剤排出マニホールド709と重なり合うために、図7では省略した。
 図8は、本発明による酸化剤排ガス処理用触媒の設置構造を示す。触媒層814は、ハニカム等の焼結した多孔質触媒とし、酸化剤を排出するマニホールド809の空間内に収納する。触媒層として単に粉末または粒状の触媒を用いると、マニホールド809の内部で散乱し、電池の外部に出てきてしまう恐れがあるからである。触媒層814は、酸化剤の排ガス側のマニホールド809内に充填し、酸化剤供給側マニホールド808には用いない。なお、図8は、図7の単セルの繰り返し構造なので、他の部品名称は図7と同様である。すなわち、セパレータ801は、酸化剤流路810を有するセパレータであり、セパレータ807は、燃料流路811を有するセパレータである。また、セパレータ801、807は、それぞれカソード803とアノード804に対面し、単セル815を構成している。カソード803とアノード804は、電解質膜802を挟んだ三層構造である。燃料と酸化剤の漏洩を防止するため、ガスケット805、812、813を用いている。
 触媒層814を電池に内蔵させることによって、酸化剤の処理のために特別の触媒反応器を設ける必要がなくなり、システム内で酸化剤処理用の触媒反応容器のスペースを削減することができる。
 以上で説明したように、酸化剤排ガスを燃料排ガスと別々に処理することによって、システム容積を増加させずに、4つの技術課題を解決することができた。
 実際に、図2から図8に示した構成の100W級DMFCシステムに燃料と空気を供給し、電池特性ならびにメタノールの除去性能を検討した。本発明によるDMFCシステムを、S1とする。
 比較のため、図1の構成のDMFCシステムについても検討した。図1の構成のDMFCシステムを、S2とする。S2とS1の相違点は、S2では本発明の触媒反応器(図2の210、215)および内部触媒層(図8)を備えていないことであり、その他の部品は同一仕様のものとする。
 燃料タンク103(図1)と燃料タンク203(図2)に貯蔵するメタノール水溶液の濃度は50%とし、燃料循環ライン105と205を流通するときのメタノール水溶液は3~6%とした。
 酸化剤利用率は10%になるように、空気供給手段(ファン)111と211の電圧を設定した。
 次に、システムS1において、電流20A(電流密度は0.2A/cm2とした。)にて発電を行ったとき、定格出力100Wを得た。なお、電池温度は55~60℃に制御した。
 同じ条件にて、システムS2の発電試験を行ったところ、同じように100Wの出力を得た。
 次に、燃料排ガスと酸化剤排ガスを分析し、メタノール放出量を測定した。システムS2では、燃料排ガスからは毎時0.8g、酸化剤排ガスからは毎時0.5gのメタノール放出量が測定された。
 これに対し、本発明のシステムS1では、燃料排ガスからは毎時0.1g、酸化剤排ガスからは毎時0.2gのメタノール放出量が測定された。このように、本発明のシステムS1では、大幅にメタノール放出量を削減することができた。
101,201 液体有機化合物を燃料とする燃料電池システム
102,202 固体高分子形燃料電池
103,203 燃料タンク
104,204 燃料供給手段
105,205 燃料循環ライン
106,206 純水容器
107,207 純水供給手段
108,208 燃料タンク
109,209 燃料循環ポンプ
110,210 気液分離器
111,211 空気供給手段
212 分岐管
213 回収管
114,214,217 酸化剤排ガスの主管
116,216 酸化剤供給管
215,401,501 触媒反応器
301 分子識別性分離器
302 分子識別性分離膜
303 枝管(図2の分岐管212に連絡)
402,502 触媒層
403,404,504 触媒保持部品
405,505 加熱手段
506 伝熱部材
507 多孔質部材
601 単セル
602 膜-電極接合体(MEA)
604 本発明のセパレータ(単セル用)
605 ガスケット(シール)
607 絶縁板
609 端板
610,622 燃料ガス配管用コネクター
611,623 酸化剤ガス配管用コネクター
613,614 集電板
616 ボルト
617 ばね
618 ナット
619 外部電力線
620 DC-DCコンバータまたはインバータ
621 外部に設置した負荷
701,801 酸化剤流路を有するセパレータ
702,802 固体高分子電解質膜
703,803 カソード
704,804 アノード
705,713,805,812,813 ガスケット
707,807 燃料流路を有するセパレータ
708,808 酸化剤供給マニホールド
709,809 酸化剤排出マニホールド
710,810 酸化剤流路
711,811 燃料流路
814 酸化剤排ガスを処理するための触媒層
815 単セル

Claims (5)

  1.  固体高分子電解質膜と、前記固体高分子電解質膜の両面に接合された電極と、燃料または酸化剤を流通させて前記電極のそれぞれに供給する流路とを有し、液体有機化合物を前記燃料とする固体高分子形燃料電池において、
     前記燃料の排ガスに含まれる未利用の前記燃料または前記燃料の不完全酸化物からなる有機ガス成分と二酸化炭素とを前記燃料の液体成分から分離し、かつ、前記固体高分子形燃料電池を通過した前記酸化剤の排ガスの一部を取り込む分離器と、
     前記分離器から取り込んだガスの有機ガス成分を酸化する触媒を有する触媒反応器とを備えることを特徴とする固体高分子形燃料電池。
  2.  前記分離器は、前記有機ガス成分と二酸化炭素とで透過速度が異なる分子識別性分離膜を備える請求項1記載の固体高分子形燃料電池。
  3.  前記触媒反応器を通過したガスと、前記分離器に取り込まれなかった残りの前記酸化剤の排ガスとを合流させる配管を備える請求項1記載の固体高分子形燃料電池。
  4.  前記触媒反応器は、前記触媒の熱を前記触媒反応器のガス上流部に伝達させる部材を備える請求項1記載の固体高分子形燃料電池。
  5.  固体高分子電解質膜と、前記固体高分子電解質膜の両面に接合された電極と、燃料または酸化剤を流通させて前記電極のそれぞれに供給する流路とを有し、液体有機化合物を前記燃料とする固体高分子形燃料電池において、
     前記酸化剤の排ガスを排出するためのマニホールドを備え、
     前記マニホールドは、前記燃料または前記燃料の不完全酸化物からなる有機ガス成分を酸化する触媒を備えることを特徴とする固体高分子形燃料電池。
PCT/JP2009/007247 2008-12-26 2009-12-25 固体高分子形燃料電池 WO2010073699A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010543909A JPWO2010073699A1 (ja) 2008-12-26 2009-12-25 固体高分子形燃料電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008331839 2008-12-26
JP2008-331839 2008-12-26

Publications (1)

Publication Number Publication Date
WO2010073699A1 true WO2010073699A1 (ja) 2010-07-01

Family

ID=42287332

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/007247 WO2010073699A1 (ja) 2008-12-26 2009-12-25 固体高分子形燃料電池

Country Status (2)

Country Link
JP (1) JPWO2010073699A1 (ja)
WO (1) WO2010073699A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003346862A (ja) * 2002-05-29 2003-12-05 Hitachi Maxell Ltd 燃料電池
JP2005183014A (ja) * 2003-12-16 2005-07-07 Toshiba Corp 直接型液体燃料電池発電装置及び直接型液体燃料電池用有害物質除去フィルター
JP2005259568A (ja) * 2004-03-12 2005-09-22 Matsushita Electric Ind Co Ltd 燃料電池システム
JP2005276588A (ja) * 2004-03-24 2005-10-06 Toshiba Corp 直接型液体燃料電池発電装置
JP2006253046A (ja) * 2005-03-14 2006-09-21 Toshiba Corp 液体燃料電池システム及びその運転方法
JP2007280667A (ja) * 2006-04-04 2007-10-25 Gs Yuasa Corporation:Kk 液体燃料直接供給型燃料電池システム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4810082B2 (ja) * 2004-11-09 2011-11-09 富士通株式会社 燃料電池
EP1893858B1 (en) * 2005-06-22 2017-04-12 Ricardo, Inc. Reforming process for production of hydrogen from hydrocarbon fuel
JP5273580B2 (ja) * 2007-02-27 2013-08-28 株式会社Gsユアサ 直接型燃料電池システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003346862A (ja) * 2002-05-29 2003-12-05 Hitachi Maxell Ltd 燃料電池
JP2005183014A (ja) * 2003-12-16 2005-07-07 Toshiba Corp 直接型液体燃料電池発電装置及び直接型液体燃料電池用有害物質除去フィルター
JP2005259568A (ja) * 2004-03-12 2005-09-22 Matsushita Electric Ind Co Ltd 燃料電池システム
JP2005276588A (ja) * 2004-03-24 2005-10-06 Toshiba Corp 直接型液体燃料電池発電装置
JP2006253046A (ja) * 2005-03-14 2006-09-21 Toshiba Corp 液体燃料電池システム及びその運転方法
JP2007280667A (ja) * 2006-04-04 2007-10-25 Gs Yuasa Corporation:Kk 液体燃料直接供給型燃料電池システム

Also Published As

Publication number Publication date
JPWO2010073699A1 (ja) 2012-06-14

Similar Documents

Publication Publication Date Title
US6274259B1 (en) Fine pore enthalpy exchange barrier
US6475652B2 (en) Fine pore enthalpy exchange barrier for a fuel cell power plant
JP6126154B2 (ja) 燃料電池システム
US6284399B1 (en) Fuel cell system having humidification membranes
WO2002093674A1 (en) Fine pore enthalpy exchange barrier for a fuel cell power plant
US20080248338A1 (en) Fuel Cell and Power Generating Method
JP4644688B2 (ja) 燃料混合形燃料電池用スタックおよびこれを含む燃料混合形燃料電池システム
JP4624670B2 (ja) 燃料電池発電装置の多数の構成部品の機能の統合化
JP2007323813A (ja) 固体高分子形燃料電池システム
US11973231B2 (en) Membrane electrode assembly (MEA) for proton exchange membrane electrochemical cell
JP2009099380A (ja) 燃料電池システム
WO2010041332A1 (ja) 燃料電池
JP2004134273A (ja) 燃料電池システム
JP2009064619A (ja) 燃料電池システム
US20030148157A1 (en) Functional integration of multiple components for a fuel cell power plant
US20220328856A1 (en) Hydrogen pumping proton exchange membrane electrochemical cell with carbon monoxide tolerant anode and method of making thereof
WO2010073699A1 (ja) 固体高分子形燃料電池
WO2007099964A1 (ja) 燃料電池装置
WO2013080415A1 (ja) 燃料電池システム
JP5748984B2 (ja) 燃料電池システムおよびその運転方法
JP7335788B2 (ja) 燃料電池システム
JP2013008687A (ja) 燃料電池スタック
WO2007099982A1 (ja) 燃料電池装置
JP2009048905A (ja) 燃料電池
JP2022037287A (ja) 電気化学デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09834505

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010543909

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09834505

Country of ref document: EP

Kind code of ref document: A1