WO2010073525A1 - 熱輸送デバイスの製造方法及び熱輸送デバイス - Google Patents

熱輸送デバイスの製造方法及び熱輸送デバイス Download PDF

Info

Publication number
WO2010073525A1
WO2010073525A1 PCT/JP2009/006816 JP2009006816W WO2010073525A1 WO 2010073525 A1 WO2010073525 A1 WO 2010073525A1 JP 2009006816 W JP2009006816 W JP 2009006816W WO 2010073525 A1 WO2010073525 A1 WO 2010073525A1
Authority
WO
WIPO (PCT)
Prior art keywords
transport device
plate
heat transport
capillary
manufacturing
Prior art date
Application number
PCT/JP2009/006816
Other languages
English (en)
French (fr)
Inventor
良尊弘幸
谷島孝
鬼木一直
河西弘人
平田昂士
橋本光生
Original Assignee
ソニー株式会社
ソニーケミカル&インフォメーションデバイス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社, ソニーケミカル&インフォメーションデバイス株式会社 filed Critical ソニー株式会社
Priority to US13/141,121 priority Critical patent/US20110253345A1/en
Priority to CN2009801559994A priority patent/CN102308176A/zh
Publication of WO2010073525A1 publication Critical patent/WO2010073525A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/046Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure characterised by the material or the construction of the capillary structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/02Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating by means of a press ; Diffusion bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/16Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating with interposition of special material to facilitate connection of the parts, e.g. material for absorbing or producing gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0233Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0283Means for filling or sealing heat pipes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles
    • B23K2101/14Heat exchangers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4935Heat exchanger or boiler making
    • Y10T29/49393Heat exchanger or boiler making with metallurgical bonding

Definitions

  • the present invention relates to a method for manufacturing a heat transport device that transports heat by a phase change of a working fluid and a heat transport device.
  • a cooling device such as a heat pipe is used that transports heat generated from a heat generating portion of the electronic device to a condensing portion to dissipate heat.
  • the vapor of the working fluid evaporated by the heat generated in the high temperature heat generating part of the electronic equipment moves to the low temperature condensing part, condenses in the condensing part, and releases heat.
  • the object to be cooled is cooled.
  • Patent Document 1 includes a diffusion bonding step 1 for attaching a mesh to an upper cover and a lower cover constituting a heat spreader, and a diffusion bonding step 2 for bonding the upper cover, the lower cover, and the reinforcing member having the mesh.
  • a plurality of diffusion bonding steps are described.
  • the plurality of diffusion bonding processes are performed in different processes under respective preferable conditions (paragraphs [0022]-[0027], [0032], [0033], FIG. 6A, FIG. 6B, FIG. 7 and FIGS. 8-13).
  • an object of the present invention is to provide an inexpensive heat transport device manufacturing method and heat transport device that can be efficiently manufactured by a small number of steps.
  • a method for manufacturing a heat transport device includes a first plate and a second plate constituting a container of a heat transport device that transports heat using a phase change of a working fluid. And laminating the first plate, the capillary member and the second plate so as to sandwich a capillary member which applies a capillary force to the working fluid. The first plate and the second plate are diffusion bonded so that the first plate and the capillary member are diffusion bonded.
  • the first plate and the second plate are diffusion bonded.
  • the first plate and the capillary member laminated so as to be sandwiched between the first plate and the second plate are diffusion bonded. Accordingly, since a plurality of diffusion bondings are performed in the same process, an inexpensive heat transport device manufacturing method that can be efficiently manufactured by a small number of processes is realized.
  • the capillary member may be made of an elastic material. In that case, in the diffusion bonding step, the first plate and the second plate are diffusion bonded while compressing the capillary member.
  • the first plate and the second plate are diffusion bonded with a high bonding force for the purpose of sealing the container.
  • the first plate and the capillary member are diffusion bonded at an appropriate pressure such that the capillary force appropriately acts on the working fluid contained in the container. That is, the pressure required for each of these diffusion bondings is often different. Since the capillary member has a predetermined elasticity, the capillary member absorbs a part of the pressure when the first plate and the second plate are diffusion-bonded, so that the first pressure is less than that pressure.
  • the plate 1 and the capillary member are diffusion bonded.
  • the thickness of the capillary member may be larger than the thickness of the internal space of the container constituted by the first plate and the second plate.
  • the capillary member is reliably compressed, and a part of the pressure when the first plate and the second plate are diffusion bonded is surely absorbed.
  • the capillary member has a first mesh layer and a second mesh layer that is laminated on the first mesh layer and is a mesh that is coarser than the mesh included in the first mesh layer. May be.
  • the second plate may have a protrusion.
  • the first plate and the second plate are diffusion bonded while the capillary member is compressed by the protrusion.
  • the protrusion can reinforce the internal space of the container, and the protrusion can reliably compress the capillary member.
  • the heat transport device may include a frame member that constitutes a side wall of the container. In that case, the first plate and the frame member, and the second plate and the frame member so that the first plate and the capillary member are diffusion bonded in the diffusion bonding step. And diffusion bonding.
  • the degree to which the capillary member is compressed is adjusted according to the relationship between the thickness of the frame member constituting the side wall of the container and the thickness of the capillary member, and the degree of pressure absorbed by the capillary member is adjusted. Therefore, a desired pressure required for diffusion bonding between the first plate and the capillary member can be obtained by appropriately setting the thickness of the frame member and the thickness of the capillary member.
  • a unit including the first plate, the capillary member, and the second plate, which are stacked so as to sandwich the capillary member between the first plate and the second plate, is formed as a concave portion.
  • the jig part and the unit may be laminated so as to fit in the concave part of the jig part having the jig part.
  • the first plate and the second plate of the unit are diffusion bonded by applying pressure to the jig portion and the unit in the stacking direction.
  • the pressure required for diffusion bonding between the first plate and the capillary member can be obtained without variation in the diffusion bonding step.
  • the plurality of units and the plurality of units are arranged such that a jig portion is laminated between each of the plurality of units each having the first plate, the capillary member, and the second plate.
  • a jig part may be laminated.
  • the diffusion bonding step by applying pressure to the plurality of units and the plurality of jig portions in the stacking direction, the first plate and the second plate of the plurality of units Is diffusion bonded.
  • a plurality of heat transport devices are manufactured at a time by applying pressure to the plurality of units and the plurality of jigs in the direction in which the plurality of units and the plurality of jigs are stacked. This shortens the manufacturing time.
  • the capillary member may include a first member and a second member.
  • the first member has a first spring constant and is diffusion bonded to the first plate.
  • the second member has a second spring constant larger than the first spring constant and is stacked on the first member.
  • the first member Since the first member has a small spring constant and is easily deformed, when the capillary member is compressed in the diffusion bonding step, the first member is reliably compressed, and the stress is sufficiently diffusion bonded to the first plate. Further, in the diffusion bonding step, for example, variations in the deformation amount of the second member due to dimensional tolerances are absorbed by the first member. Thereby, after the diffusion bonding step, the function of the capillary member relating to the performance of heat transport is sufficiently exhibited by the second member having a large spring constant and hardly deformed.
  • the diffusion bonding step includes the first plate and the first plate so that the first plate and the capillary member are diffusion bonded and the second plate and the capillary member are diffusion bonded. It may include diffusion bonding the second plate.
  • the capillary member includes a third member, and the third member has a third spring constant smaller than the second spring constant, and is stacked on the second member and stacked on the second member. Diffusion-bonded to the plate.
  • the capillary member As the capillary member is diffusion bonded to the first and second plates, the internal space of the container of the heat transport device is reinforced by the capillary member. At this time, the capillary member and the second plate are sufficiently diffusion-bonded by diffusion-bonding the third member having a small spring constant and the second plate.
  • a method for manufacturing a heat transport device comprising: bending a plate for constructing a container of a heat transport device that transports heat using a phase change of the working fluid; A capillary member for applying a force is sandwiched between a first portion and a second portion of the plate formed by bending. And the container is made by diffusion bonding the end of the first part and the end of the second part so that at least the first part and the capillary member are diffusion bonded. It is formed.
  • a heat transport device includes a container having an inner surface, a working fluid, and a capillary member.
  • the working fluid is contained in the container and transports heat by changing phase.
  • the capillary member includes a first member and a second member, and generates a capillary force in the working fluid.
  • the first member has a first spring constant and is diffusion bonded to the inner surface.
  • the second member has a second spring constant larger than the first spring constant and is stacked on the first member.
  • a heat transport device includes a container having a side wall, a working fluid, and a capillary member.
  • the container includes a frame member constituting the side wall, and a first plate and a second plate joined to the frame member so as to sandwich the frame member.
  • the working fluid transports heat by phase change in the container.
  • the capillary member causes a capillary force to act on the working fluid.
  • the container can be configured with simple components. Moreover, since the volume of the internal space of the container is determined by the thickness of the frame member, the volume of the internal space can be easily set by appropriately setting the thickness of the frame member.
  • FIG. 1 It is sectional drawing which shows the heat transport device with which the heat source was arrange
  • FIG. 20 is a cross-sectional view taken along the line AA shown in FIG. It is an expanded view of the plate member which comprises the container of the heat transport device which concerns on 7th Embodiment. It is a figure for demonstrating the manufacturing method of the heat transport device which concerns on 8th Embodiment. It is a typical graph which shows the relationship between the stress added to each mesh member, and the deformation amount (crush amount) by the stress. It is typical sectional drawing which shows the manufacturing method of the heat transport device which concerns on 8th Embodiment in order. It is the figure which expanded and showed the upper board member shown in FIG. 24, the mesh member for joining, and the 2nd mesh member.
  • FIG. 1 is a schematic cross-sectional view showing a heat transport device manufactured by the method for manufacturing a heat transport device according to the first embodiment of the present invention.
  • FIG. 2 is an exploded perspective view thereof.
  • the cross-sectional view of FIG. 1 is a cross-sectional view in the longitudinal direction of the heat transport device 100. Henceforth, the direction of sectional drawing is the same.
  • the heat transport device 100 includes a container 4 and a capillary member 5 provided in the container 4.
  • the container 4 includes a lower plate member 1, a frame member 2, and an upper plate member 3.
  • the frame member 2 constitutes a side wall in the container 4.
  • a working fluid (not shown) that transports heat by phase change is sealed inside the container 4, and a capillary member 5 that applies a capillary force to the working fluid is formed.
  • the capillary member 5 includes a first mesh layer 6 and a second mesh layer 7 laminated on the first mesh layer 6.
  • the second mesh layer 7 is made of a coarser mesh than the mesh included in the first mesh layer 6.
  • the working fluid pure water or ethanol is used.
  • the frame member 2 and the upper plate member 3 constituting the container 4 As the material of the lower plate member 1, the frame member 2 and the upper plate member 3 constituting the container 4, copper is typically used. In addition, for example, nickel, aluminum, stainless steel, or the like may be used.
  • the thickness of the lower plate member 1 and the upper plate member 3 is typically 0.1 mm to 0.8 mm.
  • the width a of the frame member 2 is typically 2 mm.
  • the thickness of the frame member 2 is appropriately set in relation to the thickness of the capillary member 5 as will be described later.
  • the materials and numerical values given as typical examples here are not limited to these, and the same applies to the following.
  • the first mesh layer 6 and the second mesh layer 7 are formed by laminating one or a plurality of mesh members 8 each having a mesh-like mesh made of fine metal wires.
  • the thickness of each mesh member 8 is typically 0.02 mm to 0.05 mm.
  • a thing other than the mesh layer may be used as the capillary member 5.
  • a plurality of wires are bundled. Any material may be used as long as it applies a capillary force to the working fluid and has a predetermined elasticity.
  • 2 to 5 mesh members 8 are stacked as the first mesh layer 6, and one mesh member 8 is stacked as the second mesh layer 7 on the first mesh layer 6.
  • the plurality of mesh members 8 are stacked by, for example, brazing, bonding using an adhesive, plating treatment, or the like.
  • the working fluid is attracted toward the first mesh layer 6 having a strong capillary force among the first mesh layer 6 and the second mesh layer 7. Is retained.
  • FIG. 1 shows an example in which the heat source 9 is disposed on the side close to the liquid phase side of the heat transport device 100, that is, on the side close to the first mesh layer 6.
  • the heat transport device 100 is formed in a thin plate shape, as shown in FIG. 13, for example, the heat transport device 100 is disposed on the side close to the gas phase side of the heat transport device 100, that is, on the side close to the second mesh layer 7 side. Even if it is done, high heat transport performance can be exhibited.
  • FIG. 3 is a diagram for explaining a method of manufacturing the heat transport device 100.
  • the thickness of the capillary member 5 including the first mesh layer 6 and the second mesh layer 7 laminated thereon is defined as t 1 .
  • the lower plate member 1 and the upper plate member 3 and the frame member 2 is an internal space of the thickness of the container 4, i.e. the thickness of the frame member 2 and t 2 formed by being diffusion bonded.
  • the thickness t 1 of the capillary member 5 is typically 0 mm ⁇ 0.2 mm.
  • FIG. 4 is a schematic cross-sectional view sequentially showing a method for manufacturing the heat transport device 100.
  • the surface of the lower plate member 1 on the inner space side in the container 4 is an inner surface 11 of the lower plate member 1.
  • the capillary member 5 is placed on the inner surface 11.
  • the frame member 2 is placed on the inner surface 11 of the lower plate member 1, and the upper plate member 3 is placed on the capillary member 5. That is, the lower plate member 1, the capillary member 5, and the upper plate member 3 are laminated so that the capillary member 5 is sandwiched between the lower plate member 1 and the upper plate member 3.
  • the thickness t 1 of the capillary member 5 is larger between the thickness t 1 of the capillary member 5 and the thickness t 2 of the frame member 2. Therefore, as shown in FIG. 4B, the upper plate member 3 is placed on the capillary member 5, and the upper plate member 3 and the frame member 2 are spaced apart. A surface of the upper plate member 3 on the inner space side in the container 4 is an inner surface 31 of the upper plate member 3, and a surface facing the upper plate member 3 of the frame member 2 is an opposing surface 21. Further, G is the distance between the inner surface 31 of the upper plate member 3 and the facing surface 21 of the frame member 2.
  • the gap G is in the range of 0 mm to 0.2 mm. Since the upper plate member 3 and the frame member 2 are diffusion bonded, the gap G is crushed by the pressure required for the diffusion bonding.
  • the interval G is referred to as a crushing amount G.
  • pressure P is applied from the upper plate member 3 side, and the lower plate member 1 and the frame member 2 and the upper plate member 3 and the frame member 2 are diffusion bonded.
  • the capillary member 5 is compressed by the crushing amount G. Since the capillary member 5 has elasticity, a part of the pressure P is absorbed, and a pressure P ′ smaller than the pressure P is applied from the capillary member 5 to the lower plate member 1. By this pressure P ′, the inner surface 11 of the lower plate member 1 and the capillary member 5 are diffusion bonded.
  • the lower plate member 1 and the frame member 2, and the upper plate member 3 and the frame member 2 are diffused with a high bonding force (pressure P) in order to prevent a leak failure in which the airtightness in the container 4 is broken by a small hole or the like. Be joined.
  • the lower plate member 1 and the first mesh layer 6 are diffusion-bonded at an appropriate pressure (pressure P ′) such that the capillary force appropriately acts on the working fluid.
  • a pressure P ′′ smaller than the pressure P is also applied to the upper plate member 3 from the compressed capillary member 5.
  • the pressure P ′′ the inner surface 31 of the upper plate member 3 and the capillary member 5 are diffusion bonded.
  • the pressure P is applied from the upper plate member 3 side, but the pressure P may be applied from the lower plate member 1 side.
  • FIG. 5 is a table showing the crushing amount G and the leak failure rate of the heat transport device 100 manufactured with the crushing amount G. As shown in the table of FIG. 5, a leak defect rate of 0% was confirmed when the crushing amount G was in the range of 0 mm to 0.10 mm, for example.
  • FIG. 6 (A) is a photograph of the inner surface 11 of the lower plate member 1 of the heat transport device 100 manufactured with a crushing amount G of 0.10 mm.
  • FIG. 6B is the inner surface 11 of the lower plate member 1 of the heat transport device 100 manufactured with a crushing amount G of 0 mm.
  • This recess is a recess formed by diffusion bonding between the inner surface 11 of the lower plate member 1 and the first mesh layer 6. That is, it can be seen that the inner surface 11 of the lower plate member 1 and the first mesh layer 6 are surely diffusion-bonded in the diffusion bonding step of FIG. 4C when the crushing amount is in the range of 0 mm to 0.10 mm.
  • the lower plate member 1 and the frame member 2 and the frame member 2 and the upper plate member 3 are diffused to form the container 4 of the heat transport device 100. Be joined.
  • the lower plate member 1 and the capillary member 5 laminated so as to be sandwiched between the lower plate member 1 and the upper plate member 3 are diffusion bonded. Accordingly, since a plurality of diffusion bondings are performed in the same process, an inexpensive heat transport device manufacturing method that can be efficiently manufactured by a small number of processes is realized.
  • the heat transport device When multiple diffusion bonding is performed in a separate process, the heat transport device is exposed to a high temperature state for each diffusion bonding. This causes a decrease in yield in manufacturing the heat transport device.
  • the lower plate member 1 and the frame member 2 and the frame member 2 and the upper plate member 3 are separated in another process.
  • the container 4 is formed by diffusion bonding (diffusion bonding ⁇ ).
  • the lower plate member 1, the frame member 2 and the upper plate member 3 are once exposed to a high temperature in the diffusion bonding ⁇ , many defects such as small holes in the container 4 formed in the diffusion bonding ⁇ occur. To do.
  • the method for manufacturing the heat transport device 100 according to the present embodiment it is possible to prevent the yield from being reduced as described above and to reduce the cost.
  • the relationship between the thickness t 1 of the frame member 2 having a thickness t 2 and the capillary member 5 constituting the side wall of the container 4, is adjusted the degree to which the capillary member 5 is compressed, the pressure P to be absorbed by the capillary member 5 A part of is adjusted. Therefore, by setting the thickness t 1 of the thickness t 2 and the capillary member 5 of the frame member 2 as appropriate, required for diffusion bonding between the inner surface 11 and the capillary member 5 of the lower plate member 1, the desired pressure P' Obtainable.
  • FIG. 7 is a schematic cross-sectional view sequentially illustrating a method for manufacturing a heat transport device according to the second embodiment of the present invention.
  • the heat transport device 200 includes an upper plate member 203 in place of the upper plate member 3 and the frame member 2 in the heat transport device 100 according to the first embodiment.
  • the upper plate member 203 and the lower plate member 1 constitute a container 204 of the heat transport device 200.
  • the upper plate member 203 has a vessel-like shape, and is diffusion bonded to the upper plate portion 203 a placed on the capillary member 5, the side wall portion 203 b constituting the side wall of the container 204, and the lower plate member 1. And a joint portion 203c.
  • the height of the side wall portion 203b as viewed from the inner space side of the container 204 (hereinafter, referred to as the height of the side wall portion 203b) when the the t 3, the thickness of the internal space of the container 204 becomes t 3.
  • the upper plate member 203 is placed on the capillary member 5. Since the thickness t 1 of the capillary member 5 is larger than the height t 3 of the side wall portion 203b, the upper plate member 203 is placed on the capillary member 5, and the upper plate member 203 and the lower plate member 1 are placed. There is an interval.
  • a surface facing the lower plate member 1 in the joint portion 203c of the upper plate member 203 is defined as a facing surface 231, and a distance between the facing surface 231 and the inner surface 11 of the lower plate member 1 is defined as a crush amount G.
  • pressure P is applied from the upper plate member 203 side, and the lower plate member 1 and the upper plate member 203 are diffusion bonded.
  • the capillary member 5 is compressed by the crushing amount G, and a part of the pressure P is absorbed.
  • a pressure P ′ smaller than the pressure P is applied from the capillary member 5 to the lower plate member 1, and the inner surface 11 of the lower plate member 1 and the capillary member 5 are diffusion-bonded by this pressure P ′.
  • the heat transport according to the first embodiment is set by appropriately setting the height t 3 of the side wall portion 203b and the thickness t 1 of the capillary member 5.
  • the same effects as those of the device 100 manufacturing method can be obtained.
  • the manufacturing cost of the heat transport device 200 can be reduced by manufacturing the upper plate member 203 using, for example, mold processing such as press processing or casting.
  • the upper plate member 203 has the joint portion 203c, a sufficient joint area between the upper plate member 203 and the lower plate member 1 can be taken. Thereby, the airtightness of the container 204 formed by the diffusion bonding of the upper plate member 203 and the lower plate member 1 is improved.
  • FIG. 8 is a schematic cross-sectional view showing a heat transport device manufactured by the method for manufacturing a heat transport device according to the third embodiment.
  • the cross-sectional view of FIG. 8 is a cross-sectional view of the heat transport device 300 in the short direction.
  • the capillary member 5 is illustrated in a simplified manner.
  • the heat transport device 300 includes an upper plate member 303 in place of the upper plate member 203 in the heat transport device 200 according to the second embodiment.
  • the upper plate member 303 and the lower plate member 1 constitute a container 304 of the heat transport device 300.
  • the upper plate member 303 includes an upper plate portion 303a, a side wall portion 303b, and a joint portion 303c, similarly to the upper plate member 203 included in the heat transport device 200 according to the second embodiment. It differs from the upper plate member 203 in that the upper plate portion 303a has a protrusion 313.
  • the protrusion 313 protrudes toward the internal space in the container 304 of the heat transport device 300.
  • the protruding portion 313 has a long shape along the longitudinal direction of the heat transport device 300 and is provided on the upper plate portion 303 a of the upper plate member 303.
  • the upper plate member 303 and the lower plate member 1 are diffusion-bonded in a state where the capillary member 5 is compressed and crushed by the protruding portion 313. Further, the capillary member 5 and the lower plate member 1 are diffusion bonded by this diffusion bonding process.
  • FIG. 9 is a photograph of the inner surface 11 of the lower plate member 1 of the heat transport device 300 manufactured according to this embodiment.
  • the capillary member 5 is compressed by the protrusion 313.
  • a depression due to diffusion bonding between the inner surface 11 of the lower plate member 1 and the capillary member 5 can be seen around a region on the inner surface 11 of the lower plate member 1 corresponding to the compressed portion (a region surrounded by a broken-line circle). (K circled).
  • two protrusions 313 are provided along the longitudinal direction of the heat transport device 300. As shown in FIG. 9, two dents arranged at substantially equal intervals on the inner surface 11 can be confirmed (L1 and L2).
  • the internal space of the container 304 can be reinforced by the protruding portion 313, and reliably.
  • the capillary member 5 can be compressed.
  • the protrusion 313 enables the capillary member 5 to be compressed even in a range where the thickness t 1 of the capillary member 5 is smaller than the thickness of the internal space of the container 304.
  • a desired design is possible in which the capillary member 5 is provided in the flow path of the liquid-phase working fluid and not provided in the flow path of the gas-phase working fluid (see FIG. 8).
  • the protruding portion 313 can be formed by die processing or an etching technique such as RIE (Reactive Ion Etching), for example, and the cost in manufacturing the heat transport device 300 can be suppressed.
  • RIE Reactive Ion Etching
  • the protrusion 313 has a long shape along the longitudinal direction of the heat transport device 300, but is not limited thereto.
  • a desired number of protrusions 313 may be provided at a desired position of the upper plate portion 303a. Thereby, for example, the volume of the gas-phase working fluid channel is increased, and the heat transport efficiency of the heat transport device 300 can be improved.
  • FIG. 10 is a diagram for explaining a method of manufacturing a heat transport device using a jig.
  • the heat transport device 400 has substantially the same configuration as the heat transport device 200 according to the second embodiment.
  • the side wall portion 403b of the upper plate member 403 having a vessel shape is different from the configuration of the heat transport device 200 in that the side wall portion 403b is inclined with respect to the thickness direction of the container 404.
  • the upper plate portion 403a, the side wall portion 403b, and the joint portion 403c of the upper plate member 403 have substantially the same thickness.
  • the heat transport device unit 450 is constituted by the upper plate member 403, the lower plate member 1, and the capillary member 5 sandwiched between them.
  • the jig unit 600 has a placement surface 610 on which the upper plate member 403 of the heat transport device unit 450 is placed.
  • the placement surface 610 of the jig portion 600 includes a lower step surface 610a on which the upper plate portion 403a of the upper plate member 403 is placed, and an upper step surface 610b on which the joint portion 403c is placed.
  • the lower step surface 610a and the upper step surface 610b are connected via a step, and the recess of the jig portion 600 is formed by the step, the lower step surface 610a, and the upper step surface 610b.
  • the depth of the recess of the jig unit 600 the height from the lower surface 610a to upper surface 610b and t 4. Comparing the height t 4 with the thickness t 1 of the capillary member 5, the thickness t 1 of the capillary member 5 is 0 mm to 0.2 mm larger.
  • carbon or stainless steel is typically used as a material for the jig portion 600.
  • FIG. 11 is a schematic cross-sectional view sequentially illustrating a method for manufacturing the heat transport device 400.
  • the upper plate member 403, the capillary member 5, and the lower plate member 1 are sequentially stacked on the mounting surface 610 of the jig unit 600.
  • a crushing amount G is provided between the joint portion 403 c of the upper plate member 403 and the lower plate member 1. This crushing amount G is obtained by adding the height t 4 and the thickness of the joint portion 403c (height X), and adding the thickness t 1 of the capillary member 5 and the thickness of the upper plate portion 403a (height Y). Is the difference.
  • the upper plate portion 403a and the joint portion 403c have substantially the same thickness. Therefore, the crushing amount G is substantially equal to the difference between the height t 4 and the thickness t 1 of the capillary member 5.
  • the pressure required for diffusion bonding of the upper plate member 403 and the lower plate member 1 of the heat transport device unit 450 in the direction in which the heat transport device unit 450 and the jig portion 600 are laminated. P is applied.
  • the inner surface 11 of the lower plate member 1 and the capillary member 5 are diffusion-bonded by the pressure P ′′ applied to the lower plate member 1 from the capillary member 5 having elasticity.
  • the joining portion 403c of the upper plate member 403 is diffusion joined to the lower plate member 1 while being pressed against the upper stage surface 610b of the jig portion 600. Therefore, the crushing amount G is determined by the difference between the height t 4 and the thickness t 1 of the capillary member 5 regardless of variations in the height of the side wall portions 403b. Accordingly, in the diffusion bonding step shown in FIG. 11 (B), the capillary member 5 is compressed by the squeezing amount G without variation, so that the pressure P ′′ required for the diffusion bonding between the lower plate member 1 and the capillary member 5 is reduced. , Can be obtained without variation.
  • the upper plate portion 403a and the joint portion 403c of the upper plate member 403 have substantially the same thickness, but are not limited thereto. Based on the shape of the upper member 403, the thickness t 1 of the height t 4 and the capillary member 5 is properly set, can be provided the desired squashing amount G.
  • FIG. 12 is a schematic cross-sectional view sequentially illustrating a method for manufacturing a heat transport device using a plurality of jigs.
  • the jig part 700 and the heat transport device 500 have substantially the same configuration as the jig part 600 and the heat transport device 400 according to the fourth embodiment.
  • the upper plate member 503, the capillary member 5 and the lower plate member 1 are sequentially laminated on the mounting surface 710 of the jig portion 700. Further, the jig portion 700 is laminated on the lower plate member 1, and the upper plate member 503, the capillary member 5, and the lower plate member 1 are sequentially laminated on the mounting surface 710 of the jig portion 700. . In this way, the plurality of heat transport device units 550 and the plurality of jig portions 700 are stacked. A crushing amount G is provided between the joint portion 503 c of the upper plate member 503 and the lower plate member 1 of each heat transport device unit 550.
  • the plurality of heat transport device units 550 and the plurality of jig portions are arranged in the direction in which the plurality of heat transport device units 550 and the plurality of jig portions 700 are stacked.
  • a plurality of heat transport devices 500 are manufactured at a time. That is, batch processing in manufacturing the heat transport device 500 becomes possible.
  • Diffusion bonding is performed with a large load in a vacuum environment, so the cost for one diffusion bonding process is high.
  • the diffusion bonding process includes a process in which the heat transport device is cooled in a vacuum environment after the container of the heat transport device is bonded in a high temperature state, so that much time is consumed.
  • the manufacturing method of the heat transport device 500 in the present embodiment since the batch processing described above is possible, the cost is suppressed and the manufacturing time is shortened. This realizes a more efficient and inexpensive method for manufacturing a heat transport device.
  • the container is described as being formed by an upper plate member, a lower plate member, and the like.
  • the container is formed by bending one plate member. Therefore, this point will be mainly described.
  • FIG. 14 is a perspective view showing a heat transport device according to the sixth embodiment.
  • FIG. 15 is a cross-sectional view taken along the line AA shown in FIG.
  • FIG. 16 is a development view of a plate member constituting the container of the heat transport device.
  • the heat transport device 110 includes a container 51 having a rectangular thin plate shape that is long in one direction (Y-axis direction).
  • the container 51 is formed by bending one plate member 52.
  • the plate member 52 is typically made of oxygen-free copper, tough pitch copper, or a copper alloy. However, the present invention is not limited to this, and the plate member 52 may be made of a metal other than copper, or a material having a high thermal conductivity may be used.
  • the container 51 has a curved shape in the side portion 51 c along the longitudinal direction (Y-axis direction). That is, the container 51 is formed such that the plate member 52 shown in FIG. 16 is bent at substantially the center of the plate member 52, and thus the side portion 51c is curved.
  • the side part 51c may be referred to as a curved part 51c.
  • the container 51 has the joint part 53 in the side part 51d on the opposite side to the side part 51c (curved part 51c), and the side parts 51e and 51f in the direction along a transversal direction.
  • the joint portion 53 is provided so as to protrude from the respective side portions 51d, 51e, and 51f.
  • the bent plate member 52 is joined.
  • the joining portion 53 corresponds to the joining region 52a (the region indicated by oblique lines) of the plate member 52 shown in FIG.
  • the joining region 52a is a region within a predetermined distance d from the edge 52b of the plate member 52.
  • the capillary member 5 is provided inside the container 51.
  • the capillary member 5 includes one or more mesh members 8 as described above.
  • the thickness of the capillary member 5 can be set to about the thickness of the internal space of the container 51 (may be slightly larger or smaller than the thickness of the internal space).
  • FIG. 17 is a diagram illustrating a method for manufacturing a heat transport device.
  • a plate member 52 is prepared. Then, the plate member 52 is bent substantially at the center of the plate member 52.
  • the capillary member 5 When the plate member 52 is bent to a predetermined angle, the capillary member 5 is inserted between the bent plate members 52 as shown in FIG.
  • the capillary member 5 may be disposed at a predetermined position on the plate member 52 before the bending of the plate member 52 is started.
  • the plate member 52 When the capillary member 5 is inserted between the plate members 52, the plate member 52 is further bent so as to sandwich the capillary member 5 as shown in FIG. And the joining part 53 (joining area
  • this heat transport device 110 since the container 51 is formed by one plate member 52, the number of parts can be reduced and the cost can be reduced. Further, when the container 51 is formed of two or more members, it is necessary to align the positions of these members, but in this embodiment, it is not necessary to align the positions of the members. Therefore, the heat transport device 110 can be easily manufactured.
  • FIG. 18 is a view for explaining a modified example of the heat transport device 110 and is a development view of a plate member.
  • the plate member 52 has a groove 54 at the center of the plate member 52 along the longitudinal direction (Y-axis direction).
  • the groove 54 is formed by, for example, pressing or etching, but the method for forming the groove 54 is not particularly limited.
  • the plate member 52 has a structure in which the plate member 52 is bent in the longitudinal direction (with the Y direction as an axis), but may be bent with a short side (in the short direction) (with the X direction as an axis).
  • FIG. 19 is a perspective view showing a heat transport device according to the seventh embodiment.
  • 20 is a cross-sectional view taken along a line AA shown in FIG.
  • FIG. 21 is an exploded view of a plate member constituting the container of the heat transport device.
  • the heat transport device 120 includes a container 61 having a rectangular thin plate shape that is long in one direction (Y-axis direction).
  • the container 61 is formed by folding a plate member 62 shown in FIG. 21 from the center.
  • the plate member 62 is provided with two openings 65 at the center of the plate member 62 so as to be along the longitudinal direction of the plate member 62. By providing the opening 65 in this way, the left plate and the right plate of the plate member 62 are connected in the three regions 66.
  • the container 61 has a joint portion 63 at side portions 61c and 61d in the direction along the longitudinal direction (Y-axis direction) and side portions 61e and 61f in the direction along the short-side direction (x-axis direction). Yes.
  • the upper plate and the lower plate are joined by diffusion joining to form the container 61.
  • the joining portion 63 corresponds to joining regions 62a and 62b indicated by oblique lines of the plate member 62 shown in FIG.
  • the plate member 62 since the plate member 62 is provided with the opening 65, the plate member 62 can be easily bent. Thereby, the heat transport device 120 can be manufactured more easily.
  • channel formed by press work may be provided in the area
  • FIG. 22 is a view for explaining the method of manufacturing the heat transport device according to the eighth embodiment of the present invention.
  • the heat transport device 800 according to the present embodiment has a capillary member 805 having a thickness of t 1 instead of the capillary member 5 in the heat transport device 200 according to the second embodiment.
  • the capillary member 805 includes a first mesh member 860, a second mesh member 870 stacked on the first mesh member 860, and a joining mesh member 850 stacked on the second mesh member 870.
  • the gas-phase working fluid moves mainly through the first mesh member 860
  • the liquid-phase working fluid moves mainly through the second mesh member 870.
  • the spring constant of the second mesh member 870 is larger.
  • the spring constant of the first mesh member 860 is also set larger than the spring constant of the joining mesh member 850.
  • the spring constant of the first mesh member 860 and the spring constant of the second mesh member 870 may be the same or different. However, when the spring constants of the first mesh member 860 and the second mesh member 870 are different, the difference is smaller than the difference between the spring constants of the second mesh member 870 and the joining mesh member 850. It is. In the present embodiment, it is assumed that the spring constant of the first mesh member 860 and the spring constant of the second mesh member 870 are substantially equal.
  • the spring constant described in the description of the present embodiment is a spring constant in the thickness direction of each mesh member.
  • FIG. 23 shows stress and deformation in the thickness direction due to the stress applied to the joining mesh member 850 having different spring constants, the first mesh member 860, and the second mesh member 870 in the thickness direction. It is a typical graph which shows the relationship with quantity (crushing quantity).
  • the relationship between the stress and the deformation amount of the joining mesh member 850 having a small spring constant is indicated by a broken line.
  • the relationship between the stress and the deformation amount of the first mesh member 860 and the second mesh member 870 having a large spring constant is indicated by a solid line.
  • the spring constant and the shape of the mesh member will be described.
  • a mesh member formed by braiding a plurality of fine metal wires when the mesh size of the fine metal wires is the same, the larger the thickness (diameter) of the fine metal wires, the larger the spring constant.
  • the diameters of the fine metal wires are the same, the smaller the mesh, the larger the spring constant.
  • the mesh member which has a desired spring constant is obtained by setting suitably the magnitude
  • the spring constant of the mesh member may be appropriately set by appropriately setting the material of the fine metal wire used.
  • the joining mesh member 850 having a small spring constant has a mesh size of the fine metal wire smaller than that of the fine metal wire knitted as the first mesh member 860 and the second mesh member 870.
  • a metal fine wire having a diameter smaller than that of the metal fine wire used for the first mesh member 860 and the second mesh member 870 is used.
  • the spring constant of the joining mesh member 850 is set to be smaller than that of the first mesh member 860 and the second mesh member 870.
  • the first mesh member 860 of the capillary member 805 is placed on the inner surface 11 of the lower plate member 1. Further, the upper plate member 203 is placed on the joining mesh member 850 of the capillary member 805. A crushing amount G is provided between the lower plate member 1 and the upper plate member 203.
  • pressure P is applied from the upper plate member 203 side, and the lower plate member 1 and the upper plate member 203 are diffusion bonded.
  • the capillary member 805 and the lower plate member 1 and the upper plate member 203 are diffusion-bonded by the pressures P ′ and P ′′ from the capillary member 805 compressed by the crushing amount G, respectively.
  • FIG. 25 is an enlarged view of the upper plate member 203, the joining mesh member 850, and the second mesh member 870 shown in FIG.
  • FIG. 26 is an enlarged view showing diffusion bonding between the capillary member 895 and the upper plate member 203 given as a comparative example.
  • the capillary member 895 is a member in which the joining mesh member 850 is not stacked on the second mesh member 870. Therefore, in FIG. 26, the upper plate member 203 and the second mesh member 870 are enlarged and illustrated.
  • the second mesh member 870 of the capillary member 895 will be described as a second mesh member 870 ′.
  • FIG. 25 illustrates a plurality of fine metal wires 855 knitted as the joining mesh member 850 and a plurality of fine metal wires 875 (875a and 875b) knitted as the second mesh member 870.
  • the fine metal wires 855 and 875 are knitted in the X direction shown in FIG.
  • FIG. 26 also shows a plurality of fine metal wires 875 '(875a' and 875b ') knitted as the second mesh member 870'.
  • the metal fine wires knitted in the direction different from the X direction are omitted from the metal fine wires 855, 875, and 875 ′.
  • FIG. 25A shows the joining mesh member 850 and the second mesh member 870 before being diffusion-joined to the upper plate member 203.
  • the fine metal wires 855 and 875 to be knitted have variations due to dimensional tolerances at positions in the thickness direction (Z direction shown in FIG. 25) of the heat transport device 800.
  • the metal fine wire 875 ′ of the second mesh member 870 ′ also has variations due to dimensional tolerances.
  • the metal thin wire 875a ′ is diffusion-bonded to the upper plate member 203 as shown in FIG.
  • the fine metal wire 875b ′ is not diffusion bonded to the upper plate member 203. In this state, the diffusion bonding between the capillary member 895 and the upper plate member 203 is not sufficient.
  • the fine metal wire 875a ′ is larger than the fine metal wire 875b ′ as shown in FIG. It will be deformed.
  • functions related to heat transport performance such as generating capillary force in the liquid-phase working fluid may not be sufficiently exhibited.
  • the bonding mesh member 850 and the second mesh member as shown in FIG. 870 is diffusion bonded to the upper plate member 203.
  • the joining mesh member 850 having a small spring constant is sufficiently deformed in the diffusion joining step, and is sufficiently diffusion joined to the upper plate member 203.
  • the fine metal wire 875a is diffusion bonded to the upper plate member 203.
  • the fine metal wire 875b is not diffusion bonded to the upper plate member 203, but is diffusion bonded to the fine metal wire 855.
  • the bonding mesh member 850 having a small spring constant is sufficiently compressed in the diffusion bonding step, and is sufficiently diffusion bonded to the upper plate member 203 by the stress. Further, the joining mesh member 850 can absorb variation in deformation due to the dimensional tolerance of the second mesh member 870. Therefore, as shown in FIG. 25B, it is possible to prevent the metal thin wire 875a diffused and bonded to the upper plate member 203 from being greatly deformed as compared with the metal thin wire 875b. Accordingly, the second mesh member 870 can be sufficiently joined to the upper plate member 203 and can sufficiently exhibit the functions related to the heat transport performance described above. For example, when the heat transport device 800 is adapted to a high heat flux density, the effect in the present embodiment is great.
  • the dimensional tolerance of the second mesh member 870 has been described.
  • variations in the deformation amount of the second mesh member 870 occur due to variations in the thickness of the upper plate member 203, the height of the side wall portion 203b (t 3 shown in FIG. 22), and the like. It is also possible. Even in such a case, the variation in the deformation amount of the second mesh member 870 is absorbed by the joining mesh member 850.
  • 27 (A) and 27 (B) are schematic views respectively showing mesh members that are different in how metal fine wires are knitted.
  • 27A and 27B show mesh members M and N in which the same fine metal wires are knitted with the same mesh size, respectively.
  • the mesh member M shown in FIG. 27A is formed so that its thickness m is almost three times the diameter r of the fine metal wire.
  • the mesh member N shown in FIG. 27B is formed so that its thickness n is almost twice the diameter r of the fine metal wire. That is, since the mesh member N is tightly knitted in the thickness direction of the mesh member (Z direction shown in FIG. 27) than the mesh member M, the mesh member N has a spring constant higher than that of the mesh member M. large. Thus, the spring constant may be set as appropriate depending on how the fine metal wires are knitted.
  • the capillary member 805 of this embodiment is formed by laminating mesh members.
  • any device may be used as long as it applies a capillary force to the working fluid and has a predetermined elasticity.
  • examples of such a material include those formed in an interdigital shape or a lattice shape, or those in which grooves are formed, for example, by etching techniques.
  • what has the sintered structure of a metal powder may be used as a capillary member. In this case, if a member having a small spring constant and easily deformed is arranged on the side to be joined to the upper plate member of the capillary member, the same effect as in the present embodiment can be obtained.
  • what was mentioned above can be used as a capillary member in each embodiment of this invention.
  • FIG. 28 is a view showing a modified example of the capillary member 805.
  • the capillary member 805 is formed by laminating a joining mesh member 840 on the opposite side of the first mesh member 860 to the side where the second mesh member 870 is laminated.
  • the spring constant of the joining mesh member 840 is smaller than the spring constant of the first mesh member 860. That is, the joining mesh member 840 is more easily deformed than the first mesh member 860.
  • the capillary member 805 is diffusion bonded to the upper plate member 203 and the lower plate member 1, whereby the internal space of the container 204 of the heat transport device 800 is reinforced. At this time, the joining mesh member 840 laminated on the first mesh member 860 and the lower plate member 1 are diffusion bonded, whereby the capillary member 805 and the lower plate member 1 are sufficiently diffusion bonded.
  • the first mesh member 860 is a member that serves as a flow path for the gas-phase working fluid. Therefore, if the first mesh member 860 is greatly deformed in the diffusion bonding step, there is a possibility that the flow path resistance when the gas-phase working fluid moves increases. Further, since the first mesh member 860 is largely deformed, there is a possibility that the pressure loss when the working fluid circulates in the container 204 of the heat transport device 800 is increased. However, the use of the first mesh member 860 that has a large spring constant and is difficult to deform can prevent the above-described problem from occurring.
  • FIG. 29 is a view for explaining a heat transport device according to the ninth embodiment of the present invention.
  • the heat transport device 900 according to the present embodiment is the heat transport device 100 according to the first embodiment, in which an injection port 900a and an injection path 900b described below are formed on the inner surface 11 of the lower plate member 1. is there.
  • the injection port 900a and the injection path 900b are formed in order to inject a working fluid into the container 4 in the manufacturing process of the heat transport device 900.
  • the injection port 900a and the injection path 900b are end portions in the longitudinal direction (X direction shown in FIG. 29) of the lower plate member 1, and are formed in a region where the inner surface 11 is diffusion bonded to the frame member 2.
  • FIG. 30 is an enlarged plan view showing the injection port 900a and the injection path 900b.
  • the injection port 900 a is formed so as to penetrate the lower plate member 1.
  • the injection path 900b is a groove formed on the inner surface 11 so as to communicate with the injection port 900a, and communicates with the inside of the container 4 at the end opposite to the side where the injection port 900a is provided.
  • the injection path 900b is formed in an L shape, for example.
  • the injection path 900b may be formed, for example, by end mill processing, laser processing, press processing, or fine processing such as photolithography and half etching in semiconductor manufacturing. According to press working, there is a feature that burrs do not appear. In the case of laser processing and end mill processing, a mold is not required, and a free-form groove can be formed.
  • the injection port 900a and the injection path 900b are sealed by, for example, caulking after the working fluid is injected into the container 4 in the manufacturing process of the heat transport device 900.
  • FIG. 30 is a view for explaining a heat transport device according to the tenth embodiment of the present invention.
  • injection ports 900 a and 900 b are formed in the lower plate member 1.
  • an injection port 910 a is formed in the upper plate member 3, and a groove serving as an injection path 910 b is formed in the frame member 2.
  • the injection port 910a is formed at the end of the upper plate member 3 in the longitudinal direction (X direction shown in FIG. 30) so as to penetrate the upper plate member 3.
  • the injection path 910 b is formed in a region where the frame member 2 is diffusion bonded to the upper plate member 3.
  • the injection path 910b is formed so as to communicate with the injection port 910a, and the end of the injection path 910b opposite to the side communicating with the injection port 910a communicates with the inside of the container 4.
  • the injection port 910a is formed in the upper plate member 3, but the injection port 910a is formed in the lower plate member 1, and the injection path 910b is in a region where the frame member 2 is diffusion bonded to the lower plate member 1. It may be formed.
  • the injection path 910b is formed in the frame member 2 by press working, a projection is formed on the surface of the frame member 2 opposite to the side on which the injection path 910b is formed. In that case, the frame member 2 and the lower plate member 1 cannot be joined. Therefore, in this embodiment, the injection path 910b may be formed by laser processing or end mill processing.
  • wire electric discharge machining (wire cut) may be used for processing or cutting of the upper plate member, the lower plate member, the frame member, or the capillary member.
  • the wire electric discharge machining is a machining method for machining a member by applying a voltage to a wire such as brass, tungsten, or molybdenum to generate an electric discharge between the member to be machined and the wire.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

【課題】少ない工程により効率的に製造される、安価な熱輸送デバイスの製造方法を提供すること。 【解決手段】下板部材1の内面11に、フレーム部材2の厚みより大きい厚みでなる毛細管部材5が載置される。続いて下板部材1の内面11上に、フレーム部材2が載置され、また、毛細管部材5上に上板部材3が載置される。毛細管部材5の厚みとフレーム部材2の厚みとの差により、フレーム部材2と上板部材3との間に、押しつぶし量Gが設けられる。そして下板部材1とフレーム部材2、及び上板部材3とフレーム部材2とが拡散接合される。このとき毛細管部材5は押しつぶし量G分圧縮される。毛細管部材5は弾性を有しているので、圧力Pの一部が吸収され、その圧力Pよりも小さい圧力P´が、毛細管部材5から下板部材1へ加えられる。この圧力P´により、下板部材1の内面11と毛細管部材5とが拡散接合される。

Description

熱輸送デバイスの製造方法及び熱輸送デバイス
 本発明は、作動流体の相変化により熱を輸送する熱輸送デバイスの製造方法及び熱輸送デバイスに関する。
 パーソナルコンピュータ等の電子機器を冷却するために、その電子機器の発熱部から発生する熱を凝縮部に輸送し放熱する、ヒートパイプ等の冷却デバイスが用いられている。
 これらの冷却デバイスは、電子機器の高温の発熱部で発生する熱によって蒸発した作動流体の蒸気が、低温の凝縮部へ移動し、その凝縮部で凝縮して熱を放出するものであり、これにより、冷却対象物が冷却される。
 近年においては、電子機器等の小型化、薄型化に伴い、その内部に含まれるIC等の発熱が大きな問題となっている。例えば薄型テレビの更なる薄型化が強く望まれており、これを実現させるためには、上記した電子機器内部の発熱の問題に対処しなければならない。この問題の解決手段として、小型、薄型、高効率の廉価な冷却デバイスが求められている。
 特許文献1には、ヒートスプレッダーを構成する上カバー及び下カバーへメッシュを取り付ける拡散接合工程1と、上記メッシュを有している上カバー、下カバー、及び補強部材を接合する拡散接合工程2の、複数の拡散接合工程が記されている。複数の拡散接合工程はそれぞれ別の工程において、それぞれの好適な条件のもとで行われている(段落[0022]-[0027]、[0032]、[0033]、図6A、図6B、図7、及び図8-図13)。
特開2006-140435号公報
 しかしながら、複数の拡散接合工程が別の工程において行われる場合、各拡散接合工程に費やされる時間、及び各拡散接合工程にかかるコストにより、冷却デバイスの製造に費やされる時間、及び冷却デバイスの製造にかかるコストが増える。これにより、効率の良い冷却デバイスの製造、及び安価な冷却デバイスの製造が難しくなる。
 以上のような事情に鑑み、本発明の目的は、少ない工程により効率的に製造される、安価な熱輸送デバイスの製造方法、及び熱輸送デバイスを提供することにある。
 上記目的を達成するため、本発明の一形態に係る熱輸送デバイスの製造方法は、作動流体の相変化を利用して熱を輸送する熱輸送デバイスの容器を構成する第1の板及び第2の板の間に、前記作動流体に毛細管力を作用させる毛細管部材を挟むように、前記第1の板、前記毛細管部材及び前記第2の板を積層させることを含む。 
 前記第1の板と前記毛細管部材とが拡散接合されるように、前記第1の板と前記第2の板とが拡散接合される。
 熱輸送デバイスの容器を構成するために、第1の板と第2の板とが拡散接合される。この拡散接合工程において、第1の板と、第1の板及び第2の板に挟まれるように積層された毛細管部材とが拡散接合される。従って、複数の拡散接合が同じ工程において行われるので、少ない工程により効率的に製造される、安価な熱輸送デバイスの製造方法が実現する。
 前記毛細管部材は弾性を有する材料からなってもよい。その場合、前記拡散接合工程において、前記毛細管部材を圧縮しながら、前記第1の板と前記第2の板とが拡散接合される。
 第1の板及び第2の板は、容器の密封性を目的に、高い接合力により拡散接合される。一方、上記拡散接合工程において、第1の板及び毛細管部材は、容器に含まれる作動流体に毛細管力が適切に作用するような適度な圧力で拡散接合される。つまり、これらの拡散接合にそれぞれ求められる圧力は異なることが多い。毛細管部材が所定の弾性を有していることにより、第1の板及び第2の板が拡散接合されるときの圧力の一部を毛細管部材が吸収するので、その圧力よりも小さい圧力で第1の板と毛細管部材とが拡散接合される。
 前記毛細管部材の厚みは、前記第1の板及び前記第2の板により構成される前記容器の内部空間の厚みより大きくてもよい。
 これにより上記拡散接合工程において、確実に毛細管部材が圧縮され、第1の板及び第2の板が拡散接合されるときの圧力の一部が確実に吸収される。
 前記毛細管部材は、第1のメッシュ層と、前記第1のメッシュ層に積層された、前記第1のメッシュ層に含まれるメッシュよりも目の粗いメッシュからなる第2のメッシュ層とを有してもよい。
 前記第2の板は突起部を有してもよい。その場合、前記拡散接合工程において、前記突起部により前記毛細管部材を圧縮しながら、前記第1の板と前記第2の板とが拡散接合される。
 突起部は、容器の内部空間を補強することができる上、突起部により、確実に毛細管部材を圧縮することができる。
 前記熱輸送デバイスは、前記容器の側壁を構成するフレーム部材を有してもよい。その場合、前記拡散接合工程において、前記第1の板と前記毛細管部材とが拡散接合されるように、前記第1の板と前記フレーム部材とが、かつ、前記第2の板と前記フレーム部材とが拡散接合される。
 容器の側壁を構成するフレーム部材の厚みと毛細管部材の厚みとの関係により、毛細管部材が圧縮される程度が調節され、毛細管部材に吸収される圧力の程度が調節される。従って、フレーム部材の厚みと毛細管部材の厚みとを適宜設定することで、第1の板と毛細管部材との拡散接合に求められる、所望の圧力を得ることができる。
 前記積層工程は、前記第1の板及び前記第2の板の間に前記毛細管部材を挟むように積層された、前記第1の板、前記毛細管部材及び前記第2の板を有するユニットを、凹部を有する治具部の前記凹部に嵌めるように、前記治具部と前記ユニットとを積層してもよい。その場合、前記拡散接合工程において、前記積層方向に前記治具部及び前記ユニットに圧力が加えられることで、前記ユニットの前記第1の板と前記第2の板とが拡散接合される。
 治具部が有する凹部の深さと毛細管部材の厚みとを適宜設定することで、上記拡散接合工程において、第1の板と毛細管部材との拡散接合に求められる圧力を、ばらつきなく得ることができる。
 前記積層工程において、前記第1の板、前記毛細管部材及び前記第2の板をそれぞれ有する複数のユニットの各間に、治具部がそれぞれ積層されるように、前記複数のユニット及び前記複数の治具部が積層されてもよい。その場合、前記拡散接合工程において、前記積層方向に、前記複数のユニット及び前記複数の治具部に圧力が加えられることで、前記複数のユニットの前記第1の板と前記第2の板とが拡散接合される。
 複数のユニット及び複数の治具部が積層された方向に、複数のユニット及び複数の治具部に圧力が加えられることで、複数の熱輸送デバイスが一度に製造される。これにより製造時間が短縮される。
 前記毛細管部材は、第1の部材と、第2の部材とを含んでもよい。
 前記第1の部材は、第1のバネ定数を有し前記第1の板に拡散接合される。
 前記第2の部材は、前記第1のバネ定数より大きい第2のバネ定数を有し前記第1の部材に積層される。
 第1の部材はバネ定数が小さく変形しやすいので、上記の拡散接合工程で毛細管部材が圧縮される際に確実に圧縮され、その応力により第1の板と十分に拡散接合される。また拡散接合工程にて、第1の部材により、例えば寸法公差による第2の部材の変形量のばらつき等が吸収される。これにより拡散接合工程後にて、バネ定数が大きく変形しにくい第2の部材により熱輸送の性能に係わる毛細管部材の機能が十分に発揮される。
 前記拡散接合工程は、前記第1の板と前記毛細管部材とが拡散接合されるように、かつ、前記第2の板と前記毛細管部材とが拡散接合されるように、前記第1の板と前記第2の板とを拡散接合することを含んでもよい。この場合、前記毛細管部材は、第3の部材を含み、前記第3の部材は、前記第2のバネ定数より小さい第3のバネ定数を有し、前記第2の部材に積層され前記第2の板と拡散接合される。
 毛細管部材が第1及び第2の板に拡散接合されることで、毛細管部材により熱輸送デバイスの容器の内部空間が補強される。この際、バネ定数が小さい第3の部材と第2の板とが拡散接合されることで、毛細管部材と第2の板とが十分に拡散接合される。
 本発明の他の形態に係る熱輸送デバイスの製造方法は、作動流体の相変化を利用して熱を輸送する熱輸送デバイスの容器を構成するための板を曲げることにより、前記作動流体に毛細管力を作用させる毛細管部材を、前記曲げられて形成される前記板の第1の部位及び第2の部位で挟む。
 そして、少なくとも前記第1の部位と前記毛細管部材とが拡散接合されるように、前記第1の部位の端部と前記第2の部位の端部とが拡散接合されることで、前記容器が形成される。
 これにより、1つの板が曲げられて容器が形成されるので、部品数が減り、コストを削減することができる。また、複数の部品により容器が構成される場合において、それら各部品の所定の位置決め精度が必要となるが、本発明では、そのような高い位置決め精度は必要がない。
 本発明の一形態に係る熱輸送デバイスは、内面を有する容器と、作動流体と、毛細管部材とを具備する。
 前記作動流体は、前記容器に収容され、相変化することで熱を輸送する。
 前記毛細管部材は、第1の部材と、第2の部材とを含み、前記作動流体に毛細管力を発生させる。
 前記第1の部材は、第1のバネ定数を有し前記内面に拡散接合される。
 前記第2の部材は、前記第1のバネ定数より大きい第2のバネ定数を有し前記第1の部材に積層される。
 本発明の他の形態に係る熱輸送デバイスは、側壁を有する容器と、作動流体と、毛細管部材とを具備する。
 前記容器は、前記側壁を構成するフレーム部材と、前記フレーム部材を挟み込むように前記フレーム部材に接合された第1の板及び第2の板とを有する。
 前記作動流体は、前記容器内で、相変化することにより熱を輸送する。
 前記毛細管部材は、前記作動流体に毛細管部力を作用させる。
 この熱輸送デバイスでは、簡単な構成の部品で容器を構成することができる。また、フレーム部材の厚みにより容器の内部空間の容積が定められるので、フレーム部材の厚みを適宜設定することで、簡単に内部空間の容積を設定することができる。
 以上のように、本発明によれば、少ない工程により効率的に製造される、安価な熱輸送デバイスの製造方法、及び熱輸送デバイスが実現する。
第1の実施形態に係る熱輸送デバイスの製造方法により製造された、熱輸送デバイスを示す模式的な断面図である。 第1の実施形態に係る熱輸送デバイスの製造方法により製造された、熱輸送デバイスを示す模式的な分解斜視図である。 第1の実施形態に係る熱輸送デバイスの製造方法を説明するための図である。 第1の実施形態に係る熱輸送デバイスの製造方法を順に示す模式的な断面図である。 押しつぶし量と、その押しつぶし量で製造された熱輸送デバイスのリーク不良率を表す表である。 第1の実施形態により製造された熱輸送デバイスの、下板部材の内面を観察した図である。 第2の実施形態に係る熱輸送デバイスの製造方法を順に示す模式的な断面図である。 第3の実施形態に係る熱輸送デバイスの製造方法で製造された、熱輸送デバイスを示す模式的な断面図である。 第3の実施形態により製造された熱輸送デバイスの、下板部材の内面を観察した図である。 治具を用いた熱輸送デバイスの製造方法を説明するための図である。 第4の実施形態に係る熱輸送デバイスの製造方法を順に示す模式的な断面図である。 第5の実施形態に係る熱輸送デバイスの製造方法を順に示す模式的な断面図である。 熱源が気相側に近い側に配置された熱輸送デバイスを示す断面図である。 第6の実施形態に係る熱輸送デバイスを示す斜視図である。 図14に示すA-A間の断面図である。 第6の実施形態に係る熱輸送デバイスの容器を構成する板部材の展開図である。 第6の実施形態に係る熱輸送デバイスの製造方法を示す図である。 変形例に係る熱輸送デバイスを説明するための図であり、板部材の展開図である。 第7の実施形態に係る熱輸送デバイスを示す斜視図である。 図19に示すA-A間の断面図である。 第7の実施形態に係る熱輸送デバイスの容器を構成する板部材の展開図である。 第8の実施形態に係る熱輸送デバイスの製造方法を説明するための図である。 各メッシュ部材に加えられる応力と、その応力による変形量(潰れ量)との関係を示す模式的なグラフである。 第8の実施形態に係る熱輸送デバイスの製造方法を順に示す模式的な断面図である。 図24で示す上板部材、接合用メッシュ部材、及び第2のメッシュ部材を拡大して示した図である。 比較例として挙げる毛細管部材と上板部材との拡散接合を示した拡大図である。 金属細線の編み込まれ方が異なるメッシュ部材をそれぞれ示した模式的な図である。 図22に示した毛細管部材の変形例を示した図である。 第9の実施形態に係る熱輸送デバイスを説明するための図である。 図29に示す注入口及び注入路を拡大して示した平面図である。 第10の実施形態に係る熱輸送デバイスを説明するための図である。
 以下、本発明の実施の形態を図面に基づき説明する。
<第1の実施形態>
[熱輸送デバイスの構成]
 図1は、本発明の第1の実施形態に係る熱輸送デバイスの製造方法により製造された、熱輸送デバイスを示す模式的な断面図である。図2は、その分解斜視図である。図1の断面図は、熱輸送デバイス100の長手方向における断面図である。以後、断面図の方向は同様である。
 熱輸送デバイス100は、容器4と、容器4内に設けられた毛細管部材5とを含む。容器4は、下板部材1、フレーム部材2及び上板部材3により構成される。フレーム部材2により、容器4における側壁が構成される。容器4の内部には、相変化により熱を輸送する図示しない作動流体が封入されており、この作動流体に毛細管力を作用させる毛細管部材5が形成されている。毛細管部材5は、第1のメッシュ層6と、第1のメッシュ層6に積層された第2のメッシュ層7とを含む。第2のメッシュ層7は、第1のメッシュ層6に含まれるメッシュよりも目の粗いメッシュからなる。
 作動流体としては、純水やエタノール等が用いられる。
 容器4を構成する下板部材1、フレーム部材2及び上板部材3の材料としては、典型的には銅が用いられる。その他に、例えばニッケル、アルミニウム、又はステンレス等が用いられてもよい。下板部材1及び上板部材3の厚みは、典型的には0.1mm~0.8mmである。フレーム部材2の幅aは典型的には2mmである。
 フレーム部材2の厚みについては、後に説明するように、毛細管部材5の厚みとの関係で適宜設定される。ここで典型的な例として挙げる材料及び数値等は、これに限られるという意味ではなく、それは以後も同様である。
 図2に示すように、第1のメッシュ層6及び第2のメッシュ層7は、金属細線による網目状のメッシュを有するメッシュ部材8が、1枚又は複数枚積層されて形成されている。各メッシュ部材8の厚みは、典型的には0.02mm~0.05mmである。
 毛細管部材5として、メッシュ層以外のものが用いられてもよい。例えば複数のワイヤーが束になったものなどが挙げられる。作動流体に毛細管力を作用させるものであり、かつ所定の弾性を有しているものであればどのようなものでもよい。本実施形態では、第1のメッシュ層6として、2~5枚のメッシュ部材8が積層され、第1のメッシュ層6の上に第2のメッシュ層7として、1枚のメッシュ部材8が積層されている。複数のメッシュ部材8は、例えばろう付け、接着剤を用いた接合、めっき処理等により積層される。
 熱輸送デバイス100が動作していないときは、作動流体は、第1のメッシュ層6及び第2のメッシュ層7のうち、主に毛細管力の強い第1のメッシュ層6の方に引き寄せられて保持されている。
[熱輸送デバイスの動作]
 熱輸送デバイス100の動作について説明する。熱輸送デバイス100の吸熱部V(図1参照)において、例えば回路デバイス等の熱源9から熱を受け、液相の作動流体が蒸発する。気相になった作動流体は容器4内を放熱部Wへ移動し、放熱部Wにおいて熱を放出し、凝縮する。放熱部Wで液相になった作動流体は容器4内を吸熱部Vへ移動し、熱源9からの熱を受けて再び蒸発する。このサイクルが繰り返されることで、熱源9が冷却される。本実施形態に係る熱輸送デバイス100においては、主に第2のメッシュ層7を通って、気相の作動流体が移動する。また第1のメッシュ層6による毛細管力を受けて、液相の作動流体が移動する。
 なお図1では、熱源9は、熱輸送デバイス100の液相側に近い側、つまり第1のメッシュ層6に近い側に配置される例を示した。しかし、熱輸送デバイス100は、薄板形状で形成されているので、図13に示すように、例えば熱輸送デバイス100の気相側に近い側、つまり第2のメッシュ層7側に近い側に配置されても、高い熱輸送性能を発揮することができる。
[熱輸送デバイス100の製造方法]
 図3は熱輸送デバイス100の製造方法を説明するための図である。ここで、第1のメッシュ層6及びその上に積層される第2のメッシュ層7からなる毛細管部材5の厚みをt1とする。また、下板部材1及び上板部材3とフレーム部材2とが拡散接合されることで構成される容器4の内部空間の厚み、つまりフレーム部材2の厚みをt2とする。図3に示すように、毛細管部材5の厚みt1とフレーム部材2の厚みt2とを比べると、毛細管部材5の厚みt1の方が大きい。毛細管部材5の厚みt1とフレーム部材2の厚みt2との差は、典型的には0mm~0.2mmである。
 図4は、その熱輸送デバイス100の製造方法を順に示す模式的な断面図である。
 図4(A)に示すように、下板部材1の、容器4における内部空間側の面を、下板部材1の内面11とする。この内面11に、毛細管部材5が載置される。
 図4(B)に示すように、下板部材1の内面11上にフレーム部材2が載置され、また、毛細管部材5上に上板部材3が載置される。つまり、下板部材1及び上板部材3の間に、毛細管部材5が挟まれるように、下板部材1、毛細管部材5及び上板部材3が積層される。
 上述したように毛細管部材5の厚みt1とフレーム部材2の厚みt2とでは、毛細管部材5の厚みt1の方が大きい。従って図4(B)に示すように、上板部材3は毛細管部材5に載置されることになり、上板部材3とフレーム部材2とは間隔がある。上板部材3の、容器4における内部空間側の面を上板部材3の内面31とし、フレーム部材2の上板部材3と対向する面を対向面21とする。また上板部材3の内面31とフレーム部材2の対向面21との間隔をGとする。
 本実施形態では、毛細管部材5の厚みt1とフレーム部材2の厚みt2との差を0mm~0.2mmとするので、上板部材3の内面31とフレーム部材2の対向面21との間隔Gは0mm~0.2mmの範囲である。上板部材3及びフレーム部材2は拡散接合されるので、その拡散接合に求められる圧力により、間隔Gは押しつぶされることになる。以後、間隔Gを、押しつぶし量Gと言う。
 図4(C)に示すように、上板部材3側から圧力Pが加えられ、下板部材1とフレーム部材2、及び上板部材3とフレーム部材2とが拡散接合される。このとき、毛細管部材5は押しつぶし量G分圧縮される。毛細管部材5は弾性を有しているので、圧力Pの一部が吸収され、その圧力Pよりも小さい圧力P´が、毛細管部材5から下板部材1へ加えられる。この圧力P´により、下板部材1の内面11と毛細管部材5とが拡散接合される。
 例えば小さな穴等で容器4内の気密性が破られるリーク不良を防ぐために、下板部材1とフレーム部材2、及び上板部材3とフレーム部材2とは、高い接合力(圧力P)で拡散接合される。下板部材1及び第1のメッシュ層6は、作動流体に毛細管力が適切に作用するような適度な圧力(圧力P´)で拡散接合される。
 また、圧力P´の反作用により、上板部材3にも、圧縮された毛細管部材5から、圧力Pよりも小さい圧力P´´が加えられる。この圧力P´´により、上板部材3の内面31と毛細管部材5とが拡散接合される。本実施形態では、上板部材3側から圧力Pが加えられるが、下板部材1側から圧力Pが加えられてもよい。
 押しつぶし量Gが0mmの場合は、毛細管部材の厚みt1とフレーム部材2の厚みt2との差が0mmとなり、t1=t2となる。しかしながら、押しつぶし量Gが0mmの場合でも、図4(B)において毛細管部材5に載置された上板部材3は、毛細管部材5及びフレーム部材2に載置される。図4(C)における拡散接合工程は高温状態で行われるので、上板部材3も高温になりわずかに変形する。この変形によって、毛細管部材5が圧縮される。
 図5は、押しつぶし量Gと、その押しつぶし量Gで製造された熱輸送デバイス100のリーク不良率を表す表である。図5の表に示すように、押しつぶし量Gが例えば0mm~0.10mmの範囲で、リーク不良率0%が確認された。
 図6(A)は、押しつぶし量Gを0.10mmとして製造された熱輸送デバイス100の、下板部材1の内面11を観察した写真である。図6(B)も同様で、こちらは押しつぶし量Gを0mmとして製造された熱輸送デバイス100の下板部材1の内面11である。
 図6(A)(B)共に、下板部材1の内面11には、ほぼ等間隔に並んだ窪みが見える(丸で囲ったK)。この窪みは、下板部材1の内面11と第1のメッシュ層6との拡散接合によりできた窪みである。つまり、押しつぶし量0mm~0.10mmの範囲で、図4(C)の拡散接合工程において、下板部材1の内面11と第1のメッシュ層6とが確実に拡散接合されることが分かる。
 以上により、本実施形態に係る熱輸送デバイス100の製造方法では、熱輸送デバイス100の容器4を構成するために下板部材1とフレーム部材2、及びフレーム部材2と上板部材3とが拡散接合される。この拡散接合工程において、下板部材1と、下板部材1及び上板部材3に挟まれるように積層された毛細管部材5とが拡散接合される。従って、複数の拡散接合が同じ工程において行われるので、少ない工程により効率的に製造される、安価な熱輸送デバイスの製造方法が実現する。
 複数の拡散接合が別の工程で行われる場合、各拡散接合ごとに熱輸送デバイスが高温状態にさらされる。このことは、熱輸送デバイスの製造における歩留まり低下の原因となる。例えば、下板部材1の内面11及び毛細管部材5が拡散接合された(拡散接合α)後、別の工程で、下板部材1とフレーム部材2、及びフレーム部材2と上板部材3とが拡散接合され容器4が構成される(拡散接合β)。この場合、下板部材1、フレーム部材2及び上板部材3が、拡散接合αにおいて一度高温にさらされているので、拡散接合βにおいて形成される容器4に小さな穴が開くといった不良が多く発生する。しかしながら、本実施形態に係る熱輸送デバイス100の製造方法では、上記のような歩留まりの低下を防ぐことができ、コストを抑えることができる。
 また、容器4の側壁を構成するフレーム部材2の厚みt2と毛細管部材5の厚みt1との関係により、毛細管部材5が圧縮される程度が調節され、毛細管部材5に吸収される圧力Pの一部が調節される。従って、フレーム部材2の厚みt2と毛細管部材5の厚みt1とを適宜設定することで、下板部材1の内面11と毛細管部材5との拡散接合に求められる、所望の圧力P´を得ることができる。
<第2の実施形態>
 本発明の第2の実施形態について説明する。これ以降の説明では、第1の実施形態で説明した熱輸送デバイス100の製造方法における構成及び作用と同様な部分については、その説明を省略又は簡略化する。
[熱輸送デバイスの構成]
 図7は、本発明の第2の実施形態に係る熱輸送デバイスの製造方法を順に示す模式的な断面図である。熱輸送デバイス200は、第1の実施形態に係る熱輸送デバイス100において、上板部材3及びフレーム部材2に代えて上板部材203を有する。この上板部材203と下板部材1とで熱輸送デバイス200の容器204が構成される。
 上板部材203は、ベッセル状の形状を有し、毛細管部材5上に載置される上板部203aと、容器204の側壁を構成する側壁部203bと、下板部材1と拡散接合される接合部203cとを有する。
 容器204の内部空間側から見た側壁部203bの高さ(以後、側壁部203bの高さと言う)をt3とすると、容器204の内部空間の厚みはt3となる。側壁部203bの高さt3と、毛細管部材5の厚みt1とを比べると、毛細管部材5の厚みt1の方が大きい。
[熱輸送デバイス200の製造方法]
 図7(A)に示すように、下板部材1の内面11に、毛細管部材5が載置される。
 図7(B)に示すように、毛細管部材5上に上板部材203が載置される。側壁部203bの高さt3よりも、毛細管部材5の厚みt1の方が大きいので、上板部材203は毛細管部材5に載置されることになり、上板部材203と下板部材1とは間隔がある。上板部材203の接合部203cにおける下板部材1と対向する面を対向面231とし、この対向面231と下板部材1の内面11との間隔を押しつぶし量Gとする。
 図7(C)に示すように、上板部材203側から圧力Pが加えられ、下板部材1と上板部材203が拡散接合される。このとき、毛細管部材5は押しつぶし量G分圧縮され、圧力Pの一部が吸収される。毛細管部材5から圧力Pより小さい圧力P´が下板部材1へ加えられ、この圧力P´により、下板部材1の内面11と毛細管部材5とが拡散接合される。
 以上により、本実施形態に係る熱輸送デバイス200の製造方法では、側壁部203bの高さt3と毛細管部材5の厚みt1とを適宜設定することで、第1の実施形態に係る熱輸送デバイス100の製造方法と同様な効果を得ることができる。また上板部材203を、例えばプレス加工、又は鋳造加工等の金型加工を用いて製造することで、熱輸送デバイス200の製造におけるコストを抑えることができる。また、上板部材203が接合部203cを有しているので、上板部材203及び下板部材1の接合面積を充分に取ることができる。これにより、上板部材203及び下板部材1が拡散接合されることで形成される容器204の気密性が高められる。
<第3の実施形態>
 図8は、第3の実施形態に係る熱輸送デバイスの製造方法で製造された、熱輸送デバイスを示す模式的な断面図である。図8の断面図は、熱輸送デバイス300の短手方向の断面図である。また、これ以降の説明では、毛細管部材5を簡略化して図示する。
 熱輸送デバイス300は、第2の実施形態に係る熱輸送デバイス200において、上板部材203に代えて上板部材303を有する。上板部材303と下板部材1とで熱輸送デバイス300の容器304が構成される。
 上板部材303は、第2の実施形態に係る熱輸送デバイス200が有する上板部材203と同様に、上板部303aと、側壁部303bと、接合部303cとを有している。上板部303aが突起部313を有している点で、上板部材203と異なる。
 突起部313は、熱輸送デバイス300の容器304における内部空間側に突起している。突起部313は、熱輸送デバイス300の長手方向に沿って長い形状を有し、上板部材303の上板部303aに設けられる。
 本実施形態の熱輸送デバイス300の製造時においては、毛細管部材5は、突起部313により圧縮され押しつぶされた状態で、上板部材303と下板部材1とが拡散接合される。また、この拡散接合工程により、毛細管部材5と下板部材1とが拡散接合される。
 図9は、本実施形態により製造された熱輸送デバイス300の、下板部材1の内面11を観察した写真である。
 突起部313により毛細管部材5が圧縮される。その圧縮された部分に対応する下板部材1の内面11上の領域(破線の丸で囲った領域)を中心に、下板部材1の内面11と毛細管部材5との拡散接合による窪みが見える(丸で囲ったK)。本実施形態では、突起部313は、熱輸送デバイス300の長手方向に沿って、2ヶ所設けられている。図9に示すように、内面11上に略等間隔で並ぶ窪みが2本確認できる(L1及びL2)。
 以上により、本実施形態に係る熱輸送デバイス300では、上板部材303が突起部313を有しているので、この突起部313により、容器304の内部空間を補強することができる上、確実に毛細管部材5を圧縮することができる。また突起部313により、毛細管部材5の厚みt1が容器304の内部空間の厚みより小さい範囲でも、毛細管部材5の圧縮が可能となる。例えば、毛細管部材5を液相の作動流体の流路に設け、気相の作動流体の流路には設けないといった、所望の設計が可能となる(図8参照)。
 また、突起部313は金型加工や、例えばRIE(Reactive Ion Etching)等のエッチング技術により形成することができ、熱輸送デバイス300の製造におけるコストを抑えることができる。
 本実施形態では突起部313は熱輸送デバイス300の長手方向に沿って長い形状を有しているが、これに限られない。上板部303aの所望の位置に、所望の数の突起部313を設けてもよい。これにより、例えば、気相の作動流体の流路の容積が大きくなり、熱輸送デバイス300の熱輸送効率が上がる等の効果を実現することができる。
<第4の実施形態>
 図10は、治具を用いた熱輸送デバイスの製造方法を説明するための図である。
 熱輸送デバイス400は、第2の実施形態に係る熱輸送デバイス200とほぼ同様の構成である。ベッセル状の形状を有する上板部材403の側壁部403bが、容器404の厚み方向に対して傾斜している点で、熱輸送デバイス200の構成と異なる。本実施形態では、上板部材403の上板部403a、側壁部403b及び接合部403cは、ほぼ同じ厚みからなる。
 上板部材403、下板部材1、及びこれらに挟まれた毛細管部材5により熱輸送デバイスユニット450が構成される。
 治具部600は、熱輸送デバイスユニット450の上板部材403を載置する載置面610を有する。治具部600の載置面610は、上板部材403の上板部403aを載置する下段面610aと、接合部403cを載置する上段面610bとを含む。下段面610a及び上段面610bは、段差を介して繋がっており、この段差と下段面610aと上段面610bとで、治具部600の凹部が形成される。
 治具部600の凹部の深さとなる、下段面610aから上段面610bまでの高さをt4とする。高さt4と毛細管部材5の厚みt1とを比べると、毛細管部材5の厚みt1の方が、0mm~0.2mm大きい。
 治具部600の材料としては、典型的にはカーボン又はステンレスが用いられる。
[熱輸送デバイス400の製造方法]
 図11は、熱輸送デバイス400の製造方法を順に示す模式的な断面図である。
 図11(A)に示すように、上板部材403、毛細管部材5及び下板部材1が順に、治具部600の載置面610上に積層される。上板部材403の接合部403cと下板部材1との間には、押しつぶし量Gが設けられる。この押しつぶし量Gは、高さt4及び接合部403cの厚みを足したもの(高さX)と、毛細管部材5の厚みt1及び上板部403aの厚みを足したもの(高さY)との差である。
 本実施形態では、上板部403aと接合部403cとが、ほぼ同じ厚みからなる。従って、上記押しつぶし量Gは、高さt4と毛細管部材5の厚みt1との差にほぼ等しくなる。
 図11(B)に示すように、熱輸送デバイスユニット450及び治具部600が積層された方向で、熱輸送デバイスユニット450の上板部材403と下板部材1との拡散接合に求められる圧力Pがかけられる。このとき、弾性を有する毛細管部材5から下板部材1に加えられる圧力P´´により、下板部材1の内面11と毛細管部材5とが拡散接合される。
 例えば上板部材403を金型加工等で複数形成した場合、形成における誤差等で、複数の上板部材403の各側壁部403bの高さが均等にならず、ばらつく場合が考えられる。
 しかしながら、本実施形態においては、上板部材403の接合部403cが、治具部600の上段面610bに押さえつけられながら、下板部材1と拡散接合される。従って、各側壁部403bの高さのばらつきに関わらず、高さt4と毛細管部材5の厚みt1との差により、押しつぶし量Gが定められる。これにより、図11(B)に示す拡散接合工程において、毛細管部材5がばらつきなく押しつぶし量G分圧縮されるので、下板部材1と毛細管部材5との拡散接合に求められる圧力P´´を、ばらつきなく得ることができる。
 本実施形態では、上板部材403の上板部403aと接合部403cとがほぼ同じ厚みからなるが、これに限られない。上板部材403の形状に基づいて、高さt4と毛細管部材5の厚みt1とを適宜設定し、所望の押しつぶし量Gを設けることができる。
<第5の実施形態>
 図12は、複数の治具を用いた熱輸送デバイスの製造方法を順に示す模式的な断面図である。治具部700及び熱輸送デバイス500は、第4の実施形態に係る治具部600及び熱輸送デバイス400とほぼ同様の構成である。
 図12(A)に示すように、治具部700の載置面710上に、上板部材503、毛細管部材5及び下板部材1が順に積層される。さらに、その下板部材1上に治具部700が積層され、その治具部700の載置面710上には、また上板部材503、毛細管部材5及び下板部材1が順に積層される。このようにして複数の熱輸送デバイスユニット550と複数の治具部700とが積層される。各熱輸送デバイスユニット550の、上板部材503の接合部503cと下板部材1との間には、押しつぶし量Gが設けられる。
 図12(B)に示すように、複数の熱輸送デバイスユニット550及び複数の治具部700が積層された方向で、各熱輸送デバイスユニット550の上板部材503と下板部材1との拡散接合に求められる圧力Pがかけられる。このとき、弾性を有する毛細管部材5から下板部材1に加えられる圧力P´´により、下板部材1の内面11と毛細管部材5とが拡散接合される。
 以上により、本実施形態の熱輸送デバイス500の製造方法では、複数の熱輸送デバイスユニット550及び複数の治具部700が積層された方向に、複数の熱輸送デバイスユニット550及び複数の治具部700に圧力Pが加えられることで、複数の熱輸送デバイス500が一度に製造される。つまり熱輸送デバイス500の製造におけるバッチ処理が可能となる。
 拡散接合は真空環境下で大きな荷重により行われるので、1回の拡散接合工程にかかるコストは大きい。また、拡散接合工程は、高温状態で熱輸送デバイスの容器が接合された後に、そのまま真空環境下で熱輸送デバイスが冷却されるというプロセスを含むので、費やされる時間も多い。しかしながら、本実施形態における熱輸送デバイス500の製造方法によれば、上記したバッチ処理が可能となるので、コストが抑えられ、また製造時間も短縮される。これにより、さらに効率のよい、安価な熱輸送デバイスの製造方法が実現する。
<第6の実施形態>
 次に、本発明の第6の実施形態について説明する。
 上記各実施形態では、容器が、上板部材、下板部材等により形成されるとして説明した。一方、第6実施形態では、容器が、1つの板部材が曲げられることで形成される。従って、その点を中心に説明する。
 図14は、第6の実施形態に係る熱輸送デバイスを示す斜視図である。図15は、図14に示すA-A間の断面図である。図16は、熱輸送デバイスの容器を構成する板部材の展開図である。
 図14に示すように、熱輸送デバイス110は、一方向(Y軸方向)に長い矩形の薄板形状を有する容器51を備えている。この容器51は、1つの板部材52が曲げられることで形成される。
 板部材52は、典型的には、無酸素銅、タフピッチ銅、あるいは銅合金で構成される。しかしこれに限られず、板部材52は、銅以外の金属で構成されてもよく、その他、熱伝導率の高い材料が用いられてもよい。
 図14及び図15に示すように、容器51は、長手方向(Y軸方向)に沿う方向での側部51cが、湾曲した形状とされている。すなわち、容器51は、図16に示す板部材52が、板部材52の略中央で曲げられて形成されることから、側部51cが湾曲した形状とされている。以降では、側部51cを湾曲部51cと呼ぶ場合がある。
 容器51は、側部51c(湾曲部51c)とは反対側の側部51dと、短手方向に沿う方向での側部51e、51fとに接合部53を有している。接合部53は、それぞれの側部51d、51e、51fから突出するように設けられている。この接合部53において、曲げられた板部材52が接合される。接合部53は、図16に示す板部材52の、接合領域52a(斜線で示す領域)に相当する。接合領域52aは、板部材52の縁部52bから所定の距離d、の範囲内の領域とされる。
 容器51の内部には、毛細管部材5が設けられている。毛細管部材5は、上述のように、1つまたは複数のメッシュ部材8を含む。毛細管部材5の厚みは、容器51の内部空間の厚み程度(内部空間の厚みよりわずかに大きくてもよいし、小さくてもよい。)に設定することができる。
[熱輸送デバイス110の製造方法]
 図17は、熱輸送デバイスの製造方法を示す図である。
 図17(A)に示すように、まず、板部材52が用意される。そして、板部材52の略中央において、板部材52が曲げられる。
 板部材52が所定の角度まで曲げられると、図17(B)に示すように、曲げられた板部材52の間に、毛細管部材5が入れられる。なお、毛細管部材5は、板部材52の曲げが開始される前に、板部材52上の所定の位置に配置されていてもよい。
 板部材52の間に、毛細管部材5が入れられると、図17(C)に示すように、毛細管部材5を挟み込むように、板部材52がさらに曲げられる。そして、曲げられた板部材52の接合部53(接合領域52a)が拡散接合により接合されることにより、毛細管部材5が板部材52の上板部52c及び下板部52dに拡散接合により接合される。
 この熱輸送デバイス110の場合、容器51が1つの板部材52により形成されるので、部品数が減り、コストを削減することができる。また、2つ以上の部材で容器51が形成される場合、これらの部材の位置を合わせる必要があるが、本実施形態では、部材の位置を合わせる必要がない。従って、熱輸送デバイス110を容易に製造することができる。
[変形例]
 図18は、上記熱輸送デバイス110の変形例を説明するための図であり、板部材の展開図である。
 図18に示すように、板部材52は、板部材52の中央において、長手方向(Y軸方向)に沿うように、溝54を有している。溝54は、例えば、プレス加工や、エッチング加工により形成されるが、溝54の形成方法は、特に限定されない。
 板部材52に溝54が設けられることで、板部材52を曲げ易くすることができる。これにより、さらに容易に、熱輸送デバイス110を製造することができる。なお、板部材52は長手方向で(Y方向を軸として)折り曲げる構造を示したが、短辺(短手方向)で(X方向を軸として)折り曲げるようにしてもよい。
<第7の実施形態>
 次に、本発明の第7の実施形態について説明する。なお、第7の実施形態では、上述の第6の実施形態と異なる点を中心に説明する。
 図19は、第7の実施形態に係る熱輸送デバイスを示す斜視図である。図20は、図19に示すA-A間の断面図である。図21は、熱輸送デバイスの容器を構成する板部材の展開図である。
 図19及び図20に示すように、熱輸送デバイス120は、一方向(Y軸方向)に長い矩形の薄板形状を有する容器61を備えている。
 この容器61は、図21に示す板部材62が中央から折り返されて形成される。板部材62は、板部材62の中央において、板部材62の長手方向に沿うように、2つの開口65が設けられている。このように開口65が設けられることにより、板部材62の左側の板と右側の板とが、3つの領域66で接続されたような形状となっている。
 容器61は、長手方向(Y軸方向)に沿う方向での側部61c、61dと、短手方向(x軸方向)に沿う方向での側部61e、61fとに接合部63を有している。この接合部63において、上板と下板とが拡散接合により接合されて、容器61が形成される。接合部63は、図21に示す板部材62の、斜線で示す接合領域62a、62bに相当する。
 このように上板と下板とが接合された結果、側部61cから突出した3つの突出部64が形成される。
 熱輸送デバイス120では、板部材62に開口65が設けられるため、板部材62を容易に曲げることができる。これにより、さらに容易に熱輸送デバイス120を製造することができる。
 板部材62の、開口65及び縁部62cとの間の領域66と、2つの開口65の間の領域66とに、例えば、プレス加工により形成された溝が設けられていてもよい。これによりさらに容易に、板部材62を折り曲げることができる。
<第8の実施形態>
[熱輸送デバイスの構成]
 図22は、本発明の第8の実施形態に係る熱輸送デバイスの製造方法を説明するための図である。本実施形態に係る熱輸送デバイス800は、第2の実施形態に係る熱輸送デバイス200において、毛細管部材5に代えて、厚みがt1でなる毛細管部材805を有するものである。
 毛細管部材805は、第1のメッシュ部材860と、第1のメッシュ部材860に積層された第2のメッシュ部材870と、第2のメッシュ部材870に積層された接合用メッシュ部材850とを有する。本実施形態に係る熱輸送デバイス800では、気相の作動流体は主に第1のメッシュ部材860を通って移動し、液相の作動流体は主に第2のメッシュ部材870を通って移動する。
 第2のメッシュ部材870のバネ定数と、接合用メッシュ部材850のバネ定数とを比べると、第2のメッシュ部材870のバネ定数の方が大きい。第1のメッシュ部材860のバネ定数も、接合用メッシュ部材850のバネ定数より大きく設定されている。第1のメッシュ部材860のバネ定数及び第2のメッシュ部材870のバネ定数は、同じでもよいし、異なってもよい。しかしながら、第1のメッシュ部材860及び第2のメッシュ部材870の各バネ定数が異なる場合、その差は、第2のメッシュ部材870及び接合用メッシュ部材850の各ばね定数の差と比べて小さいものである。本実施形態では、第1のメッシュ部材860のバネ定数及び第2のメッシュ部材870のバネ定数は、ほぼ等しいものとする。
 ここで、バネ定数について説明する。本実施形態の説明において述べるバネ定数とは、各メッシュ部材の厚み方向についてのバネ定数である。図23は、バネ定数が異なる接合用メッシュ部材850と、第1のメッシュ部材860及び第2のメッシュ部材870とに厚み方向で応力が加えられた際の、応力とその応力による厚み方向の変形量(潰れ量)との関係を示す模式的なグラフである。
 図23に示すグラフでは、バネ定数の小さい接合用メッシュ部材850についての応力と変形量との関係を破線で示している。一方、バネ定数の大きい第1のメッシュ部材860及び第2のメッシュ部材870についての応力と変形量との関係を実線で示している。グラフに「変形量の差」として示されているように、接合用メッシュ部材850と、第1のメッシュ部材860及び第2のメッシュ部材870とに、同じ応力σが加えられた場合では、接合用メッシュ部材850の変形量の方が大きい。つまり、バネ定数の小さい接合用メッシュ部材850の方が、バネ定数の大きい第1のメッシュ部材860及び第2のメッシュ部材870よりも変形しやすい。
 バネ定数とメッシュ部材の形状について説明する。複数の金属細線が編み込まれてなるメッシュ部材において、編み込まれた金属細線の網目の大きさが同じ場合、金属細線の太さ(径)が大きい方が、バネ定数は大きい。金属細線の径が同じ場合では、網目が小さい方がバネ定数は大きい。このように、編み込まれる金属細線の網目の大きさ及び径を適宜設定することで、所望のバネ定数を有するメッシュ部材が得られる。この他、用いられる金属細線の材料等を適宜設定することで、メッシュ部材のバネ定数が適宜設定されてもよい。
 本実施形態では、バネ定数が小さい接合用メッシュ部材850は、金属細線の網目の大きさが、第1のメッシュ部材860及び第2のメッシュ部材870として編み込まれる金属細線の網目よりも小さい。しかしながら、接合用メッシュ部材850では、第1のメッシュ部材860及び第2のメッシュ部材870に用いられる金属細線よりも径の小さい金属細線が用いられる。これにより、接合用メッシュ部材850のバネ定数は、第1のメッシュ部材860及び第2のメッシュ部材870より小さく設定されている。
[熱輸送デバイス800の製造方法]
 図24(A)に示すように、下板部材1の内面11上に、毛細管部材805の第1のメッシュ部材860が載置される。また、毛細管部材805の接合用メッシュ部材850上に上板部材203が載置される。下板部材1及び上板部材203の間には、押しつぶし量Gが設けられる。
 図24(B)に示すように、上板部材203側から圧力Pが加えられ、下板部材1と上板部材203が拡散接合される。この際、押しつぶし量G分圧縮された毛細管部材805からの圧力P´及びP´´により、毛細管部材805と、下板部材1及び上板部材203とがそれぞれ拡散接合される。
 図24(B)に示す拡散接合工程での、毛細管部材805と上板部材203との拡散接合について詳しく説明する。図25は、図24で示す上板部材203、接合用メッシュ部材850、及び第2のメッシュ部材870を拡大して示した図である。図26は、比較例として挙げる毛細管部材895と上板部材203との拡散接合を示した拡大図である。毛細管部材895は、第2のメッシュ部材870上に接合用メッシュ部材850が積層されていないものである。従って、図26では、上板部材203と第2のメッシュ部材870とが拡大されて図示されている。以降の説明では、毛細管部材895の第2のメッシュ部材870を第2のメッシュ部材870´として説明する。
 図25には、接合用メッシュ部材850として編み込まれる複数の金属細線855及び第2のメッシュ部材870として編み込まれる複数の金属細線875(875a及び875b)が図示されている。金属細線855及び875は、図25で示すX方向で編み込まれている。同様に図26にも、第2のメッシュ部材870´として編み込まれる複数の金属細線875´(875a´及び875b´)が図示されている。図25及び図26では、金属細線855、875及び875´に、X方向と異なる方向で編み合わされる金属細線は省略されている。
 図25(A)には、上板部材203に拡散接合される前の接合用メッシュ部材850及び第2のメッシュ部材870が図示されている。図25(A)に示すように、編み込まれる各金属細線855及び875は、熱輸送デバイス800の厚み方向(図25で示すZ方向)における位置で、寸法公差によるばらつきがある。同様に、第2のメッシュ部材870´の金属細線875´にも、寸法公差によるばらつきがある。
 上記のばらつきを有する第2のメッシュ部材870´が上板部材203と拡散接合される場合、図26(A)に示すように、金属細線875a´は上板部材203と拡散接合されるが、金属細線875b´は上板部材203と拡散接合されない。この状態では、毛細管部材895及び上板部材203の拡散接合は十分とはいえない。
 金属細線875b´を上板部材203に拡散接合させるために、拡散接合工程における圧力を大きくした場合、図26(B)に示すように、金属細線875a´が、金属細線875b´と比べて大きく変形してしまう。このような金属細線875a´及び875b´の変形量の違いが発生すると、液相の作動流体に毛細管力を発生させる等の熱輸送の性能に係わる機能が十分に発揮されない可能性がある。
 一方で、接合用メッシュ部材850を有する本実施形態に係る毛細管部材805が上板部材203と拡散接合される場合、図25(B)に示すように接合用メッシュ部材850及び第2のメッシュ部材870が上板部材203に拡散接合される。バネ定数が小さい接合用メッシュ部材850は、拡散接合工程において十分に変形し、上板部材203と十分に拡散接合される。バネ定数が大きく変形しにくい第2のメッシュ部材870は、金属細線875aが上板部材203と拡散接合される。金属細線875bは上板部材203とは拡散接合されないが、金属細線855と拡散接合される。
 以上により、本実施形態では、バネ定数が小さい接合用メッシュ部材850が、拡散接合工程において、十分に圧縮され、その応力により上板部材203と十分に拡散接合される。また、接合用メッシュ部材850により、第2のメッシュ部材870の寸法公差による変形量のばらつきを吸収することができる。従って、図25(B)に示すように、上板部材203に拡散接合される金属細線875aが、金属細線875bと比べて大きく変形してしまうのを防ぐことができる。これにより、第2のメッシュ部材870は上板部材203に十分に接合されると共に、上記した熱輸送の性能に係わる機能を十分に発揮することができる。例えば、熱輸送デバイス800を高い熱流束密度に対応させる場合に、本実施形態における効果は大きいものとなる。
 本実施形態では、第2のメッシュ部材870の寸法公差について説明した。しかしながら、例えば、上板部材203の厚みや、側壁部203bの高さ(図22で示すt3)等のばらつきが原因となって第2のメッシュ部材870の変形量のばらつきが発生してしまうことも考えられる。こういった場合でも、接合用メッシュ部材850により、第2のメッシュ部材870の変形量のばらつきが吸収される。
 図27(A)及び(B)は、金属細線の編み込まれ方が異なるメッシュ部材をそれぞれ示した模式的な図である。図27(A)及び(B)には、同じ金属細線が、同じ網目の大きさで編み込まれてなるメッシュ部材M及びNがそれぞれ図示されている。図27(A)で示すメッシュ部材Mは、その厚みmが金属細線の径rのほぼ3倍になるように形成されている。図27(B)に示すメッシュ部材Nは、その厚みnが金属細線の径rのほぼ2倍になるように形成されている。つまり、メッシュ部材Nの方が、メッシュ部材Mよりも、メッシュ部材の厚み方向(図27で示すZ方向)においてきつく編み込まれているので、メッシュ部材Nの方がメッシュ部材Mよりもバネ定数が大きい。このように、金属細線の編み込まれ方により、バネ定数が適宜設定されてもよい。
 本実施形態の毛細管部材805は、メッシュ部材が積層されてなる。しかしながら、第1の実施形態で説明したように、作動流体に毛細管力を作用させるものであり、かつ所定の弾性を有しているものであればどのようなものでもよい。そのようなものとして、上記で挙げたものの他に、例えばエッチング技術により、すだれ形状、又は格子状に形成されたものや、溝が形成されたもの等が挙げられる。また、毛細管部材として、金属粉体の焼結構造を有するものが用いられてもよい。この場合、毛細管部材の上板部材に接合される側に、バネ定数が小さく変形しやすい部材を配置すれば、本実施形態と同様の効果を得ることができる。また、上記で挙げたものは、本発明の各実施形態において毛細管部材として用いることが可能である。
[変形例]
 図28は、毛細管部材805の変形例を示した図である。この毛細管部材805には、第1のメッシュ部材860の第2のメッシュ部材870が積層されている側の反対側に、接合用メッシュ部材840が積層されたものである。接合用メッシュ部材840のバネ定数は、第1のメッシュ部材860のバネ定数よりも小さい。つまり、接合用メッシュ部材840は、第1のメッシュ部材860と比べて変形しやすい。
 毛細管部材805が上板部材203及び下板部材1にそれぞれ拡散接合されることで、熱輸送デバイス800の容器204の内部空間が補強される。この際、第1のメッシュ部材860に積層された接合用メッシュ部材840と下板部材1とが拡散接合されることで、毛細管部材805と下板部材1とが十分に拡散接合される。
 第1のメッシュ部材860は、気相の作動流体の流路となる部材である。従って、拡散接合工程において第1のメッシュ部材860が大きく変形すると、気相の作動流体が移動する時の流路抵抗が大きくなってしまう可能性がある。また、第1のメッシュ部材860が大きく変形してしまうことで、熱輸送デバイス800の容器204内を作動流体が循環する際の圧力損失が大きくなってしまう可能性もある。しかしながら、バネ定数が大きく変形しにくい第1のメッシュ部材860が用いられることで、上記した問題が発生することを防ぐことができる。
<第9の実施形態>
 図29は、本発明の第9の実施形態に係る熱輸送デバイスを説明するための図である。本実施形態に係る熱輸送デバイス900は、第1の実施形態に係る熱輸送デバイス100において、下板部材1の内面11に、以下で説明する注入口900a及び注入路900bが形成されたものである。
 注入口900a及び注入路900bは、熱輸送デバイス900の製造過程において、容器4内に作動流体を注入するために形成される。注入口900a及び注入路900bは、下板部材1の長手方向(図29で示すX方向)における端部であり、内面11においてフレーム部材2と拡散接合される領域に形成される。
 図30は、注入口900a及び注入路900bを拡大して示した平面図である。注入口900aは、下板部材1を貫通するように形成されている。注入路900bは、注入口900aと連通するように内面11上に形成された溝であり、注入口900aが設けられた側と反対側の端部で容器4の内部に連通している。図30に示すように、注入路900bは、例えばL字状に形成される。
 注入路900bは、例えばエンドミル加工、レーザ加工、プレス加工、または、半導体製造におけるフォトリソグラフィ及びハーフエッチング等の微細加工により形成されればよい。プレス加工によればバリが出ないという特徴がある。レーザ加工及びエンドミル加工の場合は、型が不要であり、自由な形状の溝を形成することができる。
 注入口900a及び注入路900bは、熱輸送デバイス900の製造工程において、容器4内に作動流体が注入された後に、例えばかしめ加工により封止される。
<第10の実施形態>
 図30は、本発明の第10の実施形態に係る熱輸送デバイスを説明するための図である。図29で示す熱輸送デバイス900では、下板部材1に注入口900a及び900bが形成されている。本実施形態に係る熱輸送デバイス910では、図30に示すように、上板部材3に注入口910aが形成され、フレーム部材2に注入路910bとなる溝が形成されている。
 注入口910aは、上板部材3の長手方向(図30で示すX方向)における端部に、上板部材3を貫通するように形成されている。注入路910bは、フレーム部材2において上板部材3と拡散接合される領域に形成される。注入路910bは注入口910aと連通するように形成され、注入路910bの注入口910aと連通する側の反対側の端部は、容器4の内部と連通している。本実施形態では、注入口910aは上板部材3に形成されるが、注入口910aが下板部材1に形成され、注入路910bがフレーム部材2において下板部材1と拡散接合される領域に形成されてもよい。
 注入路910bが、仮にプレス加工によりフレーム部材2に形成されるとすると、注入路910bが形成される側とは反対側のフレーム部材2の面に凸が形成されてしまう。その場合、フレーム部材2と下板部材1とを接合することができない。従って、本実施形態の場合、注入路910bはレーザ加工またはエンドミル加工により形成されればよい。
 上記した本発明に係る各実施形態において、上板部材、下板部材、フレーム部材、又は毛細管部材の加工や切断等に、ワイヤー放電加工(ワイヤーカット)が用いられてもよい。ワイヤー放電加工とは、例えば真鍮、タングステン又はモリブデン等のワイヤーに電圧を加え、加工したい部材とワイヤーとの間で放電を発生させることにより、部材を加工する加工方法である。ワイヤー放電加工が用いられることにより、精度の高い微細加工が実現される。また部材の加工時間を短縮することができる。
 本発明は上述の実施形態にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更され得る。
 例えば、第5の実施形態におけるバッチ処理を、第1、第2、第3、及び第4の実施形態における熱輸送デバイスの製造方法に用いてもよい。第5の実施形態で用いられる治具部700の形状を、下板部材及び上板部材に対応した形状にすれば、他の実施形態におけるバッチ処理が可能となる。
 1…下板部材
 2…フレーム部材
 3、203、303、403、503…上板部材
 4、51、61、204、304、404…容器
 5、805…毛細管部材
 6…第1のメッシュ層
 7…第2のメッシュ層
 8…メッシュ部材
 9…熱源
 11…下板部材の内面
 21…側壁部の対向面
 31…上板部材の内面
 52、62…板部材
 100、110、120、200、300、400、500、800、900、910…熱輸送デバイス
 203a、303a、403a…上板部
 203b、303b、403b…側壁部
 203c、303c、403c、503c…接合部
 231…接合部の対向面
 313…突起部
 450、550…熱輸送デバイスユニット
 600、700…治具部
 610、710…載置面
 610a…下段面
 610b…上段面
 840、850…接合用メッシュ部材
 860…第1のメッシュ部材
 870…第2のメッシュ部材
 900a、910a…注入口
 900b、910b…注入路

Claims (13)

  1.  作動流体の相変化を利用して熱を輸送する熱輸送デバイスの容器を構成する第1の板及び第2の板の間に、前記作動流体に毛細管力を作用させる毛細管部材を挟むように、前記第1の板、前記毛細管部材及び前記第2の板を積層させ、
     前記第1の板と前記毛細管部材とが拡散接合されるように、前記第1の板と前記第2の板とを拡散接合する
     熱輸送デバイスの製造方法。
  2.  請求項1に記載の熱輸送デバイスの製造方法であって、
     前記毛細管部材の厚みは、前記第1の板及び前記第2の板により構成される前記容器の内部空間の厚みより大きい
     熱輸送デバイスの製造方法。
  3.  請求項1又は2に記載の熱輸送デバイスの製造方法であって、
     前記毛細管部材は弾性を有する材料からなり、
     前記拡散接合工程は、前記毛細管部材を圧縮しながら、前記第1の板と前記第2の板とを拡散接合する
     熱輸送デバイスの製造方法。
  4.  請求項3に記載の熱輸送デバイスの製造方法であって、
     前記毛細管部材は、
     第1のメッシュ層と、
     前記第1のメッシュ層に積層された、前記第1のメッシュ層に含まれるメッシュよりも目の粗いメッシュからなる第2のメッシュ層とを有する
     熱輸送デバイスの製造方法。
  5.  請求項3に記載の熱輸送デバイスの製造方法であって、
     前記第2の板は突起部を有し、
     前記拡散接合工程は、前記突起部により前記毛細管部材を圧縮しながら、前記第1の板と前記第2の板とを拡散接合する
     熱輸送デバイスの製造方法。
  6.  請求項1に記載の熱輸送デバイスの製造方法であって、
     前記熱輸送デバイスは、前記容器の側壁を構成するフレーム部材を有し、
     前記拡散接合工程は、前記第1の板と前記毛細管部材とが拡散接合されるように、前記第1の板と前記フレーム部材とを、かつ、前記第2の板と前記フレーム部材とを拡散接合する
     熱輸送デバイスの製造方法。
  7.  請求項1に記載の熱輸送デバイスの製造方法であって、
     前記積層工程は、前記第1の板及び前記第2の板の間に前記毛細管部材を挟むように積層された、前記第1の板、前記毛細管部材及び前記第2の板を有するユニットを、凹部を有する治具部の前記凹部に嵌めるように、前記治具部と前記ユニットとを積層し、
     前記拡散接合工程は、前記積層方向に前記治具部及び前記ユニットに圧力を加えることで、前記ユニットの前記第1の板と前記第2の板とを拡散接合する
     熱輸送デバイスの製造方法。
  8.  請求項1に記載の熱輸送デバイスの製造方法であって、
     前記積層工程は、前記第1の板、前記毛細管部材及び前記第2の板をそれぞれ有する複数のユニットの各間に、治具部がそれぞれ積層されるように、前記複数のユニット及び前記複数の治具部を積層させ、
     前記拡散接合工程は、前記積層方向に前記複数のユニット及び前記複数の治具部に圧力を加えることで、前記複数のユニットの前記第1の板と前記第2の板とを拡散接合する
     熱輸送デバイスの製造方法。
  9.  請求項3に記載の熱輸送デバイスの製造方法であって、
     前記毛細管部材は、
     第1のバネ定数を有し前記第1の板に拡散接合される第1の部材と、
     前記第1のバネ定数より大きい第2のバネ定数を有し前記第1の部材に積層される第2の部材とを含む
     熱輸送デバイスの製造方法。
  10.  請求項9に記載の熱輸送デバイスの製造方法であって、
     前記拡散接合工程は、前記第1の板と前記毛細管部材とが拡散接合されるように、かつ、前記第2の板と前記毛細管部材とが拡散接合されるように、前記第1の板と前記第2の板とを拡散接合し、
     前記毛細管部材は、第3の部材を含み、前記第3の部材は、前記第2のバネ定数より小さい第3のバネ定数を有し、前記第2の部材に積層され前記第2の板と拡散接合される
     熱輸送デバイスの製造方法。
  11.  作動流体の相変化を利用して熱を輸送する熱輸送デバイスの容器を構成するための板を曲げることにより、前記作動流体に毛細管力を作用させる毛細管部材を、前記曲げられて形成される前記板の第1の部位及び第2の部位で挟み、
     前記第1の部位と前記毛細管部材とが拡散接合されるように、前記第1の部位の端部と前記第2の部位の端部とを拡散接合することで、前記容器を形成する
     熱輸送デバイスの製造方法。
  12.  内面を有する容器と、
     前記容器に収容され、相変化することで熱を輸送する作動流体と、
     第1のバネ定数を有し前記内面に拡散接合される第1の部材と、前記第1のバネ定数より大きい第2のバネ定数を有し前記第1の部材に積層される第2の部材とを含み、前記作動流体に毛細管力を作用させる毛細管部材と
     を具備する熱輸送デバイス。
  13.  側壁を有する容器であって、前記側壁を構成するフレーム部材と、前記フレーム部材を挟み込むように前記フレーム部材に接合された第1の板及び第2の板とを有する容器と、
     前記容器内で、相変化することにより熱を輸送する作動流体と、
     前記作動流体に毛細管部力を作用させる毛細管部材と
     を具備する熱輸送デバイス。
PCT/JP2009/006816 2008-12-24 2009-12-11 熱輸送デバイスの製造方法及び熱輸送デバイス WO2010073525A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/141,121 US20110253345A1 (en) 2008-12-24 2009-12-11 Heat transportation device production method and heat transportation device
CN2009801559994A CN102308176A (zh) 2008-12-24 2009-12-11 热传输装置制造方法和热传输装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008328863 2008-12-24
JP2008-328863 2008-12-24
JP2009-127374 2009-05-27
JP2009127374A JP2010169379A (ja) 2008-12-24 2009-05-27 熱輸送デバイスの製造方法及び熱輸送デバイス

Publications (1)

Publication Number Publication Date
WO2010073525A1 true WO2010073525A1 (ja) 2010-07-01

Family

ID=42287183

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/006816 WO2010073525A1 (ja) 2008-12-24 2009-12-11 熱輸送デバイスの製造方法及び熱輸送デバイス

Country Status (6)

Country Link
US (1) US20110253345A1 (ja)
JP (1) JP2010169379A (ja)
KR (1) KR20110106851A (ja)
CN (1) CN102308176A (ja)
TW (1) TW201040481A (ja)
WO (1) WO2010073525A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013157535A1 (ja) * 2012-04-16 2013-10-24 古河電気工業株式会社 ヒートパイプ
CN105293055A (zh) * 2015-02-07 2016-02-03 成都奥能普科技有限公司 固体粒块高温传热弹射驱动传热系统
JP2016156584A (ja) * 2015-02-25 2016-09-01 株式会社フジクラ 薄板ヒートパイプ型熱拡散板

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM394682U (en) * 2010-04-26 2010-12-11 Asia Vital Components Co Ltd Miniature heat spreader structure
CN103889635B (zh) * 2012-10-18 2016-03-30 株式会社旭 复合金属材的制造方法、模具的制造方法、金属制品的制造方法及复合金属材
US20140131013A1 (en) * 2012-11-15 2014-05-15 Chin-Hsing Horng Low-profile heat pipe
US9835383B1 (en) * 2013-03-15 2017-12-05 Hrl Laboratories, Llc Planar heat pipe with architected core and vapor tolerant arterial wick
FR3007329B1 (fr) 2013-06-20 2017-04-21 Valeo Systemes Thermiques Element destine au refroidissement de l'air d'un vehicule automobile
WO2015122882A1 (en) * 2014-02-12 2015-08-20 Hewlett-Packard Development Company, L.P. Forming a casing of an electronics device
US10458716B2 (en) 2014-11-04 2019-10-29 Roccor, Llc Conformal thermal ground planes
US20160223267A1 (en) * 2015-02-02 2016-08-04 Asia Vital Components Co., Ltd. Flat-plate heat pipe structure
US10269682B2 (en) * 2015-10-09 2019-04-23 Taiwan Semiconductor Manufacturing Company, Ltd. Cooling devices, packaged semiconductor devices, and methods of packaging semiconductor devices
CN105352352A (zh) * 2015-11-18 2016-02-24 上海利正卫星应用技术有限公司 一种超薄均温板装置及其制作方法
DE102018106343B4 (de) * 2018-03-19 2021-09-02 Asia Vital Components Co., Ltd. Zwischenelement für Wärmeableiteinrichtungen und Wärmeableiteinrichtung
JP7116912B2 (ja) * 2018-07-30 2022-08-12 株式会社リコー ウィック、ループ型ヒートパイプ、冷却装置、電子機器、及びウィック製造方法
CN111811306A (zh) * 2019-04-11 2020-10-23 讯凯国际股份有限公司 散热装置及其制造方法
KR102282814B1 (ko) 2020-01-15 2021-07-29 주식회사 에이치비세계로 도로의 중앙분리대
CN112283955A (zh) * 2020-10-30 2021-01-29 兰州交通大学 翼盒微槽热管集热板、组成的百叶平板太阳能集热器及应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007518953A (ja) * 2003-11-27 2007-07-12 エルエス ケーブル リミテッド 板型熱伝達装置
JP2007315745A (ja) * 2005-09-01 2007-12-06 Fuchigami Micro:Kk ヒートパイプ及びその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007518953A (ja) * 2003-11-27 2007-07-12 エルエス ケーブル リミテッド 板型熱伝達装置
JP2007315745A (ja) * 2005-09-01 2007-12-06 Fuchigami Micro:Kk ヒートパイプ及びその製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013157535A1 (ja) * 2012-04-16 2013-10-24 古河電気工業株式会社 ヒートパイプ
JP5654176B2 (ja) * 2012-04-16 2015-01-14 古河電気工業株式会社 ヒートパイプ
JPWO2013157535A1 (ja) * 2012-04-16 2015-12-21 古河電気工業株式会社 ヒートパイプ
US10107561B2 (en) 2012-04-16 2018-10-23 Furukawa Electric Co., Ltd. Heat pipe
CN105293055A (zh) * 2015-02-07 2016-02-03 成都奥能普科技有限公司 固体粒块高温传热弹射驱动传热系统
JP2016156584A (ja) * 2015-02-25 2016-09-01 株式会社フジクラ 薄板ヒートパイプ型熱拡散板

Also Published As

Publication number Publication date
JP2010169379A (ja) 2010-08-05
US20110253345A1 (en) 2011-10-20
CN102308176A (zh) 2012-01-04
KR20110106851A (ko) 2011-09-29
TW201040481A (en) 2010-11-16

Similar Documents

Publication Publication Date Title
WO2010073525A1 (ja) 熱輸送デバイスの製造方法及び熱輸送デバイス
US11022379B2 (en) CTE-matched heat pipe
US20210095930A1 (en) Vapor chamber
US6871701B2 (en) Plate-type heat pipe and method for manufacturing the same
WO2010073526A1 (ja) 熱輸送デバイスの製造方法及び熱輸送デバイス
US20060098411A1 (en) Bendable heat spreader with metallic wire mesh-based microstructure and method for fabricating same
TWI668401B (zh) Steam room
US20100307722A1 (en) Heat transport device and method for manufacturing the same
JP2008039255A (ja) 熱交換器及びその製造方法
CN105307452B (zh) 一种热沉材料为底板超薄均热板的制造方法
JP5724710B2 (ja) プレート積層型冷却器
US8278747B2 (en) Semiconductor apparatus having a two-side heat radiation structure
US20100089554A1 (en) Drum-based vapor chamber with an insertable wick system
US10845128B2 (en) Heat pipe
JP2018119774A (ja) ベーパーチャンバ
US11305373B2 (en) Ultrasonic additively manufactured coldplates on heat spreaders
US20070277962A1 (en) Two-phase cooling system for cooling power electronic components
JP2003254685A (ja) 板型ヒートパイプおよびその製造方法
EP1863085A2 (en) Two-phase cooling system for cooling power electronic components
JP2018041868A (ja) 放熱基板
WO2019208577A1 (ja) 放熱基板および電子装置
US20220279678A1 (en) Vapor chamber, electronic device, sheet for vapor chamber, sheet where multiple intermediates for vapor chamber are imposed, roll of wound sheet where multiple intermediates for vapor chamber are imposed, and intermediate for vapor chamber
TWI382146B (zh) 用於迴路式熱管系統的蒸發器的製造方法
JP2016018887A (ja) 半導体素子用放熱部品及びその製造方法
JP4333634B2 (ja) シリコンウェハーの接合方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980155999.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09834340

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117013809

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13141121

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09834340

Country of ref document: EP

Kind code of ref document: A1