WO2010073481A1 - シクロオレフィン製造用ルテニウム触媒の調製方法、シクロオレフィンの製造方法、及び製造装置 - Google Patents

シクロオレフィン製造用ルテニウム触媒の調製方法、シクロオレフィンの製造方法、及び製造装置 Download PDF

Info

Publication number
WO2010073481A1
WO2010073481A1 PCT/JP2009/006249 JP2009006249W WO2010073481A1 WO 2010073481 A1 WO2010073481 A1 WO 2010073481A1 JP 2009006249 W JP2009006249 W JP 2009006249W WO 2010073481 A1 WO2010073481 A1 WO 2010073481A1
Authority
WO
WIPO (PCT)
Prior art keywords
ruthenium catalyst
ruthenium
cycloolefin
catalyst
hydrogen
Prior art date
Application number
PCT/JP2009/006249
Other languages
English (en)
French (fr)
Inventor
小西満月男
佐藤雅一
Original Assignee
旭化成ケミカルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成ケミカルズ株式会社 filed Critical 旭化成ケミカルズ株式会社
Priority to EP09834297.5A priority Critical patent/EP2368634B1/en
Priority to KR1020117008468A priority patent/KR101300421B1/ko
Priority to US13/141,146 priority patent/US9056309B2/en
Priority to CN2009801521380A priority patent/CN102264471A/zh
Priority to JP2010543780A priority patent/JP5398082B2/ja
Publication of WO2010073481A1 publication Critical patent/WO2010073481A1/ja
Priority to US14/710,309 priority patent/US10010855B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/462Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/60Platinum group metals with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/652Chromium, molybdenum or tungsten
    • B01J23/6522Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8913Cobalt and noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8953Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/12Oxidising
    • B01J37/14Oxidising with gases containing free oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C13/00Cyclic hydrocarbons containing rings other than, or in addition to, six-membered aromatic rings
    • C07C13/02Monocyclic hydrocarbons or acyclic hydrocarbon derivatives thereof
    • C07C13/16Monocyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with a six-membered ring
    • C07C13/20Monocyclic hydrocarbons or acyclic hydrocarbon derivatives thereof with a six-membered ring with a cyclohexene ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/02Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
    • C07C5/10Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of aromatic six-membered rings
    • C07C5/11Partial hydrogenation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/066Zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals of the platinum group metals
    • C07C2523/46Ruthenium, rhodium, osmium or iridium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/16Systems containing only non-condensed rings with a six-membered ring the ring being unsaturated

Definitions

  • the present invention relates to a method for preparing a ruthenium catalyst for producing a cycloolefin by subjecting a monocyclic aromatic hydrocarbon to a partial hydrogenation reaction, a method for producing a cycloolefin using the ruthenium catalyst, and a method for embodying the same. It relates to a manufacturing apparatus.
  • hydrogenated catalyst particles mainly composed of metal ruthenium having an average crystallite diameter of 20 nm or less are used, and separately from the catalyst particles, Zr, Hf, Ti, Nb, Ta, Cr, Fe, Co, Al, At least one selected from Ga, Si oxides, hydroxides and hydrates is added, and the reaction is carried out under neutral or acidic conditions in the presence of at least one zinc compound as a co-catalyst.
  • a catalyst for producing cycloolefin composed of the above particles (Patent Document 2) and the like are known. Also, in order to ensure separation of the reaction product and the aqueous phase composed of the ruthenium catalyst and water, as a pretreatment method of the catalyst, the aqueous phase containing the ruthenium catalyst is stirred, There has been proposed a pretreatment method for a ruthenium catalyst which is maintained for a predetermined time at a temperature of 60 to 180 ° C. in the absence of an oil phase component (Patent Document 3).
  • Patent Document 4 a method in which the ruthenium catalyst is brought into contact with oxygen in a liquid phase has been proposed. Further, the ruthenium catalyst whose activity is reduced by being used in the hydrogenation reaction of an unsaturated organic compound is reduced under a hydrogen partial pressure lower than the hydrogen partial pressure in the hydrogenation reaction conditions and more than in the hydrogenation reaction conditions. A method for recovering the activity of a ruthenium catalyst has been proposed in which the catalyst is held at a temperature not lower than a temperature lower by 50 ° C. and not higher than 250 ° C. (Patent Document 5).
  • the target cycloolefin selectivity In the partial hydrogenation reaction of monocyclic aromatic hydrocarbons, the target cycloolefin selectivity generally decreases as the reaction rate of the raw material monocyclic aromatic hydrocarbons increases, and the reaction rate of monocyclic aromatic hydrocarbons increases. It is known that the yield of cycloolefin, which is a value obtained by multiplying the selectivity of cycloolefin, has a maximum value relative to the reaction rate of monocyclic aromatic hydrocarbons. Therefore, in the oil phase after partial hydrogenation of monocyclic aromatic hydrocarbons, monocyclic saturated hydrocarbons completely hydrogenated with the raw material monocyclic aromatic hydrocarbons exist in addition to the cycloolefin.
  • the catalyst pretreatment method and the catalyst activity recovery method disclosed in the above-mentioned patent documents are useful methods for the purpose of recovering the activity, but from the viewpoint of the yield of cycloolefin in partial hydrogenation. It is still unsatisfactory.
  • the present invention has been made in view of the above circumstances, and a method for preparing a ruthenium catalyst capable of dramatically increasing the yield of cycloolefin as compared with the conventional method, and by using the catalyst, high yields of cycloolefin are obtained.
  • An object of the present invention is to provide a cycloolefin production method that can be produced stably over a long period of time and a production apparatus for embodying the production method.
  • the ruthenium catalyst precursor was used in the aqueous solution containing the metal salt.
  • the monocyclic aromatic hydrocarbon is partially water-removed using a ruthenium catalyst obtained by reducing and maintaining the temperature in the range of 180 ° C. to 220 ° C. and hydrogen partial pressure of 0.6 MPa to 5 MPa. By adding, it was found that the yield of cycloolefin was dramatically improved.
  • the aqueous phase A first step of contacting at least a portion of the ruthenium catalyst contained in oxygen with oxygen, and at least a portion of the aqueous phase containing the ruthenium catalyst that has passed through the first step is more than 180 ° C. and less than 220 ° C.
  • the present invention is as follows. [1] Including a step of reducing the ruthenium catalyst precursor in an aqueous solution containing a metal salt by maintaining the ruthenium catalyst precursor at a temperature exceeding 220 ° C. and 220 ° C. or less and a hydrogen partial pressure ranging from 0.6 MPa to 5 MPa. A method for preparing a ruthenium catalyst. [2] A process for producing a cycloolefin, comprising a step of preparing a ruthenium catalyst by the method described in [1] above and partially hydrogenating a monocyclic aromatic hydrocarbon using the obtained ruthenium catalyst.
  • cycloolefin can be stably obtained over a long period of time with a high selectivity and a high yield in the partial hydrogenation reaction of monocyclic aromatic hydrocarbons.
  • the present embodiment a mode for carrying out the present invention (hereinafter simply referred to as “the present embodiment”) will be described with reference to the drawings as necessary.
  • the present invention is not limited to the following embodiment.
  • the present invention can be variously modified without departing from the gist thereof.
  • the same elements are denoted by the same reference numerals, and redundant description is omitted.
  • the dimensional ratios in the drawings are not limited to the illustrated ratios.
  • a ruthenium catalyst precursor is heated to a temperature of 180 ° C. or higher and 220 ° C. or lower and 0.6 MPa or higher in an aqueous solution containing a metal salt. Including a step of holding in a hydrogen partial pressure range of 5 MPa or less.
  • the ruthenium catalyst of the present embodiment preferably contains metal ruthenium obtained by reducing various ruthenium compounds.
  • the ruthenium compound include halides such as ruthenium chloride, bromide and iodide, nitrates, sulfates, hydroxides, complexes containing various rutheniums, and compounds derived from such complexes.
  • the complex containing ruthenium include a ruthenium carbonyl complex, a ruthenium acetylacetonate complex, a ruthenocene complex, a ruthenium ammine complex, and a ruthenium hydride complex. These ruthenium compounds can be used alone or in combination of two or more.
  • the ruthenium compound is reduced in an aqueous solution containing a metal salt at a temperature exceeding 180 ° C. and not exceeding 220 ° C. and a hydrogen partial pressure ranging from 0.6 MPa to 5 MPa.
  • the ruthenium catalyst can also be obtained by subjecting the ruthenium compound to a reduction treatment by the following conventional method before the reduction treatment under the above conditions, followed by a reduction treatment with hydrogen under the reduction conditions of this embodiment. A catalyst can also be obtained. If the ruthenium compound that has been subjected to reduction treatment under normal conditions is further subjected to reduction treatment under the conditions of this embodiment, the effect of increasing the cycloolefin selectivity tends to be greater, so the latter method is more preferred.
  • Examples of ordinary methods for reducing ruthenium compounds include catalytic reduction using hydrogen, carbon monoxide, etc., and chemical reduction using formalin, sodium borohydride, potassium borohydride, hydrazine, ascorbic acid, alcohols, etc. It is done.
  • preferable reduction methods are a catalytic reduction method using hydrogen and a chemical reduction method using sodium borohydride.
  • the ruthenium compound is activated by reduction at a reduction temperature of usually 50 to 450 ° C., preferably 100 to 400 ° C.
  • the ruthenium compound may be reduced in the gas phase or in the liquid phase, but is preferably liquid phase reduction.
  • the reduction temperature is preferably 100 ° C. or less, more preferably 10 ° C. to 60 ° C.
  • the ruthenium compound (hereinafter also referred to as “ruthenium catalyst precursor”) reduced or not reduced by the above-described normal method has a temperature of more than 180 ° C. and not more than 220 ° C., and a hydrogen partial pressure of 0. Reduction treatment is performed in an aqueous solution containing a metal salt under a condition of 6 MPa or more and 5 MPa or less. If the hydrogen partial pressure is less than 0.6 MPa or the temperature is 180 ° C. or lower, the cycloolefin selectivity cannot be improved, and the cycloolefin yield cannot be increased.
  • a more preferable hydrogen partial pressure is 1 MPa or more and 4 MPa or less.
  • a more preferable temperature is 185 ° C. or higher and 210 ° C. or lower.
  • the method for preparing a ruthenium catalyst according to this embodiment requires that the ruthenium catalyst precursor be reduced in an aqueous solution containing a metal salt.
  • a metal salt used here it is preferable that at least a part or all of the metal salt is present in a dissolved state in the aqueous phase.
  • the metal constituting the metal salt include zinc, iron, cadmium, gallium, indium, aluminum, chromium, manganese, cobalt, and copper.
  • the metal salt include nitrates, acetates, phosphates, sulfates and the like of the above metals, and a double salt containing such metal salts may be used.
  • metal salts may be used individually by 1 type, and may be used in combination of 2 or more type. From the viewpoint of improving the selectivity for cycloolefin of the obtained ruthenium catalyst, it is particularly preferable to use zinc sulfate as the metal salt.
  • the following metal salts may be present in the aqueous solution for reduction treatment.
  • the metal constituting such a metal salt include Group 1 metals such as lithium, sodium, and potassium in the periodic table, and Group 2 metals such as magnesium and calcium (the group number is a revised IUPAC inorganic chemical nomenclature (1989)). Or lead, arsenic, germanium, vanadium, silver, gold, platinum, palladium, barium, boron.
  • the metal salt include nitrate, oxide, hydroxide, acetate, phosphate, and a mixture of two or more of these salts chemically and / or physically.
  • the concentration of the metal salt in these aqueous phases in the reduction reaction is preferably 1 ⁇ 10 ⁇ 5 to 5.0 mol / L.
  • the concentration of the metal salt in the aqueous phase is more preferably 1 ⁇ 10 ⁇ 3 to 2.0 mol / L, and more preferably 0.1 to 1.0 mol / L. Is more preferable.
  • the amount of the metal salt is preferably 1 ⁇ 10 ⁇ 5 to 1 ⁇ 10 5 times on a mass basis with respect to the amount of ruthenium in the ruthenium catalyst.
  • the pH of the aqueous metal salt solution contained in the aqueous phase is preferably 7.5 or less, more preferably 1.0 to 7.0, still more preferably 1. It is an acidic region of 5 to 6.5. If the aqueous metal salt solution is alkaline, the stability of the metal salt in the reduction reaction is lowered, and the metal salt may be deposited on the ruthenium catalyst, which may reduce the activity of the catalyst. In order to maintain the aqueous phase neutral or acidic, for example, an acid component such as nitric acid, sulfuric acid, acetic acid, and phosphoric acid may be contained in the aqueous solution.
  • an acid component such as nitric acid, sulfuric acid, acetic acid, and phosphoric acid may be contained in the aqueous solution.
  • the reduction treatment time is preferably about 5 minutes to 1 week. If it is less than 5 minutes, the effect of improving the cycloolefin selectivity by the reduction treatment under the conditions of this embodiment tends to be small. Further, when the reduction time is very long, the activity of the obtained ruthenium catalyst tends to be lowered.
  • the reduction treatment time is more preferably 10 minutes to 100 hours.
  • a stirring and mixing tank can be used, or a fixed bed can be used.
  • a ruthenium catalyst precursor is dispersed in an aqueous solution containing a metal salt to obtain a catalyst precursor slurry, and then reduction treatment is performed at a predetermined temperature and pressure under stirring in a hydrogen atmosphere.
  • the fixed bed is filled with the ruthenium catalyst precursor and an aqueous solution containing a metal salt and hydrogen at a predetermined temperature and hydrogen partial pressure. It is also possible to carry out a reduction process by distributing it.
  • the ruthenium catalyst obtained under the reduction treatment conditions of this embodiment can be used as it is in the partial hydrogenation reaction of monocyclic aromatic hydrocarbons in the aqueous metal salt solution used in the reduction treatment. Moreover, after separating the ruthenium catalyst and metal salt aqueous solution obtained after the reduction treatment, they can be used for partial hydrogenation of monocyclic aromatic hydrocarbons.
  • the ruthenium catalyst obtained by the reduction treatment of the present embodiment is held at room temperature and air after the reduction treatment, the partial water of the monocyclic aromatic hydrocarbon is within one month, more preferably within one week. It is preferably used for the addition reaction, particularly preferably within several hours. When held for more than 1 month, the effect of improving the selectivity of cycloolefin tends to be difficult to obtain. When it is necessary to hold for a long time, it is preferable to hold under an inert gas such as nitrogen or argon, or hold under normal pressure or under pressure with hydrogen.
  • the ruthenium catalyst may be subjected to reduction treatment under the conditions of this embodiment after the ruthenium catalyst precursor is charged into the partially hydrogenated reactor, or after the ruthenium catalyst precursor is charged into the reactor,
  • the reduction process may be performed under conditions, and the reduction process under the conditions of the present embodiment may be further performed.
  • the ruthenium catalyst precursor may be reduced under the normal conditions, then charged into the partial hydrogenation reactor, and then reduced under the conditions of this embodiment.
  • the ruthenium catalyst precursor containing no metal ruthenium may be used in the form of a ruthenium hydroxide carrier obtained by treating with an alkali such as sodium hydroxide in a state where the ruthenium compound detailed above is supported on a carrier.
  • a ruthenium hydroxide carrier obtained by treating with an alkali such as sodium hydroxide in a state where the ruthenium compound detailed above is supported on a carrier.
  • it is a mixture of ruthenium hydroxide and a dispersant obtained by adding an alkali such as sodium hydroxide to a mixture in which the dispersant and the ruthenium compound detailed above are present, or detailed above.
  • a mixture of ruthenium hydroxide obtained by adding an alkali such as sodium hydroxide to the ruthenium compound and a dispersant is preferable.
  • Ruthenium compounds may contain anions that may accelerate material corrosion, such as chlorine ions, but by washing the ruthenium compounds with water after alkali treatment, such anions can react with the reaction system. Since it can prevent entering, it is preferable to wash after alkali treatment.
  • the ruthenium catalyst may be other metals and / or metal compounds such as zinc, chromium, molybdenum, tungsten, manganese, cobalt, iron, copper, gold, platinum, boron, lanthanum before, during or after the reduction of the ruthenium compound. , Cerium, and / or a compound of these metals may be obtained by adding to the ruthenium compound.
  • the amount of the metal and / or metal compound is usually preferably in the range of 0.001 to 20 as an atomic ratio to the ruthenium atom.
  • zinc and / or zinc compounds are preferable.
  • Zinc and / or zinc compounds are preferably added before or during the reduction of the ruthenium compound.
  • the amount of zinc and / or zinc compound added is preferably such that zinc is 0.1 to 50 parts by mass with respect to 100 parts by mass of ruthenium.
  • zinc is more preferably 0.5 to 30 parts by mass with respect to 100 parts by mass of ruthenium.
  • the amount of zinc is 0.1 parts by mass or more with respect to 100 parts by mass of ruthenium, the yield of cycloolefin tends to increase, and when it is 50 parts by mass or less, the catalytic activity tends to increase.
  • Examples of the ruthenium catalyst precursor containing ruthenium as a main component and containing the above metal and / or metal compound include the following (1) to (4).
  • a ruthenium compound and another metal and / or metal compound supported on a carrier by a usual supporting method such as, for example, an adsorption method, an ion exchange method, an immersion method, a coprecipitation method, a dry solidification method
  • An insoluble salt of the ruthenium compound and the other metal and / or metal compound by adding an alkali such as sodium hydroxide to the solution containing the ruthenium compound and the other metal and / or metal compound.
  • the ruthenium catalyst may be a support in which ruthenium is supported on a support.
  • the carrier is not particularly limited as long as it can support ordinary ruthenium.
  • oxides of metals such as magnesium, aluminum, silicon, calcium, titanium, vanadium, chromium, manganese, cobalt, iron, copper, zinc, zirconium, hafnium, tungsten, boron, lanthanum, cerium, Examples thereof include composite oxides, hydroxides, poorly water-soluble metal salts, and compounds and mixtures in which two or more of these are chemically or physically combined.
  • zirconium oxide zirconia and / or zirconium hydroxide is preferable, and zirconium oxide is particularly preferable because it tends to be excellent in physical stability such as specific surface area under reaction conditions.
  • Zirconium oxide preferably has an average particle size of 0.05 to 30 ⁇ m, more preferably 0.05 to 10 ⁇ m.
  • the specific surface area of zirconium oxide is preferably 20 to 200 m 2 / g.
  • the method for supporting ruthenium on such a carrier is not particularly limited, and examples thereof include an adsorption method, an ion exchange method, a dipping method, a coprecipitation method, and a drying method.
  • the average particle diameter here measured the particle size distribution (ratio of the particle
  • the accumulation of the particle size distribution is obtained with the total volume as 100%, and the particle diameter at the point where the accumulation reaches 50%, that is, the accumulated average diameter (center diameter, median diameter) is said.
  • the specific surface area is a value measured by desorption data by a BET method using nitrogen as an adsorption gas.
  • Shimadzu Micrometrics ASAP2010 can be used for measurement of the specific surface area by the BET method.
  • the amount of the carrier used is not particularly limited, but usually it is preferably 1 to 1000 times on a mass basis with respect to ruthenium supported thereon.
  • zirconium oxide when zirconium oxide is used as a support, it is more preferable to use zirconium oxide in an amount of 1 to 200 times, and preferably 2 to 10 times the amount of ruthenium supported thereon. Is more preferable.
  • a catalyst supporting ruthenium in a highly dispersed state of about 1 to 200 times on a mass basis tends to have good catalytic activity per unit amount of ruthenium.
  • a dispersant is present in the catalyst slurry from the viewpoint of increasing the selectivity of cycloolefin.
  • the dispersant may be contained in the ruthenium catalyst by physical mixing, whether supported or not.
  • the dispersing agent include magnesium, aluminum, silicon, calcium, titanium, vanadium, chromium, manganese, cobalt, iron, copper, zinc, zirconium, hafnium, tungsten, barium, boron, and other metal oxides and composite oxides. , Hydroxides, poorly water-soluble metal salts, or compounds and mixtures in which two or more of these are chemically or physically combined.
  • zirconium oxide and zirconium hydroxide are preferable as the dispersant.
  • zirconium oxide tends to increase the effect of increasing the selectivity of cycloolefin, and physical properties such as specific surface area under reaction conditions. This is preferable because it tends to be excellent in stability.
  • “catalyst slurry” refers to an aqueous phase containing an aqueous solution containing a metal salt and the ruthenium catalyst obtained by the preparation method of the present embodiment.
  • the amount of the dispersant used is not particularly limited, but is preferably 1 to 1000 times on a mass basis with respect to ruthenium used for the catalyst.
  • zirconium oxide when zirconium oxide is used as the dispersant, it is more preferable to use zirconium oxide in an amount of 1 to 200 times, and more preferably 2 to 40 times the amount of ruthenium.
  • the average crystallite size of the ruthenium catalyst is preferably 20 nm or less. When the average crystallite diameter is within this range, the surface area of the ruthenium catalyst is appropriately increased, and the catalytic activity tends to be improved due to the presence of more active sites.
  • the average crystallite size of the ruthenium catalyst is calculated by analyzing the ruthenium catalyst by an X-ray diffraction method and using the Scherrer equation from the obtained broadening of the diffraction line width. Specifically, the average crystallite diameter of the ruthenium catalyst is calculated from the broadening of the diffraction line having a maximum near 44 ° in diffraction angle (2 ⁇ ) using CuK ⁇ ray as an X-ray source.
  • the lower limit value of the average crystallite diameter may be a value larger than the crystal unit, and is practically 1 nm or more.
  • the average crystallite diameter of the ruthenium catalyst can be reduced to 20 nm or less by exceeding 180 ° C. which is the temperature range of the reducing conditions of this embodiment and 220 ° C. or less and reducing the reduction time within one week.
  • concentration of the ruthenium catalyst precursor in the aqueous solution containing the metal salt in the reduction reaction is 50% by mass or less from the viewpoint of suppressing an increase in the average crystallite diameter.
  • the method for producing a cycloolefin of the present embodiment comprises a step of preparing a ruthenium catalyst by the above-described method and partially hydrogenating a monocyclic aromatic hydrocarbon using the obtained ruthenium catalyst. Including. Specifically, in a water phase (catalyst slurry) containing an aqueous solution containing a metal salt and the ruthenium catalyst and / or ruthenium catalyst precursor obtained by the reduction method of the present embodiment, monocyclic aromatic hydrocarbons are partially water. In this method, cycloolefin is produced by an addition reaction.
  • ruthenium catalyst when performing the partial hydrogenation reaction of the monocyclic aromatic hydrocarbon repeatedly or continuously using the ruthenium catalyst, (1) at least a part of the ruthenium catalyst contained in the aqueous phase is combined with oxygen.
  • a second step of maintaining the hydrogen partial pressure within a range when performing the partial hydrogenation reaction of the monocyclic aromatic hydrocarbon repeatedly or continuously using the ruthenium catalyst, (1) at least a part of the ruthenium catalyst contained in the aqueous phase is combined with oxygen.
  • Partial hydrogenation reaction (a) Raw material Monocyclic aromatic hydrocarbons used as a raw material for the partial hydrogenation reaction in the present embodiment include benzene, alkylbenzene having a lower alkyl group having 1 to 4 carbon atoms such as toluene and xylene, phenyl, and the like. Examples thereof include alkylphenylbenzene which is not a condensed polycyclic aromatic hydrocarbon such as benzene.
  • Water is required for the partial hydrogenation reaction, and the amount varies depending on the reaction type.
  • the amount of water is preferably 0.5 to 20 times on a mass basis with respect to the amount of monocyclic aromatic hydrocarbons as a raw material. If the amount of water is within this range, the selectivity of the cycloolefin tends to be maintained without increasing the size of the reactor.
  • the amount of water is more preferably 1 to 10 times on a mass basis with respect to the raw material monocyclic aromatic hydrocarbon.
  • an organic liquid phase hereinafter also referred to as “oil phase” mainly composed of raw materials and reaction products is separated from an aqueous phase mainly composed of water. That is, an amount of water that can be in a state where the two liquid phases of the oil phase and the water phase are separated is present in the reaction system.
  • metal salt It is necessary that a metal salt is present in the reaction system.
  • the metal salt is preferably present in a dissolved state at least partly or entirely in the aqueous phase.
  • the metal constituting the metal salt include zinc, iron, cadmium, gallium, indium, aluminum, chromium, manganese, cobalt, and copper.
  • the metal salt include nitrates, acetates, phosphates, sulfates and the like of the above metals, and a double salt containing such metal salts may be used. These metal salts may be used individually by 1 type, and may be used in combination of 2 or more type. From the viewpoint of improving the yield of cycloolefin, it is particularly preferable to use zinc sulfate as the metal salt.
  • a double salt such as zinc hydroxide and zinc oxide
  • double salts containing zinc hydroxide are particularly preferred.
  • the following metal salts may be present in the reaction system.
  • the metal constituting such a metal salt include Group 1 metals such as lithium, sodium, and potassium in the periodic table, and Group 2 metals such as magnesium and calcium (the group number is a revised IUPAC inorganic chemical nomenclature (1989)). Or lead, arsenic, germanium, vanadium, silver, gold, platinum, palladium, barium, boron.
  • the metal salt include nitrate, oxide, hydroxide, acetate, phosphate, or a mixture of two or more of these salts chemically and / or physically.
  • the concentration of the metal salt in the aqueous phase in the reaction system is not particularly limited, but is preferably 1 ⁇ 10 ⁇ 5 to 5.0 mol / L.
  • the concentration of the metal salt in the aqueous phase is more preferably 1 ⁇ 10 ⁇ 3 to 2.0 mol / L, and more preferably 0.1 to 1.0 mol / L. Is more preferable.
  • the amount of the metal salt is preferably 1 ⁇ 10 ⁇ 5 to 1 ⁇ 10 5 times on a mass basis with respect to the amount of ruthenium in the ruthenium catalyst.
  • These metal salts may be present anywhere in the reaction system, and the present form does not necessarily have to be completely dissolved in the water phase, but may be present in the oil phase. A part may be deposited.
  • the aqueous phase is acidic because the activity of the ruthenium catalyst tends to increase. From this point, in order to maintain the aqueous phase acidic, for example, an acid component such as nitric acid, sulfuric acid, acetic acid, and phosphoric acid may be included in the reaction system. In particular, sulfuric acid is preferable because it is effective in increasing the reaction rate.
  • the pH of the aqueous metal salt solution contained in the aqueous phase is preferably 7.5 or less, more preferably 2 to 6.5.
  • the pH of the aqueous metal salt solution exceeds 7.5, the stability of the metal salt under the partial hydrogenation reaction conditions is lowered, and the metal salt is deposited on the ruthenium catalyst, so that the activity of the catalyst is easily lowered.
  • the hydrogen partial pressure when partially hydrogenating monocyclic aromatic hydrocarbons with hydrogen is generally preferably 1 to 20 MPa, more preferably 2 to 7 MPa. If the hydrogen partial pressure is 1 MPa or more, the selectivity of cycloolefin tends to be high, and if it is 20 MPa or less, the need to increase the pressure of hydrogen and monocyclic aromatic hydrocarbons fed into the reactor is reduced. The inefficiency tends to be suppressed.
  • the reaction temperature of the partial hydrogenation reaction is preferably 50 to 250 ° C., more preferably 100 to 200 ° C. When the reaction temperature is 50 ° C. or higher, a sufficient reaction rate tends to be secured, and when the reaction temperature is 250 ° C. or lower, the average crystallite diameter of the ruthenium catalyst grows during the partial hydrogenation reaction ( It tends to be possible to suppress a sharp decrease in catalyst activity due to sintering.
  • the partial hydrogenation reaction of monocyclic aromatic hydrocarbons is preferably a liquid phase reaction.
  • the partial hydrogenation reaction can also be carried out continuously or batchwise by a liquid phase suspension method using one or two or more reactors. Moreover, it can replace with a liquid phase suspension method and can also perform partial hydrogenation reaction by the fixed bed type
  • a ruthenium catalyst of a size that can be held in a fixed bed is packed, and a monocyclic aromatic hydrocarbon, a metal salt aqueous solution, and hydrogen are simultaneously circulated through the fixed bed, a ruthenium catalyst and a metal salt aqueous solution.
  • circulate a monocyclic aromatic hydrocarbon and hydrogen from the fixed bed lower part etc. are hold
  • the partial hydrogenation reaction is performed by the liquid phase suspension method, it is preferable to sufficiently perform stirring and mixing in order to increase the dissolution rate of hydrogen and monocyclic aromatic hydrocarbons in the aqueous phase. Moreover, it is preferable to provide a gas introduction pipe for introducing hydrogen into the catalyst slurry.
  • the ruthenium catalyst when performing the partial hydrogenation reaction of monocyclic aromatic hydrocarbons repeatedly or continuously using the ruthenium catalyst, (1) at least one of the ruthenium catalysts contained in the aqueous phase.
  • the second step of maintaining the hydrogen partial pressure in the range of 5 MPa or less will be described.
  • the 1st process of the manufacturing method of the cycloolefin of this embodiment is a process which contacts at least one part of the ruthenium catalyst contained in an aqueous phase with oxygen.
  • the catalyst slurry may be extracted from the reaction system (inside the reactor) prior to bringing the ruthenium catalyst into contact with oxygen.
  • the amount of the catalyst slurry withdrawn from the reaction system may be either all or a part of the catalyst slurry charged in the reactor. What is necessary is just to select the quantity of this catalyst slurry suitably according to the reaction system (batch type or continuous type) of partial hydrogenation reaction.
  • the method of bringing the ruthenium catalyst contained in the catalyst slurry into contact with oxygen may be a batch method or a continuous method.
  • the amount of the catalyst slurry brought into contact with oxygen is preferably 5 to 100% by mass of the catalyst slurry in the reactor used for the reaction, and is 10 to 60% by mass. Is more preferable.
  • the amount of the catalyst slurry in the above range it becomes easy to stably obtain cycloolefin in a high yield even when the partial hydrogenation reaction is repeated.
  • the catalyst slurry is preferably brought into contact with oxygen within 24 hours, and more preferably 10 to 60% by mass is brought into contact with oxygen.
  • the amount of the catalyst slurry brought into contact with oxygen is within the above range, the yield of cycloolefin tends to be particularly high.
  • the oil phase accompanying the catalyst slurry prior to the first step.
  • the method for removing the oil phase include static separation, and a method of distilling off the entrained oil phase by blowing an inert gas such as nitrogen into the catalyst slurry. It is preferable to heat the aqueous phase to 50 to 90 ° C. when blowing the inert gas because the time required to remove the oil phase can be shortened.
  • the state of the catalyst slurry is that the ruthenium catalyst is slurried in water from the viewpoint of suppressing the ruthenium from being extremely oxidized by the rapid reaction between ruthenium and oxygen in the catalyst and degrading the catalyst performance. It is preferable that it is in a dispersed state. Although the amount of water in the catalyst slurry may be small, it is preferable that at least the surface of the ruthenium catalyst is covered with water from the viewpoint of diffusing heat of reaction between ruthenium and oxygen and suppressing a rapid reaction.
  • the ruthenium catalyst is dispersed in a neutral or acidic aqueous solution containing a metal salt used in the partial hydrogenation reaction.
  • the state is preferable.
  • Examples of the oxygen source to be brought into contact with the ruthenium catalyst include a gas containing oxygen, a gas containing molecular oxygen such as air, or a compound that generates nascent oxygen such as hydrogen peroxide.
  • the gas containing oxygen is preferably an oxygen gas or a gas obtained by diluting the oxygen gas with a suitable inert gas, because it is simple in operation.
  • the oxygen concentration in the catalyst slurry when contacting oxygen is preferably 1 ⁇ 10 ⁇ 7 to 1 NmL / mL, more preferably 1 ⁇ 10 ⁇ 5 to 0.1 NmL in terms of standard state oxygen gas. / ML.
  • the oxygen concentration in the catalyst slurry can be measured with a commercially available oxygen concentration meter.
  • the oxygen brought into contact with the ruthenium catalyst may be supplied directly to the catalyst slurry.
  • a particularly preferable oxygen supply method is to supply a gas containing oxygen to the catalyst slurry. This method is preferable because the operation is simple.
  • the operation of bringing the ruthenium catalyst into contact with oxygen can be carried out under any conditions of reduced pressure, normal pressure or increased pressure. Therefore, pressurization is possible to increase the oxygen concentration of the catalyst slurry.
  • the temperature of the aqueous phase when the catalyst slurry is brought into contact with oxygen is preferably 0 to 300 ° C, more preferably 30 to 200 ° C, still more preferably 50 to 150 ° C. When the temperature of the aqueous phase is within the above range, the effect of regenerating the ruthenium catalyst by oxygen and the effect of preventing the modification of the ruthenium catalyst tend to be exhibited in a well-balanced manner.
  • the time for which the ruthenium catalyst is brought into contact with oxygen is preferably adjusted according to the degree of decrease in the catalyst performance such as activity, and is usually from several minutes to several days.
  • the ruthenium catalyst Before or after the first step, in an atmosphere in which hydrogen is not substantially present (hydrogen partial pressure is 0 MPa), and at a temperature not lower than 50 ° C. lower than the temperature during the partial hydrogenation reaction You may have the process of hold
  • the temperature around the catalyst in this step is a temperature that is not lower than 50 ° C. lower than the reaction temperature during the partial hydrogenation reaction, preferably not lower than 40 ° C., more preferably lower than 30 ° C. There is no temperature. If the ambient temperature is higher than this temperature, an irreversible change may occur in the active point of the catalyst. Therefore, it is preferable to select an upper limit of the ambient temperature suitable for the characteristics of the catalyst.
  • the temperature around the catalyst is preferably a temperature not exceeding 250 ° C, more preferably not exceeding 200 ° C, and further preferably 180 ° C.
  • the temperature does not exceed °C.
  • the holding time in this step is usually several minutes to several days.
  • the second step at least a part of the aqueous phase (catalyst slurry) containing the ruthenium catalyst that has passed through the first step exceeds 180 ° C. and has a temperature of 220 ° C. or lower and a hydrogen content of 0.6 MPa to 5 MPa. Hold in the range of pressure. More preferably, it is maintained at a temperature of 185 ° C. or higher and 210 ° C. or lower and a hydrogen partial pressure of 1 MPa or higher and 4.5 MPa or lower.
  • the holding temperature is 180 ° C. or lower or the hydrogen partial pressure is less than 0.6 MPa, the effect of improving the cycloolefin selectivity in the partial hydrogenation reaction by the treatment in the second step cannot be obtained.
  • an inert gas such as nitrogen, helium, argon, or methane may be contained as a gas other than hydrogen.
  • the total pressure in the treatment in the second step is determined by the sum of the vapor pressure of water at the treatment temperature, the partial pressure of hydrogen, and the partial pressure of an inert gas such as nitrogen, helium, argon, or methane. When no inert gas is present, it is the sum of the water vapor pressure and the hydrogen partial pressure.
  • the hydrogen partial pressure is a value obtained by subtracting the vapor pressure of water at the treatment temperature from the total pressure in the second step when there is no inert gas.
  • the catalyst slurry to be treated is treated.
  • the target hydrogen partial pressure condition can be set by pressurizing with hydrogen so that a predetermined hydrogen partial pressure is obtained.
  • the target hydrogen partial pressure is obtained by multiplying the pressure value pressurized with hydrogen and inert gas by the hydrogen content according to the hydrogen content.
  • it may be pressurized with a mixed gas of hydrogen and an inert gas.
  • the holding time is preferably about 1 minute to 400 hours, more preferably 5 minutes to 24 hours.
  • the second step can also be performed by maintaining the temperature at a temperature not higher than ° C.
  • the amount of the catalyst slurry supplied to the second step is preferably 1 to 100% by mass of the catalyst slurry that has passed through the first step.
  • the amount of the catalyst slurry provided for the second step is preferably adjusted according to the cycloolefin selectivity and the activity of the catalyst.
  • the cycloolefin production method of the present embodiment further includes (3) a third step in which the aqueous phase containing the ruthenium catalyst that has undergone the second step is provided (refilled) to the reaction system of the partial hydrogenation reaction. May be included.
  • the recharging method may be a method in which the catalyst slurry having undergone the second step is charged into the reactor while the partial hydrogenation reaction in the reactor is stopped. The partial hydrogenation reaction is allowed to proceed in the reactor. However, a method of filling the reactor with the catalyst slurry that has undergone the second step may be used.
  • the catalyst slurry that has undergone the second step is in a state where a high cycloolefin selectivity can be obtained, but this state is unstable. Therefore, when the treatment temperature and pressure in the second step are different from the reaction temperature and pressure in the partial hydrogenation reaction, it does not require a long period of time to shift the catalyst slurry after the second step to the partial hydrogenation reaction conditions. It is preferable.
  • a preferable rate of change for shifting from the treatment temperature of the second step to the reaction temperature of the partial hydrogenation reaction is between 300 ° C./min and 10 ° C./min. More preferably, the rate is between 100 ° C./min and 1 ° C./min.
  • the catalyst slurry that has undergone the second step can be subjected to a partial hydrogenation reaction after a period of several days.
  • the catalyst slurry that has undergone the second step is cooled to room temperature at the above change rate and then held under normal pressure to 5 MPa of hydrogen or an inert gas such as nitrogen. If the treatment pressure in the second step and the pressure in the partial hydrogenation reaction are different, the pressure is reduced after the catalyst slurry in the second step reaches the reaction temperature for the partial hydrogenation reaction, or at the same time as the temperature is adjusted. The pressure of the hydrogenation reaction can be adjusted.
  • the mode through the first, second and third steps is not particularly limited.
  • the continuous reaction is once stopped and the oil phase is removed from the reactor.
  • the ruthenium catalyst is brought into contact with oxygen with the entire catalyst slurry remaining in the reactor (first step).
  • the catalyst slurry is stirred and held for a predetermined time in a temperature range from 180 ° C. to 220 ° C. and a hydrogen partial pressure of 0.6 MPa to 5 MPa (second step).
  • the partial hydrogenation reaction is restarted using the catalyst slurry (third step).
  • the catalyst slurry is partially extracted without stopping the continuous reaction, and the ruthenium catalyst is brought into contact with oxygen (first step).
  • the catalyst slurry that has undergone the first step is stirred and held for a predetermined time at a temperature exceeding 180 ° C. and not higher than 220 ° C. and a hydrogen partial pressure not lower than 0.6 MPa and not higher than 5 MPa (second step).
  • the catalyst slurry which passed through the 2nd process may be recharged to a reactor, and you may use for the reaction system of a partial hydrogenation reaction (3rd process).
  • the cycloolefin production apparatus of the present embodiment is A reactor containing an aqueous phase containing an aqueous solution containing a metal salt and a ruthenium catalyst; An oil / water separation tank connected to the reactor; An oxygenator connected to the oil-water separation tank; A hydrogen treatment device connected to the oxygen treatment device; A cycloolefin production apparatus comprising: Monocyclic aromatic hydrocarbons are supplied to the reactor, and at least a part of the reaction solution and at least a part of the aqueous phase containing the ruthenium catalyst are supplied to the oil / water separation tank, and water flows out of the oil / water separation tank.
  • the phase is a manufacturing apparatus that is introduced into the hydrogen treatment device after being introduced into the oxygen treatment device and brought into contact with oxygen.
  • FIG. 1 is a schematic diagram illustrating an example of a cycloolefin production apparatus according to the present embodiment.
  • the cycloolefin production apparatus 100 includes a reactor 1, an oil / water separation tank 10 for separating a water phase containing a ruthenium catalyst therein and a partially hydrogenated reaction liquid of monocyclic aromatic hydrocarbons, and an oil / water separation tank 10.
  • the oxygen processor 17 is connected to the oxygen processor 17 via the pipe 9, and the hydrogen processor 26 is connected to the oxygen processor 17 via the pipe 11.
  • an acidic aqueous solution containing benzene as a monocyclic aromatic hydrocarbon from the benzene supply device 15, hydrogen gas from the hydrogen supply device 14, and metal salt from the acidic aqueous solution supply device 33 is supplied to the supply nozzle 14 ⁇ / b> A. , 15A, and 33A.
  • the reactor 1 contains an aqueous phase containing an acidic aqueous solution containing a metal salt and a ruthenium catalyst, where the partial water of monocyclic aromatic hydrocarbons by hydrogen gas and benzene is adjusted by the heater 2 for heating. Addition reaction proceeds.
  • the reactor 1 preferably includes a stirrer 3 for stirring the inside.
  • the reactor 1 includes an oil-water separation for separating a reaction solution containing an unreacted monocyclic aromatic hydrocarbon as a main component, that is, an oil phase and an aqueous phase containing a ruthenium catalyst.
  • a tank 10 is provided.
  • the reactor 1 and the oil / water separation tank 10 are partly separated by a partition wall 34, whereby the oil / water separation tank 10 is hardly affected by the stirring by the stirrer 3. Further, the oil phase and the water phase can move in a mixed state from the reactor 1 to the oil / water separation tank 10 through a portion where the partition wall 34 is not provided.
  • the oil / water separation tank 10 preferably has a sufficient volume to separate the water phase and the oil phase within a predetermined time.
  • the reaction liquid of the partial hydrogenation reaction is an oil phase containing a raw material, that is, a monocyclic aromatic hydrocarbon such as benzene, and a reaction product, that is, a cycloolefin as main components.
  • This oil phase is separated from the water phase containing the ruthenium catalyst in the oil / water separation tank 10.
  • the oil / water separation tank 10 is provided in the reactor 1, but the oil / water separation tank 10 may be provided outside the reactor 1 and connected to the reactor 1 via a pipe. .
  • the oil phase separated in the oil / water separation tank 10 is supplied to the separator 6 via the pipe 8 from the overflow nozzle. When the oil phase is cooled by the separator 6, the water dissolved in the oil phase is separated.
  • the separated water is supplied to the reactor 1 by the pump 5.
  • the oil phase from which moisture has been separated is transferred to the cycloolefin separation step via the pipe 7.
  • the water phase separated in the oil / water separation tank 10 is controlled in flow rate by the pressure reducing valve 22 via the pipe 9 and supplied to the oxygen processor 17 via the pipe 19.
  • an aqueous phase containing a ruthenium catalyst is brought into contact with oxygen, and at least a part of the ruthenium catalyst is brought into contact with oxygen.
  • the oxygen processor 17 preferably includes a stirrer 23 for stirring the aqueous phase containing the ruthenium catalyst supplied thereto.
  • the oxygen treatment device 17 is preferably covered with a heating jacket 17A so that the temperature inside the oxygen treatment device 17 can be easily controlled.
  • the manufacturing apparatus 100 includes a gas supply device 21 and a gas introduction nozzle 21A that connects the gas supply device 21 and the oxygen processor 17 so that a gas containing a predetermined concentration of oxygen can be introduced, and a ruthenium catalyst. It is preferable that the gas can be directly introduced into the aqueous phase containing.
  • a condenser 25 may be connected to the oxygen processor 17. In the condenser 25, among the gas containing oxygen and the volatilized water phase, the water phase is condensed and returned to the oxygen processor 17 again, and the gas containing oxygen and the like flows out to the outside via the pipe 24. .
  • the flow rate of the aqueous phase containing the ruthenium catalyst in contact with oxygen in the oxygen processor 17 is controlled by the pump 12 through the pipe 11 and supplied to the hydrogen processor 26 through the pipe 13.
  • an aqueous phase containing a ruthenium catalyst is introduced and held for a predetermined time in a temperature range of 180 ° C. to 220 ° C. and a hydrogen partial pressure of 0.6 MPa to 5 MPa.
  • the hydrogen treatment device 26 has a heat resistance of 220 ° C. or higher and a pressure resistance of 8 MPa or higher.
  • the hydrotreater 26 is preferably provided with a stirrer 27 for stirring the aqueous phase containing the ruthenium catalyst supplied thereto.
  • the hydrogen treatment device 26 is covered with a heater 32 so that the temperature inside thereof can be easily controlled.
  • the production apparatus 100 includes a hydrogen supply apparatus 30 and a supply nozzle 30A that connects the hydrogen supply apparatus 30 and the hydrogen treatment device 26 so that hydrogen can be introduced, and gas is contained in the water phase containing the ruthenium catalyst. It is preferable that can be directly introduced.
  • the hydrogen treatment device 26 include a static mixer type treatment device provided with a heater in addition to the illustrated stirring and mixing tank type treatment device. The aqueous phase containing the ruthenium catalyst treated under hydrogen in the hydrogen treatment device 26 is supplied to the reactor 1 through the pipe 28, the pump 29, and the pipe 31.
  • the reactor 1, the oil / water separation tank 10, the oxygen treatment device 17, the hydrogen treatment device 26, and pipes connecting the respective devices are all made of a metal material such as carbon steel or stainless steel. It is composed of In each of the above apparatuses, it is preferable that at least a portion in contact with the reaction liquid is made of a material containing nickel.
  • the inner wall (inner surface) of the reactor 1 is preferably made of a material that can further suppress the metal elution rate, such as a nickel-based alloy containing molybdenum or a nickel-based alloy containing molybdenum and chromium.
  • the nickel-based alloy containing molybdenum is not particularly limited.
  • Hastelloy A, Hastelloy B, Hastelloy B-3 and Hastelloy B-2 (trade names, heat resistant nickel alloys manufactured by Hayes stellite Co.) are available. Can be mentioned.
  • the nickel-base alloy containing molybdenum and chromium is not particularly limited.
  • Hastelloy G-3 Hastelloy G-30, Hastelloy H and Hastelloy W (trade name, heat-resistant nickel alloy manufactured by Hayes stellite Co.) and Incoloy 825 (trade name, manufactured by Inco Alloys International, Inc.) MAT21 (trade name, manufactured by Mitsubishi Materials Corporation).
  • FIG. 2 is a schematic view showing another example of the cycloolefin production apparatus of the present embodiment.
  • the cycloolefin production apparatus 200 further includes an oil stripping tank 16 that connects between the oil / water separation tank 10 and the oxygen processor 17. Since the manufacturing apparatus 200 is otherwise provided with the same apparatus as the manufacturing apparatus 100 shown in FIG. 1, description thereof is omitted here.
  • the oxygen treatment device 17 makes the ruthenium catalyst contained in at least a part of the water phase supplied through the oil / water separation tank 10 and the oil stripping tank 16 in this order come into contact with oxygen.
  • the water phase separated in the oil / water separation tank 10 may contain a trace amount of oil phase.
  • the aqueous phase is supplied to the oil stripping tank 16 through the pipe 9 while the flow rate is controlled by the pressure reducing valve 22.
  • the oil stripping tank 16 removes the oil phase contained in the water phase containing the ruthenium catalyst by being dissolved or dispersed from the water phase.
  • an inert gas such as nitrogen and water vapor for the monocyclic aromatic hydrocarbon and cycloolefin contained in the oil phase is blown from the gas supply device 20 into the water phase through the gas introduction nozzle 20 ⁇ / b> A. It has become.
  • the oil phase mainly composed of the monocyclic aromatic hydrocarbon and its partially hydrogenated reaction product (cycloolefin) dissolved or dispersed in the water phase is removed from the water phase.
  • the oil stripping tank 16 is preferably covered with a heating jacket 16A so that the internal temperature can be easily controlled.
  • a condenser 18 may be connected to the oil stripping tank 16. In the condenser 18, among the inert gas, the volatilized oil phase, and the water phase accompanying the oil phase, the water phase is condensed and returned again to the oil stripping tank 16, and the inert gas and the volatilized oil phase. Flows out through the pipe 4.
  • the aqueous phase from which the oil phase has been removed in the oil stripping tank 16 is supplied to the oxygen processor 17 via the pipe 19.
  • the said manufacturing apparatus 100 or the manufacturing apparatus 200 may be equipped with the low hydrogen partial pressure processor which connects them between the oxygen processor 17 and the hydrogen processor 26.
  • FIG. The low hydrogen partial pressure processor is a partial hydrogenation reaction in an aqueous phase containing a ruthenium catalyst supplied from the oxygen processor 17 in an atmosphere substantially free of hydrogen (hydrogen partial pressure is 0 MPa).
  • the ruthenium catalyst contained in the aqueous phase is maintained at that temperature, and is maintained at a temperature not lower than 50 ° C. lower than the temperature at. This also regenerates the ruthenium catalyst.
  • the aqueous phase retained in the low hydrogen partial pressure processor is supplied to the hydrogen processor 26.
  • the conversion rate of benzene and the selectivity of cyclohexene shown in the following examples are based on the concentration analysis values of benzene, cyclohexene and cyclohexane obtained by analyzing the obtained oil phase by gas chromatography. Calculated by
  • the total amount of the ruthenium catalyst precursor containing ZrO 2 was added to 280 mL of an aqueous solution of 10% by mass of zinc sulfate (ZnSO 4 ), and reduction treatment was performed at various pressures shown in Table 1 under hydrogen pressure with a reduction temperature of 200 ° C. .
  • the ruthenium catalyst slurry obtained by the reduction treatment was used as it was, and a partial hydrogenation reaction was performed using 140 mL of benzene as a raw material at 140 ° C. and a total pressure of 5 MPa under hydrogen.
  • the cyclohexene selectivity at a benzene conversion of 50% is shown in Table 1 together with the reduction conditions for the ruthenium catalyst precursor.
  • the Zn concentration of the ruthenium catalyst containing ZrO 2 obtained under the reducing conditions of Example 3 as a dispersant and the ruthenium catalyst containing ZrO 2 obtained under the reducing conditions of Comparative Example 3 as a dispersing agent was determined by fluorescent X-ray analysis. As a result, they were almost the same at 1.25% by mass and 1.23% by mass, respectively.
  • Example 9 The ruthenium catalyst slurry obtained by carrying out the reduction treatment under the conditions shown in Comparative Example 6 is directly subjected to the reduction treatment under the conditions shown in Table 3, followed by a partial hydrogenation reaction of benzene at 140 ° C. and a total pressure of 5 MPa under hydrogen. It was. Table 3 shows the cyclohexene selectivity at a benzene conversion rate of 50% together with the reduction conditions of the ruthenium catalyst.
  • Example 10 (Preparation of ruthenium catalyst slurry of cobalt sulfate aqueous solution containing zirconia as dispersant) 5 g of ruthenium chloride (RuCl 3 .3H 2 O) and 13.0 g of zinc chloride were dissolved in 500 mL of water with stirring. 70 mL of a 30% aqueous sodium hydroxide solution was added to the aqueous solution at once with stirring. The resulting mixture was further stirred at 80 ° C. for 2 hours. After cooling, the mixture was allowed to stand and the supernatant liquid was removed by decantation, and then the black precipitate was washed with a 1N aqueous sodium hydroxide solution three times.
  • ruthenium chloride RuCl 3 .3H 2 O
  • a black precipitate made of Ru (OH) 3 containing Zn (OH) 2 was obtained.
  • the resulting black precipitate was added to a 5% aqueous sodium hydroxide solution to make a total volume of 500 mL, and reduced under hydrogen pressure at 150 ° C. and 5 MPa for 10 hours.
  • the reaction solution After cooling the reaction solution, the resulting black precipitate was filtered under an argon atmosphere, washed first with a 30% aqueous sodium hydroxide solution and then with water. Then, it vacuum-dried and obtained 2.3 ruthenium catalyst precursor.
  • the ruthenium catalyst precursor had an average crystallite size of 5.1 nm and zinc of 7.2% by mass.
  • ruthenium catalyst precursor 1.0 g of the obtained ruthenium catalyst precursor and 5.0 g of zirconia (ZrO 2 ) powder (Daiichi Rare Element Chemical Co., Ltd., average particle size 0.35 ⁇ m) were added to 280 mL of a 10% by mass cobalt sulfate aqueous solution.
  • a catalyst precursor slurry was prepared. The catalyst precursor slurry was stirred under hydrogen at 200 ° C. under a total pressure of 5 MPa (hydrogen partial pressure of 3.5 MPa) for 2 hours to prepare a ruthenium catalyst slurry containing zirconia as a dispersant in an aqueous cobalt sulfate solution.
  • Example 9 In the same manner as in Example 10, 1.0 g of a ruthenium catalyst precursor, 5.0 g of zirconia (ZrO 2 ) powder (manufactured by Daiichi Elemental Chemical Co., Ltd., average particle size 0.35 ⁇ m) and 280 mL of a 10% by mass cobalt sulfate aqueous solution A catalyst precursor slurry was prepared. Using this ruthenium catalyst precursor slurry, 140 mL of benzene was added at 140 ° C. and a total pressure of 5 MPa to carry out a partial benzene hydrogenation reaction.
  • ZrO 2 zirconia
  • Example 11 (Preparation of a ruthenium catalyst slurry of an aqueous potassium sulfate solution containing zirconia as a dispersant) 5 g of ruthenium chloride (RuCl 3 .3H 2 O) and 13.0 g of zinc chloride were dissolved in 500 mL of water with stirring. 70 mL of a 30% aqueous sodium hydroxide solution was added to the aqueous solution at once with stirring. The resulting mixture was further stirred at 80 ° C. for 2 hours. After cooling, the mixture was allowed to stand and the supernatant liquid was removed by decantation, and then the black precipitate was washed with a 1N aqueous sodium hydroxide solution three times.
  • ruthenium chloride RuCl 3 .3H 2 O
  • a black precipitate made of Ru (OH) 3 containing Zn (OH) 2 was obtained.
  • the resulting black precipitate was added to a 5% aqueous sodium hydroxide solution to make a total volume of 500 mL, and reduced under hydrogen pressure at 150 ° C. and 5 MPa for 12 hours.
  • the reaction solution After cooling the reaction solution, the resulting black precipitate was filtered under an argon atmosphere, washed first with a 30% aqueous sodium hydroxide solution and then with water. Then, it vacuum-dried and obtained 2.3 ruthenium catalyst precursor.
  • the ruthenium catalyst precursor had an average crystallite size of 5.5 nm and zinc of 7.2% by mass.
  • ruthenium catalyst precursor 1.0 g of the obtained ruthenium catalyst precursor and 5.0 g of zirconia (ZrO 2 ) powder (Daiichi Rare Element Chemical Industries, Ltd., average particle size 0.35 ⁇ m) were added to 280 mL of a 15% by mass potassium sulfate aqueous solution.
  • a catalyst precursor slurry was prepared. The catalyst precursor slurry was stirred under hydrogen at 200 ° C. under a total pressure of 5 MPa (hydrogen partial pressure of 3.5 MPa) for 2 hours to prepare a ruthenium catalyst slurry containing zirconia as a dispersant in an aqueous potassium sulfate solution.
  • the catalyst precursor slurry after the benzene partial hydrogenation reaction was subjected to oxygen treatment in the same manner as in Example 11, and then under hydrogen, at 170 ° C. and a total pressure of 4.3 MPa (hydrogen partial pressure of 3.5 MPa).
  • 120 mL of benzene was added to 240 mL of the catalyst slurry obtained by stirring for 2 hours under the conditions, and a partial hydrogenation reaction of benzene was performed.
  • the cyclohexene selectivity at a benzene conversion rate of 50% was 66.0%.
  • Table 5 The results are summarized in Table 5.
  • a black precipitate made of Ru (OH) 3 containing Zn (OH) 2 was obtained.
  • the resulting black precipitate was added to a 5% aqueous sodium hydroxide solution to make a total volume of 500 mL, and reduced under hydrogen pressure at 150 ° C. and 5 MPa for 10 hours.
  • the reaction solution After cooling the reaction solution, the resulting black precipitate was filtered under an argon atmosphere, washed first with a 30% aqueous sodium hydroxide solution and then with water. Then, it vacuum-dried and obtained 2.4g ruthenium catalyst precursor.
  • the ruthenium catalyst precursor had an average crystallite size of 5.0 nm and zinc of 7.8% by mass.
  • ruthenium catalyst precursor 1.0 g of the obtained ruthenium catalyst precursor and 5.0 g of chromia (Cr 2 O 3 ) powder (manufactured by Wako Pure Chemical Industries, Ltd., average particle size 2.1 ⁇ m) were added to 280 mL of a 10% by mass zinc sulfate aqueous solution.
  • a catalyst precursor slurry was prepared. The catalyst precursor slurry was stirred under hydrogen at 200 ° C. under a total pressure of 5 MPa (hydrogen partial pressure of 3.5 MPa) for 2 hours to prepare a ruthenium catalyst slurry containing chromia as a dispersant in an aqueous zinc sulfate solution.
  • the cyclohexene selectivity at a benzene conversion rate of 50% was 77.4%.
  • the catalyst precursor slurry after the benzene partial hydrogenation reaction was subjected to oxygen treatment by removing the oil phase in the same manner as in Examples 12-14.
  • 240 mL of the resulting catalyst slurry was subjected to hydrogen treatment under various temperatures and pressure conditions shown in Table 6 under hydrogen, and then 120 mL of benzene was added under the same reaction conditions as in Examples 12 to 14 to carry out a partial hydrogenation reaction of benzene. went.
  • Table 6 shows the cyclohexene selectivity at a benzene conversion rate of 50%.
  • Example 15 (Preparation of ruthenium catalyst slurry containing zirconia as a dispersant) 5 g of ruthenium chloride (RuCl 3 .3H 2 O) and 15.0 g of zinc chloride were dissolved in 500 mL of water with stirring. 70 mL of a 30% aqueous sodium hydroxide solution was added to the aqueous solution at once with stirring. The resulting mixture was further stirred at 80 ° C. for 2 hours. After cooling, the mixture was allowed to stand and the supernatant liquid was removed by decantation, and then the black precipitate was washed with a 1N aqueous sodium hydroxide solution three times.
  • ruthenium chloride RuCl 3 .3H 2 O
  • a black precipitate made of Ru (OH) 3 containing Zn (OH) 2 was obtained.
  • the resulting black precipitate was added to a 5% aqueous sodium hydroxide solution to make a total volume of 500 mL, and reduced under hydrogen pressure at 150 ° C. and 5 MPa for 12 hours.
  • the reaction solution After cooling the reaction solution, the resulting black precipitate was filtered under an argon atmosphere, washed first with a 30% aqueous sodium hydroxide solution and then with water. Then, it vacuum-dried and obtained 2.3 ruthenium catalyst precursor.
  • the ruthenium catalyst precursor had an average crystallite size of 5.3 nm and zinc of 7.6% by mass.
  • ruthenium catalyst precursor 1.0 g of the obtained ruthenium catalyst precursor and 5.0 g of zirconia (ZrO 2 ) powder (Daiichi Rare Element Chemical Co., Ltd., average particle size 0.35 ⁇ m) were added to 280 mL of a 10% by mass zinc sulfate aqueous solution.
  • a catalyst precursor slurry was prepared. The catalyst precursor slurry was stirred under hydrogen at 200 ° C. under a total pressure of 5 MPa (hydrogen partial pressure of 3.5 MPa) for 2 hours to prepare a ruthenium catalyst slurry containing zirconia as a dispersant in an aqueous zinc sulfate solution.
  • the catalyst precursor slurry after the benzene partial hydrogenation reaction was subjected to oxygen treatment by completely removing the oil phase in the same manner as in Example 15.
  • the obtained catalyst slurry (240 mL) was stirred under hydrogen at 170 ° C. under a total pressure of 4.3 MPa (hydrogen partial pressure: 3.5 MPa) for 2 hours, and then 120 mL of benzene was added under the same reaction conditions as in Example 15 to A partial hydrogenation reaction was performed.
  • the cyclohexene selectivity at a benzene conversion rate of 50% was 81.5%.
  • Table 7 The results are summarized in Table 7.
  • a mode in which an aqueous solution of zinc sulfate is added to the catalyst slurry is a system in which the selectivity to cyclohexene tends to be higher than in the case of adding cobalt sulfate (for example, Example 10 and Comparative Example 9), but the metal component is common. (For example, Example 15 and Comparative Example 13), it can be seen that the cyclohexene selectivity is high when the reduction conditions of the present embodiment and the second step are performed.
  • Example 16 to 26 (2) Preparation of zirconia-supported ruthenium catalyst slurry 20 g of the zirconia powder obtained as described above was added to an aqueous solution in which 14.8 g of lanthanum acetate hydrate was dissolved, and the mixture was stirred and mixed for 1 hour. The obtained mixture was sufficiently dried under reduced pressure at 80 ° C. to obtain a solid, and then the solid was sufficiently fired at 400 ° C. Thus, a zirconia powder carrying 25% by mass of lanthanum in terms of oxide was obtained.
  • zirconia powder supporting lanthanum was added to an aqueous solution obtained by adding water to 22 g of an aqueous ruthenium chloride solution (containing 10% ruthenium), and the ruthenium component was adsorbed and supported. Thereafter, filtration, washing with water, alkali treatment at 50 ° C. for 1 hour, filtration, and washing with water were sequentially performed. 30 g of zirconia powder supporting lanthanum and ruthenium thus obtained and 280 mL of 10% by mass zinc sulfate aqueous solution were placed in an autoclave, and under hydrogen, conditions of 150 ° C. and total pressure 5.5 MPa (hydrogen partial pressure 5.0 MPa).
  • the mixture was stirred for 24 hours and subjected to reduction treatment to obtain a ruthenium catalyst precursor.
  • the obtained ruthenium catalyst precursor was analyzed by fluorescent X-rays, it contained 11% by mass of ruthenium and 2.0% by mass of zinc. Moreover, the average crystallite diameter of the ruthenium catalyst was about 3 nm.
  • 2 g of the obtained ruthenium catalyst precursor was added to 280 mL of a 10 mass% zinc sulfate aqueous solution to prepare a catalyst precursor slurry.
  • the catalyst precursor slurry was stirred under hydrogen at 200 ° C. under a total pressure of 5 MPa (hydrogen partial pressure 3.5 MPa) for 2 hours to prepare a zirconia-supported ruthenium catalyst slurry dispersed in a zinc sulfate aqueous solution.
  • Examples 27 to 29 240 mL of the catalyst slurry that was subjected to the treatment of bubbling nitrogen containing 3% oxygen at 80 ° C. in Example 16 for 5 hours was stirred at 140 ° C. for 1 hour in a closed system under nitrogen. 240 mL of the obtained catalyst slurry was subjected to hydrogen treatment under various temperatures and pressure conditions shown in Table 9 under hydrogen.
  • Example 30 The partial hydrogenation reaction of benzene was carried out continuously using a partial hydrogenation reactor having a known structure in which a settling zone capable of oil / water separation was installed inside the reactor.
  • a partial hydrogenation reactor having a known structure in which a settling zone capable of oil / water separation was installed inside the reactor.
  • 15 g of the ruthenium catalyst precursor prepared in Examples 16 to 26 was added to 1200 mL of a 10% by mass zinc sulfate aqueous solution to prepare a catalyst precursor slurry containing a ruthenium catalyst precursor and an aqueous metal salt solution.
  • the catalyst precursor slurry was charged into the partially hydrogenated reactor, and the inside of the reactor was sufficiently replaced with hydrogen, followed by stirring at 200 ° C.
  • the catalyst slurry that had undergone the first step was stirred for 1 hour at 200 ° C. and a total pressure of 5.1 MPa (hydrogen partial pressure of 3.5 MPa) (second step).
  • the obtained catalyst slurry that had undergone the second step was returned to the partial hydrogenation reactor immediately after extracting the mixed solution the next day.
  • the oil phase obtained from the settling zone was sampled every day one hour before the mixture of the aqueous phase and the oil phase was withdrawn, analyzed by gas chromatography, and the reaction results were followed. In this way, the partial hydrogenation reaction of benzene was carried out in a continuous manner.
  • the reaction results after 3000 hours from the start of the reaction were a benzene conversion rate of 48.2% and a cyclohexene selectivity of 76.1%.
  • the cyclohexene selectivity at benzene conversions of 40%, 50% and 60% was determined.
  • the results are shown in Table 10.
  • the reaction results when the continuous reaction was continued until 6000 hours after the start of the reaction were a benzene conversion rate of 45.3% and a cyclohexene selectivity of 78.3%.
  • Table 10 shows the results of obtaining cyclohexene selectivity at benzene conversion rates of 40%, 50% and 60% by adjusting the amount of benzene supplied.
  • Example 31 In the same manner as in Example 30, 15 g of the ruthenium catalyst precursor prepared in Examples 16 to 26 was added to 1200 mL of a 10% by mass zinc sulfate aqueous solution to prepare a catalyst precursor slurry containing a ruthenium catalyst precursor and an aqueous metal salt solution. . Except that this catalyst precursor slurry was not subjected to a reduction treatment, the benzene partial hydrogenation reaction was continuously carried out in the same manner as in Example 30 to produce cyclohexene continuously, and the reaction results were followed. The reaction results after 3000 hours from the start of the reaction were a benzene conversion rate of 48.1% and a cyclohexene selectivity of 75.8%.
  • Example 22 In the same manner as in Example 30, 15 g of the ruthenium catalyst precursor prepared in Examples 16 to 26 was added to 1200 mL of a 10% by mass zinc sulfate aqueous solution to prepare a catalyst precursor slurry containing a ruthenium catalyst precursor and an aqueous metal salt solution. . Without subjecting this catalyst precursor slurry to a reduction treatment, a benzene partial hydrogenation reaction was continuously carried out in the same manner as in Example 30 to produce cyclohexene in a continuous manner.
  • Example 30 About the 1st process and the 2nd process, while performing partial hydrogenation reaction of the above-mentioned benzene by a continuous type, the liquid mixture of an aqueous phase and an oil phase is extracted from a reactor like Example 30, and it extracts.
  • the mixed solution was subjected to the same oxygen contact treatment as in Example 30 (first step), followed by stirring treatment at 170 ° C. and a total pressure of 5.0 MPa (hydrogen partial pressure 4.21 MPa) (second step). Step) was performed to obtain a re-prepared catalyst slurry.
  • the re-prepared catalyst slurry was recharged into the reactor the next day, immediately after extracting 720 mL of the mixture.
  • the reaction results were followed in the same manner as in Example 30.
  • the reaction results after 3000 hours from the start of the reaction were a benzene conversion rate of 50.1% and a cyclohexene selectivity of 68.7%.
  • the cyclohexene selectivity at benzene conversions of 40%, 50% and 60% was determined.
  • the results are shown in Table 10.
  • the reaction results when the continuous reaction was continued up to 6000 hours after the start of the reaction were a benzene conversion of 49.5% and a cyclohexene selectivity of 67.5%.
  • Table 10 shows the results of obtaining cyclohexene selectivity at benzene conversion rates of 40%, 50% and 60% by adjusting the amount of benzene supplied.
  • Comparative Example 23 A continuous reaction was performed in the same manner as in Comparative Example 22 except that the oxygen treatment (first step) in Comparative Example 22 was not performed. As a result, the activity of the ruthenium catalyst decreased with the elapsed time of the reaction, so that the benzene conversion rate decreased with the elapsed time of the reaction and became almost 0 after 980 hours from the start of the reaction, and the operation could not be continued.
  • Example 32 25 g of ruthenium chloride (RuCl 3 .3H 2 O) and 65.0 g of zinc chloride were dissolved in 2500 mL of water with stirring. 350 mL of a 30% aqueous sodium hydroxide solution was added to the aqueous solution all at once with stirring. The resulting mixture was further stirred at 80 ° C. for 2 hours. After cooling, the mixture was allowed to stand and the supernatant liquid was removed by decantation, and then the black precipitate was washed with a 1N aqueous sodium hydroxide solution three times. Through the above operation, a black precipitate made of Ru (OH) 3 containing Zn (OH) 2 was obtained.
  • the resulting black precipitate was added to a 5% aqueous sodium hydroxide solution to make a total amount of 2500 mL, and reduced under hydrogen pressure at 150 ° C. and 5 MPa for 12 hours. After cooling the reaction solution, the resulting black precipitate was filtered under an argon atmosphere, washed first with a 30% aqueous sodium hydroxide solution and then with water. Thereafter, vacuum drying was performed to obtain 11.3 g of a ruthenium catalyst precursor.
  • the ruthenium catalyst precursor had an average crystallite size of 5.5 nm and zinc of 7.2% by mass.
  • ruthenium catalyst precursor and 50.0 g of zirconia (ZrO 2 ) powder are added to 1200 mL of a 10% by mass zinc sulfate aqueous solution.
  • a catalyst precursor slurry was prepared.
  • the catalyst precursor slurry was stirred under hydrogen at 200 ° C. under a total pressure of 5 MPa (hydrogen partial pressure of 3.5 MPa) for 2 hours to prepare a ruthenium catalyst slurry containing zirconia as a dispersant in an aqueous zinc sulfate solution.
  • Example 30 The same operation as in Example 30 was performed except that this catalyst slurry was used, and the partial hydrogenation reaction of benzene was continuously performed.
  • the reaction results after 3000 hours from the start of the reaction were a benzene conversion rate of 49.3% and a cyclohexene selectivity of 82.1%.
  • the cyclohexene selectivity at benzene conversions of 40%, 50% and 60% was determined.
  • the results are shown in Table 11.
  • the reaction results when the continuous reaction was continued until 6000 hours after the start of the reaction were a benzene conversion rate of 48.7% and a cyclohexene selectivity of 82.4%.
  • Table 11 shows the results of obtaining cyclohexene selectivity at benzene conversion rates of 40%, 50%, and 60% by adjusting the amount of benzene supplied.
  • Example 33 Except that the catalyst precursor slurry of Example 32 was not subjected to a reduction treatment, the benzene partial hydrogenation reaction was continuously carried out in the same manner as in Example 32, cyclohexene was produced continuously, and the reaction results were tracked. did. The reaction results after 3000 hours from the start of the reaction were a benzene conversion of 49.5% and a cyclohexene selectivity of 81.5%.
  • Example 24 A continuous reaction was performed in the same manner as in Example 32, except that the reduction treatment and hydrogen treatment (second step) of the catalyst precursor slurry of Example 32 were not performed. As a result, the reaction results 3000 hours after the start of the reaction were a benzene conversion rate of 49.7% and a cyclohexene selectivity of 70.5%. By adjusting the amount of benzene fed to the reactor, the cyclohexene selectivity at benzene conversions of 40%, 50% and 60% was determined. The results are shown in Table 11. Furthermore, the reaction results when the continuous reaction was continued until 6000 hours after the start of the reaction were a benzene conversion of 48.4% and a cyclohexene selectivity of 70.1%. By adjusting the amount of benzene fed to the reactor, the cyclohexene selectivity at benzene conversions of 40%, 50% and 60% was determined. The results are shown in Table 11.
  • Example 25 A continuous reaction was performed in the same manner as in Example 32 except that the reduction treatment and oxygen treatment (first step) of the catalyst precursor slurry of Example 32 were not performed. As a result, the activity of the ruthenium catalyst decreased with the elapsed time of the reaction, so that the benzene conversion rate decreased with the elapsed time of the reaction. The reaction became almost 0 after 1020 hours from the start of the reaction, and the operation could not be continued.
  • the present invention has industrial applicability as a method for producing cycloolefin.
  • the catalyst can be maintained at a high selectivity for a long period of time, whereby a cycloolefin can be stably produced for a long period of time while suppressing a decrease in the yield of cycloolefin.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Crystallography & Structural Chemistry (AREA)

Abstract

 金属塩を含有する水溶液中で、ルテニウム触媒前駆体を180℃を超えて220℃以下の温度、且つ、0.6MPa以上5MPa以下の水素分圧の範囲で保持して還元処理する工程を含む、ルテニウム触媒の調製方法。  金属塩を含有する水溶液中で、ルテニウム触媒前駆体を180℃を超えて220℃以下の温度、且つ、0.6MPa以上5MPa以下の水素分圧の範囲で保持して還元処理する工程を含む方法によりルテニウム触媒を調製し、得られたルテニウム触媒を用いて単環芳香族炭化水素を部分水添する工程を含む、シクロオレフィンの製造方法。

Description

シクロオレフィン製造用ルテニウム触媒の調製方法、シクロオレフィンの製造方法、及び製造装置
 本発明は、単環芳香族炭化水素を部分水添反応に供してシクロオレフィンを製造するためのルテニウム触媒の調製方法、該ルテニウム触媒を用いたシクロオレフィンの製造方法、及びそれを具体化するための製造装置に関する。
 従来、シクロオレフィンの製造方法としては様々な方法が知られており、その中の一つとして、液相においてルテニウム触媒を用いて単環芳香族炭化水素を部分水添する方法が知られている。単環芳香族炭化水素を部分水添してシクロオレフィンを製造する際に、シクロヘキセンの選択率、又は収率を向上させるために、触媒成分、担体の種類、反応系への添加物としての金属塩等について検討した結果が多数報告されている。
 例えば、20nm以下の平均結晶子径を有する金属ルテニウムを主成分とする水素化触媒粒子を用い、該触媒粒子とは別に、Zr、Hf、Ti、Nb、Ta、Cr、Fe、Co、Al、Ga、Siの酸化物、水酸化物、水和物から選ばれる少なくとも1種を添加し、さらに、助触媒として少なくとも1種の亜鉛化合物の共存下、中性または酸性の条件下に反応を行うシクロオレフィンの製造方法(特許文献1)や、ジルコニアを担体とする触媒であり、該触媒の一次粒子径の平均粒子径が3~50nmの範囲、二次粒子径が0.1~30μmの範囲の粒子で構成されるシクロオレフィン製造用触媒(特許文献2)などが知られている。
 また、ルテニウム触媒と水によって構成される水相と反応生成物の分離を確実にするために、触媒の前処理方法として、ルテニウム触媒を含む水相を攪拌下に、原料芳香族炭化水素等の油相成分が存在しない状態で、60~180℃の温度で所定時間保持するルテニウム触媒の前処理方法が提案されている(特許文献3)。
 一方、水素とルテニウム触媒との相互作用により活性が低下したルテニウム触媒の再生方法として、ルテニウム触媒を液相において酸素と接触させる方法が提案されている(特許文献4)。
 また、不飽和有機化合物の水素化反応に使用されることによって活性が低下したルテニウム触媒を、該水素化反応条件における水素分圧よりも低い水素分圧下、且つ、該水素化反応条件におけるよりも50℃低い温度を下回らない温度かつ250℃を超えない温度で触媒を保持するルテニウム触媒の活性回復方法が提案されている(特許文献5)。
 さらに、ルテニウム触媒を液相で酸素と接触させる工程、及び水素化反応における水素分圧よりも低い水素分圧下で、且つ、水素化反応における温度よりも50℃低い温度を下回らない温度で触媒を保持する工程からなるルテニウム触媒の活性回復方法が提案されている(特許文献6)。
米国特許第4734536号明細書 欧州特許出願公開第1767270号明細書 特許第3141944号公報 特許第2634828号公報 特許第2886563号公報 国際公開97/16249号パンフレット
 単環芳香族炭化水素の部分水添反応は、一般に原料の単環芳香族炭化水素の反応率が高くなるに従って目的とするシクロオレフィン選択率が低下し、単環芳香族炭化水素の反応率にシクロオレフィンの選択率を乗じた値であるシクロオレフィンの収率は、単環芳香族炭化水素の反応率に対して極大値を持つことが知られている。従って、単環芳香族炭化水素を部分水添した後の油相には、シクロオレフィン以外に原料の単環芳香族炭化水素と完全水添された単環飽和炭化水素が存在することとなる。部分水添を、シクロオレフィンの選択率が高い(単環芳香族炭化水素の反応率が低い)段階で停止することにより、副生する単環飽和炭化水素の量を減じることは可能である。しかし、原料の単環芳香族炭化水素、目的のシクロオレフィン、副生する単環飽和炭化水素は、沸点が近く、この場合、多量の単環芳香族炭化水素を分離しなければならず、得られるシクロオレフィンに対して分離精製に多大なエネルギーを必要とすることとなる。また、シクロオレフィンの収率が最大になるような単環芳香族炭化水素の反応率で反応を停止し、得られた油相からシクロオレフィンを分離精製する場合においても、シクロオレフィンの選択率が低い場合には副生する単環飽和炭化水素と原料の単環芳香族炭化水素の分離に多大なエネルギーが必要となる。従って、副生する単環飽和炭化水素の量を減じ、かつ分離精製のエネルギーも減じるためには、可能な限り高い単環芳香族炭化水素の反応率で、かつ可能な限り高いシクロオレフィンの選択率を得ることが必要である。即ち、シクロオレフィンの収率がより高い触媒、及び製造方法が求められている。この観点から上記特許文献に開示された従来方法では、シクロオレフィンの収率はなお不十分であり、部分水添反応において、より高いシクロオレフィン収率を、反応率が同じ場合にはより高いシクロオレフィン選択率を長期間安定して得ることのできるシクロオレフィン製造用触媒、及び製造方法が求められている。
 また上記特許文献に開示された触媒の前処理方法や触媒の活性回復方法は、活性を回復する目的に対しては有用な方法であるが、部分水添におけるシクロオレフィンの収率の点からは未だ不満足なものである。
 本発明は上記事情に鑑みてなされたものであり、従来法に比してシクロオレフィンの収率を飛躍的に高めることができるルテニウム触媒の調製方法、その触媒を用いることによってシクロオレフィンを高収率に長期間に亘り安定に製造することのできるシクロオレフィンの製造方法、及びその製造方法を具体化するための製造装置を提供することを目的とする。
 上記事情に鑑み、本発明者らが上記シクロオレフィン収率を向上させるためにルテニウム触媒の調製方法を種々検討した結果、驚くべき事に、金属塩を含有する水溶液中で、ルテニウム触媒前駆体を、180℃を超えて220℃以下の温度、且つ0.6MPa以上5MPa以下の水素分圧の範囲で保持して還元処理することにより得たルテニウム触媒を用いて単環芳香族炭化水素を部分水添することにより、シクロオレフィンの収率が飛躍的に向上することを見いだした。
 さらに金属塩を含有する水溶液とルテニウム触媒及び/又はルテニウム触媒前駆体とを含む水相中で、単環芳香族炭化水素を部分水添反応に供してシクロオレフィンを製造する方法において、前記水相中に含まれる前記ルテニウム触媒の少なくとも一部を酸素と接触させる第1の工程と、前記第1の工程を経た前記ルテニウム触媒を含む水相の少なくとも一部を180℃を超えて220℃以下の温度、且つ、0.6MPa以上5MPa以下の水素分圧の範囲で保持して還元処理する第2の工程と、を含む製造方法により、シクロオレフィンの選択率が向上し、且つシクロオレフィンを長期間に亘り、高収率で製造できることを見出し、本発明を完成させた。
 即ち、本発明は以下のとおりである。
[1]
 金属塩を含有する水溶液中で、ルテニウム触媒前駆体を180℃を超えて220℃以下の温度、且つ、0.6MPa以上5MPa以下の水素分圧の範囲で保持して還元処理する工程を含む、ルテニウム触媒の調製方法。
[2]
 上記[1]記載の方法によりルテニウム触媒を調製し、得られたルテニウム触媒を用いて単環芳香族炭化水素を部分水添する工程を含む、シクロオレフィンの製造方法。
[3]
 上記[2]記載の方法によりシクロオレフィンを製造した後、
 前記ルテニウム触媒を酸素と接触させる第1の工程と、
 前記第1の工程を経た前記ルテニウム触媒を含む水相の少なくとも一部を180℃を超えて220℃以下の温度、且つ、0.6MPa以上5MPa以下の水素分圧の範囲で保持して還元処理する第2の工程と、
を含む、シクロオレフィンの製造方法。
[4]
 金属塩を含有する水溶液とルテニウム触媒及び/又はルテニウム触媒前駆体とを含む水相中で、単環芳香族炭化水素を部分水添反応に供してシクロオレフィンを製造する方法であって、
 前記水相中に含まれる前記ルテニウム触媒の少なくとも一部を酸素と接触させる第1の工程と、
 前記第1の工程を経た前記ルテニウム触媒を含む水相の少なくとも一部を180℃を超えて220℃以下の温度、且つ、0.6MPa以上5MPa以下の水素分圧の範囲で保持して還元処理する第2の工程と、
を含む、シクロオレフィンの製造方法。
[5]
 金属塩を含有する水溶液とルテニウム触媒とを含む水相が収容された反応器と、
 前記反応器に接続された油水分離槽と、
 前記油水分離槽に接続された酸素処理器と、
 前記酸素処理器に接続された水素処理器と、
を有するシクロオレフィンの製造装置であって、
 前記反応器に単環芳香族炭化水素が供給され、その反応液の少なくとも一部と前記ルテニウム触媒を含む水相の少なくとも一部が前記油水分離槽に供給され、前記油水分離槽から流出した水相は前記酸素処理器に導入されて酸素に接触された後、前記水素処理器に導入される、シクロオレフィンの製造装置。
 本発明の製造方法により、単環芳香族炭化水素の部分水添反応において、シクロオレフィンを高選択率且つ高収率で、長期間に亘り安定に得ることが可能となる。
本発明のシクロオレフィン製造装置の一実施形態を示す模式図である。 本発明のシクロオレフィン製造装置の別の一実施形態を示す模式図である。
 以下、必要に応じて図面を参照して、本発明を実施するための形態(以下、単に「本実施形態」という。)について説明する。ただし、本発明は下記実施形態に限定されるものではない。本発明は、その要旨を逸脱しない範囲で様々な変形が可能である。なお、図面中、同一要素には同一符号を付すこととし、重複する説明は省略する。また、図面の寸法比率は図示の比率に限られるものではない。
[1]ルテニウム触媒の調製方法
 本実施形態のルテニウム触媒の調製方法は、金属塩を含有する水溶液中で、ルテニウム触媒前駆体を180℃を超えて220℃以下の温度、且つ、0.6MPa以上5MPa以下の水素分圧の範囲で保持する工程を含む。
 本実施形態のルテニウム触媒は、種々のルテニウム化合物を還元して得られる金属ルテニウムを含むことが好ましい。上記ルテニウム化合物としては、例えば、ルテニウムの塩化物、臭化物、ヨウ化物等のハロゲン化物、硝酸塩、硫酸塩、水酸化物、各種のルテニウムを含む錯体及びかかる錯体から誘導される化合物等が挙げられる。ルテニウムを含む錯体としては、例えば、ルテニウムカルボニル錯体、ルテニウムアセチルアセトナート錯体、ルテノセン錯体、ルテニウムアンミン錯体、ルテニウムヒドリド錯体等が挙げられる。これらのルテニウム化合物は1種を単独で又は2種以上を組み合わせて用いることができる。
 本実施形態においては、上記のルテニウム化合物を、金属塩を含有する水溶液中で、180℃を超えて220℃以下の温度、且つ、0.6MPa以上5MPa以下の水素分圧の範囲で還元処理することによってルテニウム触媒を得ることもできるし、前記条件で還元処理する前に下記通常の方法によってルテニウム化合物にあらかじめ還元処理を施した後に、本実施形態の還元条件で水素による還元処理を施してルテニウム触媒を得ることもできる。通常条件により還元処理が施されたルテニウム化合物にさらに本実施形態の条件で還元処理を施すと、シクロオレフィン選択率を高める効果がより大きくなる傾向にあるため、より好ましくは後者の方法である。
 ルテニウム化合物を還元する通常の方法としては、水素や一酸化炭素等による接触還元法や、ホルマリン、水素化ホウ素ナトリウム、水素化ホウ素カリウム、ヒドラジン、アスコルビン酸、アルコール類等による化学還元法等が挙げられる。これらのうち好ましい還元法は、水素による接触還元法、及び水素化ホウ素ナトリウムによる化学還元法である。水素による接触還元法の場合、通常50~450℃、好ましくは100~400℃の還元温度でルテニウム化合物を還元活性化する。還元温度が50℃未満であると還元に時間がかかりすぎる傾向にあり、450℃を超えるとルテニウムの凝集が進み、ルテニウム触媒の活性や選択性に悪影響を及ぼしやすくなる傾向にある。なお、ルテニウム化合物の還元は気相で行っても液相で行ってもよいが、好ましくは液相還元である。また、ホルマリン、水素化ホウ素ナトリウム、ヒドラジン等による化学還元法の場合、還元温度は100℃以下であることが好ましく、10℃~60℃であることがより好ましい。
 上記通常の方法により還元処理された又は還元処理されていないルテニウム化合物(以下、「ルテニウム触媒前駆体」とも称する。)は、温度が180℃を超えて220℃以下、且つ、水素分圧が0.6MPa以上5MPa以下の条件下で、金属塩を含有する水溶液中で還元処理される。水素分圧が0.6MPa未満、または温度が180℃以下であるとシクロオレフィン選択率の向上が見られず、シクロオレフィン収率を高めることができない。また、水素分圧が5MPaを超える、又は温度が220℃を超えるとルテニウム触媒の部分水添反応活性が低下し、工業的に満足できる反応速度を得ることができず、ルテニウム触媒を多量に用いる必要が生じる。より好ましい水素分圧は、1MPa以上4MPa以下である。また、より好ましい温度は、185℃以上210℃以下である。
 本実施形態のルテニウム触媒の調製方法は、金属塩を含有する水溶液中で、ルテニウム触媒前駆体を還元処理することが必要である。ここで用いる金属塩としては、水相中に少なくとも一部又は全部が溶解状態で存在することが好ましい。金属塩を構成する金属としては、亜鉛、鉄、カドミウム、ガリウム、インジウム、アルミニウム、クロム、マンガン、コバルト、銅等が挙げられる。また、金属塩としては、上記金属の硝酸塩、酢酸塩、リン酸塩、硫酸塩等が挙げられ、かかる金属塩を含む複塩であってもよい。これらの金属塩は1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。得られたルテニウム触媒のシクロオレフィンの選択率向上の観点から、金属塩として硫酸亜鉛を用いるのが特に好ましい。
 さらに上述した以外にも、下記の金属塩が還元処理の水溶液中に存在してもよい。そのような金属塩を構成する金属としては、周期律表のリチウム、ナトリウム、カリウム等の1族金属、マグネシウム、カルシウム等の2族金属(族番号は、IUPAC無機化学命名法改訂版(1989)による)、又は、鉛、ヒ素、ゲルマニウム、バナジウム、銀、金、白金、パラジウム、バリウム、ホウ素が挙げられる。また、その金属塩としては、硝酸塩、酸化物、水酸化物、酢酸塩、リン酸塩、或いは、これらの塩の2種以上を化学的及び/又は物理的に混合したものが挙げられる。
 還元反応におけるこれらの水相中の金属塩の濃度は1×10-5~5.0mol/Lであることが好ましい。硫酸亜鉛を含む金属塩を用いる場合、水相中の金属塩の濃度は、1×10-3~2.0mol/Lであることがより好ましく、0.1~1.0mol/Lであることがさらに好ましい。また、金属塩の量は、ルテニウム触媒中のルテニウムの量に対して質量基準で1×10-5~1×10倍であることが好ましい。これらの金属塩は必ずしも全量が水相に溶解している必要はなく、水相で一部が析出していてもよい。
 ルテニウム触媒のシクロオレフィン選択率向上の観点から、水相に含まれる金属塩水溶液のpHは、7.5以下であることが好ましく、より好ましくは1.0~7.0、さらに好ましくは1.5~6.5の酸性領域である。金属塩水溶液がアルカリ性であると、還元反応における金属塩の安定性が低下し、ルテニウム触媒に金属塩が沈着して触媒の活性が低くなるおそれがあるので好ましくない。水相を中性又は酸性に維持するために、例えば、硝酸、硫酸、酢酸、リン酸等の酸成分が水溶液中に含まれていてもよい。
 還元処理の時間は、5分~1週間程度が好ましい。5分未満であると本実施形態の条件下における還元処理によるシクロオレフィン選択率の向上効果が小さくなる傾向にある。また、還元時間が非常に長期間になると得られるルテニウム触媒の活性が低くなる傾向にある。還元処理の時間は、より好ましくは10分~100時間である。
 還元処理の設備としては、撹拌混合槽を用いることもできるし、固定床を用いることもできる。撹拌混合層を用いる場合、ルテニウム触媒前駆体を金属塩を含有する水溶液中に分散させて触媒前駆体スラリーを得た後、水素雰囲気下、撹拌下に所定の温度、圧力で還元処理を行う。水素の水溶液中への溶解速度を上げ、また、ルテニウム触媒前駆体を均一に還元処理するために水素の吹き込み管を設け、強い撹拌下に還元処理を行うことが好ましい。また、ルテニウム触媒前駆体の形状が粒状等でその形状を保持したい場合には、例えば、固定床にルテニウム触媒前駆体を充填し、所定の温度、水素分圧下に金属塩を含有する水溶液と水素流通させて還元処理を行うこともできる。
 本実施形態の還元処理条件で得られたルテニウム触媒は、還元処理で用いた金属塩の水溶液中でそのまま単環芳香族炭化水素の部分水添反応に用いることができる。また、還元処理後に得られたルテニウム触媒と金属塩の水溶液を分離した後に単環芳香族炭化水素の部分水添に用いることができる。本実施形態の還元処理で得られたルテニウム触媒は、その還元処理を行ってから常温、空気下で保持する場合、1ヶ月以内、より好ましくは1週間以内に単環芳香族炭化水素の部分水添反応に用いることが好ましく、特に好ましくは数時間以内に用いる。1ヶ月を超えて保持した場合、シクロオレフィンの選択率向上効果が得られにくくなる傾向にある。長期間保持することが必要な場合には、窒素、アルゴンなどの不活性気体下で保持するか、水素で常圧下、又は加圧下で保持することが好ましい。
 ルテニウム触媒は、ルテニウム触媒前駆体を部分水添反応器内に仕込んだ後に本実施形態の条件の還元処理が施されてもよいし、ルテニウム触媒前駆体を反応器に仕込んだ後に、前記通常の条件で還元処理を施し、さらに本実施形態の条件の還元処理が施されてもよい。また、ルテニウム触媒前駆体を前記通常の条件で還元処理した後に、部分水添反応器に仕込み、その後で本実施形態の条件の還元処理が施されてもよい。
 金属ルテニウムを含まないルテニウム触媒前駆体としては、上記で詳述したルテニウム化合物を担体に担持した状態で水酸化ナトリウム等のアルカリで処理して得られる水酸化ルテニウム担持体の態様で用いられることが好ましい。あるいは、分散剤と上記で詳述したルテニウム化合物とが存在する混合物に、水酸化ナトリウム等のアルカリを添加することによって得られる水酸化ルテニウムと分散剤との混合物であるか、または上記で詳述したルテニウム化合物に水酸化ナトリウム等のアルカリを添加することによって得られる水酸化ルテニウムと分散剤とを混合した混合物であることが好ましい。ルテニウム化合物は、塩素イオン等の材質腐食を加速させるおそれのある陰イオンを含んでいる場合があるが、ルテニウム化合物をアルカリ処理した後に水等によって洗浄することにより、そのような陰イオンが反応系内に入ることを防ぐことができるのでアルカリ処理後洗浄することが好ましい。
 ルテニウム触媒は、ルテニウム化合物の還元前、還元時若しくは還元後に、他の金属及び/又は金属化合物、例えば、亜鉛、クロム、モリブデン、タングステン、マンガン、コバルト、鉄、銅、金、白金、ホウ素、ランタン、セリウム、及び/又はこれらの金属の化合物を上記ルテニウム化合物に添加して得られるものであってもよい。かかる金属及び/又は金属化合物を添加する場合、通常、金属及び/又は金属化合物の量はルテニウム原子に対する原子比として、0.001~20の範囲であることが好ましい。上記金属や金属化合物の中でも、亜鉛及び/又は亜鉛化合物が好ましい。亜鉛及び/又は亜鉛化合物は、ルテニウム化合物の還元前若しくは還元時に添加されるのが好ましい。亜鉛及び/又は亜鉛化合物の添加量は、ルテニウム100質量部に対して亜鉛が0.1~50質量部となる量であることが好ましい。更に、触媒活性及びシクロオレフィンの選択性の観点から、ルテニウム100質量部に対して亜鉛が0.5~30質量部であることがより好ましい。ルテニウム100質量部に対して亜鉛が0.1質量部以上であると、シクロオレフィンの収率が高くなる傾向にあり、50質量部以下であると、触媒活性が高くなる傾向にある。
 ルテニウムを主成分として含有し、上記金属及び/又は金属化合物を含有するルテニウム触媒前駆体としては、例えば、下記(1)~(4)が挙げられる。
(1)担体にルテニウム化合物と他の金属及び/又は金属化合物とを、例えば、吸着法、イオン交換法、浸せき法、共沈法、乾固法等の通常の担持方法により担持させたもの、
(2)ルテニウム化合物と他の金属及び/又は金属化合物とを含有する溶液に、水酸化ナトリウム等のアルカリを添加することによって、ルテニウム化合物と他の金属及び/又は金属化合物とを共に不溶性の塩としたもの、
(3)ルテニウム化合物を必要に応じて担体に担持させたものと、還元処理によって固体となる他の金属化合物を含む水溶液からなるもの、
(4)ルテニウム化合物を他の金属化合物と共に液相に溶解した状態からなるもの。
 上述のとおり、ルテニウム触媒はルテニウムを担体に担持した担持体であってもよい。担体としては、通常のルテニウムを担持できるものであれば特に制限されない。具体的には、担体として、マグネシウム、アルミニウム、シリコン、カルシウム、チタン、バナジウム、クロム、マンガン、コバルト、鉄、銅、亜鉛、ジルコニウム、ハフニウム、タングステン、ホウ素、ランタン、セリウム等の金属の酸化物、複合酸化物、水酸化物、難水溶性金属塩、あるいは、これらの2種以上を化学的又は物理的に組み合わせた化合物及び混合物が挙げられる。
 上記の中でも、担体としては、酸化ジルコニウム(ジルコニア)及び/又は水酸化ジルコニウムが好ましく、特に酸化ジルコニウムは、反応条件下での比表面積等の物理的安定性に優れる傾向にあるため好ましい。酸化ジルコニウムは、その平均粒子径が0.05~30μmであることが好ましく、より好ましくは0.05~10μmである。また、ルテニウムの単位量当たりの触媒活性を高めるべく、ルテニウムを高分散状態で担持するために、酸化ジルコニウムの比表面積は20~200m/gであることが好ましい。かかる担体へのルテニウムの担持方法は特に制限されるものではなく、例えば、吸着法、イオン交換法、浸せき法、共沈法、乾固法が挙げられる。
 なお、ここでの平均粒子径は、レーザー回折・散乱式粒度分析計(例えば、Microtrac社製、製品名「MT3000」)により粒度分布(一定粒度区間内にある粒子の割合)を測定し、その全体積を100%として粒度分布の累積を求め、累積が50%になる点の粒径、すなわち、累積平均径(中心径、Median径)を言う。また、比表面積は、吸着ガスとして窒素を用いたBET法による脱着データにより測定した値を言う。BET法による比表面積の測定には、例えば、島津製作所マイクロメトリックスASAP2010を用いることができる。
 担体の使用量は特に制限されるものではないが、通常、そこに担持されるルテニウムに対して質量基準で1~1000倍であることが好ましい。特に、酸化ジルコニウムを担体として用いる場合には、酸化ジルコニウムを、そこに担持されるルテニウムに対して質量基準で1~200倍の量で用いることがより好ましく、2~10倍の量で用いることがさらに好ましい。質量基準で1~200倍程度の高分散状態でルテニウムを担持した触媒は、ルテニウムの単位量当たりの触媒活性が良好となる傾向にある。
 また、シクロオレフィンの選択率を高める点から、触媒スラリー中に分散剤を存在させることが好ましい。分散剤は、担持、非担持にかかわらず、ルテニウム触媒に物理的混合により含有されてもよい。分散剤としては、例えば、マグネシウム、アルミニウム、シリコン、カルシウム、チタン、バナジウム、クロム、マンガン、コバルト、鉄、銅、亜鉛、ジルコニウム、ハフニウム、タングステン、バリウム、ホウ素等の金属の酸化物、複合酸化物、水酸化物、難水溶性金属塩、あるいは、これらの2種以上を化学的又は物理的に組み合わせた化合物及び混合物が挙げられる。上記の中でも、分散剤としては、酸化ジルコニウム及び水酸化ジルコニウムが好ましく、特に酸化ジルコニウムは、シクロオレフィンの選択率を高める効果が高くなる傾向にあり、また反応条件下での比表面積等の物理的安定性に優れる傾向にあるため好ましい。なお、ここで「触媒スラリー」とは、金属塩を含有する水溶液と本実施形態の調製方法によって得られたルテニウム触媒とを含む水相のことを言う。
 分散剤の使用量は、特に制限されるものではないが、触媒に用いられるルテニウムに対して質量基準で1~1000倍であることが好ましい。特に、酸化ジルコニウムを分散剤に用いる場合には、酸化ジルコニウムを、ルテニウムに対して質量基準で1~200倍の量で用いることがより好ましく、2~40倍の量で用いることがさらに好ましい。上記範囲の量の分散剤を使用することにより、反応系中においてルテニウム触媒が凝集して触媒活性が低下するリスクを低減することができる。
 ルテニウム触媒の平均結晶子径は、好ましくは20nm以下である。平均結晶子径がこの範囲内にあると、ルテニウム触媒の表面積が適度に大きくなり、活性点がより十分に存在することによって、触媒活性が向上する傾向にある。ルテニウム触媒の平均結晶子径は、ルテニウム触媒をX線回折法によって分析し、得られる回折線幅の広がりからScherrerの式を用いて算出される。具体的には、CuKα線をX線源として用いて、回折角(2θ)で44°付近に極大を持つ回折線の広がりからルテニウム触媒の平均結晶子径が算出される。また平均結晶子径の下限値は結晶単位よりも大きな値であればよく、現実的には1nm以上である。
 ルテニウム触媒の平均結晶子径は、本実施形態の還元条件の温度範囲である180℃を超えて220℃以下で還元時間を1週間以内にすることにより、20nm以下にすることができる。また、還元反応における金属塩を含有する水溶液中におけるルテニウム触媒前駆体の濃度を50質量%以下とすることが平均結晶子径の増大を抑える観点から好ましい。また、上記分散剤が存在する状態で還元処理を行うことが平均結晶子径の増大を抑える観点からより好ましい。
[2]シクロオレフィンの製造方法
 本実施形態のシクロオレフィンの製造方法は、上述した方法によりルテニウム触媒を調製し、得られたルテニウム触媒を用いて単環芳香族炭化水素を部分水添する工程を含む。詳しくは、金属塩を含有する水溶液と本実施形態の還元方法によって得られたルテニウム触媒及び/又はルテニウム触媒前駆体とを含む水相(触媒スラリー)中で、単環芳香族炭化水素を部分水添反応に供してシクロオレフィンを製造する方法である。
 さらには、前記ルテニウム触媒を用いて、繰り返し、又は連続的に単環芳香族炭化水素の部分水添反応を行うに際して(1)前記水相中に含まれる前記ルテニウム触媒の少なくとも一部を酸素と接触させる第1の工程と、(2)前記第1の工程を経た前記ルテニウム触媒を含む水相の少なくとも一部を180℃を超えて220℃以下の温度、且つ、0.6MPa以上5MPa以下の水素分圧の範囲で保持する第2の工程と、を含む。
 (1)部分水添反応
(a)原料
 本実施形態において部分水添反応の原料として用いられる単環芳香族炭化水素としては、ベンゼンの他、トルエン、キシレン等の炭素数1~4の低級アルキル基を有するアルキルベンゼン等やフェニルベンゼン等の縮合多環芳香族炭化水素ではないアルキルフェニルベンゼン等が挙げられる。
 部分水添反応には水が必要であり、その量は反応形式によって異なる。水の量は、原料の単環芳香族炭化水素の量に対して質量基準で0.5~20倍であることが好ましい。水の量がこの範囲内であると、反応器を大型化することなく、シクロオレフィンの選択性を保持することができる傾向にある。水の量は、原料の単環芳香族炭化水素に対して質量基準で1~10倍であることがより好ましい。水の量が多い場合も少ない場合も、原料及び反応生成物を主成分とする有機物液相(以下、「オイル相」ともいう。)と、水が主成分の水相とが相分離した状態、つまり、オイル相と水相との液2相が分離した状態となり得るだけの量の水が、反応系中に存在している。
(b)金属塩
 反応系中には金属塩が存在していることが必要である。金属塩は、水相中に少なくとも一部又は全部が溶解状態で存在するのが好ましい。金属塩を構成する金属としては、亜鉛、鉄、カドミウム、ガリウム、インジウム、アルミニウム、クロム、マンガン、コバルト、銅等が挙げられる。また、金属塩としては、上記金属の硝酸塩、酢酸塩、リン酸塩、硫酸塩等が挙げられ、かかる金属塩を含む複塩であってもよい。これらの金属塩は1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。シクロオレフィンの収率向上の観点から、金属塩として硫酸亜鉛を用いるのが特に好ましい。
 また、触媒性能を安定化させる観点からは、水酸化亜鉛、酸化亜鉛等の亜鉛塩が好ましく、特に水酸化亜鉛を含む複塩が好ましい。そのような複塩としては、例えば、一般式(ZnSO・(Zn(OH)で表される複塩(m:n=1:0.01~100)が好ましい。
 さらに上述した以外にも、下記の金属塩が反応系に存在してもよい。そのような金属塩を構成する金属としては、周期律表のリチウム、ナトリウム、カリウム等の1族金属、マグネシウム、カルシウム等の2族金属(族番号は、IUPAC無機化学命名法改訂版(1989)による)、又は、鉛、ヒ素、ゲルマニウム、バナジウム、銀、金、白金、パラジウム、バリウム、ホウ素が挙げられる。また、その金属塩としては、硝酸塩、酸化物、水酸化物、酢酸塩、リン酸塩、又は、これらの塩の2種以上を化学的及び/又は物理的に混合したものが挙げられる。
 反応系中の水相中の金属塩の濃度は、特に制限はないが、1×10-5~5.0mol/Lであることが好ましい。硫酸亜鉛を含む金属塩を用いる場合、水相中の金属塩の濃度は、1×10-3~2.0mol/Lであることがより好ましく、0.1~1.0mol/Lであることがさらに好ましい。また、金属塩の量は、ルテニウム触媒中のルテニウムの量に対して質量基準で1×10-5~1×10倍であることが好ましい。これらの金属塩は反応系内のどこに存在してもよく、存在形態については、必ずしも全量が水相に溶解している必要はなく、オイル相に存在してもよく、水相又はオイル相で一部が析出していてもよい。
 また、水相は、酸性であることが、ルテニウム触媒の活性が高まる傾向にあるため好ましい。この点から水相を酸性に維持するために、例えば、硝酸、硫酸、酢酸、リン酸等の酸成分が反応系に含まれていてもよい。特に硫酸は、反応速度を高めるのに効果的であるため好ましい。
 目的とするシクロオレフィンを長時間安定に得る観点から、水相に含まれる金属塩水溶液のpHは、7.5以下であることが好ましく、より好ましくは2~6.5である。金属塩水溶液のpHが7.5を超えると、部分水添反応条件における金属塩の安定性が低下し、ルテニウム触媒に金属塩が沈着して触媒の活性が低下し易くなる。
(c)反応条件
 単環芳香族炭化水素を水素により部分水添する際の水素分圧は、一般に1~20MPaであることが好ましく、より好ましくは2~7MPaである。水素分圧が1MPa以上であるとシクロオレフィンの選択率が高くなる傾向にあり、20MPa以下であると、反応器内に供給する水素や単環芳香族炭化水素を高圧にする必要性が低減し、非効率性を抑制することができる傾向にある。また、部分水添反応の反応温度は、50~250℃であることが好ましく、より好ましくは100~200℃である。反応温度が50℃以上であると、十分な反応速度を確保することができる傾向にあり、反応温度が250℃以下であると、部分水添反応中にルテニウム触媒の平均結晶子径が成長(シンタリング)して触媒活性が急激に低下することを抑制できる傾向にある。
 単環芳香族炭化水素の部分水添反応は液相反応であることが好ましい。部分水添反応は、一器又は二器以上の反応器を用いて、液相懸濁法にて連続式又は回分式で行うこともできる。また、液相懸濁法に代えてルテニウム触媒を固定した固定床式で部分水添反応を行うこともできる。そのような方法として、固定床に保持可能な大きさのルテニウム触媒を充填し、単環芳香族炭化水素、金属塩水溶液及び水素を同時に固定床に流通させる方法、ルテニウム触媒と金属塩水溶液とを固定床に保持したまま単環芳香族炭化水素と水素とを固定床下部より流通させる方法等が挙げられる。
 液相懸濁法にて部分水添反応を行う場合には、水素及び単環芳香族炭化水素の水相中への溶解速度を高めるために撹拌混合を十分行うことが好ましい。また、水素を触媒スラリー中に導入するための気体導入管を備えていることが好ましい。
 次に、本実施形態において前記ルテニウム触媒を用いて繰り返し、又は連続的に単環芳香族炭化水素の部分水添反応を行うに際しての(1)前記水相中に含まれる前記ルテニウム触媒の少なくとも一部を酸素と接触させる第1の工程と、(2)前記第1の工程を経た前記ルテニウム触媒を含む水相の少なくとも一部を180℃を超えて220℃以下の温度、且つ、0.6MPa以上5MPa以下の水素分圧の範囲で保持する第2の工程について説明する。
[第1の工程]
 本実施形態のシクロオレフィンの製造方法の第1の工程は、水相中に含まれるルテニウム触媒の少なくとも一部を酸素と接触させる工程である。
 第1の工程においては、ルテニウム触媒を酸素と接触させるのに先立って、触媒スラリーを反応系(反応器内)から抜き出してもよい。反応系から抜き出す触媒スラリーの量は、反応器内に充填されていた触媒スラリーの全部又は一部のいずれであってもよい。この触媒スラリーの量は、部分水添反応の反応方式(回分式又は連続式)に応じて適宜選択すればよい。また、第1の工程において、触媒スラリーに含まれるルテニウム触媒を酸素と接触させる方法は、回分式であっても連続式であってもよい。
 回分式によりシクロオレフィンを製造する場合、酸素と接触させる触媒スラリーの量は、反応に用いた反応器内の触媒スラリーの5~100質量%であることが好ましく、10~60質量%であることがより好ましい。触媒スラリーの量を上記範囲にすることにより、部分水添反応を繰り返し行った場合でもシクロオレフィンを高収率で安定して得やすくなる。また、連続式によりシクロオレフィンを製造する場合、酸素と接触させる触媒スラリーの量は、時間当たりの触媒性能の低下度合いに応じて調整することが好ましい。例えば、24時間のうちに触媒スラリーの5~80質量%を酸素と接触させることが好ましく、10~60質量%を酸素と接触させることがより好ましい。酸素と接触させる触媒スラリーの量が上記範囲であると、シクロオレフィンの収率が特に高くなる傾向にある。
 また、第1の工程に先立ち、触媒スラリーに同伴するオイル相を除去することが好ましい。オイル相を除去する方法としては、静置分離、窒素等の不活性ガスを触媒スラリーに吹き込んで同伴したオイル相を留去する方法が挙げられる。不活性ガスを吹き込む際に水相を50~90℃に加熱すれば、オイル相を除去するに要する時間を短縮できるので好ましい。
 第1の工程においては、触媒スラリーの状態は、触媒中のルテニウムと酸素との急激な反応によってルテニウムが極端に酸化され、触媒性能が劣化するのを抑える観点から、ルテニウム触媒が水中にスラリー状に分散された状態であることが好ましい。触媒スラリー中の水は少量であってもよいが、ルテニウムと酸素との反応熱を拡散させ、急激な反応を抑える観点から、少なくともルテニウム触媒の表面が水で覆われていることが好ましい。特に、ルテニウム触媒を酸素と接触させることにより得られる活性回復の効果が高くなる傾向にあることから、ルテニウム触媒が部分水添反応で用いる金属塩を含む中性又は酸性の水溶液中に分散された状態であることが好ましい。
 ルテニウム触媒と接触させる酸素源としては、酸素を含むガス、空気等の分子状酸素を含む気体、又は過酸化水素のような発生期の酸素を生じる化合物が挙げられる。酸素を含むガスは酸素ガス、又は適当な不活性ガスで酸素ガスを希釈したものであることが操作上簡便であり好ましい。
 酸素を接触させる際の触媒スラリー中の酸素濃度は、標準状態の酸素ガスに換算して1×10-7~1NmL/mLであることが好ましく、より好ましくは1×10-5~0.1NmL/mLである。酸素濃度がこの範囲であると、接触処理時間が比較的短時間ですみ、且つ、ルテニウム触媒表面のルテニウムに急激な酸化による不可逆な変化が発生することを防ぐことができる傾向にある。なお、触媒スラリー中の酸素濃度は、市販の酸素濃度計により測定することができる。
 ルテニウム触媒に接触させる酸素は、触媒スラリーに直接供給すればよい。特に好ましい酸素の供給方法は、触媒スラリーに酸素を含むガスを供給することである。この方法は、操作が簡便であるため好ましい。
 ルテニウム触媒を酸素と接触させる操作は、減圧下、常圧下又は加圧下のいずれの条件においても実施可能である。よって、触媒スラリーの酸素濃度を高めるために加圧することも可能である。触媒スラリーを酸素と接触させる際の水相の温度は0~300℃であることが好ましく、より好ましくは30~200℃、更に好ましくは50~150℃である。水相の温度が上記範囲であると、酸素によるルテニウム触媒の再生効果とルテニウム触媒の変性防止効果とがバランスよく奏される傾向にある。また、ルテニウム触媒を酸素と接触させる時間は、活性等の触媒性能の低下度合いに応じて調整するのが好ましく、通常、数分間~数日間である。
 第1の工程の前、又は後に、水素が実質的に存在しない(水素分圧が0MPaである)雰囲気下で、且つ、部分水素添加反応時の温度よりも50℃低い温度を下回らない温度でルテニウム触媒を保持する工程を有してもよい。また、窒素、アルゴン等の不活性ガスによる加圧雰囲気下でもよい。この工程では、ルテニウム触媒の活性を回復させる観点から水素が存在する雰囲気にすることは好ましくない。この工程では、ルテニウム触媒は、上記水素が実質的に存在しない雰囲気の気相中、又は上記水素が実質的に存在しない雰囲気に包囲された液相中のいずれに保持されてもよいが、液相中で撹拌下に保持されることが、ルテニウム触媒の温度を均一に保つことができる傾向にあるためより好ましい。この工程における触媒周囲の温度は、部分水添反応時の反応温度よりも50℃低い温度を下回らない温度であり、好ましくは40℃低い温度を下回らない温度、より好ましくは30℃低い温度を下回らない温度である。この温度よりも周囲の温度が高いと、触媒の活性点に不可逆な変化が発生する場合があるので、触媒の特性に適した周囲の温度の上限を選ぶことが好ましい。例えば、ルテニウム触媒として金属ルテニウムを含む微粒子状の触媒を用いる場合、触媒周囲の温度が250℃を超えない温度であることが好ましく、より好ましくは200℃を超えない温度であり、さらに好ましくは180℃を超えない温度である。これにより、ルテニウム触媒の物理的変性をより効率的に防ぐことができる。この工程における保持時間は、通常、数分間~数日間である。第1の工程とこの工程とを組み合わせる場合、それらの工程の順序は特に限定されない。
[第2の工程]
 本実施形態のシクロオレフィンの製造方法の第2の工程は、前記第1の工程を経た前記ルテニウム触媒を含む水相の少なくとも一部を180℃を超えて220℃以下の温度、且つ、0.6MPa以上5MPa以下の水素分圧の範囲で保持して還元処理する工程である。即ち、第2の工程においては、積極的に水素で加圧して加熱処理を行う。水素で加圧した雰囲気下で触媒を保持する点において、前記のルテニウム触媒の活性を回復する操作として用いてもよい水素が実質的に存在しない(水素分圧が0MPaである)雰囲気下で、且つ、部分水素添加反応時の温度よりも50℃低い温度を下回らない温度でルテニウム触媒を保持する工程とは明確に異なる。
 第2の工程においては、第1の工程を経たルテニウム触媒を含む水相(触媒スラリー)の少なくとも一部を180℃を超えて220℃以下の温度、且つ、0.6MPa以上5MPa以下の水素分圧の範囲で保持する。より好ましくは、185℃以上210℃以下の温度、且つ、1MPa以上4.5MPa以下の水素分圧で保持する。保持温度が180℃以下、又は水素分圧が0.6MPa未満であると、第2の工程の処理による部分水添反応におけるシクロオレフィン選択率向上の効果が得られない。また、保持温度が220℃を超える場合には、部分水添反応におけるシクロオレフィン選択率が低下し、同時にルテニウム触媒の平均結晶子径が成長(シンタリング)して触媒活性が急激に低下する。また、5MPaを超える水素分圧で保持すると、シクロオレフィン選択率と共に触媒の活性が低下し易くなる。
 第2工程においては、水素以外のガスとして窒素、ヘリウム、アルゴン、メタン等の不活性ガスが含まれていてもよい。第2の工程の処理における全圧は、処理温度における水の蒸気圧と水素分圧と窒素、ヘリウム、アルゴン、メタン等の不活性ガスの分圧の総和によって決まる。不活性ガスが存在しない時には、水の蒸気圧と水素分圧の総和である。
 ここで、水素分圧は、不活性ガスが存在しない時は、第2の工程における全圧から処理温度における水の蒸気圧を差し引いた値であり、具体的には、処理する触媒スラリーを処理温度に保持した後、所定の水素分圧になるように水素で加圧することにより、目的の水素分圧条件に設定することができる。また、水素と不活性ガスの混合ガスを用いる場合には、水素の含有量に応じて、水素と不活性ガスで加圧する圧力値に水素の含有率を乗じた値が目的の水素分圧になるように、水素と不活性ガスの混合ガスで加圧すればよい。
 また、所定時間保持するに際しては、攪拌等により触媒スラリーが均一濃度になるように保つことが好ましい。更に、気相の水素と触媒スラリーの接触面積を大きくするために、例えば、処理槽中にバッフルを設けることが好ましい。保持する時間は、1分~400時間程度が好ましく、より好ましくは5分~24時間である。
 また、ルテニウム触媒の形状が粒状等であり、撹拌により粉砕されることが危惧される場合には、触媒を固定床に充填した状態で金属塩の水溶液中で水素加圧し、180℃を超えて220℃以下の温度に保持することにより第2の工程を行うこともできる。
 第2の工程に供される触媒スラリーの量は、第1の工程を経た触媒スラリーの1~100質量%であることが好ましい。第2の工程に供される触媒スラリーの量は、シクロオレフィン選択率と触媒の活性に応じて調整することが好ましい。
 本実施形態のシクロオレフィンの製造方法は、(3)上記第2の工程を経た上記ルテニウム触媒を含む水相を上記部分水添反応の反応系に供する(再充填する)第3の工程をさらに含んでもよい。再充填の方法は、反応器における部分水添反応を停止した状態で第2の工程を経た触媒スラリーを反応器に充填する方法であってもよく、反応器内で部分水添反応を進行させながら第2の工程を経た触媒スラリーを反応器に充填する方法であってもよい。
 第2の工程を経た触媒スラリーは、高いシクロオレフィン選択率が得られる状態にあるが、この状態は不安定な状態である。従って、第2の工程の処理温度及び圧力と、部分水添反応の反応温度及び圧力が異なる場合、第2の工程を経た触媒スラリーを部分水添反応条件に移行するために長期間を要しないことが好ましい。第2の工程の処理温度から部分水添反応の反応温度に移行するための好ましい変化速度は300℃/分~10℃/分の間である。より好ましくは、100℃/分~1℃/分の間の速度である。第2の工程を経た触媒スラリーを数日間の期間を置いてから部分水添反応に供することもできる。その場合、第2の工程を経た触媒スラリーは、上記の変化速度で室温に冷却した後に、常圧~5MPaの水素下、又は窒素等の不活性ガス下で保持することが好ましい。第2の工程の処理圧力と部分水添反応の圧力が異なる場合には、第2の工程を経た触媒スラリーが部分水添反応の反応温度になった後、又は温度を調整すると同時に圧力を部分水添反応の圧力に調整することができる。
 本実施形態のシクロオレフィンの製造方法を連続式で行う場合、上記第1、第2及び第3の工程を経る態様は、特に限定されない。例えば、まず、第1の工程の前に、一旦連続反応を止めて反応器内からオイル相を除去する。次いで、反応器内に触媒スラリーの全部を残存させた状態で、そのルテニウム触媒を酸素と接触させる(第1の工程)。その後、触媒スラリーを180℃を超えて220℃以下の温度、且つ、0.6MPa以上5MPa以下の水素分圧の範囲で所定時間攪拌保持する(第2の工程)。その後、その触媒スラリーを用いて、部分水添反応を再開する(第3の工程)。あるいは、まず、連続反応を停止することなく、触媒スラリーを部分的に抜き出して、そのルテニウム触媒を酸素と接触させる(第1の工程)。次いで、第1の工程を経た触媒スラリーを180℃を超えて220℃以下の温度、且つ、0.6MPa以上5MPa以下の水素分圧の範囲で所定時間攪拌保持する(第2の工程)。そして第2の工程を経た触媒スラリーを反応器に再充填して、部分水添反応の反応系に供してもよい(第3の工程)。
 次に本実施形態のシクロオレフィンの製造方法を具体化するための製造装置について説明する。
 本実施形態のシクロオレフィンの製造装置は、
 金属塩を含有する水溶液とルテニウム触媒とを含む水相が収容された反応器と、
 前記反応器に接続された油水分離槽と、
 前記油水分離槽に接続された酸素処理器と、
 前記酸素処理器に接続された水素処理器と、
を有するシクロオレフィンの製造装置であって、
 前記反応器に単環芳香族炭化水素が供給され、その反応液の少なくとも一部と前記ルテニウム触媒を含む水相の少なくとも一部が前記油水分離槽に供給され、前記油水分離槽から流出した水相は前記酸素処理器に導入されて酸素に接触された後、前記水素処理器に導入される製造装置である。
 図1は、本実施形態のシクロオレフィンの製造装置の一例を示す模式図である。
 このシクロオレフィンの製造装置100は、反応器1と、その内部にルテニウム触媒を含む水相と単環芳香族炭化水素の部分水添反応液とを分離する油水分離槽10と、油水分離槽10に配管9を介して接続される酸素処理器17と、酸素処理器17に配管11を介して接続される水素処理機26とを備える。
 反応器1には、例えば、ベンゼン供給装置15から単環芳香族炭化水素としてベンゼンが、水素供給装置14から水素ガスが、酸性水溶液供給装置33から金属塩を含有する酸性水溶液が、供給ノズル14A、15A、33Aを通じてそれぞれ供給される。反応器1は、金属塩を含有する酸性水溶液とルテニウム触媒とを含む水相を収容し、そこで、加熱用ヒーター2により温度調整しながら水素ガスとベンゼンとによる単環芳香族炭化水素の部分水添反応が進行する。反応器1は、内部を攪拌するための攪拌機3を備えることが好ましい。
 反応器1には、部分水添反応により生成した反応生成物と未反応の単環芳香族炭化水素とを主成分として含む反応液すなわちオイル相とルテニウム触媒を含む水相とを分離する油水分離槽10が併設されている。反応器1と油水分離槽10とは仕切り壁34により一部を区切られており、これにより、油水分離槽10が攪拌機3による撹拌の影響を受け難くなっている。また、仕切り壁34が設けられていない部分を通じて、反応器1から油水分離槽10にオイル相及び水相が混合状態で移動できるようになっている。油水分離槽10は、所定時間内に水相とオイル相とを分離するために十分な容積を有することが好ましい。上述のとおり、部分水添反応の反応液は、原料すなわちベンゼンなどの単環芳香族炭化水素と、反応生成物すなわちシクロオレフィンとを主成分として含むオイル相である。このオイル相は、油水分離槽10内で、ルテニウム触媒を含む水相と分離される。なお、この例では、油水分離槽10は反応器1に併設されているが、油水分離槽10は、反応器1の外部に設けられ、配管を介して反応器1と接続されていてもよい。
 油水分離槽10内で分離されたオイル相は、オーバーフローノズルから配管8を介して分離器6に供給される。分離器6でオイル相が冷却されることにより、オイル相中に溶解していた水分が分離される。分離された水分はポンプ5により反応器1に供給される。また、水分が分離されたオイル相は、配管7を介してシクロオレフィン分離工程に移送される。
 油水分離槽10で分離された水相は、配管9を経由して落圧弁22でその流量を制御され、配管19を経由して酸素処理器17に供給される。酸素処理器17では、ルテニウム触媒を含む水相を酸素と接触させ、ルテニウム触媒の少なくとも一部を酸素と接触させる。酸素処理器17は、そこに供給されたルテニウム触媒を含む水相を攪拌するための攪拌機23を備えることが好ましい。また、酸素処理器17は、その内部の温度を容易に制御できるよう加熱用のジャケット17Aで覆われていると好ましい。さらに、所定濃度の酸素を含む気体を導入できるように、製造装置100が、ガス供給装置21と、そのガス供給装置21と酸素処理器17とを接続する気体導入ノズル21Aとを備え、ルテニウム触媒を含む水相内に気体を直接導入できるようになっていることが好ましい。さらに、酸素処理器17には、凝縮器25が接続されていてもよい。凝縮器25では、酸素などを含む気体、揮発した水相のうち、水相が凝縮して再び酸素処理器17に戻されると共に、酸素などを含む気体は配管24を経由して外部に流出する。
 酸素処理器17において酸素と接触したルテニウム触媒を含む水相は、配管11を経由してポンプ12でその流量を制御され、配管13を通じて水素処理器26に供給される。水素処理器26では、ルテニウム触媒を含む水相が導入されて、180℃を超えて220℃以下の温度、且つ、0.6MPa以上5MPa以下の水素分圧の範囲で所定時間保持される。水素処理器26は、220℃以上の耐熱性及び8MPa以上の耐圧性を有する。水素処理器26は、そこに供給されたルテニウム触媒を含む水相を攪拌するための攪拌機27を備えることが好ましい。また、水素処理器26は、その内部の温度を容易に制御できるよう加熱用ヒーター32で覆われていると好ましい。さらに、水素を導入できるように、製造装置100が、水素供給装置30と、その水素供給装置30と水素処理器26とを接続する供給ノズル30Aとを備え、ルテニウム触媒を含む水相内に気体を直接導入できるようになっていることが好ましい。
 水素処理器26の例としては、図示した攪拌混合槽型の処理器の他に、加熱ヒーターを備えたスタティックミキサー型の処理器等が挙げられる。
 水素処理器26において水素下で処理されたルテニウム触媒を含む水相は、配管28、ポンプ29、配管31を通じて反応器1に供給される。
 このシクロオレフィンの製造装置100において、反応器1、油水分離槽10、酸素処理器17、水素処理器26、及びそれぞれの装置を連結させる配管は、いずれも炭素鋼やステンレス等の金属製の材料から構成されている。そして、上記それぞれの装置において、少なくとも反応液との接液部分は、ニッケルを含有する材料からなると好ましい。例えば、反応器1の内壁(内表面)は、モリブデンを含むニッケル基合金又はモリブデンとクロムとを含むニッケル基合金等の、より金属溶出速度を抑制可能な材料で構成されることが好ましい。
 ここで、モリブデンを含むニッケル基合金としては、特に限定されないが、例えば、ハステロイA、ハステロイB、ハステロイB―3及びハステロイB-2(以上商品名、Hayues stellite Co.製耐熱性ニッケル合金)が挙げられる。同様にモリブデンとクロムとを含むニッケル基合金としては、特に限定されないが、例えば、ハステロイC、ハステロイC-276、ハステロイC-4、ハステロイC-22、ハステロイC-2000、ハステロイG、ハステロイG-2、ハステロイG-3、ハステロイG-30、ハステロイH、及びハステロイW(以上商品名、Hayues stellite Co.製耐熱性ニッケル合金)や、インコロイ825(商品名、Inco Alloys International,Inc.社製)、MAT21(商品名、三菱マテリアル(株)社製)が挙げられる。
 図2は、本実施形態のシクロオレフィン製造装置の別の一例を示す模式図である。
 このシクロオレフィンの製造装置200は、油水分離槽10と酸素処理器17との間に、それらを接続するオイルストリッピング槽16を更に備える。この製造装置200は、それ以外は図1に示す製造装置100と同様のものを備えるので、ここでは説明を省略する。なお、酸素処理器17は、油水分離槽10とオイルストリッピング槽16とをこの順で経て供給される少なくとも一部の水相中に含まれるルテニウム触媒を酸素と接触させるものとなる。
 油水分離槽10で分離された水相には、微量のオイル相が同伴して含まれることがある。そこで、その水相は、配管9を経由して落圧弁22でその流量を制御されつつオイルストリッピング槽16に供給されると好ましい。オイルストリッピング槽16は、ルテニウム触媒を含む水相に溶解又は分散して含まれるオイル相を水相から除去するものである。オイルストリッピング槽16では、ガス供給装置20から窒素、水蒸気等の、上記オイル相に含まれる単環芳香族炭化水素及びシクロオレフィンに対する不活性ガスを、ガス導入ノズル20Aを通じて水相中に吹き込むようになっている。不活性ガスを吹き込むことにより、水相中に溶解又は分散している単環芳香族炭化水素及びその部分水添反応物(シクロオレフィン)を主成分とするオイル相が水相から除去される。
 オイルストリッピング槽16は、その内部の温度を容易に制御できるよう加熱用のジャケット16Aで覆われていると好ましい。また、オイルストリッピング槽16には、凝縮器18が接続されていてもよい。凝縮器18では、不活性ガス、揮発したオイル相及びそのオイル相に同伴する水相のうち、水相が凝縮して再びオイルストリッピング槽16に戻されると共に、不活性ガス及び揮発したオイル相が配管4を経由して外部に流出する。オイルストリッピング槽16においてオイル相を除去された水相は、配管19を経由して酸素処理器17に供給される。
 また、図示していないが、上記製造装置100又は製造装置200には、酸素処理器17と水素処理器26との間に、それらを接続する低水素分圧処理器を備えてもよい。その低水素分圧処理器は、酸素処理器17から供給されるルテニウム触媒を含む水相を水素が実質的に存在しない(水素分圧が0MPaである)雰囲気下で、且つ、部分水添反応における温度よりも50℃低い温度を下回らない温度で保持し、その水相に含まれるルテニウム触媒をその温度で保持する。これによっても、ルテニウム触媒が再生される。低水素分圧処理器において保持された水相は、水素処理器26に供給される。
 以下、実施例、比較例により本実施形態をより具体的に説明するが、本実施形態はその要旨を超えない限りにおいて、以下の実施例に限定されるものではない。
 以下の実施例に示されるベンゼンの転化率及びシクロヘキセンの選択率は、得られたオイル相をガスクロマトグラフィーによって分析して得たベンゼン、シクロヘキセン、シクロヘキサンの濃度分析値を基に、下記に示す式により算出した。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
[実施例1~6、比較例1~4]
 塩化ルテニウム(RuCl3・3H2O)5gと塩化亜鉛2.0gを500mLの水に撹拌下溶解した。30%の水酸化ナトリウム水溶液70mLを前記の水溶液に撹拌しながら一度に添加した。得られた混合物をさらに80℃で2時間撹拌した。冷却後、静置し、デカンテーションにより上澄み液を除去した後に黒色沈殿物を1N水酸化ナトリウム水溶液で5回洗浄し、さらに水で3回洗浄した。以上の操作によりZn(OH)2を含むRu(OH)3からなる黒色沈殿物を得た。得られた黒色沈殿物に水を加え全量を500mLとし、撹拌下にZrO2粉末(第一稀元素化学工業(株)製、平均粒子径0.35μm)11.5gを加え、さらに1時間室温で撹拌した後に濾過した。以上の操作によりZrO2を分散剤として含むルテニウム触媒前駆体を得た。このZrO2を含むルテニウム触媒前駆体の全量を硫酸亜鉛(ZnSO4)10質量%の水溶液280mLに加え、還元温度を200℃として水素加圧下、表1に示す種々の圧力で還元処理を行った。
 還元処理によって得られたルテニウム触媒スラリーをそのまま用いて140℃、水素下全圧5MPaで140mLのベンゼンを原料として部分水添反応を行った。ベンゼン転化率50%でのシクロヘキセン選択率をルテニウム触媒前駆体の還元条件と合わせて表1に示す。
 また、実施例3の還元条件で得たZrO2を分散剤として含むルテニウム触媒、及び比較例3の還元条件で得たZrO2を分散剤として含むルテニウム触媒について蛍光X線分析によりZn濃度を求めたところ各々1.25質量%、1.23質量%でほぼ同じであった。
Figure JPOXMLDOC01-appb-T000001
[実施例7、8、比較例5~7]
 異なる還元温度、圧力で還元処理を行い、得られたルテニウム触媒スラリーをそのまま用いて140℃、水素下全圧5MPaでベンゼンの部分水添反応を行った。ベンゼン転化率50%でのシクロヘキセン選択率をルテニウム触媒前駆体の還元条件と合わせて表2に示す。
Figure JPOXMLDOC01-appb-T000002
[実施例9]
 比較例6に示した条件で還元処理を行って得たルテニウム触媒スラリーをそのまま、表3の条件で還元処理を行い、その後、140℃、水素下全圧5MPaでベンゼンの部分水添反応を行った。ベンゼン転化率50%でのシクロヘキセン選択率をルテニウム触媒の還元条件と合わせて表3に示す。
Figure JPOXMLDOC01-appb-T000003
[実施例10]
(ジルコニアを分散剤として含む硫酸コバルト水溶液のルテニウム触媒スラリーの調製)
 塩化ルテニウム(RuCl3・3H2O)5gと塩化亜鉛13.0gを500mLの水に撹拌下溶解した。30%の水酸化ナトリウム水溶液70mLを前記の水溶液に撹拌しながら一度に添加した。得られた混合物をさらに80℃で2時間撹拌した。冷却後、静置し、デカンテーションにより上澄み液を除去した後に黒色沈殿物を1N水酸化ナトリウム水溶液で3回洗浄した。以上の操作によりZn(OH)2を含むRu(OH)3からなる黒色沈殿物を得た。得られた黒色沈殿物に5%水酸化ナトリウム水溶液に加え全量を500mLとし、水素加圧下、150℃、5MPaで10時間還元した。反応液を冷却後、得られた黒色沈殿をアルゴン雰囲気下で濾過、最初に30%水酸化ナトリウム水溶液で洗浄し、次に水で洗浄した。その後、真空乾燥し、2.3gのルテニウム触媒前駆体を得た。このルテニウム触媒前駆体の平均結晶子径は5.1nm、亜鉛は7.2質量%含まれていた。得られたルテニウム触媒前駆体1.0gとジルコニア(ZrO2)粉末(第一稀元素化学工業株式会社製、平均粒子径0.35μm)5.0gを10質量%硫酸コバルト水溶液280mLに添加して、触媒前駆体スラリーを調製した。上記触媒前駆体スラリーを水素下、200℃、全圧5MPa(水素分圧3.5MPa)の条件下で2時間攪拌し、硫酸コバルト水溶液中にジルコニアを分散剤として含むルテニウム触媒スラリーを調製した。
 (硫酸コバルト水溶液中でのルテニウム触媒を用いたベンゼンの部分水添反応)
 上記で得たルテニウム触媒スラリーをそのまま温度を140℃まで15分間で冷却し、全圧5MPaでベンゼン140mLを加えてベンゼン部分水添反応を行った。その結果、ベンゼン転化率50%の時のシクロヘキセン選択率は、82.7%であった。
(ルテニウム触媒スラリーの酸素処理と水素処理)
 上記のベンゼン部分水添反応を行った後の触媒スラリーを室温まで冷却後、油相と分離し、攪拌下80℃で触媒スラリーに窒素をバブリングすることにより油相を除去し、80℃で3%酸素を含む窒素を5時間バブリングした。得られた触媒スラリー240mLを水素下、200℃、全圧5MPa(水素分圧3.5MPa)の条件下で2時間攪拌した。
(酸素処理と水素処理を行った触媒スラリーを用いたベンゼン部分水添反応)
 上記の処理を行った触媒スラリー240mLを処理後に温度140℃まで15分間で冷却し、全圧5MPaでベンゼン120mLを加えて140℃でベンゼン部分水添反応を行った。その結果、ベンゼン転化率50%の時のシクロヘキセン選択率は、83.4%であった。
[比較例9]
 実施例10と同様にしてルテニウム触媒前駆体1.0g、ジルコニア(ZrO2)粉末(第一稀元素化学工業株式会社製、平均粒子径0.35μm)5.0gと10質量%硫酸コバルト水溶液280mLからなる触媒前駆体スラリーを調製した。このルテニウム触媒前駆体スラリーを用いて、140℃、全圧5MPaでベンゼン140mLを加えてベンゼン部分水添反応を行った。その結果、ベンゼン転化率50%の時のシクロヘキセン選択率は、75.3%であった。
 上記のベンゼン部分水添反応を行った後の触媒前駆体スラリーを実施例10と同様に酸素処理を行った後、水素下、170℃、全圧4.3MPa(水素分圧3.5MPa)の条件下2時間攪拌して得た触媒スラリー240mLを実施例1と同じ反応条件でベンゼン120mLを加えてベンゼンの部分水添反応を行った。その結果、ベンゼン転化率50%の時のシクロヘキセン選択率は、75.6%であった。結果を表4にまとめて示す。
Figure JPOXMLDOC01-appb-T000004
[実施例11]
(ジルコニアを分散剤として含む硫酸カリウム水溶液のルテニウム触媒スラリーの調製)
 塩化ルテニウム(RuCl3・3H2O)5gと塩化亜鉛13.0gを500mLの水に撹拌下溶解した。30%の水酸化ナトリウム水溶液70mLを前記の水溶液に撹拌しながら一度に添加した。得られた混合物をさらに80℃で2時間撹拌した。冷却後、静置し、デカンテーションにより上澄み液を除去した後に黒色沈殿物を1N水酸化ナトリウム水溶液で3回洗浄した。以上の操作によりZn(OH)2を含むRu(OH)3からなる黒色沈殿物を得た。得られた黒色沈殿物に5%水酸化ナトリウム水溶液に加え全量を500mLとし、水素加圧下、150℃、5MPaで12時間還元した。反応液を冷却後、得られた黒色沈殿をアルゴン雰囲気下で濾過、最初に30%水酸化ナトリウム水溶液で洗浄し、次に水で洗浄した。その後、真空乾燥し、2.3gのルテニウム触媒前駆体を得た。このルテニウム触媒前駆体の平均結晶子径は5.5nm、亜鉛は7.2質量%含まれていた。得られたルテニウム触媒前駆体1.0gとジルコニア(ZrO2)粉末(第一稀元素化学工業株式会社製、平均粒子径0.35μm)5.0gを15質量%硫酸カリウム水溶液280mLに添加して、触媒前駆体スラリーを調製した。上記触媒前駆体スラリーを水素下、200℃、全圧5MPa(水素分圧3.5MPa)の条件下で2時間攪拌し、硫酸カリウム水溶液中にジルコニアを分散剤として含むルテニウム触媒スラリーを調製した。
(硫酸カリウム水溶液中でのルテニウム触媒を用いたベンゼンの部分水添反応)
 上記で得たルテニウム触媒スラリーをそのまま温度を140℃まで15分間で冷却し、全圧5MPaでベンゼン140mLを加えてベンゼン部分水添反応を行った。その結果、ベンゼン転化率50%の時のシクロヘキセン選択率は、79.7%であった。
(ルテニウム触媒スラリーの酸素処理と水素処理)
 上記のベンゼン部分水添反応を行った後の触媒スラリーを室温まで冷却後、油相と分離し、攪拌下80℃で触媒スラリーに窒素をバブリングすることにより油相を除去し、80℃で3%酸素を含む窒素を5時間バブリングした。得られた触媒スラリー240mLを水素下、200℃、全圧5MPa(水素分圧3.5MPa)の条件下で2時間攪拌した。
(酸素処理と水素処理を行った触媒スラリーを用いたベンゼン部分水添反応)
 上記の処理を行った触媒スラリー240mLを処理後に温度140℃まで15分間で冷却し、全圧5MPaでベンゼン120mLを加えて140℃でベンゼン部分水添反応を行った。その結果、ベンゼン転化率50%の時のシクロヘキセン選択率は、80.5%であった。
[比較例10]
 実施例11と同様にしてルテニウム触媒前駆体1.0g、ジルコニア(ZrO2)粉末(第一稀元素化学工業株式会社製、平均粒子径0.35μm)5.0gと10質量%硫酸カリウム水溶液280mLからなる触媒前駆体スラリーを調製した。このルテニウム触媒前駆体スラリーを用いて、140℃、全圧5MPaでベンゼン140mLを加えてベンゼン部分水添反応を行った。その結果、ベンゼン転化率50%の時のシクロヘキセン選択率は、65.8%であった。
 上記のベンゼン部分水添反応を行った後の触媒前駆体スラリーを実施例11と同様に酸素処理を行った後、水素下、170℃、全圧4.3MPa(水素分圧3.5MPa)の条件下2時間攪拌して得た触媒スラリー240mLを実施例11と同じ反応条件でベンゼン120mLを加えてベンゼンの部分水添反応を行った。その結果、ベンゼン転化率50%の時のシクロヘキセン選択率は、66.0%であった。結果を表5にまとめて示す。
Figure JPOXMLDOC01-appb-T000005
[実施例12~14]
(クロミアを分散剤として含むルテニウム触媒スラリーの調製)
 塩化ルテニウム(RuCl3・3H2O)5gと塩化亜鉛18.0gを500mLの水に撹拌下溶解した。30%の水酸化ナトリウム水溶液70mLを前記の水溶液に撹拌しながら一度に添加した。得られた混合物をさらに80℃で2時間撹拌した。冷却後、静置し、デカンテーションにより上澄み液を除去した後に黒色沈殿物を1N水酸化ナトリウム水溶液で3回洗浄した。以上の操作によりZn(OH)2を含むRu(OH)3からなる黒色沈殿物を得た。得られた黒色沈殿物に5%水酸化ナトリウム水溶液に加え全量を500mLとし、水素加圧下、150℃、5MPaで10時間還元した。反応液を冷却後、得られた黒色沈殿をアルゴン雰囲気下で濾過、最初に30%水酸化ナトリウム水溶液で洗浄し、次に水で洗浄した。その後、真空乾燥し、2.4gのルテニウム触媒前駆体を得た。このルテニウム触媒前駆体の平均結晶子径は5.0nm、亜鉛は7.8質量%含まれていた。得られたルテニウム触媒前駆体1.0gとクロミア(Cr2O3)粉末(和光純薬工業株式会社製、平均粒子径2.1μm)5.0gを10質量%硫酸亜鉛水溶液280mLに添加して、触媒前駆体スラリーを調製した。上記触媒前駆体スラリーを水素下、200℃、全圧5MPa(水素分圧3.5MPa)の条件下で2時間攪拌し、硫酸亜鉛水溶液中にクロミアを分散剤として含むルテニウム触媒スラリーを調製した。
(硫酸亜鉛水溶液中でのルテニウム触媒を用いたベンゼンの部分水添反応)
 上記で得たルテニウム触媒スラリーをそのまま温度を140℃まで15分間で冷却し、全圧5MPaでベンゼン140mLを加えてベンゼン部分水添反応を行った。その結果、ベンゼン転化率50%の時のシクロヘキセン選択率は、85.1%であった。
(ルテニウム触媒スラリーの酸素処理と水素処理)
 上記のベンゼン部分水添反応を行った後の触媒スラリーを室温まで冷却後、油相と分離し、攪拌下80℃で触媒スラリーに窒素をバブリングすることにより油相を除去し、80℃で3%酸素を含む窒素を5時間バブリングした。得られた触媒スラリー240mLを水素下、表6に示す種々の温度、圧力条件で水素処理を行った。
(酸素処理と水素処理を行った触媒スラリーを用いたベンゼン部分水添反応)
 上記の処理を行った触媒スラリー240mLを処理後に温度140℃まで15分間で冷却し、全圧5MPaでベンゼン120mLを加えて140℃でベンゼン部分水添反応を行った。ベンゼン転化率50%の時のシクロヘキセン選択率を表6に合わせて示す。
[比較例11及び12]
 実施例12~14と同様にしてルテニウム触媒前駆体1.0g、クロミア(Cr2O3)粉末(和光純薬工業株式会社製、平均粒子径2.1μm)5.0gと10質量%硫酸亜鉛水溶液280mLからなる触媒前駆体スラリーを調製した。このルテニウム触媒前駆体スラリーを用いて、140℃、全圧5MPaでベンゼン140mLを加えてベンゼン部分水添反応を行った。その結果、ベンゼン転化率50%の時のシクロヘキセン選択率は、77.4%であった。
 上記のベンゼン部分水添反応を行った後の触媒前駆体スラリーを実施例12~14と同様に油相を除去し、酸素処理を行った。得られた触媒スラリー240mLを水素下、表6に示す種々の温度、圧力条件で水素処理を行った後、実施例12~14と同じ反応条件でベンゼン120mLを加えてベンゼンの部分水添反応を行った。ベンゼン転化率50%の時のシクロヘキセン選択率を表6に合わせて示す。
Figure JPOXMLDOC01-appb-T000006
[実施例15]
(ジルコニアを分散剤として含むルテニウム触媒スラリーの調製)
 塩化ルテニウム(RuCl3・3H2O)5gと塩化亜鉛15.0gを500mLの水に撹拌下溶解した。30%の水酸化ナトリウム水溶液70mLを前記の水溶液に撹拌しながら一度に添加した。得られた混合物をさらに80℃で2時間撹拌した。冷却後、静置し、デカンテーションにより上澄み液を除去した後に黒色沈殿物を1N水酸化ナトリウム水溶液で3回洗浄した。以上の操作によりZn(OH)2を含むRu(OH)3からなる黒色沈殿物を得た。得られた黒色沈殿物に5%水酸化ナトリウム水溶液に加え全量を500mLとし、水素加圧下、150℃、5MPaで12時間還元した。反応液を冷却後、得られた黒色沈殿をアルゴン雰囲気下で濾過、最初に30%水酸化ナトリウム水溶液で洗浄し、次に水で洗浄した。その後、真空乾燥し、2.3gのルテニウム触媒前駆体を得た。このルテニウム触媒前駆体の平均結晶子径は5.3nm、亜鉛は7.6質量%含まれていた。得られたルテニウム触媒前駆体1.0gとジルコニア(ZrO2)粉末(第一稀元素化学工業株式会社製、平均粒子径0.35μm)5.0gを10質量%硫酸亜鉛水溶液280mLに添加して、触媒前駆体スラリーを調製した。上記触媒前駆体スラリーを水素下、200℃、全圧5MPa(水素分圧3.5MPa)の条件下で2時間攪拌し、硫酸亜鉛水溶液中にジルコニアを分散剤として含むルテニウム触媒スラリーを調製した。
(硫酸亜鉛水溶液中でのルテニウム触媒を用いたベンゼンの部分水添反応)
 上記で得たルテニウム触媒スラリーをそのまま温度を140℃まで10分間で冷却し、全圧5MPaでベンゼン140mLを加えてベンゼン部分水添反応を行った。その結果、ベンゼン転化率50%の時のシクロヘキセン選択率は、87.5%であった。
(ルテニウム触媒スラリーの酸素処理と水素処理)
 上記のベンゼン部分水添反応を行った後の触媒スラリーを室温まで冷却後、油相と分離し、攪拌下80℃で触媒スラリーに窒素をバブリングすることにより油相を完全に除去し、80℃で3%酸素を含む窒素を5時間バブリングした。得られた触媒スラリー240mLを水素下、200℃、全圧5MPa(水素分圧3.5MPa)の条件下で2時間攪拌した。
(酸素処理と水素処理を行った触媒スラリーを用いたベンゼン部分水添反応)
 上記の処理を行った触媒スラリー240mLを処理後に140℃まで10分間で冷却し、全圧5MPaでベンゼン120mLを加えて140℃でベンゼン部分水添反応を行った。ベンゼン転化率50%の時のシクロヘキセン選択率は、87.6%であった。
[比較例13]
 実施例15と同様にしてルテニウム触媒前駆体1.0g、ジルコニア(ZrO2)粉末(第一稀元素化学工業株式会社製、平均粒子径0.35μm)5.0gと10質量%硫酸亜鉛水溶液280mLからなる触媒前駆体スラリーを調製した。このルテニウム触媒前駆体スラリーを用いて、140℃、全圧5MPaでベンゼン140mLを加えてベンゼン部分水添反応を行った。その結果、ベンゼン転化率50%の時のシクロヘキセン選択率は、81.3%であった。
 上記のベンゼン部分水添反応を行った後の触媒前駆体スラリーを実施例15と同様に油相を完全に除去し、酸素処理を行った。得られた触媒スラリー240mLを水素下、170℃、全圧4.3MPa(水素分圧3.5MPa)の条件下2時間攪拌した後、実施例15と同じ反応条件でベンゼン120mLを加えてベンゼンの部分水添反応を行った。その結果、ベンゼン転化率50%の時のシクロヘキセン選択率は、81.5%であった。結果を表7にまとめて示す。
 触媒スラリーに硫酸亜鉛水溶液を添加する態様は、硫酸コバルトを添加した例(例えば、実施例10及び比較例9)と比較して、シクロヘキセン選択率が高い傾向にあるが、金属成分が共通する系で比較をすると(例えば、実施例15と比較例13)、本実施形態の還元条件、及び第2の工程を経た場合にシクロヘキセンの選択率が高いことが分かる。
[参考例1]
(1)ジルコニア担体の合成
 酸化ハフニウムを含むジルコニアゾル(ジルコニア10質量%含有液、第一稀元素化学工業株式会社製、商品名「ZSL-10T」)500gを40℃の条件下で攪拌しながら、25%アンモニア水を徐々に添加した。得られた液を80℃で1時間加熱攪拌した後、90℃で減圧乾燥することにより固形化した粉体の塊を得た。粉体の塊を粉砕し、0.5N水酸化ナトリウム水中に投入し、60℃で1時間の攪拌処理を行った後、水洗浄、ろ過を5回繰り返した。得られた固形物を、110℃で十分に真空乾燥した後、400℃で十分に焼成して、45gの白色のジルコニア粉体を得た。この粉体の比表面積を窒素吸着によるBET法により測定した結果、109m/gであった。
[実施例16~26]
(2)ジルコニア担持ルテニウム触媒スラリーの調製
 酢酸ランタン水和物14.8gを溶解した水溶液中に、上述のようにして得られたジルコニア粉体20gを添加し、1時間攪拌混合した。得られた混合物を、80℃で十分に減圧乾燥して固形物を得、次いで400℃で十分に固形物を焼成した。こうして、酸化物換算でランタンを25質量%担持したジルコニア粉体を得た。次いで、塩化ルテニウム水溶液(ルテニウム10%含有)22gに水を添加した水溶液中に、ランタンを担持した上記ジルコニア粉体を添加し、ルテニウム成分の吸着担持を行った。その後、ろ過、水洗、50℃で1時間のアルカリ処理、ろ過、水洗を順次行った。こうして得られたランタン及びルテニウムを担持したジルコニア粉体30gと10質量%の硫酸亜鉛水溶液280mLとをオートクレーブに入れ、水素下、150℃、全圧5.5MPa(水素分圧5.0MPa)の条件下で、24時間攪拌して還元処理を行いルテニウム触媒前駆体を得た。得られたルテニウム触媒前駆体を蛍光X線により分析したところ、ルテニウムを11質量%、亜鉛を2.0質量%含有していた。また、ルテニウム触媒の平均結晶子径は約3nmであった。得られたルテニウム触媒前駆体2gを10質量%硫酸亜鉛水溶液280mLに添加して、触媒前駆体スラリーを調製した。この触媒前駆体スラリーを水素下、200℃、全圧5MPa(水素分圧3.5MPa)の条件下で2時間攪拌し、硫酸亜鉛水溶液中に分散したジルコニア担持ルテニウム触媒スラリーを調製した。
(硫酸亜鉛水溶液中ジルコニア担持ルテニウム触媒スラリーを用いたベンゼンの部分水添反応)
 上記で得たルテニウム触媒スラリーをそのまま温度を140℃まで15分間で冷却し、全圧5MPaでベンゼン140mLを加えてベンゼン部分水添反応を行った。その結果、ベンゼン転化率50%の時のシクロヘキセン選択率は、86.0%であった。
(ルテニウム触媒スラリーの酸素処理と水素処理)
 上記のベンゼン部分水添反応を行った後の触媒スラリーを室温まで冷却後、油相と分離し、攪拌下80℃で触媒スラリーに窒素をバブリングすることにより油相を除去し、80℃で3%酸素を含む窒素を5時間バブリングした。得られた触媒スラリー240mLを水素下、表8に示す種々の温度、圧力条件で水素処理を行った。
(酸素処理と水素処理を行った触媒スラリーを用いたベンゼン部分水添反応)
 上記の処理を行った触媒スラリー240mLを水素処理後に140℃まで冷却し、全圧5MPaでベンゼン120mLを加えて140℃でベンゼン部分水添反応を行った。ベンゼン転化率50%の時のシクロヘキセン選択率を表8に合わせて示す。
[比較例14~17]
 実施例16~26と同様にしてルテニウム触媒前駆体2gを10質量%硫酸亜鉛水溶液280mLに添加して、触媒前駆体スラリーを調製した。このルテニウム触媒前駆体スラリーを用いて、140℃、全圧5MPaでベンゼン140mLを加えてベンゼン部分水添反応を行った。その結果、ベンゼン転化率50%の時のシクロヘキセン選択率は、79.4%であった。
 上記のベンゼン部分水添反応を行った後の触媒前駆体スラリーを実施例16~26と同様に油相を除去し、酸素処理を行った。得られた触媒スラリー240mLを水素下、表8に示す種々の温度、圧力条件で水素処理を行った後、実施例16~26と同じ反応条件でベンゼン120mLを加えてベンゼンの部分水添反応を行った。ベンゼン転化率50%の時のシクロヘキセン選択率を表8にまとめて示す。
Figure JPOXMLDOC01-appb-T000008
[実施例27~29]
 実施例16の80℃で3%酸素を含む窒素を5時間バブリングする処理を行った触媒スラリー240mLを、窒素下密閉系で140℃で1時間攪拌した。得られた触媒スラリー240mLを水素下、表9に示す種々の温度、圧力条件で水素処理を行った。
(酸素処理、窒素下加熱処理と水素処理を行った触媒スラリーを用いた部分水添反応)
 上記の処理を行った触媒スラリー240mLを水素処理後に140℃まで冷却し、全圧5MPaでベンゼン120mLを加えて140℃でベンゼン部分水添反応を行った。ベンゼン転化率50%の時のシクロヘキセン選択率を表9に合わせて示す。
[比較例18~21]
 比較例14の酸素処理を行った触媒スラリー240mLを、窒素下密閉系で140℃で1時間攪拌した。得られた触媒スラリー240mLを水素下、表9に示す種々の温度、圧力条件で水素処理を行った。この触媒スラリーを用いて実施例27~29と同様の条件でベンゼン部分水添反応を行った。ベンゼン転化率50%の時のシクロヘキセン選択率を表9に合わせて示す。
Figure JPOXMLDOC01-appb-T000009
[実施例30]
 反応器内部において油水分離のできるセトリングゾーンを設置した公知の構造の部分水添反応器を用いて、ベンゼン部分水添反応を連続式で行った。この部分水添反応器に実施例16~26で調製したルテニウム触媒前駆体15gを10質量%硫酸亜鉛水溶液1200mLに添加して、ルテニウム触媒前駆体と金属塩水溶液を含む触媒前駆体スラリーを調製した。この触媒前駆体スラリーを前記部分水添反応器に仕込み、水素で十分反応器内部を置換した後、200℃、全圧5.1MPa(水素分圧3.5MPa)で4時間攪拌した。
 その後、温度を140℃まで1時間かけて冷却し、全圧を5MPaとしてから、部分水添反応器に高圧水素を供給しつつ、高速攪拌下でベンゼン1.2kg/hを連続的に供給すると共に、部分水添反応器内部のセトリングゾーンから生成したオイル相を連続的に抜き出した。こうして、シクロヘキセンを連続式で製造した。反応温度は140℃、反応圧力は全圧で5.0MPaとした。また、部分水添反応器内部のオイル相/水相(触媒スラリー)の比が1/2となるようにセトリング装置を調整した。
 上記のベンゼンの部分水添反応を連続式で行いながら、毎日同時刻に反応器から攪拌下で、水相とオイル相との混合液を冷却管を通して720mL抜き出した。抜き出した混合液について、下記に示す酸素との接触処理(第1の工程)、200℃、全圧5.1MPa(水素分圧3.5MPa)での攪拌処理(第2の工程)を行い、再調製の触媒スラリーを得た。再調製の触媒スラリーは、翌日、720mLの混合液を抜き出した直後に反応器に再充填した。
(第1の工程)
 抜き出した水相とオイル相との混合液720mLを、静置分離により、オイル相と水相とに分離した。さらに、分離して得られた水相を80℃に加熱して、1時間窒素でバブリングした。こうして、水相からオイルを完全に除去した。その後、大気圧下で80℃の水相を攪拌しながら酸素を3%含む窒素を水相に吹き込み、水相を酸素と接触させる処理を5時間行った。
(第2の工程)
 第1の工程を経た触媒スラリーを200℃、全圧5.1MPa(水素分圧3.5MPa)で1時間攪拌した(第2の工程)。
 得られた第2の工程を経た触媒スラリーを、翌日の混合液を抜き出した直後に部分水添反応器に戻した。
 セトリングゾーンから得られるオイル相を、毎日、上記水相とオイル相との混合液を抜き出す1時間前にサンプリングしてガスクロマトグラフィーにより分析し、反応成績を追跡した。
 このようにして、連続式でベンゼンの部分水添反応を行った。反応開始3000時間後の反応成績は、ベンゼン転化率48.2%、シクロヘキセン選択率76.1%であった。ベンゼンの反応器への供給量を調整してベンゼン転化率40%、50%、60%でのシクロヘキセン選択率を求めた。結果を表10に示す。
 さらに連続反応を反応開始6000時間後まで継続した際の反応成績は、ベンゼン転化率45.3%、シクロヘキセン選択率78.3%であった。ベンゼン供給量を調整してベンゼン転化率40%、50%、60%でのシクロヘキセン選択率を求めた結果を表10に示す。
[実施例31]
 実施例30と同様にして実施例16~26で調製したルテニウム触媒前駆体15gを10質量%硫酸亜鉛水溶液1200mLに添加して、ルテニウム触媒前駆体と金属塩水溶液を含む触媒前駆体スラリーを調製した。
 この触媒前駆体スラリーに還元処理を施さなかったこと以外は、全て実施例30と同様にしてベンゼン部分水添反応を連続的に行い、シクロヘキセンを連続式で製造し、反応成績を追跡した。
 反応開始3000時間後の反応成績は、ベンゼン転化率48.1%、シクロヘキセン選択率75.8%であった。ベンゼンの反応器への供給量を調整してベンゼン転化率40%、50%、60%でのシクロヘキセン選択率を求めた。結果を表10に示す。
 さらに連続反応を反応開始6000時間後まで継続した際の反応成績は、ベンゼン転化率44.7%、シクロヘキセン選択率78.0%であった。ベンゼン供給量を調整してベンゼン転化率40%、50%、60%でのシクロヘキセン選択率を求めた結果を表10に示す。
[比較例22]
 実施例30と同様にして実施例16~26で調製したルテニウム触媒前駆体15gを10質量%硫酸亜鉛水溶液1200mLに添加して、ルテニウム触媒前駆体と金属塩水溶液を含む触媒前駆体スラリーを調製した。
 この触媒前駆体スラリーに還元処理を施すことなく、実施例30と同様にしてベンゼン部分水添反応を連続的に行い、シクロヘキセンを連続式で製造した。
 第1の工程及び第2の工程については、上記のベンゼンの部分水添反応を連続式で行いながら、実施例30と同様にして反応器から水相とオイル相との混合液を抜き出し、抜き出した混合液について、実施例30と同じ酸素との接触処理(第1の工程)を行った後、170℃、全圧5.0MPa(水素分圧4.21MPa)での攪拌処理(第2の工程)を行い、再調製の触媒スラリーを得た。再調製の触媒スラリーは、翌日、720mLの混合液を抜き出した直後に反応器に再充填した。
 実施例30と同様にして反応成績を追跡した。
 反応開始3000時間後の反応成績は、ベンゼン転化率50.1%、シクロヘキセン選択率68.7%であった。ベンゼンの反応器への供給量を調整してベンゼン転化率40%、50%、60%でのシクロヘキセン選択率を求めた。結果を表10に示す。
 さらに連続反応を反応開始6000時間後まで継続した際の反応成績は、ベンゼン転化率49.5%、シクロヘキセン選択率67.5%であった。ベンゼン供給量を調整してベンゼン転化率40%、50%、60%でのシクロヘキセン選択率を求めた結果を表10に示す。
[比較例23]
 比較例22の酸素処理(第1の工程)を行わなかったこと以外は、比較例22と同様の方法により連続反応を行った。その結果、ルテニウム触媒の活性が反応経過時間と共に低下したことによりベンゼン転化率は反応経過時間と共に低下し、反応開始980時間後にほぼ0になり運転を継続することができなかった。
Figure JPOXMLDOC01-appb-T000010
[実施例32]
 塩化ルテニウム(RuCl3・3H2O)25gと塩化亜鉛65.0gを2500mLの水に撹拌下溶解した。30%の水酸化ナトリウム水溶液350mLを前記の水溶液に撹拌しながら一度に添加した。得られた混合物をさらに80℃で2時間撹拌した。冷却後、静置し、デカンテーションにより上澄み液を除去した後に黒色沈殿物を1N水酸化ナトリウム水溶液で3回洗浄した。以上の操作によりZn(OH)2を含むRu(OH)3からなる黒色沈殿物を得た。得られた黒色沈殿物に5%水酸化ナトリウム水溶液に加え全量を2500mLとし、水素加圧下、150℃、5MPaで12時間還元した。反応液を冷却後、得られた黒色沈殿をアルゴン雰囲気下で濾過、最初に30%水酸化ナトリウム水溶液で洗浄し、次に水で洗浄した。その後、真空乾燥し、11.3gのルテニウム触媒前駆体を得た。このルテニウム触媒前駆体の平均結晶子径は5.5nm、亜鉛は7.2質量%含まれていた。得られたルテニウム触媒前駆体10.0gとジルコニア(ZrO2)粉末(第一稀元素化学工業株式会社製、平均粒子径0.35μm)50.0gを10質量%硫酸亜鉛水溶液1200mLに添加して、触媒前駆体スラリーを調製した。上記触媒前駆体スラリーを水素下、200℃、全圧5MPa(水素分圧3.5MPa)の条件下で2時間攪拌し、硫酸亜鉛水溶液中にジルコニアを分散剤として含むルテニウム触媒スラリーを調製した。この触媒スラリーを用いた以外は実施例30と同様の操作を行い、ベンゼン部分水添反応を連続して行った。
 反応開始3000時間後の反応成績は、ベンゼン転化率49.3%、シクロヘキセン選択率82.1%であった。ベンゼンの反応器への供給量を調整してベンゼン転化率40%、50%、60%でのシクロヘキセン選択率を求めた。結果を表11に示す。
 さらに連続反応を反応開始6000時間後まで継続した際の反応成績は、ベンゼン転化率48.7%、シクロヘキセン選択率82.4%であった。ベンゼン供給量を調整してベンゼン転化率40%、50%、60%でのシクロヘキセン選択率を求めた結果を表11に示す。
[実施例33]
 実施例32の触媒前駆体スラリーに還元処理を施さなかったこと以外は、全て実施例32と同様にしてベンゼン部分水添反応を連続的に行い、シクロヘキセンを連続式で製造し、反応成績を追跡した。
 反応開始3000時間後の反応成績は、ベンゼン転化率49.5%、シクロヘキセン選択率81.5%であった。ベンゼンの反応器への供給量を調整してベンゼン転化率40%、50%、60%でのシクロヘキセン選択率を求めた。結果を表10に示す。
 さらに連続反応を反応開始6000時間後まで継続した際の反応成績は、ベンゼン転化率48.9%、シクロヘキセン選択率81.7%であった。ベンゼン供給量を調整してベンゼン転化率40%、50%、60%でのシクロヘキセン選択率を求めた結果を表10に示す。
[比較例24]
 実施例32の触媒前駆体スラリーの還元処理と水素処理(第2の工程)を行わなかったこと以外は、実施例32と同様の方法により連続反応を行った。その結果、反応開始3000時間後の反応成績は、ベンゼン転化率49.7%、シクロヘキセン選択率70.5%であった。ベンゼンの反応器への供給量を調整してベンゼン転化率40%、50%、60%でのシクロヘキセン選択率を求めた。結果を表11に示す。
 さらに連続反応を反応開始6000時間後まで継続した際の反応成績は、ベンゼン転化率48.4%、シクロヘキセン選択率70.1%であった。ベンゼンの反応器への供給量を調整してベンゼン転化率40%、50%、60%でのシクロヘキセン選択率を求めた。結果を表11に示す。
[比較例25]
 実施例32の触媒前駆体スラリーの還元処理と酸素処理(第1の工程)を行わなかったこと以外は、実施例32と同様の方法により連続反応を行った。その結果、ルテニウム触媒の活性が反応経過時間と共に低下したことによりベンゼン転化率が反応経過時間と共に低下し、反応開始1020時間後にほぼ0になり運転を継続することができなかった。
Figure JPOXMLDOC01-appb-T000011

 本出願は、2008年12月22日に日本国特許庁へ出願された日本特許出願(特願2008-325644)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明は、シクロオレフィンの製造方法としての産業上利用可能性を有する。本発明によれば、触媒を長期間高選択率に維持することができ、これによりシクロオレフィンの収率の低下を抑制しつつ、長期間安定にシクロオレフィンを製造することができる。
符合の説明
1       反応器
2、32    加熱用ヒーター
3、23、27 攪拌機
4、7、8、9、11、13、19、24、28、31 配管
5、12、29 ポンプ
6       分離器
10      油水分離槽
14、30   水素供給装置
15      ベンゼン供給装置
14A、15A、20A、21A、30A、33A   供給ノズル
16      ジャケット付きオイルストリッピング槽
17      ジャケット付き酸素処理器
16A、17A 加熱用ジャケット
18、25   凝縮器
20      ガス供給装置
21      酸素を含むガスを供給する装置
22      落圧弁
26      水素処理器
33      酸性水溶液供給装置
34      仕切り壁
100、200 シクロオレフィン製造装置

Claims (5)

  1.  金属塩を含有する水溶液中で、ルテニウム触媒前駆体を180℃を超えて220℃以下の温度、且つ、0.6MPa以上5MPa以下の水素分圧の範囲で保持して還元処理する工程を含む、ルテニウム触媒の調製方法。
  2.  請求項1記載の方法によりルテニウム触媒を調製し、得られたルテニウム触媒を用いて単環芳香族炭化水素を部分水添する工程を含む、シクロオレフィンの製造方法。
  3.  請求項2記載の方法によりシクロオレフィンを製造した後、
     前記ルテニウム触媒を酸素と接触させる第1の工程と、
     前記第1の工程を経た前記ルテニウム触媒を含む水相の少なくとも一部を180℃を超えて220℃以下の温度、且つ、0.6MPa以上5MPa以下の水素分圧の範囲で保持して還元処理する第2の工程と、
    を含む、シクロオレフィンの製造方法。
  4.  金属塩を含有する水溶液とルテニウム触媒及び/又はルテニウム触媒前駆体とを含む水相中で、単環芳香族炭化水素を部分水添反応に供してシクロオレフィンを製造する方法であって、
     前記水相中に含まれる前記ルテニウム触媒の少なくとも一部を酸素と接触させる第1の工程と、
     前記第1の工程を経た前記ルテニウム触媒を含む水相の少なくとも一部を180℃を超えて220℃以下の温度、且つ、0.6MPa以上5MPa以下の水素分圧の範囲で保持して還元処理する第2の工程と、
    を含む、シクロオレフィンの製造方法。
  5.  金属塩を含有する水溶液とルテニウム触媒とを含む水相が収容された反応器と、
     前記反応器に接続された油水分離槽と、
     前記油水分離槽に接続された酸素処理器と、
     前記酸素処理器に接続された水素処理器と、
    を有するシクロオレフィンの製造装置であって、
     前記反応器に単環芳香族炭化水素が供給され、その反応液の少なくとも一部と前記ルテニウム触媒を含む水相の少なくとも一部が前記油水分離槽に供給され、前記油水分離槽から流出した水相は前記酸素処理器に導入されて酸素に接触された後、前記水素処理器に導入される、シクロオレフィンの製造装置。
PCT/JP2009/006249 2008-12-22 2009-11-19 シクロオレフィン製造用ルテニウム触媒の調製方法、シクロオレフィンの製造方法、及び製造装置 WO2010073481A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP09834297.5A EP2368634B1 (en) 2008-12-22 2009-11-19 Process for preparing ruthenium catalyst for use in production of cycloolefin, and process and apparatus for producing cycloolefin
KR1020117008468A KR101300421B1 (ko) 2008-12-22 2009-11-19 시클로올레핀 제조용 루테늄 촉매의 조제 방법, 시클로올레핀의 제조 방법 및 제조 장치
US13/141,146 US9056309B2 (en) 2008-12-22 2009-11-19 Method for preparing ruthenium catalyst for producing cycloolefin and method and apparatus for producing cycloolefin
CN2009801521380A CN102264471A (zh) 2008-12-22 2009-11-19 环烯烃制造用钌催化剂的制备方法、环烯烃的制造方法以及制造装置
JP2010543780A JP5398082B2 (ja) 2008-12-22 2009-11-19 シクロオレフィン製造用ルテニウム触媒の調製方法、シクロオレフィンの製造方法、及び製造装置
US14/710,309 US10010855B2 (en) 2008-12-22 2015-05-12 Method for preparing ruthenium catalyst for producing cycloolefin and method and apparatus for producing cycloolefin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008325644 2008-12-22
JP2008-325644 2008-12-22

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/141,146 A-371-Of-International US9056309B2 (en) 2008-12-22 2009-11-19 Method for preparing ruthenium catalyst for producing cycloolefin and method and apparatus for producing cycloolefin
US14/710,309 Division US10010855B2 (en) 2008-12-22 2015-05-12 Method for preparing ruthenium catalyst for producing cycloolefin and method and apparatus for producing cycloolefin

Publications (1)

Publication Number Publication Date
WO2010073481A1 true WO2010073481A1 (ja) 2010-07-01

Family

ID=42287141

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/006249 WO2010073481A1 (ja) 2008-12-22 2009-11-19 シクロオレフィン製造用ルテニウム触媒の調製方法、シクロオレフィンの製造方法、及び製造装置

Country Status (7)

Country Link
US (2) US9056309B2 (ja)
EP (1) EP2368634B1 (ja)
JP (1) JP5398082B2 (ja)
KR (1) KR101300421B1 (ja)
CN (1) CN102264471A (ja)
TW (1) TWI415678B (ja)
WO (1) WO2010073481A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014530287A (ja) * 2011-10-21 2014-11-17 ランクセス・ドイチュランド・ゲーエムベーハー 触媒組成物およびニトリルゴムを水素化するためのそれらの使用
JP2014530932A (ja) * 2011-10-21 2014-11-20 ランクセス・ドイチュランド・ゲーエムベーハー 触媒組成物およびニトリルゴムの水素化のためのそれらの使用

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3089249B1 (en) * 2013-12-27 2018-10-10 Showa Denko K.K. Method for producing electrode catalyst for fuel cells
CN103785379B (zh) * 2014-03-04 2015-06-24 河北石焦化工有限公司 苯选择加氢制环己烯中用的催化剂的制备方法及生产设备
CN107626306A (zh) * 2017-08-29 2018-01-26 唐山中浩化工有限公司 一种单环芳烃部分加氢催化剂的制备方法
CN114618488B (zh) * 2022-05-12 2023-01-31 北京润景未来新材料科技有限公司 加氢制环己烯双金属合金微晶催化剂的制备方法
WO2024029418A1 (ja) * 2022-08-05 2024-02-08 旭化成株式会社 シクロオレフィンの製造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4734536A (en) 1985-10-03 1988-03-29 Asahi Kasei Kogyo Kabushiki Kaisha Process for producing cycloolefins
JPH09104643A (ja) * 1995-10-06 1997-04-22 Mitsubishi Chem Corp シクロオレフィンの製造方法
WO1997016249A1 (fr) 1995-11-01 1997-05-09 Asahi Kasei Kogyo Kabushiki Kaisha Procede de reactivation d'un catalyseur a base de ruthenium
JP2634828B2 (ja) 1987-12-16 1997-07-30 旭化成工業株式会社 芳香族化合物の部分核水素化方法
JP2886563B2 (ja) 1989-08-07 1999-04-26 旭化成工業株式会社 ルテニウム触媒の活性回復方法
JPH11226401A (ja) * 1998-02-17 1999-08-24 Mitsubishi Chemical Corp 水素化触媒の製造方法
JP3141944B2 (ja) 1990-02-14 2001-03-07 旭化成工業株式会社 触媒スラリーの前処理方法
EP1767270A1 (en) 2004-07-09 2007-03-28 Asahi Kasei Chemicals Corporation Catalyst for cycloolefin production and process for production

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3966636A (en) * 1974-12-19 1976-06-29 Shell Oil Company Sequential hydrogenation-oxidation-hydrogenation of rhodium and ruthenium catalysts
US4752595A (en) * 1986-12-04 1988-06-21 Mobil Oil Corporation Catalyst pretreatment for regenerated noble metal on zeolite catalyst
JPH0825919B2 (ja) * 1987-03-30 1996-03-13 旭化成工業株式会社 シクロオレフインの製造方法
TW218865B (ja) * 1992-01-24 1994-01-11 Asahi Carbon Kabushiki Kaisha
JP2866536B2 (ja) 1992-09-10 1999-03-08 三菱電機株式会社 昇圧回路
EP0659718B1 (en) * 1993-12-24 1997-06-18 Mitsubishi Chemical Corporation Method for producing a cycloolefin
JP4008527B2 (ja) * 1997-04-02 2007-11-14 旭化成ケミカルズ株式会社 シクロオレフィンとシクロアルカンの製造方法
JPH1129503A (ja) * 1997-07-08 1999-02-02 Asahi Chem Ind Co Ltd シクロオレフィンの製造方法
US6924316B2 (en) * 2001-06-18 2005-08-02 Japan National Oil Corporation Method for producing hydrocarbons by Fischer-Tropsch process
JP2010034413A (ja) 2008-07-30 2010-02-12 Hamamatsu Photonics Kk 固体レーザ装置
DE112009001776B4 (de) 2008-07-30 2021-01-21 Asahi Kasei Chemicals Corporation Verfahren zur Herstellung von Cycloolefin und Vorrichtung zur Herstellung desselben

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4734536A (en) 1985-10-03 1988-03-29 Asahi Kasei Kogyo Kabushiki Kaisha Process for producing cycloolefins
JP2634828B2 (ja) 1987-12-16 1997-07-30 旭化成工業株式会社 芳香族化合物の部分核水素化方法
JP2886563B2 (ja) 1989-08-07 1999-04-26 旭化成工業株式会社 ルテニウム触媒の活性回復方法
JP3141944B2 (ja) 1990-02-14 2001-03-07 旭化成工業株式会社 触媒スラリーの前処理方法
JPH09104643A (ja) * 1995-10-06 1997-04-22 Mitsubishi Chem Corp シクロオレフィンの製造方法
WO1997016249A1 (fr) 1995-11-01 1997-05-09 Asahi Kasei Kogyo Kabushiki Kaisha Procede de reactivation d'un catalyseur a base de ruthenium
JPH11226401A (ja) * 1998-02-17 1999-08-24 Mitsubishi Chemical Corp 水素化触媒の製造方法
EP1767270A1 (en) 2004-07-09 2007-03-28 Asahi Kasei Chemicals Corporation Catalyst for cycloolefin production and process for production

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2368634A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014530287A (ja) * 2011-10-21 2014-11-17 ランクセス・ドイチュランド・ゲーエムベーハー 触媒組成物およびニトリルゴムを水素化するためのそれらの使用
JP2014530932A (ja) * 2011-10-21 2014-11-20 ランクセス・ドイチュランド・ゲーエムベーハー 触媒組成物およびニトリルゴムの水素化のためのそれらの使用
JP2016137486A (ja) * 2011-10-21 2016-08-04 ランクセス・ドイチュランド・ゲーエムベーハー 触媒組成物およびニトリルゴムを水素化するためのそれらの使用

Also Published As

Publication number Publication date
JP5398082B2 (ja) 2014-01-29
US10010855B2 (en) 2018-07-03
TWI415678B (zh) 2013-11-21
TW201029739A (en) 2010-08-16
US9056309B2 (en) 2015-06-16
EP2368634B1 (en) 2022-06-08
EP2368634A1 (en) 2011-09-28
US20150238925A1 (en) 2015-08-27
KR101300421B1 (ko) 2013-08-26
EP2368634A4 (en) 2012-12-19
CN102264471A (zh) 2011-11-30
JPWO2010073481A1 (ja) 2012-06-07
KR20110054049A (ko) 2011-05-24
US20110257449A1 (en) 2011-10-20

Similar Documents

Publication Publication Date Title
JP5398082B2 (ja) シクロオレフィン製造用ルテニウム触媒の調製方法、シクロオレフィンの製造方法、及び製造装置
CN112044434B (zh) 一种单原子贵金属/过渡金属氧化物复合材料及其制备方法和用途
CN109759133B (zh) 原子分散的复合材料、其制备方法及其应用
JP5147053B2 (ja) シクロオレフィンの製造方法
JP5254338B2 (ja) シクロオレフィンの製造方法及び製造装置
Kuvshinov et al. Effect of pressure on the efficiency of nickel and nickel-copper catalysts in decomposition of methane
CN112569944A (zh) 一种NiCu合金加氢催化剂、其制备方法与应用
JP5306586B2 (ja) シクロヘキセンの製造方法
JP4597024B2 (ja) シクロオレフィン製造触媒およびシクロオレフィン製造方法
JP6570030B2 (ja) コア−シェル触媒およびこれを利用したアルケンの製造方法
CN109107583B (zh) 一种丁炔二醇半加氢双金属催化剂及其制备方法与应用
Wang et al. Highly efficient and stable bicomponent cobalt oxide-copper catalysts for dehydrogenation
JP6344052B2 (ja) アンモニア合成触媒およびアンモニア合成方法
JP6099202B2 (ja) 金属触媒の製造方法
JP4033976B2 (ja) シクロオレフィンの製造方法
JP2024140616A (ja) 金属担持担体の製造方法および金属担持担体前駆体
JP4033980B2 (ja) シクロオレフィンの製造方法
ŚRĘBOWATA et al. Hydrogenation by Nickel Catalysts
Rudneva et al. Dispersed Metal Alloys: Synthesis Methods and Catalytic Properties (A Review)

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980152138.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09834297

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117008468

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2010543780

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009834297

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13141146

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE