WO2010072595A1 - Phasenseparierende blockcopolymere aus unverträglichen hartblöcken und formmassen mit hoher steifigkeit - Google Patents

Phasenseparierende blockcopolymere aus unverträglichen hartblöcken und formmassen mit hoher steifigkeit Download PDF

Info

Publication number
WO2010072595A1
WO2010072595A1 PCT/EP2009/067012 EP2009067012W WO2010072595A1 WO 2010072595 A1 WO2010072595 A1 WO 2010072595A1 EP 2009067012 W EP2009067012 W EP 2009067012W WO 2010072595 A1 WO2010072595 A1 WO 2010072595A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
block
copolymer
range
blocks
Prior art date
Application number
PCT/EP2009/067012
Other languages
English (en)
French (fr)
Inventor
Konrad Knoll
Jürgen Koch
Piyada Charoensirisomboon
Daniel Wagner
Geert Verlinden
Roland Weidisch
Original Assignee
Basf Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Se filed Critical Basf Se
Priority to US13/141,840 priority Critical patent/US20110257335A1/en
Priority to EP09768080.5A priority patent/EP2382250B1/de
Priority to JP2011542759A priority patent/JP2012513512A/ja
Publication of WO2010072595A1 publication Critical patent/WO2010072595A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/02Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type
    • C08F297/04Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type polymerising vinyl aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/08Copolymers of styrene
    • C08L25/10Copolymers of styrene with conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/06Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend

Definitions

  • the invention relates to a block copolymer having a weight-average molecular weight M w of at least 100,000 g / mol, containing
  • At least one copolymer block (S / B) B comprises 20 to 60 wt .-% vinyl aromatic monomer and 40 to 80 wt .-% dienes having a glass transition temperature Tg B in the range 0 to -80 0 C,
  • the proportion by weight of the sum of all blocks S being in the range from 50 to 70% by weight, and the proportion by weight of the sum of all blocks (S / B) A and (S / B) B ranging from 30 to 50% by weight, in each case based on the block copolymer A, and mixtures thereof and their use.
  • WO 00/58380 Star-shaped block copolymers with 40% by weight hard blocks of vinylaromatic monomers and soft blocks with a random structure of vinylaromatic monomers and dienes are described in WO 00/58380. To increase the stiffness they are blended with standard polystyrene, whereby the transparency decreases. They give even with 60 weight percent polystyrene still ductile mixtures. The disadvantage of these blends is the clearly visible haze, which is unacceptable for more demanding applications and thicker parts.
  • WO 2006/074819 describes mixtures of from 5 to 50% by weight of a block copolymer A which comprises one or more copolymer blocks (B / S) A comprising in each case from 65 to 95% by weight of vinylaromatic monomers and from 35 to 5% by weight.
  • the mixtures have a stiffness in the range of 700 to a maximum of 1300 MPa.
  • EP-A 1 669 407 describes mixtures of linear block copolymers of vinylaromatic monomers and dienes of the structure (I) S1-B1-S2 and (II) B2-S3.
  • the blocks B1 and B2 can be composed exclusively of dienes or of dienes and vinylaromatic monomers.
  • the vinyl aromatic monomer / diene weight ratio for blocks B1 and B2 is preferably in the range from 0.3 to 1.5.
  • the still unpublished PCT / EP2008 / 061635 describes transparent and tough rigid molding compositions based on styrene-butadiene-block copolymer mixtures, which inter alia 0 to 30 wt .-% of a block copolymer, the at least one copolymer block (B / S) A from in each case 65 to 95% by weight of vinylaromatic monomers and 35 to 5% by weight of dienes and a glass transition temperature TgA in the range from 40 to 90 ° C.
  • copolymer block (B / S) B from in each case 1 to 60% by weight vinylaromatic monomers and 99 to 40 wt .-% dienes and a glass transition temperature TgB in the range of -100 to 0 0 C, may contain.
  • polystyrene and its mixtures with styrene-butadiene block copolymers have not been suitable or only conditionally suitable for these applications.
  • the market has so far been covered by polyvinyl chloride (PVC), in part polyethylene terephthalate (PET) or very expensive specialty polymers.
  • PVC polyvinyl chloride
  • PET polyethylene terephthalate
  • the object of the invention was to find block copolymers which are processable with polystyrenes to transparent and tough-rigid molding compositions.
  • the mixtures should be able to be processed into molding compositions having high rigidity and in particular have a modulus of elasticity (modulus of elasticity) of more than 1900 to 2500 MPa in combination with a certain ductility in the tensile test.
  • block copolymers according to the invention containing one or more blocks S / B with a glass transition temperature in the range 5 to 30 0 C, form in molding compositions containing polystyrene or Polystyolblöcke polymers, the soft phase and a comparison with conventional molding materials comprising block copolymers having Butadiene-rich blocks have a greatly increased yield stress and a higher modulus of elasticity while ductility.
  • the block copolymer according to the invention has a weight-average molecular weight M w of at least 100,000 g / mol and contains
  • At least one copolymer block (S / B) B comprising from 20 to 60% by weight of vinylaromatic monomers and from 40 to 80% by weight of dienes having a glass transition temperature TgB in the range from 0 to -80 ° C,
  • the proportion by weight of the sum of all blocks S being in the range from 50 to 70% by weight, and the proportion by weight of the sum of all blocks (S / B) A and (S / B) B ranging from 30 to 50% by weight, in each case based on the block copolymer A, is.
  • Suitable vinylaromatic monomers are, for example, styrene, alpha-methylstyrene, ring-alkylated styrenes such as p-methylstyrene or tert-butylstyrene, or 1,1-diphenylethylene or mixtures thereof.
  • styrene is used.
  • Preferred dienes are butadiene, isoprene, 2,3-dimethylbutadiene, 1, 3-pentadiene, 1, 3-hexadiene or piperylene or mixtures thereof. Particularly preferred are butadiene and isoprene.
  • the weight-average molar mass M w of the block copolymer is preferably in the range from 250,000 to 350,000 g / mol.
  • the blocks S consist of styrene units.
  • the control of the molecular weight is carried out via the ratio of monomer to initiator amount.
  • initiator can also be added several times after the monomer has already been metered in, then a bimodal or multimodal distribution is obtained.
  • the weight-average molecular weight Mw is set via the polymerization temperature and / or the addition of regulators.
  • the glass transition temperature of the copolymer block (S / B) A is preferably in the range of 5 to 20 ° C.
  • the glass transition temperature is influenced by the comonomer composition and distribution and can be determined by Differential Scanning Calorimetry (DSC) or Differential Thermal Analysis (DTA) or calculated according to the Fox equation. As a rule, the glass transition temperature is determined by DSC according to ISO 11357-2 at a heating rate of 20 K / min.
  • the copolymer block (S / B) A preferably consists of 65 to 75% by weight of styrene and 25 to 35% by weight of butadiene.
  • block copolymers which contain one or more copolymer blocks (S / B) A of vinylaromatic monomers and statically distributed dienes. These can be obtained, for example, by anionic polymerization with lithium alkyls in the presence of randomizers such as tetrahydrofuran or potassium salts.
  • Preference is given to using potassium salts having a ratio of anionic initiator to potassium salt in the range from 25: 1 to 60: 1.
  • Particular preference is given to cyclohexane-soluble alkoxides, such as potassium tert-butyl amylate, which are used in a lithium-potassium ratio of preferably from 30: 1 to 40: 1.
  • the proportion of 1,2-linkages of the butadiene units in the range of 8 to 15%, based on the sum of the 1, 2, 1, 4 cis and 1, 4-trans linkages.
  • the weight-average molar mass M w of the copolymer block (S / B) A is generally in the range from 30,000 to 200,000 g / mol, preferably in the range from 50,000 to 100,000 g / mol.
  • random copolymers (S / B) A can also be prepared by free-radical polymerization.
  • the blocks (S / B) A form in the molding compound at room temperature (23 ° C) from a semi-hard phase, which are responsible for the high ductility and elongation at break, ie high elongation at low strain rate.
  • the glass transition temperature of the copolymer block (S / B) B is preferably in the range from -60 to -20 0 C.
  • the glass transition temperature is influenced by the comonomer composition and distribution, and may (by differential scanning calorimetry (DSC) or differential thermal analysis DTA ) or calculated according to the Fox equation. As a rule, the glass transition temperature is determined by DSC according to ISO 11357-2 at a heating rate of 20 K / min.
  • the copolymer block (S / B) B preferably consists of 30 to 50% by weight of styrene and 50 to 70% by weight of butadiene.
  • (S / B) B of vinylaromatic monomers and statistically distributed dienes can be obtained, for example, by anionic polymerization with lithium alkyls in the presence of randomizers such as tetrahydrofuran or potassium salts. Preference is given to using potassium salts having a ratio of anionic initiator to potassium salt in the range from 25: 1 to 60: 1. As a result, at the same time a low proportion of 1,2-linkages of the butadiene units can be achieved.
  • the proportion of 1,2-linkages of the butadiene units in the range of 8 to 15%, based on the sum of the 1, 2, 1, 4 cis and 1, 4-trans linkages.
  • random copolymers (S / B) B can also be prepared by free-radical polymerization.
  • the soft-phase forming blocks B and / or (S / B) B may be divided uniformly over their entire length or divided into sections of different composition. Preferred are portions with diene (B) and (S / B) B, which can be combined in different sequences. It is possible to have gradients with a continuously changing monomer ratio, where the gradient can start with pure diene or a high diene content and the styrene content can rise to 60%. The sequence of two or more gradient sections is also possible. Gradients can be generated by under or overdosing the randomizer.
  • the weight-average molar mass M w of the copolymer block (S / B) B is generally in the range from 50,000 to 100,000 g / mol, preferably in the range from 10,000 to 70,000 g / mol.
  • the weight proportion of the sum of all blocks S is in the range of 50 to 70 wt .-%, and the weight fraction of the sum of all blocks (S / B) A and (S / B) B in the range of 30 to 50 wt .-%, in each case based on the block or graft copolymer.
  • blocks (S / B) A and (S / B) B are separated from each other by a block S.
  • the weight ratio of the copolymer blocks (S / B) A to the copolymer blocks (S / B) B is preferably in the range of 80:20 to 50:50.
  • block copolymers having linear structures in particular those having the block sequence SI (S / B) A-S2 (S / B) B-S3 (tetrablock copolymers), where Si and S2 each represent a block S.
  • tetrablock copolymers of the structure SI- (S / B) A- (S / B) B-S3 which comprise one block (S / B) A of from 70 to 75% by weight of styrene units and from 25 to 30% by weight.
  • Butadiene units and a block (S / B) B from 30 to 50 wt .-% of styrene units and 50 to 70 wt .-% butadiene units.
  • the glass transition temperatures can be determined by DSC or calculated using the Gordon-Taylor equation, and are in this composition in the range of 1 to 10 0. C.
  • the weight of the sum of the blocks Si and S 2, relative to the tetrablock copolymer is preferably 50 to 67% by weight.
  • the total molecular weight is preferably in the range of 150,000 to 350,000 g / mol, more preferably in the range of 200,000 to 300,000 g / mol. Due to the molecular architecture, elongations at break of up to 300% with a styrene content of more than 85% can be achieved here.
  • Block copolymers composed of blocks S, (S / B) A and (S / B) B for example tetrablock copolymers of the structure SI- (S / B) A- (S / B) B-S3, form a co-polymer. continuous morphology.
  • three different phases are combined in one polymer molecule.
  • the soft phase formed from the (S / B) ⁇ blocks imparts impact resistance in the molding composition and is suitable for intercepting cracks (crazes).
  • the semi-hard phase formed by the blocks (S / B) A is suitable for high ductility. and elongation at break. The modulus of elasticity and the yield stress can be adjusted via the proportion of the hard phase formed from the blocks S and, if appropriate, mixed polystyrene.
  • the block copolymers according to the invention generally form nanodispersed, multiphase, highly transparent mixtures with standard polystyrene.
  • the block copolymer according to the invention is suitable as component K1) in transparent, viscous-molding compounds with polystyrene as component K2) and optionally with a block copolymer K3 other than K1).
  • a preferred mixture consists of the components
  • K1 20 to 95% by weight of a block copolymer A as described above, and K2) 5 to 80% by weight of standard polystyrene (GPPS) or impact polystyrene (HIPS), and
  • K3 0 to 50 wt .-%, preferably 10 to 30 wt .-% of a different from K1 block copolymers of vinyl aromatic monomers and dienes.
  • the soft phase and the hard phase is formed from at least two different domains, consisting of polystyrene or a polystyrene block and the block (S / B) A of Block or graft copolymers of component K1) exist.
  • Component K1 used is the above-described block or graft copolymer according to the invention.
  • Component K2 used is a styrene polymer, preferably standard polystyrene (GPPS) or impact polystyrene (HIPS). Due to the preservation of the transparency, particular preference is given to standard polystyrene as an oil-free or oil-containing variant.
  • GPPS polystyrene
  • HIPS impact polystyrene
  • Suitable standard polystyrenes are, for example, polystyrene 158 K and polystyrene 168 N from BASF SE or their oil-containing variants polystyrene 143 E or polystyrene 165 H.
  • Component K3 is a weight average molecular weight polystyrenes with a weight average molecular weight M w in the range of 220,000 to 500,000 g / mol.
  • component K3 a block copolymer of vinylaromatic monomers and dienes different from K1) can be used.
  • a component K3 a styrene-butadiene block copolymers having a soft block acting as a block B having a glass transition temperature below -30 0 C.
  • the mixture according to the invention preferably contains 5 to 45 wt .-%, particularly preferably 20 to 40 wt .-% of the block copolymer K3.
  • Particularly suitable block copolymers K3) are rigid block copolymers which consist of 60 to 90% by weight of vinylaromatic monomers and 10 to 40% by weight of diene, based on the total block copolymer, and of predominantly vinylaromatic monomers, in particular styrene-containing hard blocks S and Diene, such as butadiene and isoprene containing soft blocks B or S / B are constructed.
  • Particularly preferred are block copolymers with 65 to 85 wt .-%, particularly preferably 70- 80 wt .-% styrene and 15 to 35 wt .-%, particularly preferably 20-30 wt .-% diene.
  • copolymer blocks (S / B) B of the block copolymer K3) preferably have a statistical distribution of the vinylaromatic monomers and dienes.
  • Preferred block copolymers K3) have a star-shaped structure with at least two terminal hard blocks Si and S2 having different molecular weights of vinylaromatic monomers, the proportion of the sum of the hard blocks S being at least 40% by weight, based on the total block copolymer B. Also possible are linear structures such as (S / B) B -S 2 or Si (S / B) B -S 2 or Si (B-> S) n
  • the terminal blocks Si preferably have a number-average molar mass M n in the range from 5,000 to 30,000 g / mol and S2 a number-average molar mass M n in the range from 35,000 to 150,000 g / mol.
  • block copolymers K3 having at least two blocks Si and S2 of vinylaromatic monomers and at least one intervening random block (S / B) B of vinylaromatic monomers and dienes, the proportion of hard blocks being more than 40% by weight, based on the total block copolymer and the 1,2-vinyl content in soft block S / B is below 20%, as described in WO 00/58380.
  • the block copolymers K3) are commercially available, for example, under the trade names Styrolux® 3G 33 / Styroclear® GH 62, Styrolux® 693 D, Styrolux® 684, Styroflex® 656 C, Styrolux® 3G55, K-Resin® 03, K-Resin ® 04, K-Resin® 05, K-Resin® 10, K-Resin® KK38, K-Resin® 01, K-Resin® XK 40, Kraton® D 1401 P, Finaclear 520, 530, 540, 550; Asaflex® 805, 810, 825, 835, 840, 845 Asaflex® i-series, Clearen® 530 L and 730 L available.
  • plasticizer E 0 to 6 wt .-%, preferably 2 to 4 wt .-% of a homogeneously miscible oil or oil mixture, in particular white oil, vegetable oils or aliphatic esters such as dioctyl adipate or mixtures thereof can be used.
  • white oil vegetable oils or aliphatic esters such as dioctyl adipate or mixtures thereof
  • medicinal white oil is used.
  • the mixtures according to the invention are highly transparent and are particularly suitable for the production of films, in particular thermoforming films for blister packs and containers or moldings for the packaging of electronic components, in particular extruded hollow profiles for integrated circuits (IC). Furthermore, they are suitable for the production of tough-stiff injection-molded parts.
  • the glass transition temperatures were determined by Differential Scanning Calorimetry (DSC) according to ISO 11357-2 at a heating rate of 20 K / min
  • the molecular weights were determined by gel permeation chromatography (GPC) in tetrahydrofuran (THF) at 23 ° C. by means of UV detection and evaluated with polystyrene as standard.
  • Modulus of elasticity, yield stress and elongation at break were determined according to ISO 527.
  • the amount of styrene (420 g of styrene 1) required for the preparation of the first S-block was added and polymerized.
  • the further blocks were added according to the structure and composition given in Table 1 by sequential addition of the appropriate amounts of styrene or styrene and butadiene and respective full conversion.
  • styrene and butadiene were added simultaneously in several portions and the maximum temperature was limited to 77 ° C. by countercooling.
  • the living polymer chains were terminated by addition of 0.83 ml of isopropanol, acidified with 1.0% CO2 / 0.5% water, based on solid, and a stabilizer solution (0.2% Sumilizer GS and 0.2% Irganox 1010, in each case based on solid) was added.
  • a stabilizer solution (0.2% Sumilizer GS and 0.2% Irganox 1010, in each case based on solid) was added.
  • the cyclohexane was evaporated in a vacuum oven.
  • the weight-average molecular weight M w for the block copolymers K1-1 to K1-5 is in each case 300,000 g / mol.
  • the parts by weight of the block copolymers K1-3 or K1-4 and the components K2 (polystyrene 158 K) given in Table 2 were mixed on a 16 mm twin-screw extruder at 200 to 230 ° C. and pressed into plates.
  • the mixing ratios and mechanical properties of the plates are summarized in Table 2. Unless stated otherwise, the component specified in the header was used.
  • Table 1 Structure and composition of the block copolymers in parts by weight

Abstract

Ein Blockcopolymer mit einem gewichtsmittleren Molekulargewicht Mw von mindestens 100.000 g/mol, enthaltend a) mindestens einen Block S aus 95 bis 100 Gew.-% vinylaromatischen Monomeren und 0 bis 5 Gew.-% Dienen und b) mindestens einen Copolymerblock (S/B)A aus 63 bis 80 Gew.-% vinylaromatischen Monomeren und 20 bis 37 Gew.-% Dienen mit einer Glasübergangstemperatur TgA im Bereich von 5 bis 30°C, und c) mindestens einen Copolymerblock (S/B)B aus 20 bis 60 Gew.-% vinylaromatischen Monomeren und 40 bis 80 Gew.-% Dienen mit einer Glasübergangstemperatur TgB im Bereich von 0 bis -80°C, wobei der Gewichtsanteil der Summe aller Blöcke S im Bereich von 50 bis 70 Gew.-%, und der Gewichtsanteil der Summe aller Blöcke (S/B)A und (S/B)B im Bereich von 30 bis 50 Gew.-%, jeweils bezogen auf das Blockcopolymer A, liegt, sowie Mischungen davon und deren Verwendung.

Description

Phasenseparierende Blockcopolymere aus unverträglichen Hartblöcken und Formmassen mit hoher Steifigkeit
Beschreibung
Die Erfindung betrifft ein Blockcopolymer mit einem gewichtsmittleren Molekulargewicht Mw von mindestens 100.000 g/mol, enthaltend
a) mindestens einen Block S aus 95 bis 100 Gew.-% vinylaromatischen Monome- ren und 0 bis 5 Gew.-% Dienen und
b) mindestens einen Copolymerblock (S/B)A aus 63 bis 80 Gew.-% vinylaromatischen Monomeren und 20 bis 37 Gew.-% Dienen mit einer Glasübergangstemperatur TgA im Bereich von 5 bis 300C, und
c) mindestens einen Copolymerblock (S/B)B aus 20 bis 60 Gew.-% vinylaromatischen Monomeren und 40 bis 80 Gew.-% Dienen mit einer Glasübergangstemperatur TgB im Bereich von 0 bis -800C,
wobei der Gewichtsanteil der Summe aller Blöcke S im Bereich von 50 bis 70 Gew.-%, und der Gewichtsanteil der Summe aller Blöcke (S/B)A und (S/B)B im Bereich von 30 bis 50 Gew.-%, jeweils bezogen auf das Blockcopolymer A, liegt, sowie Mischungen davon und deren Verwendung.
Die US 3,639,517 beschreibt sternförmig verzweigte Styrol-Butadien-Blockcopolymere mit 75 bis 95 Gewichtsprozent endständigen Blöcken aus vinylaromatischen Monomeren und 5 bis 30 Gewichtsprozent elastomeren, überwiegend aus konjugierten Dieneinheiten bestehender Blöcke. Sie können mit Standardpolystyrol zu hochtransparente Mischungen abgemischt werden. Mit zunehmendem Anteil Polystyrol erhöht sich der E-Modul auf Kosten der Zähigkeit. Mischungen mit etwa 40 Gewichtsprozent Polystyrol sind für die meisten Anwendungen schon zu spröde. Man kann meist nur 20 bis maximal 30 Gewichtsprozent Polystyrol bei noch akzeptabler Duktilität zumischen.
Sternförmige Blockcopolymere mit 40 Gew.-% Hartblöcken aus vinylaromatischen Mo- nomeren und Weichblöcken mit statistischem Aufbau aus vinylaromatischen Monomeren und Dienen sind in WO 00/58380 beschrieben. Zur Erhöhung der Steifigkeit werden sie mit Standardpolystyrol abgemischt, wobei die Transparenz abnimmt .Sie ergeben selbst mit 60 Gewichtsprozent Polystyrol noch duktile Mischungen. Der Nachteil dieser Abmischungen ist die deutlich sichtbare Trübung, die für anspruchsvollere An- Wendungen und dickere Teile unakzeptabel ist. Die WO 2006/074819 beschreibt Mischungen von 5 bis 50 Gew.-% eines Blockcopo- lymeren A, welches ein oder mehrere Copolymerblöcke (B/S)A aus jeweils 65 bis 95 Gew.-% vinylaromatischen Monomeren und 35 bis 5 Gew.-% Dienen und einer Glasübergangstemperatur TgA im Bereich von 40° bis 900C enthält, und 95 bis 50 Gew.-% eines Blockcopolymeren B, welches mindestens einen Hartblock S aus vinylaromatischen Monomeren und ein oder mehrere Copolymerblöcke (B/S)B aus jeweils 20 bis 60 Gew.-% vinylaromatischen Monomeren und 80 bis 40 Gew.-% Dienen und einer Glastemperatur TgB im Bereich von -70° bis 00C enthält, zur Herstellung von Schrumpffolien. Die Mischungen haben eine Steifigkeit im Bereich von 700 bis maximal 1300 MPa.
Die EP-A 1 669 407 beschreibt Mischungen aus linearen Blockcopolymeren aus vinylaromatischen Monomeren und Dienen der Struktur (I) S1-B1-S2 und (II) B2-S3. Die Blöcke B1 und B2 können ausschließlich aus Dienen oder aus Dienen und vinylaromatischen Monomeren aufgebaut sein. Das Gewichtsverhältnis vinylaromatisches Mono- mer/Dien liegt für die Blöcke B1 und B2 bevorzugt im Bereich von 0,3 bis 1 ,5.
Die noch unveröffentlichte PCT/EP2008/061635 beschreibt transparente und zäh steife Formmassen auf Basis von Styrol-Butadien-Blockcopolymer-Mischungen, welche unter anderem 0 bis 30 Gew.-% eines Blockcopolymeren, welches mindestens einen Copo- lymerblock (B/S)A aus jeweils 65 bis 95 Gew.-% vinylaromatischen Monomeren und 35 bis 5 Gew.-% Dienen und einer Glasübergangstemperatur TgA im Bereich von 40 bis 90 C und mindestens einen Copolymerblock (B/S)B aus jeweils 1 bis 60 Gew.-% vinylaromatischen Monomeren und 99 bis 40 Gew.-% Dienen und einer Glasübergangstemperatur TgB im Bereich von -100 bis 00C, enthalten können.
Durch Abmischen von herkömmlichen Styrol-Butadien-Blockcopolymeren, beispielsweise Styrolux® mit Polystyrol kann je nach Mischungsverhältnis ein beliebiger Elastizitätsmodul von bis zu über 3000 MPa eingestellt werden. Erfahrungsgemäß bricht die Duktilität bei einem Elastizitätsmodul von über 1900 MPa jedoch völlig ein. Die Mi- schungen weisen dann ein ähnliches mechanisches Verhalten wie Polystyrol selbst auf und bieten gegenüber diesem keine Vorteile mehr.
Für Blisterverpackungen, tiefgezogene Behältnisse und Becher, Verpackungsmaterialien für elektronische Bauteile, wie extrudierte Hohlprofile, die als Transportröhren für Integrierte Schaltkreise eingesetzt werden, ist eine Kombination von hoher Steifigkeit und Duktilität in Verbindung mit sicherem Überschreiten der Streckspannung und guter Transparenz erforderlich. Für diese Anwendungen waren bisher Polystyrol und dessen Mischungen mit Styrol-Butadien-Blockcopolymeren nicht oder nur bedingt geeignet. Der Markt wurde bisher von Polyvinylchlorid (PVC), teilweise Polyethylenterephthala- ten (PET) oder sehr teuren Spezialpolymeren abgedeckt. Aufgabe der Erfindung war es, Blockcopolymere zu finden, die mit Polystyrolen zu transparenten und zäh-steifen Formmassen verarbeitbar sind. Die Mischungen sollten zu Formmassen mit hoher Steifigkeit verarbeitbar sein und insbesondere einen Elastizitätsmodul (E-Modul) von mehr als 1900 bis 2500 MPa in Kombination mit einer ge- wissen Duktilität im Zugversuch aufweisen.
Demgemäß wurde das oben genannten Blockcopolymere, sowie Mischungen mit weiteren Styrol polymeren gefunden.
Überraschend wurde nun gefunden, dass das erfindungsgemäße Blockcopolymere, das einen oder mehrere Blöcke S/B mit einer Glasübergangstemperatur im Bereich von 5 bis 300C enthält, in Formmassen aus Polystyrol oder Polystyolblöcke enthaltenden Polymeren die Weichphase bilden und eine gegenüber herkömmlichen Formmassen aus Blockcopolymeren mit butadienreichen Blöcken eine stark erhöhte Streck- Spannung und einen höheren E-Modul bei gleichzeitiger Duktilität aufweisen.
Das erfindungsgemäße Blockcopolymer weist ein gewichtsmittleres Molekulargewicht Mw von mindestens 100.000 g/mol auf und enthält
a) mindestens einen Block S aus 95 bis 100 Gew.-% vinylaromatischen Monomeren und 0 bis 5 Gew.-% Dienen und
b) mindestens einen Copolymerblock (S/B)A aus 63 bis 80 Gew.-% vinylaromatischen Monomeren und 20 bis 37 Gew.-% Dienen mit einer Glasübergangstem- peratur TgA im Bereich von 5 bis 300C, und
c) mindestens einen Copolymerblock (S/B)B aus 20 bis 60 Gew.-% vinylaromatischen Monomeren und 40 bis 80 Gew.-% Dienen mit einer Glasübergangstemperatur TgB im Bereich von 0 bis -80°C,
wobei der Gewichtsanteil der Summe aller Blöcke S im Bereich von 50 bis 70 Gew.-%, und der Gewichtsanteil der Summe aller Blöcke (S/B)A und (S/B)B im Bereich von 30 bis 50 Gew.-%, jeweils bezogen auf das Blockcopolymer A, liegt.
Als vinylaromatische Monomere kommen beispielsweise Styrol, alpha-Methylstyrol, kernalkylierte Styrole wie p-Methylstyrol oder Tertiärbutylstyrol, oder 1 ,1- Diphenylethylen oder Mischungen davon in Betracht. Bevorzugt wird Styrol eingesetzt.
Bevorzugte Diene sind Butadien, Isopren, 2,3-Dimethylbutadien, 1 ,3-Pentadien, 1 ,3- Hexadien oder Piperylen oder deren Mischungen. Besonders bevorzugt sind Butadien und Isopren. Die gewichtsmittlere Molmasse Mw des Blockcopolymeren liegt bevorzugt im Bereich von 250.000 bis 350.000 g/mol.
Bevorzugt bestehen die Blöcke S aus Styroleinheiten. Bei den durch anionische PoIy- merisation hergestellten Polymeren erfolgt die Kontrolle der Molmasse über das Verhältnis von Monomer- zu Initiatormenge. Initiator kann aber auch mehrfach nach bereits erfolgter Monomerdosierung zugegeben werden, dann erhält man eine bi- oder multimodale Verteilung. Bei radikalisch hergestellten Polymeren wird das gewichtsmittlere Molekulargewicht Mw über die Polymerisationstemperatur und/oder den Zusatz von Reglern eingestellt.
Die Glasübergangstemperatur des Copolymerblocks (S/B)A liegt bevorzugt im Bereich von 5 bis 200C. Die Glasübergangstemperatur wird durch die Comonomer- Zusammensetzung und -Verteilung beeinflusst und kann durch Differential Scanning Calorimetrie (DSC) oder Differential Thermal Analysis (DTA) bestimmt oder gemäß der Fox-Gleichung berechnet werden. In der Regel wird die Glasübergangstemperatur mit DSC nach ISO 11357-2 bei einer Aufheizrate von 20K/min ermittelt.
Bevorzugt besteht der Copolymerblock (S/B)A aus 65 bis 75 Gew.-% Styrol und 25 bis 35 Gew.-% Butadien.
Bevorzugt werden Blockcopolymere, welche ein oder mehrere Copolymerblöcke (S/B)A aus vinylaromatischen Monomeren und Dienen mit statistischer Verteilung enthalten. Diese können beispielsweise durch anionische Polymerisation mit Lithiumalkylen in Gegenwart von Randomizern wie Tetrahydrofuran oder Kaliumsalzen erhalten werden. Bevorzugt werden Kaliumsalze mit einem Verhältnis von anionischem Initiator zu Kaliumsalz im Bereich von 25:1 bis 60:1 verwendet. Besonders bevorzugt sind cyclohe- xanlösliche Alkoholate wie Kaliumtertiärbutylamylat, die in einem Lithium-Kalium- Verhältnis von bevorzugt 30:1 bis 40:1 eingesetzt werden. Dadurch kann gleichzeitig ein niedriger Anteil an 1 ,2-Verknüpfungen der Butadieneinheiten erreicht werden.
Bevorzugt liegt der Anteil der 1 ,2-Verknüpfungen der Butadieneinheiten im Bereich von 8 bis 15%, bezogen auf die Summe der 1 ,2-, 1 ,4-cis- und 1 ,4-trans-Verknüpfungen.
Die gewichtsmittlere Molmasse Mw des Copolymerblocks (S/B)A liegt in der Regel im Bereich von 30.000 bis 200.000 g/mol, bevorzugt im Bereich von 50.000 bis 100.000 g/mol.
Statistische Copolymere (S/B)A können aber auch durch radikalische Polymerisation hergestellt werden. Die Blöcke (S/B)A bilden in der Formmasse bei Zimmertemperatur (23°C) eine halbharte Phase aus, welche für die hohe Duktilität und Reißdehnungen, d.h. hohe Dehnung bei geringer Dehngeschwindigkeit, verantwortlich sind.
Die Glasübergangstemperatur des Copolymerblocks (S/B)B liegt bevorzugt im Bereich von -60 bis -200C. Die Glasübergangstemperatur wird durch die Comonomer- Zusammensetzung und -Verteilung beeinflusst und kann durch Differential Scanning Calorimetrie (DSC) oder Differential Thermal Analysis (DTA) bestimmt oder gemäß der Fox-Gleichung berechnet werden. In der Regel wird die Glasübergangstemperatur mit DSC nach ISO 11357-2 bei einer Aufheizrate von 20K/min ermittelt.
Bevorzugt besteht der Copolymerblock (S/B)B aus 30 bis 50 Gew.-% Styrol und 50 bis 70 Gew.-% Butadien.
Bevorzugt werden Blockcopolymere , welche ein oder mehrere Copolymerblöcke
(S/B)B aus vinylaromatischen Monomeren und Dienen mit statistischer Verteilung enthalten. Diese können beispielsweise durch anionische Polymerisation mit Lithiumalky- len in Gegenwart von Randomizern wie Tetrahydrofuran oder Kaliumsalzen erhalten werden. Bevorzugt werden Kaliumsalze mit einem Verhältnis von anionischem Initiator zu Kaliumsalz im Bereich von 25:1 bis 60:1 verwendet. Dadurch kann gleichzeitig ein niedriger Anteil an 1 ,2-Verknüpfungen der Butadieneinheiten erreicht werden.
Bevorzugt liegt der Anteil der 1 ,2-Verknüpfungen der Butadieneinheiten im Bereich von 8 bis 15%, bezogen auf die Summe der 1 ,2-, 1 ,4-cis- und 1 ,4-trans-Verknüpfungen.
Statistische Copolymere (S/B)B können aber auch durch radikalische Polymerisation hergestellt werden.
Die eine Weichphase bildenden Blöcke B und/oder (S/B)B können über ihre gesamte Länge einheitlich oder in unterschiedlich zusammengesetzte Abschnitte aufgeteilt sein. Bevorzugt sind Abschnitte mit Dien (B) und (S/B)B, die in unterschiedlichen Abfolgen kombiniert werden können. Möglich sind Gradienten mit sind kontinuierlich änderndem Monomerverhältnis, wobei der Gradient mit reinem Dien oder einem hohen Dienanteil beginnen kann und der Styrolanteil bis 60% ansteigen kann. Auch die Abfolge von zwei oder mehreren Gradientenabschnitten ist möglich. Gradienten können durch Unteroder Überdosierung des Randomizers erzeugt werden. Bevorzugt ist die Einstellung eines Lithium-Kalium-Verhältnisses von größer als 40:1 oder bei Verwendung von Tetrahydrofuran (THF) als Randomizer eine THF-Menge von weniger als 0,25 Vol-% bezogen auf das Polymerisationslösungsmittel, eine Alternative ist die bezogen auf die Polymerisationsgeschwindigkeit langsame, gleichzeitige Dosierung von Dien und Vi- nylaromat, wobei das Monomerverhältnis entsprechend dem angestrebten Zusammensetzungsprofil entlang des Weichblocks gesteuert wird. Die gewichtsmittlere Molmasse Mw des Copolymerblocks (S/B)B liegt in der Regel im Bereich von 50.000 bis 100.000 g/mol, bevorzugt im Bereich von 10.000 bis 70.000 g/mol.
Der Gewichtsanteil der Summe aller Blöcke S liegt im Bereich von 50 bis 70 Gew.-%, und der Gewichtsanteil der Summe aller Blöcke (S/B)A und (S/B)B im Bereich von 30 bis 50 Gew.-%, jeweils bezogen auf das Block- oder Pfropfcopolymer.
Bevorzugt sind Blöcke (S/B)A und (S/B)B durch einen Block S voneinander getrennt.
Das Gewichtsverhältnis der Copolymerblöcke (S/B)A ZU den Copolymerblöcken (S/B)B liegt bevorzugt im Bereich von 80 : 20 bis 50 : 50.
Bevorzugt werden Blockcopolymere mit linearen Strukturen, insbesondere solche mit der Blockfolge SI-(S/B)A-S2-(S/B)B-S3 (Tetrablockcopolymere), wobei Si und S2 jeweils für einen Block S stehen.
Diese zeichnen sich durch einen hohem E-Modul von1500 bis 2000 MPa, eine hohe Streckspannung im Bereich von 35 bis 42 MPa und einer Bruchdehnung von über 30% in Mischungen mit einem Polystyrolanteil von über 80 Gew.-%. Kommerzielle SBS- Blockcopolymere mit diesem Polystyrolanteil zeigen zum Vergleich eine Bruchdehnung von nur 3-30%.
Besonders bevorzugt werden Tetrablockcopolymere der Struktur SI-(S/B)A-(S/B)B-S3, welche einen Block (S/B)A aus 70 bis 75 Gew.-% Styroleinheiten und 25 bis 30 Gew.-% Butadieneinheiten und einen Block (S/B)B aus 30 bis 50 Gew.-% Styroleinheiten und 50 bis 70 Gew.-% Butadieneinheiten enthalten. Die Glasübergangstemperaturen können mit DSC bestimmt oder nach der Gordon-Taylor-Gleichung berechnet werden und liegen bei dieser Zusammensetzung im Bereich von 1 bis 100C. Der Gewichtsanteil der Summe der Blöcke Si und S2, bezogen auf das Tetrablockcopolymer, beträgt bevorzugt 50 bis 67 Gew.-%. Das Gesamtmolekulargewicht liegt vorzugsweise im Bereich von 150.000 bis 350.000 g/mol, besonders bevorzugt im Bereich von 200.000 bis 300.000 g/mol. Bedingt durch die molekulare Architektur können hier Bruchdehnungen von bis zu 300% bei einem Styrolanteil von über 85% erreicht werden.
Blockcopolymere, welche aus den Blöcken S, (S/B)A und (S/B)B aufgebaut sind, beispielsweise Tetrablockcopolymere der Struktur SI-(S/B)A-(S/B)B-S3, bilden eine Co- kontinuierliche Morphologie aus. Hier sind drei verschiedene Phasen in einem PoIy- mermolekül vereint. Die aus den (S/B)ß-Blöcken gebildete Weichphase vermittelt in der Formmasse die Schlagzähigkeit und eignet sich zum Abfangen von Rissbildungen (Crazes). Die aus den Blöcken (S/B)A gebildete halbharte Phase ist für die hohe Duktili- tät und Reißdehnungen verantwortlich. Über den Anteil der aus den Blöcken S und gegebenenfalls zugemischtem Polystyrol gebildeten Hartphase kann der E-Modul und die Streckspannung eingestellt werden.
Das erfindungsgemäße Blockcopolymere bilden in der Regel mit Standardpolystyrol nanodisperse, mehrphasige hochtransparente Mischungen aus.
Das erfindungsgemäße Blockcopolymer eignet sich als Komponente K1) in transparenten, zäh-steifen Formmassen mit Polystyrol als Komponente K2) und ggf. mit einen von K1 verschiedenen-Blockcopolymeren K3).
Eine bevorzugte Mischung besteht aus den Komponenten
K1 ) 20 bis 95 Gew.-% eines Blockcopolymeren A wie oben beschrieben, und K2) 5 bis 80 Gew.-% Standardpolystyrol (GPPS) oder Schlagzähpolystyrol (HIPS), und
K3) 0 bis 50 Gew.-%, bevorzugt 10 bis 30 Gew.-% eines von K1 verschiedenen Blockcopolymeren B aus vinylaromatischen Monomeren und Dienen.
In Formmassen mit dieser Mischung bildet der Block mit einer Glasübergangstemperatur unter -300C der Komponenten K3) die Weichphase und die Hartphase wird aus mindestens zwei verschiedenen Domänen gebildet, welche aus Polystyrol bzw. einem Polystyrolblock und dem Block (S/B)A des Block- oder Pfropfcopolymeren der Komponente K1 ) bestehen.
Komponente K1 )
Als Komponente K1) wird das oben beschriebene, erfindungsgemäße Block- oder Pfropfcopolymer eingesetzt.
Komponente K2)
Als Komponente K2) wird en Styrolpolymer, vorzugsweise Standardpolystyrol (GPPS) oder Schlagzähpolystyrol (HIPS) eingesetzt. Besonders bevorzugt ist wegen des Er- halts der Transparenz Standardpolystyrol als ölfreie oder ölhaltige Variante. Geeignete Standardpolystyrole sind beispielsweise Polystyrol 158 K und Polystyrol 168 N von BASF SE bzw. deren ölhaltige Varianten Polystyrol 143 E oder Polystyrol 165 H. Bevorzugt werden 10 bis 70 Gew.-%, besonders bevorzugt 20 bis 40 Gew.-% höhermolekulare Polystyrole mit einem gewichtsmittleren Molekulargewicht Mw im Bereich von 220.000 bis 500.000 g/mol eingesetzt. Komponente K3)
Als Komponente K3) kann ein von K1 ) verschiedenes Blockcopolymer aus vinylaroma- tischen Monomeren und Dienen eingesetzt werden. Bevorzugt wird als Komponente K3) ein Styrol-Butadien-Blockcopolymeren, welches einen als Weichblock wirkenden Block B mit einer Glasübergangstemperatur unter -300C aufweist, eingesetzt.
Die erfindungsgemäße Mischung enthält bevorzugt 5 bis 45 Gew.-%, besonders bevorzugt 20 bis 40 Gew.-% des Blockcopolymeren K3.
Als Blockcopolymere K3) eignen sich insbesondere steife Blockcopolymere, welche aus 60 bis 90 Gew.-% vinylaromatischen Monomeren und 10 bis 40 Gew.-% Dien, bezogen auf das gesamte Blockcopolymer, bestehen und aus überwiegend vinylaromatischen Monomeren, insbesondere Styrol enthaltenden Hartblöcken S und Diene, wie Butadien und Isopren enthaltenden Weichblöcken B oder S/B aufgebaut sind. Besonders bevorzugt sind Blockcopolymere mit 65 bis 85 Gew.-%, besonders bevorzugt 70- 80 Gew.-% Styrol und 15 bis 35 Gew.-%, besonders bevorzugt 20-30 Gew.-% Dien.
Die Copolymerblöcke (S/B)B des Blockcopolymeren K3) weisen bevorzugt eine statisti- scher Verteilung der vinylaromatischen Monomeren und Dienen auf.
Bevorzugte Blockcopolymere K3) weisen eine sternförmige Struktur mit mindestens zwei endständigen Hartblöcke Si und S2 mit unterschiedlichem Molekulargewicht aus vinylaromatischen Monomeren auf, wobei der Anteil der Summe der Hartblöcke S min- destens 40 Gew.-%, bezogen auf das gesamte Blockcopolymer B beträgt. Möglich sind auch lineare Strukturen, wie (S/B)B-S2 oder Si-(S/B)B-S2 oderSi-(B->S)n
Bevorzugt weisen die endständigen Blöcke Si eine zahlenmittlere Molmasse Mn im Bereich von 5.000 bis 30.000 g/mol und S2 eine zahlenmittleren Molmasse Mn im Be- reich von 35.000 bis 150.000 g/mol auf.
Bevorzugt sind polymodale Styrol-Butadien-Blockcopolymere mit endständigen Sty- rolblöcken, wie sie beispielsweise in DE-A 25 50 227 oder EP-A 0 654 488 beschrieben sind.
Besonders bevorzugt werden Blockcopolymere K3) mit mindestens zwei Blöcken Si und S2 aus vinylaromatischen Monomeren und mindestens einem dazwischenliegenden, statistischen Block (S/B)B aus vinylaromatischen Monomeren und Dienen, wobei der Anteil der Hartblöcke über 40 Gew.-%, bezogen auf das gesamte Blockcopolymer beträgt und der 1 ,2-Vinylgehalt im Weichblock S/B unter 20 % beträgt, wie sie in WO 00/58380 beschrieben sind. Die Blockcopolymeren K3) sind im Handel beispielsweise unter den Handelsbezeichnungen Styrolux® 3G 33/Styroclear® GH 62, Styrolux® 693 D, Styrolux® 684, Styro- lux® 656 C, Styrolux® 3G55, K-Resin® 03, K-Resin® 04, K-Resin® 05, K-Resin® 10, K-Resin® KK38, K-Resin® 01 , K-Resin® XK 40, Kraton® D 1401 P , Finaclear 520, 530, 540, 550; Asaflex® 805, 810, 825, 835, 840, 845 Asaflex® i-Serie, Clearen® 530 L und 730 L erhältlich.
Plastifizierungsmittel
Als Plastifizierungsmittel E können 0 bis 6 Gew.-%, bevorzugt 2 bis 4 Gew.-% eines homogen mischbaren Öls oder Ölgemisches, insbesondere Weißöl, Pflanzenöle oder aliphatische Ester wie Dioktyl-Adipat oder deren Mischungen verwendet werden. Bevorzugt wird medizinisches Weißöl eingesetzt.
Die erfindungsgemäßen Mischungen sind hoch transparent und eignen sich insbesondere zur Herstellung von Folien, insbesondere von Tiefziehfolien für Blisterverpackun- gen und Behältnissen oder Formteilen für die Verpackung von elektronischen Bauteilen, insbesondere extrudierte Hohlprofile für Integrierte Schaltkreise (IC). Weiter eignen sie sich für die Herstellung zäh-steifer Spritzlinge.
Beispiele:
Prüfmethoden:
Die Glasübergangstemperaturen wurden mit Differential Scanning Calorimetrie (DSC) nach ISO 11357-2 bei einer Aufheizrate von 20K/min bestimmt
Die Molekulargewichte wurden mit Gelpermeationschromatographie (GPC) in Tetra- hydrofuran (THF) bei 23°C mittels UV-Detektion bestimmt und mit Polystyrol als Stan- dard ausgewertet.
E-Modul, Streckspannung und Reißdehnung wurden nach ISO 527 bestimmt.
Beispiele 1 bis 5
Blockcopolymere K1-1 bis K1-5
Zur Herstellung der linearen Styrol-Butadien-Blockcopolymeren wurden in einem dop- pelwandigen 10 Liter Edelstahl-Rührautoklaven mit einem Kreuzbalkenrührer 5385 ml Cyclohexan vorgelegt, bei 600C mit 1 ,6 ml sec-Butyllithium (BuLi) bis zum Auftreten einer durch 1 ,1-Diphenylethylen als Indikator hervorgerufenen Gelbfärbung austitriert und anschließend mit 3,33 ml einer 1 ,4 M sec.-Butyl-Lithium-Lösung zur Initiierung und 0,55 ml einer 0,282 M Kalium-tert.-Amylat (KTA)-Lösung als Randomizer versetzt. Anschließend wurde die zur Herstellung des ersten S-Blockes benötigte Menge Styrol (420 g Styrol 1 ) zugegeben und auspolymerisiert. Die weiteren Blöcke wurden entsprechend der in Tabelle 1 angegebenen Struktur und Zusammensetzung durch sequentielle Zugabe der entsprechenden Mengen Styrol bzw. Styrol und Butadien und jeweiligem vollständigem Umsatz angefügt. Zur Herstellung der Copolymerblöcke wurden Styrol und Butadien gleichzeitig in mehreren Portionen zugegeben und die Maximaltemperatur durch Gegenkühlen auf 77°C begrenzt. Für Blockcopolymer K1-1 wurden hierfür 84 g Butadien 1 und 196 g Styrol 2 für den Block (S/B)A, 196 g Butadien B2 und 84 g Styrol 4 für den Block (S/B)A und 420 g Styrol 5 für den Block S3.
Danach wurden die lebenden Polymerketten durch Zugabe von 0,83 ml Isopropanol terminiert, mit 1 ,0 % CO2/0,5 % Wasser, bezogen auf Feststoff angesäuert und eine Stabilisatorlösung (0,2 % Sumilizer GS und 0,2 % Irganox 1010, jeweils bezogen auf Feststoff) zugegeben. Das Cyclohexan wurde im Vakuumtrockenschrank abgedampft.
Das gewichtsmittlere Molekulargewicht Mw für die Blockcopolymeren K1-1 bis K1-5 beträgt jeweils 300.000 g/mol.
Mischungen M 1 bis M 8
Die in Tabelle 2 angegebenen Gewichtsteile der Blockcopolymeren K1-3 bzw. K1-4 sowie der Komponenten K2 (Polystyrol 158 K) wurden auf einem 16 mm- Zweischneckenextruder bei 200 bis 2300C gemischt und zu Platten gepresst. Die Mischungsverhältnisse und mechanischen Eigenschaften der Platten sind in Tabelle 2 zusammengestellt. Sofern nicht anders angegeben wurde die in der Kopfzeile angegebene Komponente eingesetzt.
Tabelle 1 : Struktur und Zusammensetzung der Blockcopolymeren in Gewichtsanteilen
Figure imgf000011_0001
Tabelle 2: Eigenschaften von Pressplatten
Figure imgf000012_0001

Claims

Patentansprüche
1. Blockcopolymer mit einem gewichtsmittleren Molekulargewicht Mw von mindestens 100.000 g/mol, enthaltend
a) mindestens einen Block S aus 95 bis 100 Gew.-% vinylaromatischen Monomeren und 0 bis 5 Gew.-% Dienen und b) mindestens einen Copolymerblock (S/B)A aus 63 bis 80 Gew.-% vinylaromatischen Monomeren und 20 bis 37 Gew.-% Dienen mit einer Glasüber- gangstemperatur TgA im Bereich von 5 bis 300C, c) mindestens einen Copolymerblock (S/B)B aus 20 bis 60 Gew.-% vinylaromatischen Monomeren und 40 bis 80 Gew.-% Dienen mit einer Glasübergangstemperatur TgB im Bereich von 0 bis -800C, enthält, und
wobei der Gewichtsanteil der Summe aller Blöcke S im Bereich von 50 bis 70
Gew.-%, und der Gewichtsanteil der Summe aller Blöcke (S/B)A und (S/B)B im Bereich von 30 bis 50 Gew.-%, jeweils bezogen auf das Blockcopolymer A, liegt.
2. Blockcopolymer nach Anspruch 1 , dadurch gekennzeichnet, dass das Gewichts- Verhältnis der Copolymerblöcke (S/B)A ZU den Copolymerblöcken (S/B)B im Bereich von 80 : 20 bis 50 : 50 liegt.
3. Blockcopolymer nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das gewichtsmittlere Molekulargewicht Mw des Blockcopolymeren im Bereich von 250.000 bis 350.000 g/mol liegt.
4. Blockcopolymer nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass es eine lineare Struktur mit der Blockfolge SI-(S/B)A-(S/B)B-S2 aufweist, wobei Si und S2 jeweils für einen Block S stehen.
5. Mischung, bestehend aus
K1 ) 20 bis 95 Gew.-% eines Blockcopolymeren A nach einem der Ansprüche
1 bis 4, und K2) 5 bis 80 Gew.-% Standardpolystyrol (GPPS) oder Schlagzähpolystyrol
(HIPS), und K3) 0 bis 50 Gew.-% eines von K1 verschiedenen Blockcopolymeren B aus vinylaromatischen Monomern und Dienen.
6. Mischung nach Anspruch 5, dadurch gekennzeichnet, dass sie 20 bis 50 Gew.-% des Blockpolymeren A und 50 bis 80 Gew.-% Standardpolystyrol enthält.
7. Verwendung der Mischung nach Anspruch 5 oder 6 zur Herstellung von Folien, insbesondere Tiefziehfolien für Blisterverpackungen, Becher oder Behältnisse, oder Formteilen, insbesondere extrudierte Hohlprofile für die Verpackung von e- lektronischen Bauteilen.
PCT/EP2009/067012 2008-12-23 2009-12-14 Phasenseparierende blockcopolymere aus unverträglichen hartblöcken und formmassen mit hoher steifigkeit WO2010072595A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/141,840 US20110257335A1 (en) 2008-12-23 2009-12-14 Phase-separating block copolymers composed of incompatible hard blocks and molding materials with high stiffness
EP09768080.5A EP2382250B1 (de) 2008-12-23 2009-12-14 Phasenseparierende blockcopolymere aus unverträglichen hartblöcken und formmassen mit hoher steifigkeit
JP2011542759A JP2012513512A (ja) 2008-12-23 2009-12-14 非相溶性硬質ブロックからなる相分離型ブロックコポリマーと高剛性の成形材料

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP08172779 2008-12-23
EP08172779.4 2008-12-23

Publications (1)

Publication Number Publication Date
WO2010072595A1 true WO2010072595A1 (de) 2010-07-01

Family

ID=41666655

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/067012 WO2010072595A1 (de) 2008-12-23 2009-12-14 Phasenseparierende blockcopolymere aus unverträglichen hartblöcken und formmassen mit hoher steifigkeit

Country Status (4)

Country Link
US (1) US20110257335A1 (de)
EP (1) EP2382250B1 (de)
JP (1) JP2012513512A (de)
WO (1) WO2010072595A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140100310A1 (en) * 2012-10-08 2014-04-10 Teknor Apex Company Thermoplastic elastomer compositions having biorenewable content

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8536279B2 (en) * 2008-12-23 2013-09-17 Styrolution GmbH Phase-separating block or graft copolymers comprising incompatible hard blocks and moulding compositions having a high stiffness
FR3022249B1 (fr) * 2014-06-11 2018-01-19 Arkema France Procede de controle de la periode d'un film de copolymere a blocs nanostructue a base de styrene et de methacrylate de methyle, et film de copolymere a blocs nanostructure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19914075A1 (de) * 1999-03-27 2000-09-28 Basf Ag Glasklares, schlagzähes Polystyrol auf Basis von Styrol-Butadien-Blockcopolymeren
US20030216512A1 (en) * 2002-05-15 2003-11-20 Korea Kumho Petrochemical Co., Ltd. Bimodal block copolymer containing tapered block, process for manufacturing method and its usage
EP1669407A1 (de) * 2004-12-10 2006-06-14 Basf Aktiengesellschaft Transparente Mischungen linearer Styrol-Butadien-Blockcopolymerer
WO2009112549A1 (de) * 2008-03-13 2009-09-17 Basf Se Elastischer partikelschaumstoff auf basis von polyolefin/styrol-polymer-mischungen

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3411405B2 (ja) * 1994-08-23 2003-06-03 株式会社ブリヂストン ブロック共重合体
WO2002094899A1 (de) * 2001-05-18 2002-11-28 Basf Aktiengesellschaft Kernhydrierte blockcopolymere mit assymetrischem aufbau
ES2293383T3 (es) * 2003-12-15 2008-03-16 Hercules Incorporated Inversion mejorada de polimeros en emulsion inversa.
US8536279B2 (en) * 2008-12-23 2013-09-17 Styrolution GmbH Phase-separating block or graft copolymers comprising incompatible hard blocks and moulding compositions having a high stiffness

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19914075A1 (de) * 1999-03-27 2000-09-28 Basf Ag Glasklares, schlagzähes Polystyrol auf Basis von Styrol-Butadien-Blockcopolymeren
WO2000058380A1 (de) * 1999-03-27 2000-10-05 Basf Aktiengesellschaft Glasklares, schlagzähes polystyrol auf basis von styrol-butadien-blockcopolymeren
US20030216512A1 (en) * 2002-05-15 2003-11-20 Korea Kumho Petrochemical Co., Ltd. Bimodal block copolymer containing tapered block, process for manufacturing method and its usage
EP1669407A1 (de) * 2004-12-10 2006-06-14 Basf Aktiengesellschaft Transparente Mischungen linearer Styrol-Butadien-Blockcopolymerer
WO2009112549A1 (de) * 2008-03-13 2009-09-17 Basf Se Elastischer partikelschaumstoff auf basis von polyolefin/styrol-polymer-mischungen

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140100310A1 (en) * 2012-10-08 2014-04-10 Teknor Apex Company Thermoplastic elastomer compositions having biorenewable content
US10125255B2 (en) 2012-10-08 2018-11-13 Teknor Apex Company Thermoplastic elastomer compositions having biorenewable content

Also Published As

Publication number Publication date
EP2382250A1 (de) 2011-11-02
US20110257335A1 (en) 2011-10-20
EP2382250B1 (de) 2018-05-16
JP2012513512A (ja) 2012-06-14

Similar Documents

Publication Publication Date Title
EP0859803B1 (de) Thermoplastische formmasse
EP1690879B1 (de) Glasklares, schlagzähes Polystyrol auf Basis von Styrol-Butadien-Blockcopolymeren
DE69813044T3 (de) Blockcopolymer, Blockcopolymerzusammensetzung und ihre hitzeschrumpfbaren Folien
EP1838781B1 (de) Styrol-butadien-blockcopolymermischungen für schrumpffolien
EP2382092B1 (de) Phasenseparierende blockcopolymere aus unverträglichen hartblöcken und formmassen mit hoher steifigkeit
WO1999046330A1 (de) Polymermischungen aus styrolpolymeren
WO2009156378A1 (de) Styrol-butadien-blockcopolymermischungen für schrumpffolien
EP2038347B1 (de) Hochtransparente und zäh-steife styrol-butadien-blockcopolymermischungen
WO2003046075A1 (de) Transparente styrol-butadien-blockcopolymermischungen
EP3189102B1 (de) Mischungen aus styrol-butadien-copolymeren
US4267284A (en) Tough, transparent articles from styrene polymers blended with certain block-random copolymers
EP2254947B1 (de) Zähsteife mischungen aus alpha-methylstyrol-acrylnitril-copolymeren und blockcopolymeren
DE3105328A1 (de) Thermoplastische styrolpolymermasse und ihre verwendung
EP2190922B1 (de) Transparente und zähsteife formmassen auf basis von styrol-butadien-blockcopolymermischungen
EP2382250B1 (de) Phasenseparierende blockcopolymere aus unverträglichen hartblöcken und formmassen mit hoher steifigkeit
DE2526246A1 (de) Polystyrolmasse mit hoher schlagfestigkeit und verfahren zu ihrer herstellung
JP2010539267A5 (de)
DE102004059783A1 (de) Transparente Mischungen linearer Styrol-Butadien-Blockcopolymerer
EP0176896A2 (de) Thermoplastische Formmassen
DE2128503A1 (de) Zahgemachte Polymerzubereitungen
WO1998031746A1 (de) Schlagzähe thermoplastische formmasse
DE19713878A1 (de) Schlagzäh modifizierte, thermoplastische Formmasse
DE19728542A1 (de) Zäh-steife Formmasse

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09768080

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011542759

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13141840

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009768080

Country of ref document: EP