WO2010072137A1 - 质谱分析器 - Google Patents

质谱分析器 Download PDF

Info

Publication number
WO2010072137A1
WO2010072137A1 PCT/CN2009/075813 CN2009075813W WO2010072137A1 WO 2010072137 A1 WO2010072137 A1 WO 2010072137A1 CN 2009075813 W CN2009075813 W CN 2009075813W WO 2010072137 A1 WO2010072137 A1 WO 2010072137A1
Authority
WO
WIPO (PCT)
Prior art keywords
tubular
mass
ion
mirror
detectors
Prior art date
Application number
PCT/CN2009/075813
Other languages
English (en)
French (fr)
Inventor
丁力
Original Assignee
岛津分析技术研发(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 岛津分析技术研发(上海)有限公司 filed Critical 岛津分析技术研发(上海)有限公司
Priority to US13/140,346 priority Critical patent/US8294085B2/en
Publication of WO2010072137A1 publication Critical patent/WO2010072137A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/025Detectors specially adapted to particle spectrometers
    • H01J49/027Detectors specially adapted to particle spectrometers detecting image current induced by the movement of charged particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/0027Methods for using particle spectrometers
    • H01J49/0036Step by step routines describing the handling of the data generated during a measurement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • H01J49/42Stability-of-path spectrometers, e.g. monopole, quadrupole, multipole, farvitrons
    • H01J49/4205Device types
    • H01J49/4245Electrostatic ion traps

Definitions

  • the present invention relates to mass spectrometry techniques. Further, the present invention relates to mass spectrometry techniques for non-destructive detection of high velocity moving ions using mirror currents. Background technique
  • Mass spectrometry has been developed to date, and there are many commonly used mass spectrometer products.
  • the detection methods of the ion signals are classified into two types, one is a lossy ion detection type, and the other is a non-destructive detection type.
  • the damage detection means that the ions are accepted by the Faraday cylinder or the dynode after passing through the analyzer, and the charge of the ions is converted into a current on the Faraday cylinder, or amplified by the circuit after being multiplied by the dynode. After a test, the ions are neutralized and disappeared on the Faraday cage or dynode.
  • Most mass spectrometers have traditionally utilized this type of detection. For example, quadrupole mass spectrometers, ion trap mass spectrometers, magnetic deflection mass spectrometers, and time-of-flight (ToF) mass spectrometers.
  • TOF time-of-flight
  • this type of detection method is a non-destructive detection method for ions. This method is used in the recently developed cyclotron resonance Fourier transform (FTICR) mass spectrometer and Orbitrap mass spectrometer (Orbitrap).
  • FTICR cyclotron resonance Fourier transform
  • Orbitrap Orbitrap mass spectrometer
  • the ions oscillate back and forth under the binding of a magnetic field or an electric field, and a mirror current is induced on the electrodes on one side of the analyzer.
  • the periodic change frequency of the mirror current is the magnetic field or the electric field.
  • the frequency of the vibration so the spectrum obtained by Fourier transforming the mirror current reflects the mass spectrum of the ions in the well.
  • the flight tube can also be designed to be a gyroscopic runway using an electrostatic deflector.
  • H11-135060 H11-135061 describes such a gyroscopic run-time time-of-flight analyzer.
  • YAMAGUCHI in US 2006192110 (A1), describes a time-of-flight analyzer that includes a linear take-off tube and a figure eight gyroscopic runway, but the above devices also suffer from the aforementioned narrow range of masses.
  • ISHIHARA invented a method for analyzing non-overlapping mass spectra using overlapping mass spectra with several different turns, but this method requires multiple sampling of different conditions for one sample, several times of spectral processing. It must be ensured that the composition of the sample cannot be changed, which obviously causes difficulties in use and affects the efficiency of the analysis.
  • Zajfman When they pass through a cylindrical electrode, an image charge is induced on the electrode, and a pulse signal is detected in the circuit connected thereto.
  • Zajfman also describes an electrostatic flying ion trap with two mirrors in his patent “Ion Capture” (WO02103747 (A1)) and uses a tubular detector to obtain the mirror current.
  • the mirror current signal is subjected to Fourier transform to obtain a mass spectrum of the ions.
  • the intensity of the mirror current is generally weak. Even if the ion source produces 104 ions of the same mass-to-charge ratio, they are completely brought together to move, and the pulse mirror current signal that can be generated can be detected by the low-noise amplifier. After the reciprocating motion, the ions in the ion group are gradually dispersed due to the difference of the initial kinetic energy, and the mirror current signal is broadened in time and weakened in intensity until it is finally detected. The longer the recording time of the mirror current signal, the more the number of detections, the higher the accuracy of the mass spectrum obtained by the conversion. Therefore, it is usually desirable to reciprocate ions hundreds of times in the flight tube.
  • Zajfman proposed to use the nonlinearity of the mirror and the Coulomb interaction between the ions to achieve the cluster of the ion group, so that the ions do not diverge hundreds of times in the flight tube.
  • this Coulomb-based cluster is especially useful for mass spectrometers that analyze complex ion combinations.
  • the big peak will hijack the small peak, which will affect the resolution of the ions and destroy the accuracy of the analyzer.
  • the mirror current detection technique in order to improve the sensitivity of the detector, the mirror current detection technique must be improved so that a sufficient mirror current signal can be picked up even for a small number of ions.
  • the resulting signal is generally not a sine or cosine function.
  • signals generated by ion motion of a single mass-to-charge ratio have a complex spectrum, including the fundamental frequency of the signal and various higher harmonics. So it is necessary to take advantage of the new signal analysis method. Summary of the invention
  • One of the objects of the present invention is to improve the efficiency of ion-detection of a non-destructive ion detector in a multi-cycle flight tube in a mass spectrometer.
  • Another object of the present invention is to solve the problem that the existing image current detector output signal is poor and the polarity of the ion return two-way signal is not divided.
  • the present invention also proposes an effective mathematical conversion processing method for the image current signal obtained by the improved detector.
  • One technical solution adopted by the present invention to solve the above technical problem is to propose a mass spectrometer based on detecting an ion mirror current, including a plurality of periodic motions in which ions to be analyzed capable of generating or starting a pulse are generated.
  • a time-convergence in a part of the area and forming an elongated beam of electrostatic mirror or electrostatic deflector; there is a drift space outside the above-mentioned electrostatic deflection device or mirror, and a plurality of axial directions along the ion beam are arranged in the drift space a tubular mirror current detector that is arranged to allow ions to pass therethrough; a low noise electronic amplification device coupled to the tubular mirror current detector to differentially detect a mirror current picked up by the plurality of tubular detectors; and based on a differential mirror current The signal is converted into a signal processing device of the mass spectrometer.
  • Another technical solution adopted by the present invention to solve the above technical problems is to provide a method for mass spectrometry using a multi-turn time-of-flight analyzer, including setting a time-of-flight analyzer electrostatic mirror or an electrostatic deflection device to generate a pulse or
  • the initiated ions to be analyzed are subjected to multiple periodicities therein Movement, forming a time converge in part of the area, and spatially forming a slender ion beam; allowing the ion beam to periodically pass through a plurality of tubular mirror current detectors arranged in the axial direction of the ion beam, and then amplifying with low noise electrons
  • the device differentially detects the image current picked up by the plurality of tubular detectors, and mathematically converts the amplified signals by a digital conversion method to obtain a mass spectrum.
  • a method of converting from a mirror current to a mass spectrum using a digital fast Fourier transform method and a stepwise complex spectral stripping method is proposed.
  • a method of converting a mirror current to a mass spectrum by performing a basis function coefficient by orthogonal projection is proposed.
  • the orthogonal projection method used in the above embodiment is further proposed as a least square method.
  • a single cylinder detector can only detect one signal in each cycle of the ion, even in a linear reflection reciprocating multi-circle flight tube, only two signals can be detected, so the signal The extraction amount is very small.
  • the two tubular cylinder detectors When two tubular cylinder detectors are used, the two tubular cylinders will induce different mirror currents by the ions passing through them. The two mirror currents can be added or used separately or differentially. When taking the difference, a signal with a larger amplitude than the single cylinder can be obtained.
  • the polarity of the signal passing through a single detector is the same, and when using the two cylinder detectors of the present invention, the ions are detected from the first The pole enters, when the second detector pole passes out, the polarity of the differential signal is positive; on the contrary, the ion enters from the second detector pole, and the polarity of the differential signal is negative when the first detector pole passes out, so the pole of the signal Sexuality reflects the direction of incidence of ions.
  • a column of multiple cylinders is detected by a coaxial phase string. After ions are incident from one end, each cylinder induces a pulse mirror current at different times, and the mirror current on the adjacent cylinder detectors is differentiated. And superimposing the difference signal of the adjacent detection poles to obtain a pulse signal sequence with a certain regularity.
  • the high frequency component of the signal sequence is greatly enhanced than the high frequency component detected by the single detection cylinder.
  • Figure 1 shows a multiple reflection time-of-flight mass spectrometer with a pair of mirror current detectors.
  • Figure 2 shows a single cylinder mirror current detector.
  • Figure 3 shows the output current signal of a single cylinder mirror current detector as positive charge passes.
  • Figure 4 shows a dual cylinder mirror current detector, as well as a waveform output via an amplifier (or current to voltage converter).
  • Figure 5 shows the output current picked up by the double cylinder mirror current detector on the left and right cylinders as the positive charge passes, and the signal obtained after the left and right differential.
  • Figure 6 shows a flared dual cylinder mirror current detector.
  • Figure 7 shows that the backwash (forward;) of the differential signal is greatly reduced as the positive charge passes through the horn-shaped double-cylinder mirror current detector, and the dashed line in the figure is the mirrored current signal for the single cylinder pickup as a comparison.
  • Fig. 8 shows an array of eight cylinder mirror current detectors and an example of their signal pickup scheme, and the lower portion gives the signal waveform of the amplifier output.
  • Figure 9 shows the signal waveforms of the mirror current detector outputs of a plurality of cylinders as the ion cluster moves back and forth in the multiple reflection flight tube.
  • Fig. 10 shows another example of a signal pickup scheme of a multi-cylindrical mirror current detector.
  • Figure 1 1 shows an example of sampling with a multi-cylinder mirror current detector in a gyroscopic raceway multi-circle flight tube.
  • the analyzer of the embodiment of the present invention is first described in the basic structure of a reciprocating multiple reflection flight tube.
  • the flight tube 100 of Fig. 1 includes two opposing mirrors 2a and 2b, and the pulsed ion beam Ib generated by the ion source 1 can be introduced through the small holes H on the electrodes at both ends of the mirror. Some of the electrode voltages in the mirror 2 after ion introduction should immediately return to the voltage value of the normal reflection state. This way the ions will constantly reflect between the two mirrors.
  • the electrode in the mirror should be positively charged.
  • the potential in the mirror is up to several thousand volts to tens of thousands of volts relative to the drift space, so when the ions travel to the drift region 7, there are thousands of Tens of thousands of ev of kinetic energy.
  • the ions move back and forth in the form of pulsed ion beams in the mirror and drift regions, making it possible to form image charges on the conductors in these regions.
  • the ion motion area In the actual design, there is no clear boundary between the mirror area and the drift area, so we are collectively referred to herein as the ion motion area.
  • a pair of drum detecting electrodes 10 are coaxially mounted with the ion beam, which are respectively connected to the differential amplifier 8.
  • a well-designed mirror should meet the conditions of isochronism.
  • the so-called isochronism means that when the ion mass-to-charge ratio is the same, even if there is a small difference in the initial kinetic energy, it can return to a certain point in the drift region after being reflected by the mirror. , forming a so-called time convergence (time focusing;). For example, the ion group starts from point P 1 and After the mirror 2b is reflected, it can return to the point P2 at the same time. This mirror satisfies the isochronous condition. When the ion detector is placed at the isochronous point P2, a high mass resolution can be obtained.
  • the multiple (circle) reflection flight tube formed by the mirror is An isostatic electrostatic ion trap.
  • the ions of the same mass-to-charge ratio will reach the time convergence multiple times during such movement, and will not spread out quickly.
  • time convergence cannot be completely ideal, and the ions will eventually diffuse into the entire motion area (for example, a few hundred ms later) so that the mirror current disappears.
  • the detected mirror current signal waveform is as shown in Fig. 3, and this waveform is independent of the direction of ion motion.
  • the double cylinder detector shown in Fig. 4 is used, the ion I enters from the cylinder 10L, and the waveform of the mirror current signal is as shown in Fig. 5.
  • the signal waveform detected by the left cylinder is the broken line K1
  • the signal waveform detected by the right cylinder 10R is as shown by the broken line K2
  • T 1 is the difference between the two waveforms (K1-K2). Waveform T 1 has a higher negative peak.
  • the right cylinder 10R will detect the signal waveform as indicated by the broken line K1
  • the left cylinder 10L will detect the signal waveform as indicated by the broken line ⁇ 2, and after taking the difference, it will be opposite to the waveform T1.
  • Positive spike signal output Therefore, the direction of the ion motion can be discerned by the double cylinder detection.
  • the induced current on the barrel 10 can be directly amplified by the differential amplifier 4 as shown in Fig. 4, or the induced current on the barrel 10 can be amplified separately, and then the difference amplifier can be used for the difference.
  • the waveform T l in Fig. 5 has two inverted small peaks on both sides except for the middle peak.
  • the horn is shown in Figure 1 as a horn, and the differential waveform can be greatly improved.
  • Figure 7 shows the differential current signal obtained when the horn cylinder is 10 mm long, the small head diameter is 4 mm, the two cylinders are 2 mm apart, and the half angle is 45 degrees.
  • the mirror current waveform (dashed line) of a single straight tube with a diameter of 18 mm and a length of 7 mm for the same ion group is also shown. It can be seen that the dual cylinder detection scheme proposed by the present invention has a significant effect on improving the signal intensity.
  • the cylindrical detectors in the analyzer are a plurality of columns, and when the ions pass through the column detectors, not only the signal enhancement of the differential sampling but also the one revolution period of the ions can be utilized.
  • a sequence of mirror current pulses is obtained.
  • each cylinder has an inner diameter of 6 mm and a length of 7 mm; adjacent cylinders have a pitch of 1 mm, and each cylinder is labeled 10a, 10b from left to right. , 10c, 10d, 10e, 10f, lOg and 10h.
  • the odd-numbered cylinders are coupled together to turn on the positive input of the differential amplifier 8; the even-numbered cylinders are connected together, and the difference is turned on.
  • An ion group Ig moving from left to right at a constant speed penetrates into the cylinder sequence, each cylinder induces a pulse mirror current at different times, and the sum of the odd-numbered and even-numbered cylinder mirror currents is differentiated at the output of the differential amplifier 8.
  • the terminal can obtain a pulse signal sequence like waveform T2.
  • the marks on each pulse in waveform T2 indicate that the pulse is generated when the ion enters the cylinder of the second number from the cylinder of the first number.
  • the negative pulse ab is generated when ions enter the cylinder b from the cylinder a
  • the positive pulse bc is generated when ions enter the cylinder c from the cylinder b, and the like.
  • the number of cylinder stages in the detector is not limited to level 8, as the drift zone length and ion beam focusing characteristics allow, the more the better.
  • the detector in the drift region continuously picks up the pulse sequence signal to form a wave packet string as shown in FIG.
  • a pair of wave packets corresponds to one round trip of the ions.
  • the spacing between the two pairs of wave packets reflects the period of oscillation of the ions in the flight tube, which is proportional to the square root of the mass-to-charge ratio ⁇ ⁇ .
  • the pulse interval in each wave packet reflects the time that ions travel through each cylinder. If the length of the cylinder is 1, the acceleration voltage of the ions before the incident flight tube is U, then the pulse interval in the wave packet:
  • the two time (or frequency) parameters in the waveform are related to the mass-to-charge ratio of the ions.
  • a certain algorithm to mathematically convert the wave packet signal a mass spectrum can be obtained.
  • each cylinder of the detector is connected to one of the low noise amplifiers 9a-9h, and the amplifier outputs of all odd cylinders are collected to a point through the resistors 6a, 6c, 6e, 6g, and connected to the next The forward input of the differential amplifier 8; the output of all the even-numbered cylinders is collected to a point via resistors 6b, 6d, 6f, 6h, connected to the negative input of the differential amplifier 8 of the next stage; The total output signal.
  • the multi-circle flight tube 200 in the figure is in the form of a closed racetrack, including an electrostatic deflector 4, a collecting lens 5, and two drift zones 7.
  • the ions are generated by the ion source 1, and the ions generated by the ion source 1 are injected into the closed raceway-shaped flight tube by cutting off and recovering the voltage of the deflector 4, and are repeatedly operated therein.
  • a column of cylinder detectors 10 is mounted in each of the drift zones, and each time ions pass through the cylinder detector, a pulse wave packet signal is output on an amplifier (not shown) connected thereto.
  • the cylinder detector column 10 can be divided into two groups, and the output signals of the two groups of cylinder detectors can be used separately or combined by a certain phase shift adjustment.
  • the ion optical system that causes the ion beam to move back and forth a plurality of times can be Electrostatic ion mirrors can also be used, as well as electrostatic ion deflection devices, and their combination with electrostatic focusing lenses.
  • the mirror current time domain signal is processed by a certain data conversion method to obtain a mass spectrum of the ions. It has been seen from the above that the mirror current signal of a mass ion is not a sine or cosine function, and its spectrum already includes various high-order harmonics. It is true that we can use any relationship between the spectral line and the mass-to-charge ratio of the harmonic signal to obtain the mass spectrum by means of Fourier transform, and the mass spectrum obtained by using the higher harmonic line often has a higher mass fraction.
  • the time function (mass basis function) of the mirror current signal is obtained by derivation, measurement or computer simulation, and its complex spectrum distribution is obtained by digital fast Fourier transform method, so that The ratio of the complex value of each higher harmonic in the discrete spectrum to the complex value of the fundamental frequency.
  • the actual mirror current time domain signal obtained by analog-to-digital sampling is digitally fast Fourier transformed, and the lower frequency limit of the Fourier transform must be lower than the fundamental frequency of the maximum possible mass.
  • the spectrum is decomposed from the low end of the spectrum.
  • the complex distribution of each higher harmonic is obtained according to the proportional value of the corresponding higher harmonic point, and the calculated complex distribution is deducted from the original complex spectrum. .
  • find a non-zero peak value in the deducted spectral distribution and then calculate the complex distribution of each higher harmonic according to the ratio of the complex coefficient, and deduct the calculated in the previously decomposed complex spectrum. Complex distribution... and so on, until the entire spectrum is taken.
  • the non-zero peak values obtained each time are combined to form the desired mass spectrum.
  • an appropriate check should be made for each deduction. For example, see if the remaining spectrum has a negative modulus. Or check if the sum of the squares of the remaining spectral moduli is minimal.
  • This method of successively stripping higher harmonics is when the fundamental frequency component is much smaller than some higher harmonic components (for example, the double drum detector shown in Figure 4).
  • the fundamental frequency component is very small, and the maximum occurs at the 20th to 30th harmonics.
  • the conversion method essentially utilizes the fundamental frequency component of each mass ion stream to remove high-order component interference without fully utilizing multiple harmonic components.
  • the discrete time function of the mirrored current signal corresponding to the mass ⁇ can be mathematically derived or simulated. The calculation is obtained. In practice, we can also obtain it by experimental determination of standard samples. For example, the mass-to-charge ratio of the ions produced by the standard sample we used is the mirror image of this ion.
  • t Of course, the t given by the above formula does not necessarily fall on the discrete sampling time point ⁇ , for example, t falls between ⁇ and , then the interpolation function can be used to obtain the basis function.
  • multiple tubular electrode detectors can be used to give multiple mirror current pulses in one reciprocating/circulating motion period of ions, which improves the number and amplitude of signal pick-up, and the mass spectral signal-to-noise ratio obtained after processing is improved.
  • the cross section of the ion beam is circular, so that a plurality of cylindrical detectors are used.
  • the cylinder of the detector can also be changed to a tubular electrode of other shapes, such as a rectangular tube, which is still covered by the idea of the present invention.
  • the method for converting time domain signals into mass spectrometry data is only described in general terms.
  • the deconvolution in the example is done in the frequency domain, while the least squares rule is done in the time domain.
  • Industry special The home can be reversed, that is, signal stripping is performed in the time domain, or least squares deconvolution is performed in the frequency domain.
  • Other methods such as wavelet analysis, can also be used. Therefore, the scope of the invention is not limited by the foregoing examples, but is defined by the claims.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Electron Tubes For Measurement (AREA)

Description

质谱分析器 技术领域
本发明涉及质谱分析技术, 进一步说, 本发明涉及到利用镜像电流对高速 运动的离子进行无损探测的质谱分析技术。 背景技术
质谱学发展至今, 已有多种常用质谱仪产品。 在现有的质谱仪中, 对离子 信号的检测方法来分为两类, 一是有损离子检测型, 另一类是无损检测型。 有 损探测即为, 离子经过分析器后用法拉第筒或打拿极接受, 离子的电荷在法拉 第筒上转化为电流, 或者经打拿极倍增后, 被电路放大检测到。 经过一次检测, 离子在法拉第筒或打拿极上被中和而消失掉。 传统上大部分质谱仪都是利用这 类检测方法。如,四极杆质谱仪、离子阱质谱仪、磁偏转质谱仪和飞行时间(ToF ) 质谱仪等。
当带电粒子移动到导体附近时, 导体内会感应出极性相反的所谓 "镜像电 荷" , 与该导体连接的电路中就会产生一个电流。 用这种方法可以测出一个电 极附近运动着的电荷, 在测量的同时, 该带电粒子并没有被中和消失掉。 所以 这类探测方法属于离子的无损探测方法。 近来发展的回旋共振傅立叶变换 (; FTICR)质谱仪、 轨道阱质谱仪 (Orbitrap)用的就是这种方法。 在这两种质谱仪 的分析器中, 离子在磁场或电场的束缚下来回震荡, 在分析器一侧的电极上就 感应出镜像电流, 镜像电流的周期变化频率即是离子在磁场或电场中振动的频 率, 所以将镜像电流进行傅立叶变换得到的频谱即反映了阱中离子的质谱。 实 质上, 用无损检测方法, 离子在磁场或电场中往复运动的寿命期中可以多次被 检测, 飞行时间和距离被有效地加大, 所以能够获得很高的质量分辨率。
飞行时间质谱仪在使用了反射镜以后, 飞行时间和距离同样被有效地加 大, 获得了较高的质量分辨率。 Wollnik 在英国专利 GB 2080021 A中揭示了 一种让离子在两个反射镜之间来回飞行多次的分析器, 这种分析器又叫做多圈 (Multi-turn) 飞行时间分析器, 具有很高的质量分辨率。 当然离子最终还是在 切换一个反射镜的电压以后,被引出来进行有损型检测。这种质谱仪的缺点是, 如果被测得离子的质量范围较大, 轻质量的离子运动周期明显小于重质量的离 子, 它们在往复运动中就会赶超重质量的离子一圈或数圈, 检测出的质谱中, 不同质量的离子会重叠在一起。 所以这种质谱仪能分析的离子质量范围很窄。 利用静电偏转器, 也可以把飞行管设计成回旋跑道式的。 日本专利
H11-135060, H11-135061 描述了这种回旋跑道式的飞行时间分析器。
YAMAGUCHI 在 US 2006192110 (A1)中阐述了一个包含直线引出管和 8字形 回旋跑道的飞行时间分析器, 但以上装置同样存在上述质量范围窄的问题。
虽然我们可以用质量预选的方法来限制进入分析器的离子的质量范围, 并 事后用电脑来把许多个窄范围的质谱粘贴成较宽质量范围的质谱, 但实际操作 中会有很多困难, 比如拼接处出现质量误差, 也不易引入质量内标, 无法满足 高精度质量分析。 在 US2005092913 (A1)中 ISHIHARA发明了一种利用数个不 同圈数的重叠质谱解析出无重叠的质谱的方法, 但这个方法需要对一个样品进 行多次不同条件的采谱, 数次采谱过程中必须保证样品成分不能发生变化, 这 显然给使用带来困难, 影响分析的效率。
利用无损探测器,只要对样品离子进行一次注入,就能测到各质量的离子、 不同圈数的离子信号, 通过一定的方法, 解出一张质谱图。 这个方法在回旋共 振傅立叶变换 (FTICR)质谱仪、 和轨道阱质谱仪 (Orbitrap)中已经成功地实现了, 也同样适合飞行时间质谱仪。 H. Benner在美国专利 5880466A中提出一种静电 离子阱, 它实际上是一种含有两个反射镜的静电飞行管。 离子在两个反射镜 之间来回反射, 在两个反射镜之间的漂移区间, 离子具有很高的运动速度。 当 它们穿过一个圆筒电极时, 就会在该电极上感应出镜像电荷, 与其连接的电路 中就能探测到一个脉冲信号。 Zajfman在他的专利 "离子捕获" (WO02103747 (A1) ) 中, 也描述了一种含有两个反射镜的静电飞行离子阱, 并用一个管形检 测器来获取镜像电流。 镜像电流信号经过傅立叶变换获得离子的质谱图。
镜像电流的强度一般很弱, 即使离子源产生 104个同种质荷比的离子, 它 们完全聚在一起运动, 这时可产生的脉冲镜像电流信号才刚能被低噪声放大器 检测出来, 而经过多次往复运动以后, 离子群中的离子因初始动能的差异逐步 散开, 镜像电流信号在时间上展宽, 强度上减弱, 直到最后就检测不出来了。 镜像电流信号的记录时间越长, 检测次数越多, 转换获得的质谱精度就越高。 所以通常人们希望离子在飞行管中往复几百次、 上千次。 为了避免离子信号的 衰减, Zajfman提出了利用反射镜的非线性和离子间的库仑相互作用实现离子 群的集束 (Bunch), 使离子在飞行管中往复几百次不发散。 但是, 这种基于库仑 相互作用的集束对于分析复杂离子组合的质谱仪来说, 特别是有许多同位素伴 峰时, 大峰就会劫持小峰, 会影响离子的分辨, 破坏分析器的精度。
显然为了提高检测器的灵敏度, 必须对镜像电流探测技术进行改进, 使得 即使对较小的离子数量也能拾取足够的镜像电流信号。
另一方面, 对从探测器获得的离子信号进行有效地处理也是提高检测灵敏 度的关键。 在现有的傅立叶变换质谱仪中 (比如 FTICR和 OBITRAP) , 某一 质量的离子产生的镜像电流信号接近于一个正弦或余弦函数, 多种质量离子共 同产生的镜像电流信号便是多种频率的正弦波信号的叠加。 所以对它进行傅立 叶变换获得的频谱信号也就对应着唯一的质谱图。
而当在多圈飞行时间分析器中用使用镜像电流探测, 得到的信号一般不会 是正弦或余弦函数。 即使是单一质荷比的离子运动产生的信号, 也具有复杂的 频谱, 其中包括信号的基频和各种高次谐波。 所以有必要利用新的信号分析方 法。 发明内容
本发明目的之一是, 提高质谱分析器中无损离子探测器对多圈飞行管中离 子检测的效率。
本发明的另一个目的是, 解决现有镜像电流检测器输出信号不良和离子往 返两程信号极性不分的问题。
同时本发明也针对改进了的探测器得到的镜像电流信号提出有效的数学 转换处理方法。
本发明为解决上述技术问题而采用的一种技术方案是提出一种基于对离 子镜像电流进行检测的质谱分析器, 包括能够使脉冲产生或启动的待分析的离 子在其中进行多次周期性运动, 且在其中部分区域形成时间会聚, 并形成细长 束的静电反射镜或静电偏转器; 在上述静电偏转装置或反射镜以外有漂移空 间, 漂移空间中设有多个沿离子束轴向串型排列且允许离子从中通过的管状镜 像电流检测器; 与管状镜像电流检测器相连以差分地检测由多个管状检测器拾 取的镜像电流的低噪声电子放大装置; 以及基于一种将差分镜像电流信号转化 成质谱的信号处理装置。
本发明为解决上述技术问题而采用的另一种技术方案是提出一种利用多 圈式飞行时间分析器进行质谱分析的方法, 包括设置飞行时间分析器静电反射 镜或静电偏转装置使脉冲产生或启动的待分析的离子在其中进行多次周期性 运动, 并在其中部分区域形成时间会聚, 且空间上成细长离子束; 让离子束周 期性通过沿离子束的轴向串型排列的多个管状镜像电流检测器, 再用低噪声电 子放大装置差分地检测多个管状检测器拾取的镜像电流, 并用数字变换方法对 放大后的信号进行数学转换, 获得质谱。
在一个实施例中, 提出用数字快速傅立叶变换法加逐步复频谱剥离法进行 从镜像电流到质谱的转换方法。
在另一个实施例中, 提出用正交投影法获得基函数系数来进行从镜像电流 到质谱的转换方法。 而在上述实施例中用的正交投影法被进一步提出为最小二 乘法。
本发明由于采用了上述技术方案,使之与现有技术相比,有如下显著优点:
1.在多圈飞行管中, 单一圆筒检测器在离子的每一个周期中只能检测到一 次信号, 即使在直线反射往复式多圈飞行管中也只能检测到两次信号, 所以信 号提取量很小, 当使用两个管状圆筒检测器时, 两个管状圆筒会被从中通过的 离子感应出不同镜像电流, 这两个镜像电流既可加和取用, 也可以差分取用, 取其差分时可以得到比单一圆筒检测极幅度更强的信号。
2.在直线反射往复式多圈飞行管中 (静电反射离子阱) 离子往返经过单一 探测器的信号的极性相同, 而使用本发明的两个圆筒检测器时, 离子从第一个 检测极进入, 由第二个检测极穿出时, 差分信号极性为正; 反之离子从第二个 检测极进入, 由第一个检测极穿出时差分信号极性为负, 所以信号的极性反映 了离子的入射方向。
3.将一列多个圆筒检测极同轴相串, 离子从一端射入后, 每个圆筒会在不 同时刻感应出脉冲镜像电流, 将相邻的圆筒检测极上的镜像电流取差分, 并与 接下去相邻检测极之差分信号叠加, 可以得到一个时间成一定规律的脉冲信号 序列, 这个信号序列的高频成分比单一检测筒检出的高频成分有很大增强。 这 些高频成分与离子的运动速度有紧密的关系, 通过对信号的适当解析转换, 可 以得到一张质谱, 且信噪比能够得以增强。 附图说明
图 1示出含有一对镜像电流检测器的多次反射飞行时间质谱仪。
图 2示出单圆筒镜像电流检测器。
图 3示出正电荷通过时单圆筒镜像电流检测器的输出电流信号。 图 4示出双圆筒镜像电流检测器, 以及经放大器 (或电流对电压转换器)输 出的波形。
图 5示出正电荷通过时双圆筒镜像电流检测器在左圆筒、 右圆筒上拾取的 输出电流, 以及左右差分后获得的信号。
图 6示出喇叭形双圆筒镜像电流检测器。
图 7示出正电荷通过喇叭形双圆筒镜像电流检测器时差分信号的反冲波 (正向;)大大减小, 图中虚线为作为比较的单圆筒拾取的镜像电流信号。
图 8示出一列 8个圆筒的镜像电流检测器及其信号拾取方案一例, 下部给 出放大器输出的信号波形。
图 9示出离子群在多次反射飞行管中来回运动时, 多个圆筒的镜像电流检 测器输出的信号波形。
图 10示出多圆筒镜像电流检测器的信号拾取方案另一例。
图 1 1示出回旋跑道式多圈飞行管中用多圆筒镜像电流检测器采样的实施 例。 本发明的最佳实施方式
首先以往复式多次反射飞行管的基本结构来描述本发明实施例的分析器。 图 1中的飞行管 100包含了相对着的两个反射镜 2a和 2b, 离子源 1产生 的脉冲离子束 Ib, 可以经反射镜两端电极上的小孔 H引入。 离子引入后反射镜 2中的一些电极电压应立刻恢复到正常反射状态的电压值。 这样离子就会在两 个反射镜之间不断反射。
对于正离子模式, 反射镜中电极要加正电压, 反射镜内的电势相对于漂移 空间 7, 高达几千伏到上万伏, 所以当离子往反射行至漂移区 7时, 具有几千 到上万 ev的动能。离子在反射镜区和漂移区以脉冲离子束的形式来回运动, 就 有可能在这些区域的导电体上形成镜像电荷。 而实际设计中, 反射镜区和漂移 区并没有明确的界限, 所以我们在此统称为离子运动区域。 我们在此区域的离 子漂移空间 7中与离子束同轴安装了一对圆桶检测电极 10,其分别连接到差分 放大器 8。
一个设计良好的反射镜, 应当满足等时性的条件, 所谓等时性即当离子质 荷比相同, 即使初始动能有少量差异, 经反射镜反射后都能同时回到漂移区内 的某一点, 形成所谓时间会聚 (time focusing;)。 比如, 离子群从点 P 1出发, 经 反射镜 2b反射后能同时回到点 P2, 这个反射镜就满足了等时性条件, 在等时 点 P2处安置离子检测器, 就能获得很高的质量分辨率。 同样, 如反射镜 2a也 满足等时性的条件, 并能将从点 P2出发的离子群, 经反射后, 同时回到点 Pl, 这对反射镜构成的多次 (圈) 反射飞行管就是一个具有等时性的静电离子阱。 同样质荷比的离子在这样的运动过程中会多次达到时间汇聚, 不至于很快分散 开来。 当然, 时间汇聚不可能是完全理想的, 离子最终还是会慢慢弥散到整个 运动区域, (比如几百 ms以后) 以至于镜像电流消失。
如果用图 2 显示的现有单圆筒检测器置于上述漂移空间 7, 则检出的镜像 电流信号波形如图 3所示, 这个波形与离子运动方向无关。 如果用图 4所示的 双圆筒检测器, 离子 I从筒 10L进入, 镜像电流信号波形如图 5所示。 由左筒 检出的信号波形为虚线 Kl, 由右筒 10R检出的信号波形如虚线 K2, T 1为两波 形取差 (K1-K2 ) 。 波形 T 1有一个较高的负向尖峰。 相反, 如果离子是由右边 入射, 右筒 10R就会检出如虚线 K1所示的信号波形, 左筒 10L就会检出如虚 线 Κ2所示的信号波形, 取差后就得到与波形 T1相反的正向尖峰信号输出。所 以用双圆筒探测可以辨别离子运动的方向。
可以有不同的方法获取差分信号, 可以象图 4所示那样直接用差分放大器 4将筒 10上的感应电流放大, 也可以分别将筒 10上的感应电流放大, 再用差 分放大器取差。
图 5中的波形 T l, 除了中间的尖峰以外, 其两边还有两个反向的小峰, 在没有较好的解析算法时, 容易与其它离子群的信号相混淆, 如果将双圆筒检 测器做成图 6所示的喇叭筒 1 1状, 差分波形就能大大改观。 图 7显示喇叭筒 筒长 10mm, 筒小头直径 4mm, 两筒间距为 2mm, 半张角为 45度时获得的差 分电流信号。 作为比较, 图中同时给出了直径 18mm长 7mm的单个直筒对同 样离子群的镜像电流波形 (虚线部分) , 可见本发明提出的双圆筒探测方案对 提高信号强度有明显效果。
在本发明的又一实施方案中, 分析器中的圆筒检测器为一列多个, 离子穿 过该列检测器时, 不仅可以利用差分取样的信号增强作用, 还能在离子的一个 回转周期得到一个序列的镜像电流脉冲。 如图 8所示, 置于无场漂移区的有 8 个圆筒, 每个圆筒内径为 6mm, 长度为 7mm; 相邻圆筒间距 lmm, 各圆筒从 左到右标记为 10a、 10b、 10c、 10d、 10e、 10f、 lOg和 10h。 奇数号的圆筒联接 在一起, 接通差分放大器 8的正向输入端; 偶数号的圆筒联接在一起, 接通差 分放大器 8的负向输入端。 一个匀速由左向右运动的离子群 Ig穿入圆筒序列, 每个圆筒会在不同时刻感应出脉冲镜像电流, 奇数与偶数圆筒的镜像电流之和 取差分, 在差分放大器 8的输出端可以得到一个象波形 T2的脉冲信号序列。 波形 T2中各个脉冲上的标记分别指示该脉冲是离子从第一个号码的圆筒进入 第二个号码的圆筒时产生的。 例如负脉冲 a-b就是离子从圆筒 a进入圆筒 b时 产生的, 正脉冲 b-c就是离子从圆筒 b进入圆筒 c时产生的, 等等。
检测器中的圆筒级数并不只限于 8级, 在飘移区长度和离子束聚焦特性允 许的情况下越多越好。 当离子群在两个反射镜之间来回振荡时, 飘移区中的检 测器就会不断地拾取上述脉冲序列信号, 形成如图 9所示的波包串。 一对波包 对应于离子的一次来回, 两对波包的间距反映了离子在飞行管中振荡的周期, 正比于质荷比的平方根^ ^。 同时, 每一个波包中的脉冲间隔, 反映了离子 穿越每个圆筒的时间。 如果圆筒的长度为 1, 离子在入射飞行管前的加速电压 为 U, 则波包中的脉冲间隔:
Figure imgf000009_0001
所以, 波形中的两个时间 (或频率) 参数都与离子的质荷比有关。 采用一 定的算法对波包串信号进行数学转换, 就能得到一张质谱。
从电子学角度考虑, 如果能把低噪声放大器做成一个阵列, 放置于检测器 圆筒阵列附近, 可进一步提高信噪比。 如图 10所示, 检测器的每个圆筒都连 接低噪声放大器 9a-9h的其中一个,所有奇数圆筒的放大器输出端经过电阻 6a, 6c, 6e, 6g汇集到一点, 连到下一级差分放大器 8的正向输入端; 所有偶数圆筒 的放大器输出端经过电阻 6b, 6d,6f, 6h汇集到一点, 连到下一级差分放大器 8 的负向输入端; 最后由差分放大器给出总的输出信号。
本发明的另一种配置实例如图 11所示。 图中的多圈飞行管 200呈一个封 闭跑道状, 包括静电偏转器 4, 聚集透镜 5, 以及两个漂移区 7。 离子由离子源 1产生, 通过切断、 恢复偏转器 4的电压的方法, 使离子源 1产生的离子注入 封闭跑道状飞行管, 并在其中周而复始地运转。 在每个漂移区中装有一列圆筒 检测器 10, 离子每次穿越圆筒检测器, 将在与其相连的放大器 (图中未显示) 上输出脉冲波包信号。 圆筒检测器列 10可分为两组, 两组圆筒检测器的输出 信号既可以分别使用, 也可以通过一定的移相调整后叠加在一起使用。
综上所述, 本发明中, 使得离子束来回运动多次的离子光学系统, 既可以 采用静电离子反射镜, 也可以用静电离子偏转装置, 以及它们与静电聚集透镜 的组合。
在利用上述数个方案获得增强的镜像电流时域信号之后,要通过一定的数 据转换方法处理镜像电流时域信号而得到离子的质谱。 从上文已经看到, 某一 质量离子的镜像电流信号不是正弦或余弦函数, 它的频谱已经包括各种高次谐 波。 诚然, 我们可以用任何一次谐波信号的谱线与质荷比的关系, 借助于傅立 叶变换来获得质谱, 而且往往利用高次谐波谱线得到的质谱具有较高的质量分 彭辛率, 这一; ^、在 K G Buhshan 等 Electrostatic ion trap and Fourier transform measurements for high-resolution mass spectrometry, REVIEW OF SCIENTIFIC INSTRUMENTS 78, 083302 ( 2007 ) 一文中已被试验证明。 但是, 当分析器 运用于分析宽质量范围的多种离子时, 不同离子的不同次谐波谱线将会交叠在 一起。 比如质荷比 200的离子镜像电流的二次谐波频率自然小于质荷比 100的 离子的二次谐波频率, 但其三次谐波频率却会大于质荷比 100的离子的二次谐 波频率。 这样, 对于多种离子产生的合成镜像电流信号, 经傅立叶变换以后, 并不能得到一张质谱, 而是一张与特定质谱有关的复杂谱图。 为此我们进一步 提出两套由镜像电流到质谱图的转换方法。 在阅读了如下方法后, 本领域技术 人员将能够实施执行下述方法以获得质谱的信号处理装置。 数字快速傅立叶变换法加逐步谱剥离转换方法
在这个方法中, 首先, 对于任何质量 ^都由推导、 测量或用电脑模拟方法 获得其镜像电流信号的时间函数 (质量基函数) , 并用数字快速傅立叶变换法 获得其复频谱分布, 这样就知道其各高次谐波在离散频谱的复数值对基频点复 数值的比例。然后对模-数采样得到的实际镜像电流时域信号进行数字快速傅立 叶变换, 傅立叶变换的频率下限一定要低于最大可能质量的离子振荡基频。
解谱从频谱的低端开始, 对第一个非零峰位值, 根据对应高次谐波点的比 例值求其各高次谐波的复数分布, 并在原复频谱中扣除算得的复数分布。 接下 来, 在被扣除过的频谱分布中找下一个非零峰位值, 再根据复系数的比例求其 各高次谐波的复数分布, 并在前面扣除过的复频谱中再扣除算得的复数分布… 以此类推, 直到走完整个频谱。 各次得到的那个非零峰位值组合在一起即构成 所要的质谱。 当然, 为避免根据非零基频量求其各高次谐波的复数分布的计算 误差, 每次扣除时, 应做适当的校验。 比如看看余下的频谱是否出现模数为负, 或检査余下的频谱模数的平方和是否取得极小。
这种逐次剥离高次谐波的方法 (有时也可称为频谱退卷积法) , 在基频分 量远小于一些高次谐波分量的时候 (比如, 图 4所示的双圆桶探测器给出的镜 像电流信号中, 基频分量很小, 在第 20到 30次谐波时才出现最大) , 特别是 一个质量的离子流很弱时, 可能会带来很大的误差, 在质谱上留下很大噪声。 该转换方法实质是在利用每种质量离子流的基频分量, 去除高次分量的干扰, 而没有充分利用多次谐波成分。 最小二乘法 /正交投影法求基函数系数方法
假设在离散时间点上采集到的总镜像电流信号为 其中, H = ^为 采样时间步长。 对于某一质量^ (j= l〜k ) ,可以推导、 测量或用电脑模拟方 法获得其镜像电流信号的时间函数 . = x , 即所谓质量基函数, ti的区间与 步长与实际采样时相同。 同样设^" _^ = ^为转换过程选用的质量步长, 并可 设定 ^为质量下限, m为质量上限。 据此, 我们的信号转换工作就成为寻找一 个回归函数:
Y, = yi ) = {) + alxl (tt ) + a2x2 (tt ) + ...akxk (tt ) i= →N 使在各 ^点 ^与 满足最小二乘法趋近, 回归系数 , 既反映某一质量 离子流的强度。 也就是说 (^'α 数据即描绘了 信号对应的质谱。
这个方法实质上等同于矢量分析中的正交投影法, 即把基函数 x . = x ^看 作基矢量 xj, k个质量点对应的独立基矢量张成空间 V。 如果镜像电流 I恰好 是由这些离散质量中的一些离子造成, U。 但实际离子质量并非严格位于上 述离散点上,而且质谱峰会有所展宽,信号中也会混有噪声,所以镜像电流 I 不 属于空间 V, 但它在空间 V中的正交投影 Y是它的最佳逼近。
k
Y =∑aJxj
7=1
可以证明, 求解系数 的方法与最小二乘法一致, 都是要解线性方程:
7=1 i=l i=l
其中 m= l → k, 即共有 k个方程联立。
前面说到, 当分析器的结构 (比如, 反射镜尺寸和各电极上的电压参数) 确定以后, 质量 ^对应的镜像电流信号的离散时间函数可以用数学推导或模拟 计流算得到。 在实践中, 我们也可以通过一个对标准样品实验测定来获得。 比如我们采用的标准样品产生的离子的质荷比为 ,对这个离子的镜像电
¾、、/Ιϊ :可以得到一个标准基函数 X¾ (t) 。 如果测量中是用同样的时基进行离散 采样, 即可得到离散函数 ;r„ = x¾(t„) 。 因为离子运动速率与其质荷比的平方根 成反比, 所以对于质量^ 的离子会在时间^.产生与质量 ^的标准离子在时间 t 产生相同的或成正比例的信号, 即 m.
t = 当然上式给出的 t不一定正好落在离散采样时间点 ^上,比如 t落在 ^和 之间, 这时只要用插值法即可获得基函数 即
Figure imgf000012_0001
这里 4是^.离子相对于标样离子 的镜像电流响应系数, 一般认为它正 比于离子运动的速度, 即,
m
A }
m
j
以上我们就镜像电流检测和信号转换分步地介绍了本发明涉及的技术方 案。 这些技术方案可以组合使用以实现最佳效果, 得到高灵敏度, 高分辨率的 质谱。 其实信号转换的方法还有很多, 比如对于图 8所示的多圆筒检测器, 我 们也可以用傅立叶变换获得离子在飞行管中振荡的频谱和波包中的脉冲频谱, 并分别折算成质谱, 再叠加起来。 只要能充分利用输出时域信号中的多种频率 分量, 就能获得比用单一圆筒检测器获取镜像电流的傅立叶转换质谱更好的信 噪比。
总之利用多个管状电极检测器能在离子的一个往复 /循环运动周期内给出 多个镜像电流脉冲, 提高了信号拾取次数和幅度, 经处理后获得的质谱信噪比 得以提高。 在以上的实施方案中, 考虑离子束的截面是圆形的, 所以用的是多 个圆筒检测器。 如果针对静电飞行管的不同设计, 检测器的圆筒也可改为截面 是其他形状的管筒状电极, 比如长方筒, 这仍为本发明的思想所涵盖。 对于将 时域信号转换成质谱数据处理方法本文仅作了概括的说明。 例子中的信号剥离 ( deconvolution) 是在频域中进行, 而最小二乘法则在时域中进行。 行业之专 家们完全可以反过来, 即信号剥离在时域中进行, 或在频域中进行最小二乘法 解谱。 而且还可以采用其他方法, 比如小波分析等。 所以本发明的范围不以上 述实例为限, 而以权利要求书作为界定。

Claims

权 利 要 求
1.质谱分析器, 包括:
能够使脉冲地产生或启动的待分析的离子在其中进行多次周期性运动, 且在其中部分离子运动区域形成时间会聚, 并形成细长束的静电反射镜或静电 偏转装置;
在所述可以形成时间会聚的部分离子运动区域中设置的多个沿离子束轴 向串型排列的管状检测器, 拾取离子从中通过时的镜像电流;
与所述管状检测器相连的低噪声电子放大装置, 差分地检测由多个管状 检测器拾取的镜像电流以获得差分镜像电流信号; 以及
将所述差分镜像电流信号转化成质谱的信号处理装置。
2.根据权利要求 1所述的质谱分析器, 其特征在于, 包含一对所述管状检 测器, 所述低噪声电子放大装置包含差分放大器, 该差分放大器的两输入端分 别来自管状检测器的其中之一。
3.根据权利要求 1所述的质谱分析器, 其特征在于, 所述电子放大装置包 含连接在管状检测器与差分检测电路之间的低噪声放大器, 在该差分检测电路 获取差分镜像电流信号之前放大各管状检测器拾取的镜像电流。
4.根据权利要求 2或 3所述的质谱分析器, 其特征在于, 所述一对管状检 测器为对称放置的喇叭筒形, 该对管状检测器相靠近一端内径较小, 相远离一 端内径较大, 喇叭筒母线对中轴线的张角为 25度到 55度之间。
5 根据权利要求 1所述的质谱分析器, 其特征在于, 所述电子放大装置 包含差分放大器, 所述多个沿离子束轴向串型排列的管状检测器中, 一部分管 状检测器拾取到的镜像电流汇集到该差分放大器的第一输入端, 而另一部分管 状检测器拾取到的镜像电流汇集到该差分放大器的第二输入端。
6 根据权利要求 5的质谱分析器, 其特征在于, 所述多个沿离子束轴向 串型排列的管状检测器中, 汇集到该差分放大器第一输入端的镜像电流的管状 检测器为奇数序号的管状检测器, 而汇集到该差分放大器的第二输入端的镜像 电流的管状检测器为序号是偶数的管状检测器。
7.—种利用多圈式飞行时间分析器进行质谱分析的方法, 包括: 设置飞行时间分析器静电反射镜或静电偏转装置而使脉冲地产生或启动 的待分析的离子在其中进行多次周期性运动, 并在其中部分离子运动区域形成 时间会聚, 且空间上成细长离子束;
在上述的部分离子运动区域, 让离子束周期性通过沿离子束的轴向串型 排列的多个管状检测器, 所述管状检测器拾取离子从中通过时的镜像电流; 用低噪声电子放大装置差分地检测由多个管状检测器拾取的镜像电流; 将所述电子放大装置的输出信号进行数学转换, 获得质谱。
8.根据权利要求 7所述的质谱分析方法, 其特征在于, 差分地检测多个管 状检测器拾取的镜像电流的步骤包括:
将多个管状检测器中序号为奇数的检测器拾取的镜像电流送往差分放大 器的第一输入端;
将所有序号为偶数的检测器拾取的镜像电流送往差分放大器的第二输入 。
9.根据权利要求 7所述的质谱分析方法, 其特征在于, 差分地检测多个管 状检测器拾取的镜像电流的步骤包括, 分别用低噪声放大器将对应的检测器拾 取的镜像电流放大, 再把所有序号为奇数的低噪声放大器的输出之和, 与所有 序号为偶数的低噪声放大器的输出之和进行差分、 放大, 构成输出信号。
10.根据权利要求 7所述的质谱分析方法, 其特征在于, 对输出信号进行 数学转换的方法包括数字快速傅立叶变换法。
11.根据权利要求 7所述的质谱分析方法, 其特征在于, 对输出信号进行 数学转换的方法包括频谱退卷积法。
12.根据权利要求 7所述的质谱分析方法, 其特征在于, 对输出信号进行 数学转换的方法利用了某一质荷比与多项频率分量的关系。
13. 根据权利要求 7所述的质谱分析方法, 其特征在于, 对输出信号进行 数学转换的方法包括正交投影法。
14.根据权利要求 13所述的质谱分析方法, 其特征在于, 对输出信号进行 数学转换的正交投影法在数学上等同于最小二乘法。
PCT/CN2009/075813 2008-12-22 2009-12-22 质谱分析器 WO2010072137A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/140,346 US8294085B2 (en) 2008-12-22 2009-12-22 Mass spectrometric analyzer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810207492A CN101752179A (zh) 2008-12-22 2008-12-22 质谱分析器
CN200810207492.6 2008-12-22

Publications (1)

Publication Number Publication Date
WO2010072137A1 true WO2010072137A1 (zh) 2010-07-01

Family

ID=42286897

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/075813 WO2010072137A1 (zh) 2008-12-22 2009-12-22 质谱分析器

Country Status (3)

Country Link
US (1) US8294085B2 (zh)
CN (1) CN101752179A (zh)
WO (1) WO2010072137A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012080352A1 (en) 2010-12-14 2012-06-21 Thermo Fisher Scientific (Bremen) Gmbh Ion detection
WO2012083031A1 (en) * 2010-12-16 2012-06-21 Indiana University Research And Technology Corporation Charge detection mass spectrometer with multiple detection stages

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2476964A (en) * 2010-01-15 2011-07-20 Anatoly Verenchikov Electrostatic trap mass spectrometer
CN102479660A (zh) * 2010-11-30 2012-05-30 中国科学院大连化学物理研究所 一种紫外灯电离装置
GB201103361D0 (en) * 2011-02-28 2011-04-13 Shimadzu Corp Mass analyser and method of mass analysis
GB2495899B (en) * 2011-07-04 2018-05-16 Thermo Fisher Scient Bremen Gmbh Identification of samples using a multi pass or multi reflection time of flight mass spectrometer
DE102011118052A1 (de) * 2011-11-08 2013-07-18 Bruker Daltonik Gmbh Züchtung von Obertönen in Schwingungs- Massenspektrometern
GB201204817D0 (en) 2012-03-19 2012-05-02 Shimadzu Corp A method of processing image charge/current signals
US10840073B2 (en) * 2012-05-18 2020-11-17 Thermo Fisher Scientific (Bremen) Gmbh Methods and apparatus for obtaining enhanced mass spectrometric data
GB201304491D0 (en) * 2013-03-13 2013-04-24 Shimadzu Corp A method of processing image charge/current signals
DE102015106769A1 (de) * 2015-04-30 2016-11-03 Leibniz-Institut für Oberflächenmodifizierung e.V. Vorrichtung zur Detektion einzelner geladener Teilchen sowie System zur Materialbearbeitung, das eine solche Vorrichtung enthält
DE102015121830A1 (de) * 2015-12-15 2017-06-22 Ernst-Moritz-Arndt-Universität Greifswald Breitband-MR-ToF-Massenspektrometer
CN105718723B (zh) * 2016-01-18 2018-01-16 吉林大学 一种质谱数据处理中谱峰位置检测方法
EP3433874B1 (en) * 2016-03-24 2020-02-12 Shimadzu Corporation A method of processing an image charge/current signal
EP3340276A1 (en) * 2016-12-21 2018-06-27 CSEM Centre Suisse d'Electronique et de Microtechnique SA - Recherche et Développement Fly-through inductive charge detector
US11668719B2 (en) 2017-09-20 2023-06-06 The Trustees Of Indiana University Methods for resolving lipoproteins with mass spectrometry
WO2019058226A1 (en) * 2017-09-25 2019-03-28 Dh Technologies Development Pte. Ltd. MASS SPECTROMETER WITH ELECTRO-STATIC LINEAR ION TRAP
EP3738137A1 (en) 2018-01-12 2020-11-18 The Trustees of Indiana University Electrostatic linear ion trap design for charge detection mass spectrometry
GB201802917D0 (en) 2018-02-22 2018-04-11 Micromass Ltd Charge detection mass spectrometry
WO2019236139A1 (en) 2018-06-04 2019-12-12 The Trustees Of Indiana University Interface for transporting ions from an atmospheric pressure environment to a low pressure environment
AU2019281714B2 (en) 2018-06-04 2024-05-02 The Trustees Of Indiana University Charge detection mass spectrometry with real time analysis and signal optimization
WO2019236142A1 (en) * 2018-06-04 2019-12-12 The Trustees Of Indiana University Ion trap array for high throughput charge detection mass spectrometry
WO2019236143A1 (en) 2018-06-04 2019-12-12 The Trustees Of Indiana University Apparatus and method for calibrating or resetting a charge detector
EP3803952A1 (en) * 2018-06-04 2021-04-14 The Trustees of Indiana University Apparatus and method for capturing ions in an electrostatic linear ion trap
CA3118267A1 (en) 2018-11-20 2020-05-28 The Trustees Of Indiana University Orbitrap for single particle mass spectrometry
AU2019392058A1 (en) 2018-12-03 2021-05-27 The Trustees Of Indiana University Apparatus and method for simultaneously analyzing multiple ions with an electrostatic linear ion trap
US12057306B2 (en) * 2018-12-13 2024-08-06 Dh Technologies Development Pte. Ltd. Inception electrostatic linear ion trap
US11942317B2 (en) 2019-04-23 2024-03-26 The Trustees Of Indiana University Identification of sample subspecies based on particle mass and charge over a range of sample temperatures
CN115280132B (zh) * 2020-01-15 2023-06-06 上海宸安生物科技有限公司 粒子质谱
US11842891B2 (en) 2020-04-09 2023-12-12 Waters Technologies Corporation Ion detector
GB2598591A (en) * 2020-09-03 2022-03-09 HGSG Ltd Mass spectrometer and method
US11264229B1 (en) * 2020-12-03 2022-03-01 Guennadi Lebedev Time-of-flight mass spectrometer and method for improving mass and spatial resolution of an image
GB2620970A (en) * 2022-07-28 2024-01-31 Micromass Ltd A charge detection mass spectrometry (CDMS) device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4408489A1 (de) * 1994-03-14 1995-09-21 Frank Dr Strehle Massenspektrometer
US5880466A (en) * 1997-06-02 1999-03-09 The Regents Of The University Of California Gated charged-particle trap
WO2002103747A1 (en) * 2001-06-18 2002-12-27 Yeda Research And Development Company Ltd. Ion trapping
US6888130B1 (en) * 2002-05-30 2005-05-03 Marc Gonin Electrostatic ion trap mass spectrometers
US20070221862A1 (en) * 2006-03-22 2007-09-27 Wayne State University Coupled Electrostatic Ion and Electron Traps for Electron Capture Dissociation - Tandem Mass Spectrometry

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3025764C2 (de) 1980-07-08 1984-04-19 Hermann Prof. Dr. 6301 Fernwald Wollnik Laufzeit-Massenspektrometer
JP3539848B2 (ja) 1997-10-30 2004-07-07 日本電子株式会社 飛行時間型質量分析計におけるイオン光学系
JPH11135060A (ja) 1997-10-31 1999-05-21 Jeol Ltd 飛行時間型質量分析計
CA2448332C (en) * 2001-05-25 2009-04-14 Analytica Of Branford, Inc. Multiple detection systems
US7041968B2 (en) * 2003-03-20 2006-05-09 Science & Technology Corporation @ Unm Distance of flight spectrometer for MS and simultaneous scanless MS/MS
JP4208674B2 (ja) 2003-09-03 2009-01-14 日本電子株式会社 多重周回型飛行時間型質量分析方法
JP2006228435A (ja) 2005-02-15 2006-08-31 Shimadzu Corp 飛行時間型質量分析装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4408489A1 (de) * 1994-03-14 1995-09-21 Frank Dr Strehle Massenspektrometer
US5880466A (en) * 1997-06-02 1999-03-09 The Regents Of The University Of California Gated charged-particle trap
WO2002103747A1 (en) * 2001-06-18 2002-12-27 Yeda Research And Development Company Ltd. Ion trapping
US6888130B1 (en) * 2002-05-30 2005-05-03 Marc Gonin Electrostatic ion trap mass spectrometers
US20070221862A1 (en) * 2006-03-22 2007-09-27 Wayne State University Coupled Electrostatic Ion and Electron Traps for Electron Capture Dissociation - Tandem Mass Spectrometry

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012080352A1 (en) 2010-12-14 2012-06-21 Thermo Fisher Scientific (Bremen) Gmbh Ion detection
DE112011104377T5 (de) 2010-12-14 2013-11-28 Thermo Fisher Scientific (Bremen) Gmbh Ionendetektion
WO2012083031A1 (en) * 2010-12-16 2012-06-21 Indiana University Research And Technology Corporation Charge detection mass spectrometer with multiple detection stages

Also Published As

Publication number Publication date
US8294085B2 (en) 2012-10-23
US20110240845A1 (en) 2011-10-06
CN101752179A (zh) 2010-06-23

Similar Documents

Publication Publication Date Title
WO2010072137A1 (zh) 质谱分析器
US9741551B2 (en) Ion detection
JP6309508B2 (ja) 前駆イオンの同定方法
US7755040B2 (en) Mass spectrometer and electric field source for mass spectrometer
JP5680113B2 (ja) ピークのデコンボリューションを用いる質量分析の方法及び質量分析計
US9318309B2 (en) Mass spectrometers comprising accelerator devices
US8664590B2 (en) Method of processing image charge/current signals
US20080185513A1 (en) Method of multiplexed analysis using ion mobility spectrometer
JP2015523550A5 (zh)
US10991567B2 (en) Quadrupole devices
US7888633B2 (en) Evaluation of spectra in oscillation mass spectrometers
EP2665084A2 (en) Improvements in and relating to the measurement of ions
CN110506320A (zh) 具有增加的占空比的质谱分析
JP7416550B2 (ja) 低減させられた背景およびピーク重複を伴うトップダウン分析のための入手方略
GB2556382A (en) Quadrupole devices
US9997345B2 (en) Orthogonal acceleration coaxial cylinder mass analyser
Patil et al. Development of a linear ion trap mass spectrometer capable of analyzing megadalton MALDI ions
Agarwal et al. A review on analyzers for mass spectrometry
DE112014005577B4 (de) Mikrowellen-Hohlraumresonator
Medhe Mass Spectrometry: Analysers an Important Tool
TWI693625B (zh) 四極離子阱裝置及四極離子阱質譜儀
CN106971934B (zh) 一种质谱仪
JP7528297B2 (ja) 飛行時間質量スペクトルの分析
GB2536870B (en) A method and apparatus for tuning mass spectrometers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09834090

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13140346

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09834090

Country of ref document: EP

Kind code of ref document: A1