WO2010071141A1 - 光スイッチ - Google Patents

光スイッチ Download PDF

Info

Publication number
WO2010071141A1
WO2010071141A1 PCT/JP2009/070948 JP2009070948W WO2010071141A1 WO 2010071141 A1 WO2010071141 A1 WO 2010071141A1 JP 2009070948 W JP2009070948 W JP 2009070948W WO 2010071141 A1 WO2010071141 A1 WO 2010071141A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical switch
electro
light
optic crystal
electrode
Prior art date
Application number
PCT/JP2009/070948
Other languages
English (en)
French (fr)
Inventor
雅彦 太田
修 石橋
藤男 奥村
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2010542982A priority Critical patent/JP5240296B2/ja
Priority to US13/140,965 priority patent/US8422110B2/en
Publication of WO2010071141A1 publication Critical patent/WO2010071141A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/31Digital deflection, i.e. optical switching
    • G02F1/315Digital deflection, i.e. optical switching based on the use of controlled internal reflection
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/0305Constructional arrangements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/03Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on ceramics or electro-optical crystals, e.g. exhibiting Pockels effect or Kerr effect
    • G02F1/0305Constructional arrangements
    • G02F1/0316Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/21Thermal instability, i.e. DC drift, of an optical modulator; Arrangements or methods for the reduction thereof

Definitions

  • the present invention relates to an optical switch that switches between transmission and reflection of light.
  • an optical switch that switches light by applying a voltage to a crystal having an electro-optic effect (electro-optic crystal) to change a refractive index is known.
  • the waveguide-type optical switch is a directional-coupled optical switch that utilizes the proximity effect of two waveguides, or a voltage applied between the waveguides from the outside.
  • a Mach-Zehnder interferometer type optical switch that generates a phase difference between light propagating in a waveguide and uses interference of the light.
  • the refractive index can be changed at high speed, high-speed switching is possible.
  • Patent Document 1 Japanese Patent No. 2666805
  • FIG. 1 is a perspective view showing a configuration of a background art optical switch.
  • the optical switch of the background art includes an optical waveguide layer 2 made of a nonlinear optical material (electro-optic crystal) having an electro-optic effect, and a first electrode group provided in the optical waveguide layer 2. 11 and the second electrode group 12.
  • an optical waveguide layer 2 made of a nonlinear optical material (electro-optic crystal) having an electro-optic effect
  • a first electrode group provided in the optical waveguide layer 2. 11 and the second electrode group 12.
  • the first electrode group 11 and the second electrode group 12 are composed of a plurality of plate-like electrodes 1 extending in the thickness direction of the optical waveguide layer 2.
  • the electrodes of the first electrode group 11 and the second electrode group 12 are alternately arranged at regular intervals so that the cross section of the surface intersecting the thickness direction of the optical waveguide layer 2 has a comb shape. .
  • a periodic refractive index change occurs in the nonlinear optical material of the optical waveguide layer 2 by applying a voltage between the first electrode group 11 and the second electrode group 12.
  • the portion where the periodic refractive index change occurs functions as a diffraction grating, and incident light is Bragg reflected.
  • the voltage application to the first and second electrode groups is stopped, the function as a diffraction grating is lost, so that incident light is transmitted through the region between the plate electrodes.
  • the extinction ratio indicating the difference in intensity of transmitted light between on and off may be about 10: 1.
  • an optical switch having a higher extinction ratio is desired in order to improve luminance and contrast ratio.
  • the optical switch used for the image display device has high light damage resistance.
  • As an optical switch of an image display device it is necessary to modulate light of several tens to several hundreds mW.
  • the waveguide type optical switch conventionally used in optical communication or the like generally has a waveguide size of several ⁇ m. In such a waveguide type optical switch, the intensity of light irradiated per unit volume increases, so that optical damage is likely to occur in a nonlinear optical crystal, and it is difficult to use as an optical switch for an image display device. is there.
  • the change in the refractive index depends on the temperature of the crystal.
  • the magnitude of the change in the refractive index varies with temperature, the intensity of the output light of the optical switch also changes. Therefore, in order to stabilize the operation of the optical switch, it is necessary to maintain the temperature of the region where the refractive index change occurs in the electro-optic crystal within an appropriate range.
  • the optical switch described in Patent Document 1 does not have a structure that takes into account the temperature dependence of the refractive index change of the electro-optic crystal. Therefore, for example, when the first and second electrode groups are irradiated with light and the temperature of the first and second electrode groups rises, the refractive index with respect to the applied voltage also changes, and the light that can be reflected by the diffraction grating changes.
  • the operation of the optical switch may become unstable depending on the installation environment and ambient temperature, such as the wavelength and the direction of light reflected by the diffraction grating become unstable.
  • an object of the present invention is to provide an optical switch that can obtain a higher extinction ratio, higher optical damage resistance, and higher temperature stability, and is small in size and capable of high-speed operation and low power consumption operation.
  • the optical switch of the present invention is configured to transmit and totally reflect incident light incident on the electro-optic crystal by applying an electric field to the electro-optic crystal to change the refractive index of the electro-optic crystal.
  • An optical switch for switching between An electrode portion comprising a plurality of electrodes disposed in the electro-optic crystal and disposed such that the main cross section having the largest area is in the same plane;
  • An insulator layer made of an insulator having a dielectric constant lower than that of the electro-optic crystal, formed on at least one end face of the electro-optic crystal parallel to the electrode portion;
  • a temperature control element for controlling the temperature of the electrode part, or for radiating the heat generated in the electrode part, formed so as to be in contact with the insulator layer;
  • an optical switch that switches between transmission and total reflection of incident light incident on the electro-optic crystal by applying an electric field to the electro-optic crystal to change a refractive index of the electro-optic crystal
  • An electrode unit comprising a plurality of electrodes provided in the electro-optic crystal for applying an electric field to the electro-optic crystal;
  • An antireflection film formed on each of a light incident surface on which light is incident and at least one of a light emitting surface from which transmitted light is emitted or a light emitting surface from which reflected light is emitted;
  • Have The refractive index changing part of the electro-optic crystal whose refractive index changes when an electric field is applied by the electrode part includes the entire electrode part, and the refractive index interface of the refractive index changing part is formed flat.
  • an optical switch that switches between transmission and total reflection of incident light incident on the electro-optic crystal by applying an electric field to the electro-optic crystal to change a refractive index of the electro-optic crystal
  • An electrode portion comprising a plurality of electrodes disposed in the electro-optic crystal and disposed such that the main cross section having the largest area is in the same plane;
  • An antireflection film is formed on each of a light incident surface on which light is incident and at least one of a light emitting surface from which transmitted light is emitted and a light emitting surface from which reflected light is emitted.
  • an optical switch that switches between transmission and total reflection of incident light incident on the electro-optic crystal by applying an electric field to the electro-optic crystal to change a refractive index of the electro-optic crystal
  • An electrode unit comprising a plurality of electrodes provided in the electro-optic crystal for applying an electric field to the electro-optic crystal;
  • An antireflection film formed on each of a light incident surface on which light is incident and at least one of a light emitting surface from which transmitted light is emitted or a light emitting surface from which reflected light is emitted;
  • Have The refractive index changing part of the electro-optic crystal whose refractive index changes when an electric field is applied by the electrode part includes the entire electrode part, and the refractive index interface of the refractive index changing part is formed flat.
  • an optical switch that switches between transmission and total reflection of incident light incident on the electro-optic crystal by applying an electric field to the electro-optic crystal to change a refractive index of the electro-optic crystal
  • An electrode portion comprising a plurality of electrodes disposed in the electro-optic crystal and disposed such that the main cross section having the largest area is in the same plane;
  • An insulating part formed so that the electrode part and at least a part thereof are in contact with each other, the thermal conductivity is higher than that of the electro-optic crystal and the dielectric constant is low;
  • a temperature control unit for radiating heat generated at the electrode unit or controlling the temperature of the electrode unit, formed at an end of the insulating unit;
  • an optical switch that switches between transmission and total reflection of incident light incident on the electro-optic crystal by applying an electric field to the electro-optic crystal to change a refractive index of the electro-optic crystal
  • An electrode unit comprising a plurality of electrodes provided in the electro-optic crystal for applying an electric field to the electro-optic crystal;
  • An insulating part formed such that the electrode part and at least a part thereof are in contact with each other, the thermal conductivity is higher than that of the electro-optic crystal and the dielectric constant is low;
  • a temperature control unit for radiating heat generated at the electrode unit or controlling the temperature of the electrode unit, formed at an end of the insulating unit;
  • Have The refractive index changing part of the electro-optic crystal whose refractive index changes when an electric field is applied by the electrode part includes the entire electrode part, and the refractive index interface of the refractive index changing part is formed flat.
  • FIG. 1 is a perspective view showing a configuration of an optical switch according to the background art.
  • FIG. 2 is a perspective view showing a configuration example of the optical switch of the present invention.
  • FIG. 3 is a schematic diagram showing the operation principle of the optical switch shown in FIG. 4A and 4B are diagrams showing the configuration of the optical switch according to the first embodiment.
  • FIG. 4A is a perspective view, and FIG. 4B is an AA view of the optical switch shown in FIG.
  • FIG. 4C is a sectional view taken along the line BB of the optical switch shown in FIG. 4A.
  • 5A and 5B are diagrams showing the configuration of the optical switch according to the second embodiment.
  • FIG. 5A is a perspective view
  • FIG. 5B is an AA view of the optical switch shown in FIG. FIG.
  • FIG. 5C is a sectional view taken along the line BB of the optical switch shown in FIG. 5A.
  • 6A and 6B are diagrams showing a configuration of a modification of the optical switch according to the second embodiment.
  • FIG. 6A is a perspective view
  • FIG. 6B is a diagram of the optical switch shown in FIG. A cross-sectional view taken along the line AA
  • FIG. 6C is a cross-sectional view taken along the line BB of the optical switch shown in FIG. 7A and 7B are diagrams showing the configuration of the optical switch according to the third embodiment.
  • FIG. 7A is a perspective view
  • FIG. 7B is a cross-sectional view taken along line BB of the optical switch shown in FIG. It is line sectional drawing.
  • FIGS. 8A and 8B are diagrams showing a configuration of a modification of the optical switch according to the third embodiment.
  • FIG. 8A is a perspective view
  • FIG. 8B is a diagram of the optical switch shown in FIG. It is a BB sectional view.
  • FIGS. 9A and 9B are diagrams showing the configuration of the optical switch according to the fourth embodiment.
  • FIG. 9A is a perspective view
  • FIG. 9B is a BB diagram of the optical switch shown in FIG. It is line sectional drawing.
  • FIGS. 10A and 10B are diagrams showing a configuration of a modification of the optical switch of the fourth embodiment.
  • FIG. 10A is a perspective view
  • FIG. 10B is a diagram of the optical switch shown in FIG. It is a BB sectional view.
  • FIGS. 11A and 11B are diagrams showing the configuration of the optical switch of the fifth embodiment.
  • FIG. 11A is a perspective view
  • FIG. 11B is a BB diagram of the optical switch shown in FIG. It is line sectional drawing.
  • FIGS. 12A and 12B are diagrams showing the configuration of the optical switch of the sixth embodiment.
  • FIG. 12A is a perspective view
  • FIG. 12B is a BB diagram of the optical switch shown in FIG. It is line sectional drawing.
  • FIGS. 13A and 13B are diagrams showing the configuration of the optical switch of the seventh embodiment.
  • FIG. 13A is a perspective view
  • FIG. 13B is a BB diagram of the optical switch shown in FIG. It is line sectional drawing.
  • FIGS. 14A and 14B are diagrams showing the configuration of the optical switch of the eighth embodiment.
  • FIG. 14A is a side sectional view and FIG. 14B is a plan view.
  • FIGS. 15A and 15B are diagrams showing the configuration of the optical switch according to the ninth embodiment.
  • FIG. 15A is a side sectional view and FIG. 15B is a plan view.
  • FIGS. 16A and 16B are diagrams showing the configuration of the optical switch according to the tenth embodiment.
  • FIG. 16A is a side sectional view and FIG. 16B is a plan view.
  • FIG. 17 is a diagram showing a configuration of a modification of the optical switch according to the tenth embodiment.
  • FIG. 17A is a side sectional view and FIG. 17B is a plan view.
  • FIG. 18 is a schematic diagram illustrating a configuration example of an image display device including the optical switch of the present invention.
  • FIG. 19 is a schematic diagram illustrating a configuration example of an image forming apparatus
  • the optical switch described in Patent Document 1 controls transmission and diffraction of incident light by a diffraction grating induced by a change in refractive index.
  • applying a voltage changes the refractive index of the electro-optic crystal in the vicinity of the electrodes to form a refractive index changing section that includes each electrode.
  • FIG. 2 is a perspective view showing the configuration of this optical switch.
  • a plurality of rod-like electrodes 105 are arranged in the electro-optic crystal 104 at a relatively narrow interval, and a voltage is applied to each electrode 105 from an external power source 107 so that the polarities of adjacent electrodes 105 are different.
  • the light is incident obliquely with respect to the normal direction of the electrode unit 106 including a plurality of electrodes 105 arranged on a straight line.
  • the electrode section 106 is composed of a plurality of electrodes 105 arranged such that the main cross section with the largest area is in the same plane, and the plurality of electrodes 106 have the same film thickness and are parallel and equally spaced. Has been placed.
  • a voltage is applied to the plurality of electrodes 105 so that the polarities of adjacent electrodes are different from each other.
  • the refractive index does not change in the electro-optic crystal 104 in the vicinity of the electrode unit 106, so that the incident light 101 passes through the electrode unit 106. To the outside (transmitted light).
  • a voltage is applied to the electrode portion 106, an electric field is generated between the electrodes 105 as shown in FIG. 3B, thereby changing the refractive index of the electro-optic crystal 104 in the vicinity of the electrode portion 106, and changing the refractive index.
  • Part 108 is formed.
  • the refractive index changing portion 108 is formed so as to cover the entire plurality of electrodes 105, and the refractive index interface is formed substantially flat.
  • the optical switch shown in FIG. 2 is a bulk type optical switch that does not need to form a waveguide structure and transmits light through the electro-optic crystal 104. Therefore, the intensity of light irradiated per unit volume can be reduced, and the optical damage resistance can be improved as compared with the waveguide type optical switch. Therefore, it is possible to switch a light beam having a relatively large aperture (several tens to several hundreds ⁇ m) as compared with the waveguide type optical switch.
  • the intervals between the plurality of electrodes 105 are equal to about several ⁇ m to several tens of ⁇ m, and the electrodes 105 are arranged at a relatively narrow interval.
  • the electrodes 105 are arranged at a relatively narrow interval.
  • the power consumption during high-speed operation is proportional to the square of the applied voltage and the capacitance between the electrodes, it is possible to reduce the applied voltage and the capacitance between the electrodes, even when compared with the optical switch described in Patent Document 1. Power consumption can be reduced. Furthermore, since the operating frequency band is inversely proportional to the interelectrode capacity, the operating frequency band can be expanded by reducing the interelectrode capacity. That is, even when compared with the optical switch described in Patent Document 1, the switch operation can be speeded up.
  • FIG. 2 shows a configuration example in which a plurality of electrodes 105 are arranged so as to be orthogonal to the traveling direction of incident light, but each electrode 105 is in the same direction as the traveling direction of incident light. It may be arranged as follows.
  • FIG. 4A and 4B are diagrams showing the configuration of the optical switch according to the first embodiment.
  • FIG. 4A is a perspective view
  • FIG. 4B is an AA view of the optical switch shown in FIG.
  • FIG. 4C is a sectional view taken along the line BB of the optical switch shown in FIG. 4A.
  • the optical switch of the first embodiment has a configuration in which a temperature control element 111 is formed on the lower end face of the electro-optic crystal 104 parallel to the electrode portion 106 of the optical switch shown in FIG. is there.
  • 4A to 4C show configuration examples in which a plurality of electrodes 105 are arranged so as to be in the same direction as the traveling direction of incident light.
  • the change in the refractive index depends on the temperature of the crystal.
  • the intensity of the output light of the optical switch also changes. Therefore, in order to stabilize the operation of the optical switch, it is necessary to maintain the temperature of the region in the electro-optic crystal 104 where the refractive index change occurs within an appropriate range.
  • the optical switch shown in FIG. 2 has a structure in which an electrode portion 106 exists on the optical path of incident light, and the temperature easily rises when the electrode portion 106 is irradiated with light.
  • the temperature of the electro-optic crystal 104 around the electrode portion 106 changes due to the temperature rise of the electrode portion 106, the refractive index corresponding to the applied voltage also changes, and the flatness of the refractive index interface of the refractive index changing portion 108 is maintained. It becomes difficult. Therefore, in the optical switch shown in FIG. 2, it is desirable to keep the temperature of the electrode portion 106 and the electro-optic crystal 104 in the vicinity thereof constant.
  • the temperature control element 111 is provided on the end face of the electro-optic crystal 104 closest to the electrode portion 106 on the optical path of the incident light having the largest characteristic variation due to temperature change.
  • thermoelectric conversion element such as a Peltier element for controlling the temperature of the electrode part 106, or a heat dissipation element such as a heat sink for radiating heat generated in the electrode part 106 is used.
  • thermoelectric conversion element When a thermoelectric conversion element is used for the temperature control element 111, a temperature sensor for detecting the temperature of the electrode forming region including the electrode part 106 and the refractive index changing part 108 is attached to the optical switch.
  • Thermoelectric conversion element generates heat by supplying current from a current source (not shown).
  • a current source not shown
  • the thermoelectric conversion element When the thermoelectric conversion element generates heat, the insulating layer 110 is heated by the thermal energy, and the temperature of the electrode formation region rises.
  • Some thermoelectric conversion elements have an endothermic action that absorbs thermal energy from a contacted part. For example, when a direct current is applied to the Peltier element, one surface generates heat and the other surface absorbs heat. Further, when the direction of the flowing current is reversed in the Peltier element, the surface that absorbs heat and the surface that generates heat are reversed. Therefore, the electrode formation region can be heated and cooled by using a Peltier element as the thermoelectric conversion element.
  • the temperature sensor is affixed to a part where the relationship between the electrode formation region and the temperature is known (for example, a part where the thermal resistance is known). Thereby, the temperature of the electrode forming region can be estimated based on the value detected by the temperature sensor.
  • a predetermined threshold is set for the detection value of the temperature sensor based on the temperature relationship between the part where the temperature sensor is attached and the electrode formation region, and the detection value of the temperature sensor is the threshold value. If it is less than the value, the electrode formation region is heated via the insulator layer 110 by the thermoelectric conversion element, and if the detected value of the temperature sensor is equal to or greater than the threshold value, the electrode formation region via the insulator layer 110 by the thermoelectric conversion element Cool down. By such treatment, the temperature of the electrode formation region can be maintained within a predetermined temperature range.
  • the temperature control element 111 includes a temperature control element 111 in order to efficiently release the heat of the electrode portion 106 generated by irradiation with high-intensity light to the outside.
  • a heat radiating element such as a heat sink may be used.
  • the temperature control element 111 when controlling the temperature of the electrode formation region, it is preferable to provide the temperature control element 111 at a position closer to the electrode portion 106. Therefore, a configuration in which the temperature control element 111 is directly formed on the end face of the electro-optic crystal 104 parallel to the electrode portion 106 is also conceivable.
  • Such a configuration has a structure in which the electro-optic crystal 104 having a high dielectric constant is sandwiched between the electrode part 106 and the temperature control element 111 made of a heat sink or Peltier element as a conductor. 111 forms a capacitor. Therefore, the operation speed (band) of the optical switch is limited by the capacitance component of the capacitor.
  • an insulator layer 110 made of an insulator having a dielectric constant lower than that of the electro-optic crystal 104 is formed on the lower end face of the electro-optic crystal 104 parallel to the electrode portion 106, and is in contact with the insulator layer 110.
  • the temperature control element 111 is formed.
  • the temperature of the electrode part 106 can be controlled at a position closer to the electrode part 106 without increasing the capacitance component, or the heat generated in the electrode part 106 can be radiated.
  • a material having high thermal conductivity is used for the insulator layer 110, the temperature can be efficiently controlled.
  • the insulator layer 110 may be made of SiO 2 , SiN, or the like, or may be made of graphite sheet, silicone, a low-k (low dielectric constant) material for semiconductors (organic polymer, SiOC, or the like). .
  • SiO 2 , SiN, or the like is used for the insulator layer 110, the insulator layer 110 can be formed using existing manufacturing equipment for semiconductor devices.
  • the insulator layer 110 when the insulator layer 110 is made of graphite sheet, silicone, semiconductor low-k (low dielectric constant) material (organic polymer, SiOC, etc.), etc., the insulator layer 110 absorbs light. Therefore, the light emitted from the end face of the electro-optic crystal 104 is absorbed by the insulator layer 110. Therefore, the stray light generated in the electro-optic crystal 104 is reduced, and the effect of improving the extinction ratio of the optical switch can be obtained.
  • the temperature control element 111 is provided on the end face of the electro-optic crystal that is closest to the electrode unit 106 having the largest characteristic variation due to temperature change and parallel to the electrode unit 106, The temperature in the vicinity can be controlled uniformly and efficiently, or the heat in the vicinity of the electrode portion 106 can be radiated uniformly and efficiently. Therefore, the direction of the reflected light is stabilized with respect to the temperature variation of the refractive index changing unit 108, and the operation of the optical switch is stabilized.
  • the direction of the reflected light is stabilized, stray light generated in the electro-optic crystal 104 is reduced, and the extinction ratio of the optical switch is improved. Furthermore, since the electrode portion 106 is prevented from being damaged due to an excessive increase in the temperature of the electrode portion 106, the reliability of the optical switch is improved.
  • the temperature control element 111 is formed via the insulator layer 110 having a dielectric constant lower than that of the electro-optic crystal 104, the increase in the capacitance component is small, and the limitation on the operation speed (band) of the optical switch is relaxed.
  • FIG. 5A and 5B are diagrams showing the configuration of the optical switch according to the second embodiment.
  • FIG. 5A is a perspective view
  • FIG. 5B is an AA view of the optical switch shown in FIG.
  • FIG. 5C is a sectional view taken along the line BB of the optical switch shown in FIG. 5A.
  • 6A and 6B are diagrams showing a configuration of a modification of the optical switch according to the second embodiment.
  • FIG. 6A is a perspective view
  • FIG. 6B is a diagram of the optical switch shown in FIG.
  • FIG. 6C is a cross-sectional view taken along the line BB of the optical switch shown in FIG.
  • the optical switch of the second embodiment is formed on the lower end face and the upper end face of the electro-optic crystal 104 parallel to the electrode portion 106 of the optical switch shown in FIG.
  • the temperature control element 111 is formed via the insulator layer 110.
  • the insulator layer 110 and the temperature control element 111 can be made of the same material as that in the first embodiment.
  • the temperature control element 111 is formed on the lower end surface and the upper end surface of the electro-optic crystal 104 parallel to the electrode portion 106 via the insulator layer 110, the temperature in the vicinity of the electrode portion 106 is changed to the first embodiment. It can be made more stable than the optical switch of the form.
  • all end faces of the electro-optic crystal 104 except the light incident surface and the light emitting surface of the optical switch are respectively provided.
  • the temperature control element 111 may be formed through the insulator layer 110.
  • the temperature control element 111 is formed on each end face of the electro-optic crystal 104 except for the light incident surface and the light emitting surface of the optical switch via the insulator layer 110, respectively. As a result, the temperature in the vicinity of the electrode section 106 can be further stabilized as compared with the optical switches shown in FIGS.
  • the electro-optic crystal is further improved than in the first embodiment.
  • the stray light generated in 104 is reduced, and the extinction ratio of the optical switch is also improved.
  • the electrode portion 106 is prevented from being damaged due to an excessive increase in the temperature of the electrode portion 106, the reliability of the optical switch is also improved.
  • a graphite sheet, silicone, a low-k (low dielectric constant) material for semiconductors (organic polymer, SiOC, etc.) or the like is used as the insulator layer 110, and reflected light is emitted from the insulator layer 110, for example. If the insulating layer 110 is also formed on the light emitting surface, the insulating layer 110 also acts as a light absorbing layer, and therefore, reflection of unnecessary light on the light emitting surface is reduced.
  • the transmitted light is used as output light from the optical switch
  • the insulator layer 110 is formed on the output surface of the reflected light, the light emitted from the insulator layer 110 is absorbed, so that The stray light generated in the optical crystal is reduced, and the extinction ratio of the optical switch is improved.
  • This effect can be further enhanced by forming the insulator layer 110 after forming a known antireflection film on the light emitting surface.
  • the temperature control element 111 composed of a temperature control heat sink or Peltier element covers all the end faces of the electro-optic crystal 104 except for the light incident surface and the light exit surface of the light transmitted through the electrode portion, so that the first implementation is performed.
  • the durability of the optical switch with respect to impact or the like is improved as compared with the embodiment.
  • FIG. 7A and 7B are diagrams showing the configuration of the optical switch according to the third embodiment.
  • FIG. 7A is a perspective view
  • FIG. 7B is a cross-sectional view taken along line BB of the optical switch shown in FIG. It is line sectional drawing.
  • the optical switch of the third embodiment has a plurality of stages (two stages are illustrated in FIGS. 7A and 7B) on the optical path of incident light.
  • the electrode unit 106 is disposed.
  • Each electrode part 106 is arrange
  • an optical switch including a plurality of electrode portions 106 as shown in FIGS. 7A and 7B can have a higher extinction ratio than the optical switch of the first embodiment.
  • the temperature control element 111 is formed on the lower end surface or the upper end surface of the electro-optic crystal 104 parallel to the electrode portion 106 of the optical switch including the plurality of electrode portions 106 via the insulator layer 110. It is the structure which was made.
  • the insulator layer 110 and the temperature control element 111 can be made of the same material as that in the first embodiment.
  • the temperature in the vicinity of the electrode portion 106 of the optical switch can be stabilized as in the first embodiment, so that the operation of the optical switch is stabilized and the reliability is improved.
  • the temperature control element 111 is formed via the insulator layer 110 having a dielectric constant lower than that of the electro-optic crystal 104, the increase in the capacitance component is small, and the limitation on the operation speed (band) of the optical switch is relaxed.
  • the end surface of the electro-optic crystal 104 is covered with the temperature control element 111 composed of a heat sink, a Peltier element, etc., the durability of the optical switch against impacts and the like is improved.
  • FIGS. 8A and 8B show a configuration example in which the temperature control element 111 is formed on the lower end face or the upper end face of the electro-optic crystal 104 via the insulator layer 110 corresponding to each electrode portion 106.
  • the temperature control element 111 is provided on each of the lower end surface and the upper end surface of the electro-optic crystal 104 parallel to each electrode portion 106 via the insulator layer 110. It may be formed.
  • the optical switch (the second switch) shown in FIGS.
  • the temperature control element 111 may be formed on each end face of the electro-optic crystal 104 except for the light incident face and the light outgoing face of the optical switch via the insulator layer 110.
  • the end surfaces of the electro-optic crystal 104 excluding the light incident surface and the light emitting surface are covered with the temperature control element 111 through the insulator layer 110, the durability of the optical switch against impacts and the like is improved and the high frequency is increased. The malfunction of the optical switch due to noise or the like is also reduced.
  • a graphite sheet, silicone, a low-k (low dielectric constant) material for semiconductors (organic polymer, SiOC, etc.) or the like is used as the insulator layer 110, and reflected light is emitted from the insulator layer 110, for example. If the insulating layer 110 is also formed on the light emitting surface, the insulating layer 110 also acts as a light absorbing layer, and therefore, reflection of unnecessary light on the light emitting surface is reduced.
  • FIGS. 9A and 9B are diagrams showing the configuration of the optical switch according to the fourth embodiment.
  • FIG. 9A is a perspective view
  • FIG. 9B is a BB diagram of the optical switch shown in FIG. It is line sectional drawing.
  • the optical switch of the fourth embodiment has an anti-reflection film 210 on the light incident surface 204 on which light of the optical switch shown in FIG. 2 is incident and on the light exit surface 205 from which transmitted light is emitted. Is a configuration in which is formed.
  • the antireflection film 210 may have any material, film thickness, film structure (whether it is a single layer film or a multilayer film) and the like as long as it has an antireflection effect for light having a desired wavelength.
  • a film may be formed using a known technique.
  • the antireflection film 210 to the light incident surface 204 of the optical switch and the light emitting surface 205 from which transmitted light is emitted, unnecessary reflected light on the light incident surface 204 and the light emitting surface 205 is reduced. . Therefore, for example, when the transmitted light is used as an optical output from the optical switch, the efficiency of using the transmitted light is increased, and the extinction ratio of the optical switch is improved.
  • the optical switch of the fourth embodiment may have a configuration in which the antireflection film 210 is also formed on the light emitting surface 206 from which the reflected light is emitted.
  • 9A and 9B show a configuration example in which the antireflection film 210 is formed on the light emitting surfaces 205 and 206, respectively.
  • the antireflection film 210 By applying the antireflection film 210 to the light emitting surface 206 from which the reflected light is emitted, unnecessary reflected light on the light emitting surface 206 is reduced. Therefore, for example, when transmitted light is used as an optical switch from an optical switch, light is easily emitted from the light emitting surface 206 to the outside, so that stray light generated in the electro-optic crystal 104 is reduced and the extinction ratio of the optical switch is reduced. Will improve.
  • the transmitted light is used as the optical output from the optical switch
  • the reflected light can also be used as the optical switch from the optical switch.
  • Reflection of light occurs most frequently on the light incident surface 204 and the light exit surfaces 205 and 206 through which light passes during the operation of the optical switch. Therefore, reflection is prevented on the light incident surface 204 and the two light exit surfaces 205 and 206, respectively. If the film 210 is formed, stray light can be reduced most effectively with the least amount of material.
  • the antireflection film 210 may be formed not only on the light incident surface 204 and the light emitting surfaces 205 and 206 but also on the other end surface of the electro-optic crystal 104. In this case, reflection at the end surfaces other than the light incident surface 204 and the light emitting surfaces 205 and 206 is also reduced, and stray light in the electro-optic crystal 104 is further reduced, so that the extinction ratio of the optical switch can be further improved.
  • a surface from which unused light is emitted for example, a light emitting surface 206 to which light (reflected light) reflected by the electrode unit 106 reaches.
  • the light absorption layer 300 may be formed.
  • a material that easily absorbs light such as a graphite sheet, may be used.
  • the entire apparatus including the optical switch of the present embodiment can be downsized.
  • the light absorption layer 300 may be formed not only on one of the light exit surfaces 205 and 206 but also on the other end surface of the electro-optic crystal 104 excluding the light incident surface 204. In that case, light that reaches the end face other than the light incident surface 204 and the light emitting surfaces 205 and 206 due to light scattering or the like at the electrode portion 106 and is emitted out of the crystal is absorbed by the light absorption layer. The stray light in 104 is further reduced. Therefore, the extinction ratio of the optical switch can be further improved. Furthermore, since it is not necessary to provide a light absorbing material outside the crystal, the optical switch element can be easily miniaturized and incorporated into the device.
  • the temperature of the electro-optic crystal 104 is effectively reduced. It is also possible to control.
  • the antireflection film 210 When the antireflection film 210 is not formed on each of the light incident surface 204 and the transmitted light emitting surface 205 of the optical switch, there is approximately 5% reflection at these end surfaces. Therefore, when the electrode part 106 that transmits 70% of the intensity of incident light is formed, the light use efficiency of the optical switch is about 63%.
  • FIGS. 11A and 11B are diagrams showing the configuration of the optical switch of the fifth embodiment.
  • FIG. 11A is a perspective view
  • FIG. 11B is a BB diagram of the optical switch shown in FIG. It is line sectional drawing.
  • the optical switch of the fifth embodiment has a plurality of stages (two stages are illustrated in FIGS. 11A and 11B) on the optical path of the incident light.
  • the electrode unit 106 is disposed.
  • an optical switch including a plurality of electrode portions 106 as shown in FIGS. 11A and 11B can have an extinction ratio higher than that of the optical switch shown in FIG.
  • an antireflection film 210 is formed on each of the light incident surface 204 and the light emitting surfaces 205, 206, and 207 of an optical switch including the multi-stage electrode unit 106.
  • the antireflection film is not limited to the light incident surface 204 and the light emitting surfaces 205, 206, and 207, as in the fourth embodiment.
  • a film may be formed on the other end face. In that case, reflection at end faces other than the light incident surface 204 and the light emitting surfaces 205, 206, and 207 is also reduced, and stray light in the electro-optic crystal 104 is further reduced, so that the extinction ratio of the optical switch is further improved.
  • the light from which light that is not used is emitted for example, the light that is reflected by each electrode unit 106 (reflected light) arrives.
  • the light absorption layer 300 may be formed on the emission surfaces 206 and 207, respectively.
  • 11A and 11B show a configuration example in which the light absorption layer 300 is formed on the light emission surfaces 206 and 207, respectively. In such a configuration, it is not necessary to provide a light absorber outside the optical switch, so that it can be easily incorporated into an optical module or the like. Further, since the light absorber is not required for the optical module or the like, the entire apparatus including the optical switch of the present embodiment can be downsized.
  • FIGS. 12A and 12B are diagrams showing the configuration of the optical switch of the sixth embodiment.
  • FIG. 12A is a perspective view
  • FIG. 12B is a BB diagram of the optical switch shown in FIG. It is line sectional drawing.
  • the optical switch according to the sixth embodiment is similar to the optical switch according to the fifth embodiment in a plurality of electrode portions 106 on the optical path of incident light. (Two stages are illustrated in FIGS. 12A and 12B).
  • an antireflection film 210 is formed on each of the light incident surface 204 and the light emitting surfaces 205, 206, and 207 of the optical switch including the multi-stage electrode unit 106, and the optical switch
  • an antireflection film and a light absorption layer 300 are formed on each end face of the electro-optic crystal 104 excluding the light incident surface 204 and the light emitting surfaces 205, 206, and 207 of the switch.
  • the optical switch of the sixth embodiment is similar to the fourth embodiment and the fifth embodiment in that light that is not used (e.g., reflected by each electrode unit 106) is reflected (reflected).
  • the light absorption layer 300 may also be formed on the light emitting surfaces 206 and 207 where the light reaches.
  • 12A and 12B show a configuration example in which the light absorption layer 300 is also formed on the light emission surfaces 206 and 207.
  • FIGS. 12A and 12B illustrate an optical switch in which a plurality of electrode portions 106 are arranged on the optical path of incident light shown in the fifth embodiment. Also in the case of the optical switch in which one electrode portion 106 is arranged on the optical path of incident light shown in the embodiment, a light absorbing layer is provided on each end face of the electro-optic crystal 104 excluding the light incident surface 204 and the light emitting surface 205. 300 may be formed.
  • the electro-optic crystal 104 is scattered by scattering or the like.
  • the reached light is easily emitted to the outside of the crystal, and the emitted light is absorbed by the light absorption layer 300, so that stray light in the electro-optic crystal 104 can be further reduced. Therefore, the optical switch of the sixth embodiment can further improve the extinction ratio compared to the optical switches of the fourth embodiment and the fifth embodiment.
  • FIGS. 13A and 13B are diagrams showing the configuration of the optical switch of the seventh embodiment.
  • FIG. 13A is a perspective view
  • FIG. 13B is a BB diagram of the optical switch shown in FIG. It is line sectional drawing.
  • the optical switch of the seventh embodiment has a plurality of stages on the optical path of the incident light, like the optical switches of the fifth and sixth embodiments.
  • the electrode unit 106 is arranged (two stages are illustrated in FIGS. 13A and 13B).
  • the optical switch of the seventh embodiment is an optical switch including the plurality of electrode portions 106, and includes a light incident surface 204 and light emitting surfaces 205, 206, An antireflection film 210 is formed on each of 207, and each end face of the electro-optic crystal 104 excluding the light incident surface 204 and the light emitting surfaces 205, 206, and 207 of the optical switch, in particular, an electro-optic crystal parallel to the electrode portion.
  • the anti-reflection film 210 and the light absorption layer 300 are formed on the end surfaces, respectively.
  • the light absorption layer 300 is formed of an insulator having a dielectric constant lower than that of the electro-optic crystal, and controls the temperature of the electrode unit 105 so as to be in contact with the light absorption layer 300 or dissipates heat generated in the electrode unit 105.
  • a temperature control element 111 for this purpose is formed.
  • the surface from which unused light is emitted for example, the light emitting surfaces 206 and 207 to which the light (reflected light) reflected by each electrode unit 106 arrives.
  • the light absorption layer 300 may be formed.
  • FIGS. 13A and 13B show a configuration example in which the light absorption layer 300 is also formed on the light emission surfaces 206 and 207.
  • the anti-reflection film 210 and the light absorption layer 300 are provided on the end surfaces of the electro-optic crystal 104 except the light incident surface 204 and the light exit surfaces 205, 206, and 207, respectively.
  • Light that reaches each end face is easily emitted to the outside of the crystal, and further, the emitted light is absorbed by the light absorption layer 300, so that stray light in the electro-optic crystal 104 can be further reduced. Therefore, the extinction ratio of the optical switch can be improved.
  • a temperature control element 111 is provided on the end face of the electro-optic crystal 104 closest to the electrode part 106 on the road, and a thermoelectric conversion element such as a Peltier element for controlling the temperature of the electrode part 106 or an electrode
  • a heat dissipating element such as a heat sink for dissipating the heat generated in the unit 106 may be used.
  • the temperature of the electrode unit 106 can be controlled at a position closer to the electrode unit 106 without increasing the capacitance component between the electrode unit 106 and the temperature control element 111, or generated in the electrode unit 106. It becomes possible to dissipate heat.
  • the change in the refractive index depends on the temperature of the crystal.
  • the magnitude of the change in the refractive index varies with temperature, the intensity of the output light of the optical switch also changes. Therefore, in order to stabilize the operation of the optical switch, it is necessary to maintain the temperature of the region in the electro-optic crystal 104 where the refractive index change occurs within an appropriate range.
  • the temperature control element 111 is provided on the end face of the electro-optic crystal that is closest to the electrode unit 106 having the largest characteristic variation due to temperature change and parallel to the electrode unit 106, The temperature in the vicinity of 106 can be controlled uniformly and efficiently, or the heat in the vicinity of the electrode portion 106 can be radiated uniformly and efficiently. Therefore, the direction of the reflected light is stabilized with respect to the temperature variation of the refractive index changing unit 108, and the operation of the optical switch is stabilized.
  • the direction of the reflected light is stabilized, stray light generated in the electro-optic crystal 104 is reduced, and the extinction ratio of the optical switch is improved. Furthermore, since the electrode portion 106 is prevented from being damaged due to an excessive increase in the temperature of the electrode portion 106, the reliability of the optical switch is improved.
  • the temperature control element 111 is formed via the insulator layer 110 having a dielectric constant lower than that of the electro-optic crystal 104, an increase in the capacitance component is small, and the limitation on the operation speed (band) of the optical switch is relaxed.
  • FIGS. 14A and 14B are diagrams showing the configuration of the optical switch of the eighth embodiment.
  • FIG. 14A is a side sectional view and FIG. 14B is a plan view.
  • the optical switch of the eighth embodiment has a dielectric constant higher than that of the electro-optic crystal 104 with respect to the electrode lead-out portion 109 for applying a voltage from the external power source 107 to each electrode 105 in the optical switch shown in FIG. Is formed so as to be in contact with the insulating part 110 having a low thermal conductivity, and controls the temperature of the electrode part 106 to the end part of the insulating part 110 or dissipates heat generated in the electrode part 106. Therefore, a temperature control unit 111 is formed.
  • thermoelectric conversion element such as a Peltier element for controlling the temperature of the electrode unit 106 or a heat dissipation element such as a heat sink for radiating heat generated in the electrode unit 106 is used.
  • thermoelectric conversion element When a thermoelectric conversion element is used for the temperature control unit 111, a temperature sensor for detecting the temperature of the electrode forming region including the electrode unit 106 and the refractive index changing unit 108 is attached to the optical switch.
  • Thermoelectric conversion element generates heat by supplying current from a current source (not shown).
  • a current source not shown
  • the thermoelectric conversion element When the thermoelectric conversion element generates heat, the insulating part 110 is heated by the thermal energy, the electrode part 106 is heated via the electrode lead part 109, and the temperature of the electrode formation region rises.
  • Some thermoelectric conversion elements have an endothermic action that absorbs thermal energy from a contacted part. For example, when a direct current is applied to the Peltier element, one surface generates heat and the other surface absorbs heat. Further, when the direction of the flowing current is reversed in the Peltier element, the surface that absorbs heat and the surface that generates heat are reversed. Therefore, the electrode formation region can be heated and cooled by using a Peltier element as the thermoelectric conversion element.
  • the temperature sensor is affixed to a part where the relationship between the electrode formation region and the temperature is known (for example, a part where the thermal resistance is known). Thereby, the temperature of the electrode forming region can be estimated based on the value detected by the temperature sensor.
  • a predetermined threshold is set for the detection value of the temperature sensor based on the temperature relationship between the part where the temperature sensor is attached and the electrode formation region, and the detection value of the temperature sensor is the threshold value. If it is less than the value, the electrode formation region is heated by the thermoelectric conversion element via the insulating part 110, and if the detection value of the temperature sensor is equal to or greater than the threshold value, the electrode formation region is cooled by the thermoelectric conversion element via the insulation part 110. To do. By such treatment, the temperature of the electrode formation region can be maintained within a predetermined temperature range.
  • a heat radiating element such as a heat sink may be used for the temperature control unit 111.
  • the change in the refractive index depends on the temperature of the crystal.
  • the intensity of the output light of the optical switch also changes. Therefore, in order to stabilize the operation of the optical switch, it is necessary to maintain the temperature of the region in the electro-optic crystal 104 where the refractive index change occurs within an appropriate range.
  • the optical switch shown in FIG. 2 has a structure in which the temperature easily rises when the electrode portion 106 is irradiated with light because the electrode portion 106 exists on the optical path of incident light.
  • the temperature of the electro-optic crystal 104 around the electrode portion 106 changes due to the temperature rise of the electrode portion 106, the refractive index corresponding to the applied voltage also changes, and the flatness of the refractive index interface of the refractive index changing portion 108 is maintained. It becomes difficult. Therefore, in the optical switch shown in FIG. 2, it is desirable to keep the temperature of the electrode portion 106 and the electro-optic crystal 104 in the vicinity thereof constant.
  • the insulating part 110 having a lower dielectric constant and higher thermal conductivity than the electro-optic crystal 104 is brought into contact with the electrode lead-out part 109.
  • the temperature of the electrode forming region including the electrode unit 106 and the refractive index changing unit 108 is controlled by the temperature control unit 111 formed at the end of the insulating unit 110 or the heat generated in the electrode unit 106 is radiated. .
  • the temperature of the electrode part 106 can be controlled efficiently, or the heat generated in the electrode part 106 can be radiated efficiently.
  • the insulating portion 110 is in contact with a part of the electrode portion 106 (electrode extraction portion 109), the insulating portion 110 is formed by applying a voltage to the plurality of electrodes 105. Therefore, the transmission or total reflection of incident light by the refractive index changing unit 108 is not hindered.
  • the insulating portion 110 may be made of SiO 2 , SiN, graphite sheet, silicone, a low-k (low dielectric constant) material for semiconductors (organic polymer, SiOC, etc.). The effect can be expected even when the insulating portion 110 is attached to the electrode lead portion 109 with an adhesive or the like. Further, when SiO 2 , SiN, or the like is used for the insulating part 110, the insulating part 110 can be formed using existing manufacturing equipment for semiconductor devices.
  • the insulating unit 110 is provided so as to be in contact with a part of the electrode unit 106 on the optical path of the incident light having the largest characteristic variation due to the temperature change, and the temperature at the end of the insulating unit 110. Since the control unit 111 is provided, the heat energy of the temperature control unit 111 is transmitted through the insulating unit 110 and each electrode 105 so that the temperature of the electrode formation region can be controlled efficiently, or the heat generated in the electrode unit 106 is generated by the electrode 105. In addition, heat can be efficiently radiated through the insulating part 110. Therefore, even if the temperature fluctuates, temperature control is possible in the vicinity of the electrode unit 106, and the refractive index changing unit 108 is stably formed, so that the operation of the optical switch is stabilized.
  • the refractive index changing portion 108 is stably formed and the direction of the reflected light is stabilized, stray light generated in the electro-optic crystal 104 is reduced, and the extinction ratio of the optical switch is improved. Furthermore, since the electrode part 106 is prevented from being damaged due to the temperature of the electrode part 106 rising, the reliability of the optical switch is improved.
  • FIGS. 15A and 15B are diagrams showing the configuration of the optical switch according to the ninth embodiment.
  • FIG. 15A is a side sectional view and
  • FIG. 15B is a plan view.
  • the optical switch of the ninth embodiment is formed so that the insulating unit 110 having a lower dielectric constant and higher thermal conductivity than the electro-optic crystal 104 in the optical switch shown in FIG.
  • a temperature control unit 111 for controlling the temperature of the electrode unit 106 or for radiating heat generated in the electrode unit 106 is formed at the end of the insulating unit 110.
  • the shapes of the insulating portion 110 and the electrode portion 106 in the electro-optic crystal 104 are the same.
  • the temperature control unit 111 includes a thermoelectric conversion element such as a Peltier element for controlling the temperature of the electrode unit 106, a heat sink for radiating heat generated in the electrode unit 106, and the like.
  • the heat dissipating element is used.
  • thermoelectric conversion element When a thermoelectric conversion element is used for the temperature control unit 111, a temperature sensor for detecting the temperature of the electrode forming region including the electrode unit 106 and the refractive index changing unit 108 is attached to the optical switch.
  • the temperature sensor is attached to a part where the relationship between the electrode formation region and the temperature is known (for example, a part where the thermal resistance is known). Thereby, the temperature of the electrode forming region can be estimated based on the value detected by the temperature sensor.
  • a predetermined threshold value is set for the detection value of the temperature sensor based on the temperature relationship between the portion where the temperature sensor is attached and the electrode formation region
  • the electrode forming region is heated by the thermoelectric conversion element via the insulating portion 110, and when the detection value of the temperature sensor is equal to or more than the threshold value, the insulation is performed by the thermoelectric conversion element.
  • the electrode forming region is cooled via the portion 110. By such treatment, the temperature of the electrode formation region can be maintained within a predetermined temperature range.
  • a heat radiating element such as a heat sink may be used for the temperature control unit 111.
  • the optical switch of the ninth embodiment includes an insulating portion 110 having a lower dielectric constant and higher thermal conductivity than the electro-optic crystal 104, and an electrode lead portion. It forms so that it may contact not only 109 but the single side
  • the contact area between the insulating unit 110 and the electrode unit 106 is larger than that of the optical switch of the eighth embodiment, the heat generated in the electrode unit 106 can be radiated more efficiently, or the electrode unit 106 Can be controlled more efficiently.
  • the shapes of the insulating portion 110 and the electrode portion 106 in the electro-optic crystal 104 are the same.
  • the transmission or total reflection of incident light by the refractive index changing part 108 formed by applying a voltage to the plurality of electrodes 105 is inhibited.
  • the heat generated in the electrode unit 106 can be dissipated, or the temperature of the electrode unit 106 can be controlled.
  • the insulating portion 110 may be made of SiO 2 , SiN, graphite sheet, silicone, a low-k (low dielectric constant) material for semiconductors (organic polymer, SiOC, etc.).
  • SiO 2 , SiN, or the like is used for the insulating portion 110, the insulating portion 110 can be formed using existing semiconductor device manufacturing equipment.
  • the insulating part 110 is formed so as to be in contact with the entire electrode part 106 including the electrode lead part 109, the contact area between the insulating part 110 and the electrode part 106 is increased.
  • the heat generated in the electrode unit 106 can be radiated more efficiently than the optical switch of the eighth embodiment, or the temperature of the electrode unit 106 can be controlled more efficiently. Therefore, even if the temperature fluctuates, temperature control is possible in the vicinity of the electrode unit 106, and the refractive index changing unit 108 is stably formed, so that the operation of the optical switch is stabilized.
  • the refractive index changing portion 108 is stably formed and the direction of the reflected light is stabilized, stray light generated in the electro-optic crystal 104 is reduced, and the extinction ratio of the optical switch is improved. Furthermore, since the electrode part 106 is prevented from being damaged due to the temperature of the electrode part 106 rising, the reliability of the optical switch is improved.
  • the optical switch according to the present embodiment has a structure in which a part of the surface of each electrode 105 is covered with the insulating part 110 having a dielectric constant lower than that of the electro-optic crystal 104, the dielectric constant of all the surfaces of each electrode 105 is reduced.
  • the capacitance between the electrodes 105 is lower than that of the structure covered with the high electro-optic crystal 104. Therefore, power consumption is reduced as compared with the optical switch of the eighth embodiment. Furthermore, the operation speed can be increased by reducing the capacity.
  • FIGS. 16A and 16B are diagrams showing the configuration of the optical switch according to the tenth embodiment.
  • FIG. 16A is a side sectional view and FIG. 16B is a plan view.
  • FIG. 17 is a diagram showing a configuration of a modification of the optical switch according to the tenth embodiment.
  • FIG. 17A is a side sectional view and FIG. 17B is a plan view.
  • the optical switches shown in FIGS. 16A and 16B and the optical switches shown in FIGS. 17A and 17B have the positions of the electrode lead-out portions 109 for connecting the external power source 107 to the respective electrodes 105.
  • the configuration is different, and the others are the same.
  • the optical switch of the tenth embodiment has a plurality of stages (FIG. 16 (a) and FIG. 16) on the optical path of incident light.
  • FIGS. 17 (a) and 17 (b) exemplify two stages).
  • an optical switch including a plurality of electrode portions 106 as shown in FIGS. 16A and 16B and FIGS. 17A and 17B has a higher extinction ratio than the optical switch shown in FIG. be able to.
  • the tenth embodiment has a dielectric constant lower than that of the electro-optic crystal 104 and a thermal conductivity so that at least a part of each electrode portion 106 of the optical switch including the multi-stage electrode portions 106 is in contact with the tenth embodiment.
  • the high insulating portions 110 are respectively formed, and the temperature control portions 111 are respectively formed at the end portions of the insulating portions 110.
  • the insulating portion 110 may be formed so as to be in contact with only the electrode lead portion 109 as in the eighth embodiment, and the entire electrode portion 106 including the electrode lead portion 109 as in the ninth embodiment. It may be formed so as to come into contact with.
  • each electrode 105 constituting the electrode unit 106, the insulating unit 110, and the temperature control unit 111 can be formed using the same materials as those in the eighth and ninth embodiments, respectively.
  • each electrode unit 106 can be efficiently dissipated, or the temperature of each electrode unit 106 can be controlled efficiently. Therefore, even if the temperature fluctuates, the refractive index changing unit 108 is located near the electrode unit 106. Therefore, the operation of the optical switch is stabilized.
  • the optical switch of the tenth embodiment has a structure in which light (incident light) passes through the plurality of electrodes 106, and therefore is more extinguished than the optical switches of the eighth embodiment and the ninth embodiment.
  • the ratio is improved.
  • the refractive index changing portion 108 is stably formed and the direction of the reflected light is stabilized, stray light generated in the electro-optic crystal 104 is reduced, and the extinction ratio of the optical switch is improved. Furthermore, since the electrode portion 106 is prevented from being damaged due to an excessive increase in the temperature of the electrode portion 106, the reliability of the optical switch is improved.
  • the insulating portion 110 is formed on the entire electrode portion 106 including the electrode lead portion 109, a part of the surface of each electrode 105 is formed. Is covered with the insulating portion 110 having a lower dielectric constant than that of the electro-optic crystal 104, the capacitance between the electrodes 105 is lower than that of the structure in which all surfaces of each electrode 105 are covered with the electro-optic crystal 104 having a high dielectric constant. Therefore, power consumption is reduced as compared with the optical switch of the eighth embodiment. Furthermore, the operation speed can be increased by reducing the capacity. (Eleventh embodiment) In the eleventh embodiment, a specific example of an apparatus including the optical switch shown in the first to tenth embodiments will be described.
  • FIG. 18 is a schematic diagram showing a configuration example of an image display apparatus including the optical switch of the present invention.
  • the image display device 1401 includes laser light sources 1402 to 1404, collimator lenses 1405 to 1407, a reflection mirror 1408, dichroic mirrors 1409 and 1410, a horizontal scanning mirror 1411, a vertical scanning mirror 1412, and optical switches 1414 to 1416.
  • Optical switches 1414 to 1416 are the optical switches shown in the first to tenth embodiments.
  • a collimator lens 1407, an optical switch 1416, and a reflection mirror 1408 are sequentially arranged in the traveling direction of the laser light from the laser light source 1402. Parallel light from the collimator lens 1407 is incident on the optical switch 1416.
  • the optical switch 1416 operates according to a control signal supplied from a control unit (not shown). In the period when the control signal is on (voltage supply period), in the optical switch 1416, a voltage is applied to the electrode portion to form a refractive index change region, and thus incident light is reflected in the refractive index change region. This reflected light deviates from the optical path toward the reflecting mirror 1408. During a period when the control signal is off (voltage supply stop period), incident light passes through the optical switch 1416 and travels toward the reflection mirror 1408.
  • a collimator lens 1406, an optical switch 1415, and a dichroic mirror 1410 are sequentially arranged in the traveling direction of the laser light from the laser light source 1403. Parallel light from the collimator lens 1406 is incident on the optical switch 1415. Similarly to the optical switch 1416, the optical switch 1415 also operates according to a control signal supplied from a control unit (not shown). In the period when the control signal is on (voltage supply period), in the optical switch 1415, a voltage is applied to the electrode portion to form a refractive index change region, and thus incident light is reflected in the refractive index change region. This reflected light deviates from the optical path toward the dichroic mirror 1410. During a period when the control signal is off (voltage supply stop period), incident light passes through the optical switch 1415 and travels toward the dichroic mirror 1410.
  • a collimator lens 1405, an optical switch 1414, and a dichroic mirror 1409 are sequentially arranged in the traveling direction of the laser light from the laser light source 1404.
  • a parallel light beam from the collimator lens 1405 enters the optical switch 1414.
  • the optical switch 1414 operates according to a control signal supplied from a control unit (not shown).
  • a control signal supplied from a control unit (not shown).
  • the control signal is on (voltage supply period)
  • a voltage is applied to the electrode portion to form a refractive index change region, and thus incident light is reflected in the refractive index change region. This reflected light deviates from the optical path toward the dichroic mirror 1409.
  • incident light passes through the optical switch 1414 and travels toward the dichroic mirror 1409.
  • the dichroic mirror 1410 is provided at a position where the light beam from the optical switch 1415 and the light beam reflected by the reflection mirror 1408 intersect.
  • the dichroic mirror 1410 has a wavelength selection characteristic that reflects light from the optical switch 1415 and transmits light from the reflection mirror 1408.
  • the dichroic mirror 1409 is provided at a position where the light beam from the optical switch 1414 and the light beam from the dichroic mirror 1410 intersect.
  • the dichroic mirror 1409 has a wavelength selection characteristic that reflects light from the optical switch 1414 and transmits light from the dichroic mirror 1410.
  • the horizontal scanning mirror 1411 is arranged in the traveling direction of the light beam from the dichroic mirror 1409, and its operation is controlled by a horizontal scanning control signal output from a control unit (not shown).
  • the vertical scanning mirror 1412 is arranged in the traveling direction of the light beam from the horizontal scanning mirror 1411 and its operation is controlled by a vertical scanning control signal output from a control unit (not shown).
  • Laser light sources 1402, 1403, and 1404 emit laser beams of colors corresponding to the three primary colors of R, G, and B.
  • a color image can be displayed on the screen 1413 by controlling on / off of the optical switches 1414, 1415, 1416 and controlling the horizontal scanning mirror 1411 and the vertical scanning mirror 1412.
  • FIG. 19 is a schematic diagram showing a configuration example of an image forming apparatus including the optical switch of the present invention.
  • the image forming apparatus 1501 includes a laser light source 1502, a collimator lens 1503, a reflection mirror 1504, a scanning mirror 1505, an optical switch 1506, an f ⁇ lens 1507, and a photoreceptor 1508.
  • An optical switch 1506 is the optical switch shown in the first to tenth embodiments.
  • a collimator lens 1503, an optical switch 1506, and a reflection mirror 1504 are sequentially arranged in the traveling direction of the laser light from the laser light source 1502.
  • a parallel light beam from the collimator lens 1503 is incident on the optical switch 1506.
  • the optical switch 1506 operates according to a control signal supplied from a control unit (not shown).
  • a control signal supplied from a control unit (not shown).
  • the control signal is on (voltage supply period)
  • a voltage is applied to the electrode portion to form a refractive index change region, and thus incident light is reflected in the refractive index change region. This reflected light deviates from the optical path toward the reflecting mirror 1505.
  • incident light passes through the optical switch 1506 and travels toward the reflection mirror 1505.
  • the scanning mirror 1505 is arranged in the traveling direction of the light beam from the reflection mirror 1505, and its operation is controlled by a scanning control signal output from a control unit (not shown). Light from the scanning mirror 1505 is applied to the photoreceptor 1508 via the f ⁇ lens 1507.
  • an image can be formed on the photoreceptor 1508 by controlling the optical switch 1506 on and off and controlling the scanning mirror 1505.
  • the image forming apparatus shown in FIG. 19 can also be used as an apparatus for projecting a scanned image onto the photoconductor 1508 without using the f ⁇ lens 1507 inserted immediately before the photoconductor 1508.
  • optical switch and the system using the optical switch described in the first to tenth embodiments described above are examples of the present invention, and the procedure and configuration thereof are appropriately set within the scope not departing from the gist of the invention. Can be changed.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Transforming Electric Information Into Light Information (AREA)

Abstract

 光スイッチは、電気光学結晶に電界を印加して前記電気光学結晶の屈折率を変化させることによって、電気光学結晶に入射した入射光の透過と全反射とを切り換える構成である。この光スイッチに、電気光学結晶内に配設され、かつ面積が最大となる主断面が同一平面内となるように配置された複数の電極から成る電極部と、電極部と平行な電気光学結晶の少なくとも一つの端面に形成された、電気光学結晶よりも誘電率が低い絶縁体から成る絶縁体層と、絶縁体層と接触するように形成された、電極部の温度を制御する、または電極部で発生する熱を放熱するための温度制御素子とを備える。

Description

光スイッチ
 本発明は光の透過と反射とを切り換える光スイッチに関する。
 光通信の分野では、電気光学効果を持つ結晶(電気光学結晶)に電圧を印加して屈折率を変化させることで、光のスイッチングを行う光スイッチが知られている。
 このような光スイッチのうち、導波路型の光スイッチとしては、2本の導波路の近接効果を利用した方向結合型光スイッチ、あるいは外部から導波路間に電圧を印加することで、各導波路を伝播する光の間に位相差を発生させ、それらの光の干渉を利用するマッハツエンダ干渉器型光スイッチが提案されている。これら導波路型の光スイッチでは、屈折率を高速に変化させることができるため高速なスイッチングが可能である。
 また、上記と異なる方式として、例えば特許第2666805号公報(以下、特許文献1と称す)に記載されたブラッグ効果を利用する光スイッチがある。
 図1は、背景技術の光スイッチの構成を示す斜視図である。
 図1に示すように、背景技術の光スイッチは、電気光学効果を有する非線形光学物質(電気光学結晶)から成る光導波路層2と、この光導波路層2内に設けられた第1の電極群11および第2の電極群12とを有する構成である。
 第1の電極群11および第2の電極群12は、光導波路層2の厚さ方向に延伸する複数の板状の電極1から構成されている。第1の電極群11および第2の電極群12の各電極は、光導波路層2の厚さ方向と交差する面の断面が櫛形状となるように、一定の間隔で交互に配置されている。
 図1の光スイッチでは、第1の電極群11と第2の電極群12との間に電圧を印加することで、光導波路層2の非線形光学物質に周期的な屈折率変化が生じる。この周期的な屈折率変化を生じた部分が回折格子として機能し、入射光がブラッグ反射される。一方、第1および第2の電極群への電圧印加を停止すると、回折格子としての機能はなくなるので、入射光は板電極間の領域を透過する。
 上述した光スイッチを光通信などで使用する場合、オン時とオフ時の透過光の強度の差を示す消光比はおよそ10:1程度であればよい。しかしながら、光スイッチを、例えば画像表示装置の光変調器として使用する場合、輝度やコントラスト比を向上させるために、消光比がさらに高い光スイッチが望まれる。
 また、画像表示装置等に使用する光スイッチには、高い光損傷耐性を持つことも望まれる。画像表示装置の光スイッチとしては数十~数百mW以上の光を変調する必要がある。従来から光通信等で用いられてきた上記導波路型の光スイッチは、一般的に導波路の大きさが数μmである。このような導波路型光スイッチでは単位体積あたりに照射される光強度が高くなるため、非線形光学結晶内などでの光損傷が生じやすくなり、画像表示装置の光スイッチとして使用するのは困難である。
 また、電気光学結晶に電界を印加して屈折率を変化させる場合、該屈折率の変化は結晶の温度に依存する。屈折率の変化の大きさが温度によって変動すると、光スイッチの出力光の強度も変化する。したがって、光スイッチの動作を安定させるためには、電気光学結晶内の屈折率変化が生じる領域の温度を適正な範囲で維持する必要がある。
 上記特許文献1に記載された光スイッチでは、電気光学結晶の屈折率変化の温度依存性を考慮した構造になっていない。そのため、例えば第1及び第2の電極群に光が照射されることで該第1及び第2の電極群の温度が上昇すると、印加電圧に対する屈折率も変化し、回折格子で反射できる光の波長や回折格子で反射した光の方向が安定しなくなる等、設置環境や周囲の温度によって光スイッチの動作が不安定になる場合がある。
特許第2666805号公報
 そこで本発明は、より高い消光比と高い光損傷耐性、高い温度安定性が得られ、小型で高速動作・低消費電力動作が可能な光スイッチを提供することを目的とする。
 上記目的を達成するため本発明の光スイッチは、電気光学結晶に電界を印加して前記電気光学結晶の屈折率を変化させることによって、前記電気光学結晶に入射した入射光の透過と全反射とを切り換える光スイッチであって、
 前記電気光学結晶内に配設され、かつ面積が最大となる主断面が同一平面内となるように配置された複数の電極から成る電極部と、
 前記電極部と平行な前記電気光学結晶の少なくとも一つの端面に形成された、前記電気光学結晶よりも誘電率が低い絶縁体から成る絶縁体層と、
 前記絶縁体層と接触するように形成された、前記電極部の温度を制御する、または前記電極部で発生する熱を放熱するための温度制御素子と、
を有する。
 または、電気光学結晶に電界を印加して前記電気光学結晶の屈折率を変化させることによって、前記電気光学結晶に入射した入射光の透過と全反射とを切り換える光スイッチであって、
 前記電気光学結晶内に設けられた、電気光学結晶に電界を印加するための複数の電極から成る電極部と、
 光が入射される光入射面と、透過光が出射される光出射面または反射光が出射される光射出面の少なくともいずれか一方とに、それぞれ形成された反射防止膜と、
を有し、
 前記電極部による電界印加によって屈折率が変化する前記電気光学結晶の屈折率変化部が前記電極部全体を包含しており、前記屈折率変化部の屈折率界面が平坦に形成された構成である。
 または、電気光学結晶に電界を印加して前記電気光学結晶の屈折率を変化させることによって、前記電気光学結晶に入射した入射光の透過と全反射とを切り換える光スイッチであって、
 前記電気光学結晶内に配設され、かつ面積が最大となる主断面が同一平面内となるように配置された複数の電極から成る電極部を有し、
 光が入射される光入射面と、透過光が出射される光出射面または反射光が出射される光射出面の少なくともいずれか一方とに、それぞれ反射防止膜が形成された構成である。
 または、電気光学結晶に電界を印加して前記電気光学結晶の屈折率を変化させることによって、前記電気光学結晶に入射した入射光の透過と全反射とを切り換える光スイッチであって、
 前記電気光学結晶内に設けられた、電気光学結晶に電界を印加するための複数の電極から成る電極部と、
 光が入射される光入射面と、透過光が出射される光出射面または反射光が出射される光射出面の少なくともいずれか一方とに、それぞれ形成された反射防止膜と、
を有し、
 前記電極部による電界印加によって屈折率が変化する前記電気光学結晶の屈折率変化部が前記電極部全体を包含しており、前記屈折率変化部の屈折率界面が平坦に形成された構成である。
 または、電気光学結晶に電界を印加して前記電気光学結晶の屈折率を変化させることによって、前記電気光学結晶に入射した入射光の透過と全反射とを切り換える光スイッチであって、
 前記電気光学結晶内に配設され、かつ面積が最大となる主断面が同一平面内となるように配置された複数の電極から成る電極部と、
 前記電気光学結晶よりも熱伝導率が高く、かつ誘電率が低い、前記電極部と少なくともその一部が接触するように形成された絶縁部と、
 前記絶縁部の端部に形成された、前記電極部で発生した熱を放熱または前記電極部の温度を制御するための温度制御部と、
を有する。
 または、電気光学結晶に電界を印加して前記電気光学結晶の屈折率を変化させることによって、前記電気光学結晶に入射した入射光の透過と全反射とを切り換える光スイッチであって、
 前記電気光学結晶内に設けられた、電気光学結晶に電界を印加するための複数の電極から成る電極部と、
 前記電気光学結晶よりも熱伝導率が高く、誘電率が低い、前記電極部と少なくともその一部が接触するように形成された絶縁部と、
 前記絶縁部の端部に形成された、前記電極部で発生した熱を放熱または前記電極部の温度を制御するための温度制御部と、
を有し、
 前記電極部による電界印加によって屈折率が変化する前記電気光学結晶の屈折率変化部が前記電極部全体を包含しており、前記屈折率変化部の屈折率界面が平坦に形成された構成である。
図1は、背景技術の光スイッチの構成を示す斜視図である。 図2は、本発明の光スイッチの一構成例を示す斜視図である。 図3は、図2に示した光スイッチの動作原理を示す模式図である。 図4は、第1の実施の形態の光スイッチの構成を示す図であり、同図(a)は斜視図、同図(b)は図4(a)に示した光スイッチのA-A線断面図、同図(c)は図4(a)に示した光スイッチのB-B線断面図である。 図5は、第2の実施の形態の光スイッチの構成を示す図であり、同図(a)は斜視図、同図(b)は図5(a)に示した光スイッチのA-A線断面図、同図(c)は図5(a)に示した光スイッチのB-B線断面図である。 図6は、第2の実施の形態の光スイッチの変形例の構成を示す図であり、同図(a)は斜視図、同図(b)は図6(a)に示した光スイッチのA-A線断面図、同図(c)は図6(a)に示した光スイッチのB-B線断面図である。 図7は、第3の実施の形態の光スイッチの構成を示す図であり、同図(a)は斜視図、同図(b)は図7(a)に示した光スイッチのB-B線断面図である。 図8は、第3の実施の形態の光スイッチの変形例の構成を示す図であり、同図(a)は斜視図、同図(b)は図8(a)に示した光スイッチのB-B線断面図である。 図9は、第4の実施の形態の光スイッチの構成を示す図であり、同図(a)は斜視図、同図(b)は図9(a)に示した光スイッチのB-B線断面図である。 図10は、第4の実施の形態の光スイッチの変形例の構成を示す図であり、同図(a)は斜視図、同図(b)は図10(a)に示した光スイッチのB-B線断面図である。 図11は、第5の実施の形態の光スイッチの構成を示す図であり、同図(a)は斜視図、同図(b)は図11(a)に示した光スイッチのB-B線断面図である。 図12は、第6の実施の形態の光スイッチの構成を示す図であり、同図(a)は斜視図、同図(b)は図12(a)に示した光スイッチのB-B線断面図である。 図13は、第7の実施の形態の光スイッチの構成を示す図であり、同図(a)は斜視図、同図(b)は図13(a)に示した光スイッチのB-B線断面図である。 図14は、第8の実施の形態の光スイッチの構成を示す図であり、同図(a)は側断面図、同図(b)は平面図である。 図15は、第9の実施の形態の光スイッチの構成を示す図であり、同図(a)は側断面図、同図(b)は平面図である。 図16は、第10の実施の形態の光スイッチの構成を示す図であり、同図(a)は側断面図、同図(b)は平面図である。 図17は、第10の実施の形態の光スイッチの変形例の構成を示す図であり、同図(a)は側断面図、同図(b)は平面図である。 図18は、本発明の光スイッチを備える画像表示装置の一構成例を示す模式図である。 図19は、本発明の光スイッチを備える画像形成装置の一構成例を示す模式図である。
 次に本発明について図面を用いて説明する。
 上述したように特許文献1に記載された光スイッチは、屈折率変化で誘起された回折格子によって入射光の透過および回折を制御する。このような回折格子により入射光の透過および反射を制御する構成ではなく、電圧を印加することで電極近傍の電気光学結晶の屈折率を変化させて各電極を包含する屈折率変化部を形成し、該屈折率変化部により入射光の透過および反射を制御する光スイッチがある。図2は、この光スイッチの構成を示す斜視図である。
 図2に示す光スイッチは、電気光学結晶104内に複数の棒状の電極105が比較的狭い間隔で配置され、隣接する電極105どうしの極性が異なるように各電極105に外部電源107から電圧が印加される。光は、直線上に配置された複数の電極105で構成される電極部106の法線方向に対して斜めに入射される。電極部106は、面積が最大となる主断面が同一平面内となるように配置された複数の電極105によって構成され、これら複数の電極106は、同じ膜厚を有し、平行かつ等間隔に配置されている。また、これら複数の電極105には、隣接する電極の極性が互いに異なるように電圧が印加される。
 電極部106に電圧を印加していない場合、図3(a)に示すように、電極部106近傍の電気光学結晶104では屈折率変化が起きないため、入射光101は電極部106を透過して外部へ出射される(透過光)。一方、電極部106に電圧を印加すると、図3(b)に示すように各電極105間に電界が発生することで電極部106近傍の電気光学結晶104の屈折率が変化し、屈折率変化部108が形成される。このとき、屈折率変化部108は、複数の電極105全体を覆うように形成され、かつ屈折率界面がほぼ平坦に形成される。これにより臨界角以上の入射角を持つ入射光が屈折率変化部108で全反射し、反射光となって外部へ出射される。
 したがって、図2に示す光スイッチでは、電極部106に電圧を印加するか否かによって光の出射面を切り換えることが可能であり、このことにより光のスイッチングが可能になる。
 さらに、図2に示す光スイッチは、導波路構造を形成する必要がない、電気光学結晶104内を光が透過するバルク型の光スイッチである。そのため、単位体積あたりに照射される光の強度を下げることが可能であり、導波路型の光スイッチよりも光損傷耐性を向上させることができる。したがって、導波路型の光スイッチよりも比較的大きな口径(数十~数百μm径)の光ビームをスイッチングできる。
 さらに、図2に示す光スイッチは、複数の電極105の間隔が数μm~数十μm程度の等間隔であり、各電極105が比較的狭い間隔で配置されているため、比較的小さな印加電圧で電極105間の電気光学結晶に強い電界を生じさせて屈折率変化部を発生させることができる。したがって、電極部106に印加する電圧を低くすることが可能となる。また、複数の電極105の断面積が比較的小さく構成されているので、板電極を用いている特許文献1に記載された光スイッチよりも、電極間容量も小さくすることが可能になる。
 ここで、高速動作時の消費電力は、印加電圧の2乗と電極間容量に比例するため、印加電圧と電極間容量を減らすことで、特許文献1に記載された光スイッチと比較しても消費電力を低減できる。さらに、動作周波数帯域は、電極間容量に反比例するため、電極間容量を減らすことで、動作周波数帯域を拡大できる。すなわち、特許文献1に記載された光スイッチと比較しても、スイッチ動作を高速化できる。
 なお、図2は、複数の電極105が入射光の進行方向に対してそれぞれ直交するように配置された構成例を示しているが、各電極105は入射光の進行方向とそれぞれ同じ方向となるように配置されていてもよい。
 以下、上記の光スイッチを基に、本発明について図面を用いて説明する。
(第1の実施の形態)
 図4は、第1の実施の形態の光スイッチの構成を示す図であり、同図(a)は斜視図、同図(b)は図4(a)に示した光スイッチのA-A線断面図、同図(c)は図4(a)に示した光スイッチのB-B線断面図である。
 第1の実施の形態の光スイッチは、図2に示した光スイッチの電極部106と平行な電気光学結晶104の下方端面に絶縁体層110を介して温度制御素子111が形成された構成である。なお、図4(a)~(c)は、複数の電極105が入射光の進行方向とそれぞれ同じ方向となるように配置された構成例を示している。
 上述したように、電気光学結晶104に電界を印加して屈折率を変化させる場合、該屈折率の変化は結晶の温度に依存する。屈折率の変化の大きさが温度によって変動すると、光スイッチの出力光の強度も変化する。したがって、光スイッチの動作を安定させるためには、電気光学結晶104内の屈折率変化が生じる領域の温度を適正な範囲内に維持しておく必要がある。
 図2に示した光スイッチは、入射光の光路上に電極部106が在り、該電極部106に光が照射されることで温度が上昇しやすい構造である。電極部106の温度上昇によって電極部106周囲の電気光学結晶104の温度が変化すると、印加電圧に対応する屈折率も変化し、屈折率変化部108の屈折率界面の平坦性を維持するのが困難になる。そのため、図2に示した光スイッチでは、電極部106およびその近傍の電気光学結晶104の温度を一定に保つことが望ましい。
 そこで、第1の実施の形態の光スイッチでは、温度変化による特性変動が最も大きい入射光の光路上にある電極部106に最も近い電気光学結晶104の端面に温度制御素子111を設ける。
 温度制御素子111には、電極部106の温度を制御するためのペルチェ素子等の熱電変換素子、または電極部106で発生した熱を放熱するためのヒートシンク等の放熱素子が用いられる。
 温度制御素子111に熱電変換素子を用いる場合、光スイッチには、電極部106及び屈折率変化部108を含む電極形成領域の温度を検出するための温度センサが貼付される。
 熱電変換素子は、不図示の電流源から電流を供給することで発熱する。熱電変換素子が発熱すると、その熱エネルギーによって絶縁体層110が加熱され、電極形成領域の温度が上昇する。また、熱電変換素子には、接触する部位から熱エネルギーを吸収する吸熱作用を備えているものもある。例えば、上記ペルチェ素子は、直流電流を流すと、一方の面が発熱し、他方の面で吸熱する。また、ペルチェ素子は、流れる電流の向きを反転させると、吸熱する面と発熱する面とが逆転する。そのため、熱電変換素子にペルチェ素子を用いることで電極形成領域の加熱および冷却が可能になる。
 温度センサは、電極形成領域と温度の関係が分かる部位(例えば熱抵抗が分かっている部位)に貼付する。これにより温度センサで検出した値に基づいて電極形成領域の温度を推定できる。
 電極形成領域の温度を制御する場合、温度センサを貼付した部位と電極形成領域との温度関係に基づいて温度センサの検出値に所定のしきい値を設定し、温度センサの検出値がしきい値未満の場合は熱電変換素子により絶縁体層110を介して電極形成領域を加熱し、温度センサの検出値がしきい値以上の場合は熱電変換素子により絶縁体層110を介して電極形成領域を冷却する。このような処理により電極形成領域の温度を所定の温度範囲内に維持できる。
 なお、電極形成領域の温度を精度よく制御する必要がない場合は、高強度の光が照射されることで発生した電極部106の熱を効率よく外部へ逃がすために、温度制御素子111にはヒートシンク等の放熱素子を用いればよい。
 ところで、電極形成領域の温度を制御する場合、温度制御素子111は電極部106に対してより近い位置に設けることがのぞましい。そのため、温度制御素子111は、電極部106と平行な電気光学結晶104の端面に直接形成する構成も考えられる。
 しかしながら、そのような構成は、誘電率が高い電気光学結晶104を電極部106と導電体であるヒートシンクやペルチェ素子から成る温度制御素子111とによって挟む構造となるため、電極部106と温度制御素子111とによってコンデンサが形成されてしまう。そのため、このコンデンサの容量成分によって光スイッチの動作速度(帯域)が制限される。
 そこで、本実施形態では、電気光学結晶104よりも誘電率が低い絶縁体から成る絶縁体層110を電極部106と平行な電気光学結晶104の下方端面に形成し、該絶縁体層110と接触するように温度制御素子111を形成する。これにより、容量成分を増大させることなく電極部106により近い位置で電極部106の温度を制御できる、または電極部106で発生した熱を放熱することが可能になる。さらに、絶縁体層110に熱伝導率が高い材料を用いれば、効率的に温度を制御することが可能となる。
 なお、絶縁体層110には、SiOやSiN等を用いてもよく、グラファイトシート、シリコーン、半導体用low-k(低誘電率)材料(有機ポリマー系、SiOC等)等を用いてもよい。絶縁体層110にSiOやSiN等を用いると、既存の半導体装置の製造設備を用いて絶縁体層110を形成できる。
 一方、絶縁体層110に、グラファイトシート、シリコーン、半導体用low-k(低誘電率)材料(有機ポリマー系、SiOC等)等を用いると、該絶縁体層110が光を吸収する光吸収層としても作用するため、絶縁体層110によって電気光学結晶104の端面から出射される光が吸収される。そのため、電気光学結晶104内で発生する迷光が低減し、光スイッチの消光比が向上する効果も得られる。
 本実施形態の光スイッチによれば、温度変化による特性変動が最も大きい電極部106に最も近い、電極部106と平行な電気光学結晶の端面に温度制御素子111を設けているため、電極部106付近の温度を、均一に、かつ効率よく制御できる、または電極部106付近の熱を、均一に、かつ効率よく放熱することができる。そのため、屈折率変化部108の温度変動に対して反射光の方向が安定し、光スイッチの動作が安定する。
 また、反射光の方向が安定することで、電気光学結晶104内で発生する迷光が低減し、光スイッチの消光比も向上する。さらに、電極部106の温度が過大に上昇することによる電極部106の破損も防止されるため、光スイッチの信頼性が向上する。
 また、電気光学結晶104よりも誘電率が低い絶縁体層110を介して温度制御素子111を形成するため、容量成分の増加が少なくて済み、光スイッチの動作速度(帯域)の制限が緩和される。
 さらに、ヒートシンクやペルチェ素子等から成る温度制御素子111で電気光学結晶104の端面を覆うため、衝撃等に対する光スイッチの耐久性も向上する。
(第2の実施の形態)
 図5は、第2の実施の形態の光スイッチの構成を示す図であり、同図(a)は斜視図、同図(b)は図5(a)に示した光スイッチのA-A線断面図、同図(c)は図5(a)に示した光スイッチのB-B線断面図である。図6は、第2の実施の形態の光スイッチの変形例の構成を示す図であり、同図(a)は斜視図、同図(b)は図6(a)に示した光スイッチのA-A線断面図、同図(c)は図6(a)に示した光スイッチのB-B線断面図である。
 図5(a)~(c)に示すように、第2の実施の形態の光スイッチは、図2に示した光スイッチの電極部106と平行な電気光学結晶104の下方端面および上方端面にそれぞれ絶縁体層110を介して温度制御素子111が形成された構成である。絶縁体層110および温度制御素子111には、第1の実施の形態と同様の材料を用いることができる。
 このように、電極部106と平行な電気光学結晶104の下方端面および上方端面にそれぞれ絶縁体層110を介して温度制御素子111を形成すれば、電極部106近傍の温度を第1の実施の形態の光スイッチよりも安定させることができる。
 なお、第2の実施の形態の光スイッチでは、図6(a)~(c)に示すように、光スイッチの光入射面および光出射面を除く電気光学結晶104の全ての端面に、それぞれ絶縁体層110を介して温度制御素子111を形成してもよい。
 図6(a)~(c)に示すように、光スイッチの光入射面および光出射面を除く電気光学結晶104の全ての端面にそれぞれ絶縁体層110を介して温度制御素子111を形成することで、電極部106近傍の温度を図5(a)~(c)に示した光スイッチよりもさらに安定させることができる。
 また、絶縁体層110で光入射面および電極部106を透過した光の光出射面を除く電気光学結晶104の全ての端面を覆うことで、第1の実施の形態よりも、さらに電気光学結晶104内で発生する迷光が低減し、光スイッチの消光比も向上する。さらに、電極部106の温度が過大に上昇することによる電極部106の破損も防止されるため、光スイッチの信頼性も向上する。
 特に、絶縁体層110として、グラファイトシート、シリコーン、半導体用low-k(低誘電率)材料(有機ポリマー系、SiOC等)等を用い、この絶縁体層110を、例えば反射光が出射される光出射面にも形成すれば、これらの絶縁体層110が光吸収層としても作用するため、光出射面における不要な光の反射が低減する。そのため、例えば透過光を光スイッチからの出力光として利用する場合、反射光の出射面に絶縁体層110を形成していれば、絶縁体層110で射出された光が吸収されるため、電気光学結晶内で発生する迷光が低減し、光スイッチの消光比が向上する。なお、この効果は、光出射面に周知の反射防止膜を成膜した後に絶縁体層110を形成すれば、さらに高めることができる。
 また、温度制御用のヒートシンクまたはペルチェ素子から成る温度制御素子111で光入射面および電極部を透過した光の光出射面を除く電気光学結晶104の全ての端面を覆うことで、第1の実施の形態よりも衝撃等に対する光スイッチの耐久性が向上する。
 また、温度制御素子111で電気光学結晶104のほとんどの端面を覆うことで、温度制御素子111が電磁シールドの効果も持つ。したがって、高周波ノイズ等による光スイッチの誤動作も低減する。
(第3の実施の形態)
 図7は、第3の実施の形態の光スイッチの構成を示す図であり、同図(a)は斜視図、同図(b)は図7(a)に示した光スイッチのB-B線断面図である。
 図7(a),(b)に示すように、第3の実施の形態の光スイッチは、入射光の光路上に複数段(図7(a),(b)では2段を例示)の電極部106が配置された構成である。各電極部106は、複数の電極105によって構成される電極面が互いに平行となるように配設されている。
 図7(a),(b)に示すような光スイッチでは、入射光が最初に到達する電極部106で該入射光を反射させ、該電極部106で反射されることなく透過した光を後段の電極部106でさらに反射させれば、各電極部106で反射されることなく透過して光出射面から出射される光の強度を低減できる。そのため、図7(a),(b)に示すような複数の電極部106を備える光スイッチは、第1の実施の形態の光スイッチよりも消光比を高めることができる。
 第3の実施の形態は、この複数の電極部106を備える光スイッチの電極部106と平行な電気光学結晶104の下方端面または上方端面に、絶縁体層110を介して温度制御素子111が形成された構成である。絶縁体層110および温度制御素子111には、第1の実施の形態と同様の材料を用いることができる。
 このような構成でも、第1の実施の形態と同様に、光スイッチの電極部106近傍の温度を安定させることができるため、光スイッチの動作が安定し、また信頼性も向上する。
 また、反射光の方向が安定することで、電気光学結晶104内で発生する迷光が低減し、光スイッチの消光比も向上する。
 また、電気光学結晶104よりも誘電率が低い絶縁体層110を介して温度制御素子111を形成するため、容量成分の増加が少なくて済み、光スイッチの動作速度(帯域)の制限が緩和される。
 さらに、ヒートシンクやペルチェ素子等から成る温度制御素子111により電気光学結晶104の端面を覆うため、衝撃等に対する光スイッチの耐久性も向上する。
 なお、図7(a),(b)は、各電極部106に対応して電気光学結晶104の下方端面または上方端面に絶縁体層110を介して温度制御素子111が形成された構成例を示しているが、図8(a),(b)に示すように、各電極部106と平行な電気光学結晶104の下方端面および上方端面それぞれに絶縁体層110を介して温度制御素子111を形成してもよい。
 さらに、図7(a),(b)に示した入射光の光路上に複数の電極部106が配置される構成でも、図6(a)~(c)に示した光スイッチ(第2の実施の形態)と同様に、光スイッチの光入射面および光出射面を除く電気光学結晶104の全ての端面に、それぞれ絶縁体層110を介して温度制御素子111を形成してもよい。
 このように光入射面および光出射面を除く電気光学結晶104の端面を、それぞれ絶縁体層110を介して温度制御素子111で覆えば、衝撃等に対する光スイッチの耐久性が向上すると共に、高周波ノイズ等による光スイッチの誤動作も低減する。
 特に、絶縁体層110として、グラファイトシート、シリコーン、半導体用low-k(低誘電率)材料(有機ポリマー系、SiOC等)等を用い、この絶縁体層110を、例えば反射光が出射される光出射面にも形成すれば、これらの絶縁体層110が光吸収層としても作用するため、光出射面における不要な光の反射が低減する。そのため、例えば透過光を光スイッチからの出力光として利用する場合、反射光の出射面に絶縁体層110を形成していれば、絶縁体層110で射出された光が吸収されるため、電気光学結晶内で発生する迷光が低減し、光スイッチの消光比が向上する。なお、この効果は、光出射面に周知の反射防止膜を成膜した後に絶縁体層110を形成すれば、さらに高めることができる。
(第4の実施の形態)
 図9は、第4の実施の形態の光スイッチの構成を示す図であり、同図(a)は斜視図、同図(b)は図9(a)に示した光スイッチのB-B線断面図である。
 第4の実施の形態の光スイッチは、図2に示した光スイッチの光が入射される光入射面204および透過光が出射される光出射面205にそれぞれ反射防止膜(Anti Reflection Coat)210が成膜された構成である。
 反射防止膜210は、所要の波長光に対して反射防止効果を備えていれば、材料、膜厚、膜構成(単層膜であるか多層膜であるか)等はどのようなものでもよく、周知の技術を利用して成膜すればよい。
 このように光スイッチの光入射面204および透過光が出射される光出射面205にそれぞれ反射防止膜210を施すことで、これら光入射面204および光出射面205における不要な反射光が低減する。そのため、例えば透過光を光スイッチからの光出力として利用する場合、透過光の利用効率が上昇するため、光スイッチの消光比が向上する。
 また、第4の実施の形態の光スイッチは、反射光が出射される光出射面206にも反射防止膜210が成膜された構成であってもよい。なお、図9(a),(b)には、光出射面205、206にそれぞれ反射防止膜210を形成した構成例を示している。
 反射光が出射される光出射面206にも反射防止膜210を施すことで、光出射面206における不要な反射光が低減する。そのため、例えば透過光を光スイッチからの光スイッチとして利用する場合、光出射面206から外部へ光が出射されやすくなるため、電気光学結晶104内で発生する迷光が低減し、光スイッチの消光比が向上する。
 以上の説明では、透過光を光スイッチからの光出力として利用する例を示したが、反射光を光スイッチからの光スイッチとして利用することも可能である。
 光の反射は、光スイッチの動作時、光が通過する光入射面204や光出射面205,206で最も多く発生するため、光入射面204および2つの光出射面205,206にそれぞれ反射防止膜210を成膜すれば、最も少ない材料で、最も効果的に迷光を低減できる。
 なお、反射防止膜210は、光入射面204および光出射面205,206だけでなく、電気光学結晶104の他の端面にも成膜してよい。その場合、光入射面204および光出射面205,206以外の端面における反射も低減して電気光学結晶104内の迷光がより減少するため、光スイッチの消光比をさらに向上させることができる。
 ところで、図2や図9(a),(b)に示した光スイッチでは、電極部106に電圧を印加するか否かによって光の出射面を切り換える構成であるため、出射光をオン/オフしたい場合は、2つの出射光のいずれか一方を、例えば外部に設けた光吸収体等によって消光する必要がある。
 本実施形態の光スイッチでは、図10(a),(b)に示すように、使用しない光が出射される面、例えば電極部106で反射した光(反射光)が到達する光出射面206に光吸収層300を形成してもよい。光吸収層300には、例えばグラファイトシート等の光を吸収しやすい材料を用いればよい。
 このような光出射面に光吸収層300を備える構成では、光スイッチの外部に光吸収体を設ける必要がなくなるため、光モジュール等に容易に組み込むことができる。また、光モジュール等に光吸収体が不要になることで、本実施形態の光スイッチを含む装置全体の小型化が可能になる。
 なお、光吸収層300は、光出射面205または206のいずれか一方だけでなく、光入射面204を除く電気光学結晶104の他の端面にも成膜してもよい。その場合、電極部106における光の散乱などによって光入射面204および光出射面205,206以外の端面に到達し、結晶外に出射される光が光吸収層で吸収されるため、電気光学結晶104内の迷光がより減少する。そのため、光スイッチの消光比をさらに向上させることができる。さらに、結晶外部に光吸収材を設ける必要もなくなるため、光スイッチ素子の小型化が容易となり、装置への組み込みも容易となる。
 また、光吸収層300に、グラファイトシートやシリコーン等の熱伝導率が高い材料を用い、該光吸収層300にペルチェ素子等の温度制御素子を取り付ければ、電気光学結晶104の温度を効果的に制御することも可能である。
 次に本実施形態を光スイッチに実際に適用する場合にどの程度の効果が得られるかについて説明する。
 以下では、図2に示した透過光を光スイッチの光出力とする場合で考える。
 光スイッチの光入射面204および透過光の光出射面205にそれぞれ反射防止膜210を成膜していない場合、これらの端面では約5%程度の反射が存在する。したがって、入射光の強度の70%を透過させる電極部106を形成した場合、光スイッチの光の利用効率は63%程度になる。
 一方、本実施形態の光スイッチでは、光入射面204および透過光の光出射面205に反射防止膜210を成膜することで、これらの端面における反射を約1%程度に抑制できる。そのため、本実施形態の光スイッチの光の利用効率が68%以上になる。
(第5の実施の形態)
 図11は、第5の実施の形態の光スイッチの構成を示す図であり、同図(a)は斜視図、同図(b)は図11(a)に示した光スイッチのB-B線断面図である。
 図11(a),(b)に示すように、第5の実施の形態の光スイッチは、入射光の光路上に複数段(図11(a),(b)では2段を例示)の電極部106が配置される構成である。
 図11(a),(b)に示す光スイッチでは、入射光が最初に到達する電極部106で該入射光を反射させ、該電極部106で反射されることなく透過した光を後段の電極部106でさらに反射させれば、各電極部106で反射されることなく透過して光出射面205から出射される光の強度を低減できる。そのため、図11(a),(b)に示すような複数段の電極部106を備える光スイッチは、図1に示した光スイッチよりも消光比を高めることができる。
 第5の実施の形態は、この複数段の電極部106を備える光スイッチの光入射面204および光出射面205,206,207にそれぞれ反射防止膜210が成膜された構成である。
 このような構成でも、光入射面204および光出射面205,206,207における不要な反射が低減して、透過光の利用効率が増加し、さらにこれらの端面における反射光が外部に出射されやすくなるため、電気光学結晶内で発生する迷光が低減し、光スイッチの消光比をさらに向上させることができる。
 なお、第5の実施の形態の光スイッチにおいても、第4の実施の形態と同様に、反射防止膜は、光入射面204および光出射面205,206,207だけでなく、電気光学結晶104の他の端面にも成膜してよい。その場合、光入射面204および光出射面205,206,207以外の端面での反射も低減して電気光学結晶104内における迷光がより減少するため、光スイッチの消光比がさらに向上する。
 また、第5の実施の形態の光スイッチにおいても、第4の実施の形態と同様に、使用しない光が出射される面、例えば各電極部106で反射した光(反射光)が到達する光出射面206,207に光吸収層300をそれぞれ形成してもよい。なお、図11(a),(b)は、光出射面206,207にそれぞれ光吸収層300が形成された構成例を示している。このような構成では、光スイッチの外部に光吸収体を設ける必要がなくなるため、光モジュール等に容易に組み込むことができる。また、光モジュール等に光吸収体が不要になることで、本実施形態の光スイッチを含む装置全体の小型化が可能である。
 また、第5の実施の形態の光スイッチにおいても、第4の実施の形態と同様に、光吸収層300に、グラファイトシートやシリコーン等の熱伝導率が高い材料を用い、該光吸収層300にペルチェ素子等の温度制御素子を取り付ければ、電気光学結晶104の温度を効果的に制御することが可能である。
(第6の実施の形態)
 図12は、第6の実施の形態の光スイッチの構成を示す図であり、同図(a)は斜視図、同図(b)は図12(a)に示した光スイッチのB-B線断面図である。
 図12(a),(b)に示すように、第6の実施の形態の光スイッチは、第5の実施の形態の光スイッチと同様に、入射光の光路上に複数段の電極部106が(図12(a),(b)では2段を例示)配置された構成である。
 第6の実施の形態の光スイッチは、この複数段の電極部106を備える光スイッチの光入射面204および光出射面205,206,207にそれぞれ反射防止膜210が成膜されると共に、光スイッチの光入射面204および光出射面205,206,207を除く電気光学結晶104の各端面にそれぞれ反射防止膜及び光吸収層300が形成された構成である。
 なお、第6の実施の形態の光スイッチは、第4の実施の形態及び第5の実施の形態と同様に、使用しない光が出射される面、例えば各電極部106で反射した光(反射光)が到達する光出射面206,207にも光吸収層300を形成してもよい。図12(a),(b)は、光出射面206,207にも光吸収層300が形成された構成例を示している。
 また、図12(a),(b)は、第5の実施の形態で示した入射光の光路上に複数段の電極部106が配置された光スイッチを例示しているが、第4の実施の形態で示した入射光の光路上に1つの電極部106が配置された光スイッチの場合も、光入射面204および光出射面205を除く電気光学結晶104の各端面にそれぞれ光吸収層300を形成してもよい。
 このように、光入射面204および光出射面205,206,207を除く電気光学結晶104の各端面にそれぞれ反射防止膜210及び光吸収層300を備えることで、散乱等によって電気光学結晶104に到達した光が結晶外部に出射されやすくなり、さらに出射された光が光吸収層300によって吸収されるため、電気光学結晶104内の迷光をさらに低減できる。したがって、第6の実施の形態の光スイッチは、第4の実施の形態や第5の実施の形態の光スイッチよりも消光比をさらに向上させることができる。
 なお、光スイッチの光入射面204および光出射面205,206,207を除く電気光学結晶104の各端面にそれぞれ反射防止膜210または光吸収層300のいずれか一方のみを形成した場合でも迷光低減の効果は得られるが、反射防止膜210及び光吸収層300を共に形成するのが最も効果的であり、光スイッチの消光比を最も向上させることができる。
 また、第6の実施の形態の光スイッチにおいても、第4および第5の実施の形態と同様に、光吸収層300に、グラファイトシートやシリコーン等の熱伝導率が高い材料を用い、該光吸収層300にペルチェ素子等の温度制御素子を取り付ければ、電気光学結晶104の温度を効果的に制御することが可能である。
(第7の実施の形態)
 図13は、第7の実施の形態の光スイッチの構成を示す図であり、同図(a)は斜視図、同図(b)は図13(a)に示した光スイッチのB-B線断面図である。
 図13(a),(b)に示すように、第7の実施の形態の光スイッチは、第5、第6の実施の形態の光スイッチと同様に、入射光の光路上に複数段の電極部106が(図13(a),(b)では2段を例示)配置された構成である。
 第7の実施の形態の光スイッチは、第6の実施の形態の光スイッチと同様に、この複数段の電極部106を備える光スイッチであり、光入射面204および光出射面205,206,207にそれぞれ反射防止膜210が成膜されると共に、光スイッチの光入射面204および光出射面205,206,207を除く電気光学結晶104の各端面、特に電極部と平行な電気光学結晶の端面に、それぞれ反射防止膜210および光吸収層300が形成された構成である。
 光吸収層300は、電気光学結晶よりも誘電率が低い絶縁体で形成され、その光吸収層300と接触するように電極部105の温度を制御する、または電極部105で発生する熱を放熱するための温度制御素子111が形成されている。
 なお、第4の実施の形態及び第5の実施の形態と同様に、使用しない光が出射される面、例えば各電極部106で反射した光(反射光)が到達する光出射面206,207にも光吸収層300を形成してもよい。図13(a),(b)は、光出射面206,207にも光吸収層300が形成された構成例を示している。
 このように、光入射面204および光出射面205,206,207を除く電気光学結晶104の各端面にそれぞれ反射防止膜210および光吸収層300を備えることで、散乱等によって電気光学結晶104の各端面に到達した光が結晶外部に出射されやすくなり、さらに出射された光が光吸収層300によって吸収されるため、電気光学結晶104内の迷光をさらに低減できる。したがって、光スイッチの消光比を向上させることができる。
 なお、光スイッチの光入射面204および光出射面205,206,207を除く電気光学結晶104の各端面にそれぞれ反射防止膜210、光吸収層300のいずれか一方のみ形成した場合でも迷光低減の効果が得られるが、反射防止膜210及び光吸収層300共に形成されている構成が最も効果的であり、光スイッチの消光比を最も向上させることができる。
 さらに、光スイッチにこの第7の実施の形態の構造を採用すると共に、第1の実施の形態~第3の実施の形態で示したように、温度変化による特性変動が最も大きい入射光の光路上に在る電極部106に最も近い電気光学結晶104の端面に温度制御素子111を設け、温度制御素子111に、電極部106の温度を制御するためのペルチェ素子等の熱電変換素子、または電極部106で発生した熱を放熱するためのヒートシンク等の放熱素子を用いてもよい。このような構成を採用することで、電極部106と温度制御素子111間の容量成分を増大させることなく電極部106により近い位置で電極部106の温度を制御できる、または電極部106で発生した熱を放熱することが可能になる。
 一般に、電気光学結晶104に電界を印加して屈折率を変化させる場合、該屈折率の変化は結晶の温度に依存する。屈折率の変化の大きさが温度によって変動すると、光スイッチの出力光の強度も変化する。したがって、光スイッチの動作を安定させるためには、電気光学結晶104内の屈折率変化が生じる領域の温度を適正な範囲内に維持しておく必要がある。
 第7の実施の形態の光スイッチでは、温度変化による特性変動が最も大きい電極部106に最も近い、電極部106と平行な電気光学結晶の端面に温度制御素子111を設けているため、電極部106付近の温度を、均一に、かつ効率よく制御できる、または電極部106付近の熱を、均一に、かつ効率よく放熱することができる。そのため、屈折率変化部108の温度変動に対して反射光の方向が安定し、光スイッチの動作が安定する。
 また、反射光の方向が安定することで、電気光学結晶104内で発生する迷光が低減し、光スイッチの消光比も向上する。さらに、電極部106の温度が過大に上昇することによる電極部106の破損も防止されるため、光スイッチの信頼性が向上する。
 また、電気光学結晶104よりも誘電率が低い絶縁体層110を介して温度制御素子111を形成するため、容量成分の増加が少なくて済み、光スイッチの動作速度(帯域)の制限が緩和される。
 さらに、ヒートシンクやペルチェ素子等から成る温度制御素子111で電気光学結晶104の端面を覆うため、衝撃等に対する光スイッチの耐久性も向上する。
(第8の実施の形態)
 図14は、第8の実施の形態の光スイッチの構成を示す図であり、同図(a)は側断面図、同図(b)は平面図である。
 第8の実施の形態の光スイッチは、図2に示した光スイッチにおいて、外部電源107から各電極105に電圧を印加するための電極引き出し部109に対して、電気光学結晶104よりも誘電率が低く、かつ熱伝導率が高い絶縁部110が接触するように形成され、該絶縁部110の端部に電極部106の温度を制御するための、または電極部106で発生した熱を放熱するための温度制御部111が形成された構成である。
 温度制御部111には、電極部106の温度を制御するためのペルチェ素子等の熱電変換素子、または電極部106で発生した熱を放熱するためのヒートシンク等の放熱素子が用いられる。
 温度制御部111に熱電変換素子を用いる場合、光スイッチには、電極部106及び屈折率変化部108を含む電極形成領域の温度を検出するための温度センサが貼付される。
 熱電変換素子は、不図示の電流源から電流を供給することで発熱する。熱電変換素子が発熱すると、その熱エネルギーによって絶縁部110が加熱され、電極引き出し部109を介して電極部106が加熱され、電極形成領域の温度が上昇する。また、熱電変換素子には、接触する部位から熱エネルギーを吸収する吸熱作用を備えているものもある。例えば、上記ペルチェ素子は、直流電流を流すと、一方の面が発熱し、他方の面で吸熱する。また、ペルチェ素子は、流れる電流の向きを反転させると、吸熱する面と発熱する面とが逆転する。そのため、熱電変換素子にペルチェ素子を用いることで電極形成領域の加熱および冷却が可能になる。
 温度センサは、電極形成領域と温度の関係が分かる部位(例えば熱抵抗が分かっている部位)に貼付する。これにより温度センサで検出した値に基づいて電極形成領域の温度を推定できる。
 電極形成領域の温度を制御する場合、温度センサを貼付した部位と電極形成領域との温度関係に基づいて温度センサの検出値に所定のしきい値を設定し、温度センサの検出値がしきい値未満の場合は熱電変換素子により絶縁部110を介して電極形成領域を加熱し、温度センサの検出値がしきい値以上の場合は熱電変換素子により絶縁部110を介して電極形成領域を冷却する。このような処理により電極形成領域の温度を所定の温度範囲内に維持できる。
 なお、常に室温付近の温度に制御すればよい場合は、電極形成領域で発生する熱の放熱のみを行えばよく、高強度の光が照射されることで発生した電極部106の熱を効率よく外部へ逃がすために、温度制御部111にはヒートシンク等の放熱素子を用いればよい。
 上述したように、電気光学結晶104に電界を印加して屈折率を変化させる場合、該屈折率の変化は結晶の温度に依存する。屈折率の変化の大きさが温度によって変動すると、光スイッチの出力光の強度も変化する。したがって、光スイッチの動作を安定させるためには、電気光学結晶104内の屈折率変化が生じる領域の温度を適正な範囲内に維持しておく必要がある。
 図2に示した光スイッチは、入射光の光路上に電極部106が存在するため、該電極部106に光が照射されることで温度が上昇しやすい構造である。電極部106の温度上昇によって電極部106周囲の電気光学結晶104の温度が変化すると、印加電圧に対応する屈折率も変化し、屈折率変化部108の屈折率界面の平坦性を維持するのが困難になる。そのため、図2に示した光スイッチでは、電極部106およびその近傍の電気光学結晶104の温度を一定に保つことが望ましい。
 そこで、本実施形態では、図14(a),(b)に示すように、電気光学結晶104よりも誘電率が低く、かつ熱伝導率が高い絶縁部110を電極引き出し部109と接触するように形成し、該絶縁部110の端部に形成した温度制御部111により電極部106及び屈折率変化部108を含む電極形成領域の温度を制御する、または電極部106で発生した熱を放熱する。これにより、電極部106の温度を効率よく制御できる、または電極部106で発生した熱を効率よく放熱できる。
 本実施形態の光スイッチでは、絶縁部110が電極部106の一部(電極取り出し部109)と接触する構造であるため、絶縁部110は、複数の電極105に電圧を印加することで形成される屈折率変化部108による入射光の透過または全反射を阻害することがない。
 なお、絶縁部110には、SiO、SiN、グラファイトシート、シリコーン、半導体用low-k(低誘電率)材料(有機ポリマー系、SiOC等)等を用いることができる。絶縁部110は接着材等により電極引き出し部109に貼り付けても効果が期待できる。さらに、絶縁部110にSiOやSiN等を用いると、既存の半導体装置の製造設備を用いて絶縁部110を形成できる。
 本実施形態の光スイッチによれば、温度変化による特性変動が最も大きい入射光の光路上にある電極部106の一部と接触するように絶縁部110を設け、絶縁部110の端部に温度制御部111を設けているため、温度制御部111の熱エネルギーが絶縁部110および各電極105を伝わることで電極形成領域の温度を効率よく制御できる、または電極部106で発生した熱を電極105および絶縁部110を介して効率よく放熱できる。そのため、温度が変動しても電極部106近傍にて温度制御が可能となり、屈折率変化部108が安定して形成されるため、光スイッチの動作が安定する。
 また、屈折率変化部108が安定して形成され、反射光の方向が安定することで、電気光学結晶104内で発生する迷光が低減し、光スイッチの消光比も向上する。さらに、電極部106の温度が上昇することによる電極部106の破損も防止されるため、光スイッチの信頼性が向上する。
 なお、本実施形態の光スイッチでは、電極部106を構成する複数の電極105に熱伝導率が高い材料(金、白金、銅など)を用いると、さらに効率よく温度を制御することが可能であり、温度変動に対して光スイッチがより安定して動作する。
(第9の実施の形態)
 図15は、第9の実施の形態の光スイッチの構成を示す図であり、同図(a)は側断面図、同図(b)は平面図である。
 第9の実施の形態の光スイッチは、図2に示した光スイッチにおいて、電気光学結晶104よりも誘電率が低く、かつ熱伝導率が高い絶縁部110が電極部106と接触するように形成され、該絶縁部110の端部に電極部106の温度を制御するための、または電極部106で発生した熱を放熱するための温度制御部111が形成された構成である。さらに、第9の実施の形態の光スイッチは、電気光学結晶104内における絶縁部110と電極部106の形状を同一にする。
 温度制御部111には、第8の実施の形態と同様に、電極部106の温度を制御するためのペルチェ素子等の熱電変換素子、または電極部106で発生した熱を放熱するためのヒートシンク等の放熱素子が用いられる。
 また、温度制御部111に熱電変換素子を用いる場合、光スイッチには、電極部106及び屈折率変化部108を含む電極形成領域の温度を検出するための温度センサが貼付される。温度センサは、電極形成領域と温度の関係が分かる部位(例えば熱抵抗が分かっている部位)に貼付する。これにより温度センサで検出した値に基づいて電極形成領域の温度を推定できる。
 電極形成領域の温度を制御する場合、第8の実施の形態と同様に、温度センサを貼付した部位と電極形成領域との温度関係に基づいて温度センサの検出値に所定のしきい値を設定し、温度センサの検出値がしきい値未満の場合は熱電変換素子により絶縁部110を介して電極形成領域を加熱し、温度センサの検出値がしきい値以上の場合は熱電変換素子により絶縁部110を介して電極形成領域を冷却する。このような処理により電極形成領域の温度を所定の温度範囲内で維持できる。
 なお、常に室温付近の温度に制御すればよい場合は、電極形成領域で発生する熱の放熱のみを行えばよく、高強度の光が照射されることで発生した電極部106の熱を効率よく外部へ逃がすために、温度制御部111にはヒートシンク等の放熱素子を用いればよい。
 第9の実施の形態の光スイッチは、図15(a)、(b)に示すように、電気光学結晶104よりも誘電率が低く、かつ熱伝導率が高い絶縁部110を、電極引き出し部109だけでなく、電極部106全体の片面と接触するように形成する。このような構成では、第8の実施の形態の光スイッチよりも絶縁部110と電極部106の接触面積が大きくなるため、電極部106で発生した熱をより効率よく放熱できる、または電極部106の温度をより効率よく制御できる。
 さらに、本実施形態の光スイッチでは、電気光学結晶104内における絶縁部110と電極部106の形状を同一にする。このように絶縁部110と電極部106の形状を同一にすることで、複数の電極105に電圧を印加することで形成される屈折率変化部108による入射光の透過または全反射を阻害することなく、電極部106で発生した熱を放熱できる、または電極部106の温度を制御できる。
 なお、絶縁部110には、SiO、SiN、グラファイトシート、シリコーン、半導体用low-k(低誘電率)材料(有機ポリマー系、SiOC等)等を用いることができる。絶縁部110にSiOやSiN等を用いると、既存の半導体装置の製造設備を用いて絶縁部110を形成できる。
 本実施形態の光スイッチによれば、絶縁部110が電極引き出し部109を含む電極部106全体と接触するように形成されているため、絶縁部110と電極部106の接触面積が大きくなり、第8の実施の形態の光スイッチよりも電極部106で発生した熱をより効率よく放熱できる、または電極部106の温度をより効率よく制御できる。そのため、温度が変動しても電極部106近傍にて温度制御が可能となり、屈折率変化部108が安定して形成されるため、光スイッチの動作が安定する。
 また、屈折率変化部108が安定して形成され、反射光の方向が安定することで、電気光学結晶104内で発生する迷光が低減し、光スイッチの消光比も向上する。さらに、電極部106の温度が上昇することによる電極部106の破損も防止されるため、光スイッチの信頼性が向上する。
 さらに、本実施形態の光スイッチでは、各電極105の一部の面を電気光学結晶104よりも誘電率が低い絶縁部110で覆う構造となるため、各電極105の全ての面を誘電率が高い電気光学結晶104で覆う構造よりも電極105間容量が低下する。そのため、第8の実施の形態の光スイッチよりも消費電力が低減する。さらに、容量が低下することで動作の高速化も実現することができる。
 なお、本実施形態の光スイッチにおいても、第8の実施の形態と同様に、電極部106を構成する複数の電極105に熱伝導率が高い材料(金、白金、銅など)を用いると、さらに効率よく温度を制御することが可能であり、温度変動に対して光スイッチがより安定して動作する。
(第10の実施の形態)
 図16は、第10の実施の形態の光スイッチの構成を示す図であり、同図(a)は側断面図、同図(b)は平面図である。図17は、第10の実施の形態の光スイッチの変形例の構成を示す図であり、同図(a)は側断面図、同図(b)は平面図である。
 図16(a)及び(b)に示す光スイッチと、図17(a)及び(b)に示す光スイッチとは、各電極105に外部電源107を接続するための電極引き出し部109の位置が異なる構成であり、その他は同様である。
 図16(a)及び(b)並びに図17(a)及び(b)に示すように、第10の実施の形態の光スイッチは、入射光の光路上に複数段(図16(a)及び(b)並びに図17(a)及び(b)では2段を例示)の電極部106が配置された構成である。
 図16(a)及び(b)並びに図17(a)及び(b)に示す光スイッチでは、入射光が最初に到達する電極部106で該入射光を反射させ、該電極部106で反射されることなく透過した光を後段の電極部106でさらに反射させれば、各電極部106で反射されることなく透過して光出射面205から出射される光の強度を低減できる。そのため、図16(a)及び(b)並びに図17(a)及び(b)に示すような複数段の電極部106を備える光スイッチは、図1に示した光スイッチよりも消光比を高めることができる。
 第10の実施の形態は、この複数段の電極部106を備える光スイッチの各電極部106と少なくとも一部が接触するように、電気光学結晶104よりも誘電率が低く、かつ熱伝導率が高い絶縁部110がそれぞれ形成され、該絶縁部110の端部に温度制御部111がそれぞれ形成された構成である。
 絶縁部110は、第8の実施の形態と同様に電極引き出し部109とのみ接触するように形成されていてもよく、第9の実施の形態と同様に電極引き出し部109を含む電極部106全体と接触するように形成されていてもよい。
 電極部106を構成する各電極105の材料、絶縁部110及び温度制御部111は、それぞれ第8の実施の形態や第9の実施の形態と同様の材料を用いて形成できる。
 このような構成でも、各電極部106で発生する熱を効率よく放熱できる、または各電極部106の温度を効率よく制御できるため、温度が変動しても電極部106付近に屈折率変化部108が安定して形成されるため、光スイッチの動作が安定する。
 また、第10の実施の形態の光スイッチは、光(入射光)が複数の電極106を通過する構造であるために第8の実施の形態及び第9の実施の形態の光スイッチよりも消光比が向上する。
 また、屈折率変化部108が安定して形成され、反射光の方向が安定することで、電気光学結晶104内で発生する迷光が低減し、光スイッチの消光比も向上する。さらに、電極部106の温度が過剰に上昇することによる電極部106の破損も防止されるため、光スイッチの信頼性が向上する。
 さらに、第10の実施の形態の光スイッチは、第9の実施の形態と同様に、電極引き出し部109を含む電極部106全体に絶縁部110を形成すれば、各電極105の一部の面を電気光学結晶104よりも誘電率が低い絶縁部110で覆う構造となるため、各電極105の全ての面を誘電率が高い電気光学結晶104で覆う構造よりも電極105間容量が低下する。そのため、第8の実施の形態の光スイッチよりも消費電力が低減する。さらに、容量が低下することで動作の高速化も実現することができる。
(第11の実施の形態)
 第11の実施の形態では、第1の実施の形態~第10の実施の形態で示した光スイッチを備える装置の具体例について説明する。
 [画像表示装置]
 まず、本発明の光スイッチを備える画像表示装置について説明する。
 図18は本発明の光スイッチを備える画像表示装置の一構成例を示す模式図である。この画像表示装置1401は、レーザ光源1402~1404、コリメータレンズ1405~1407、反射ミラー1408、ダイクロイックミラー1409、1410、水平走査ミラー1411、垂直走査ミラー1412および光スイッチ1414~1416を有する。光スイッチ1414~1416は、第1の実施の形態~第10の実施の形態で示した光スイッチである。
 レーザ光源1402からのレーザ光の進行方向には、コリメータレンズ1407、光スイッチ1416、および反射ミラー1408が順に配置されている。光スイッチ1416には、コリメータレンズ1407からの平行光束が入射する。光スイッチ1416は、不図示の制御部から供給される制御信号にしたがって動作する。制御信号がオンの期間(電圧供給期間)、光スイッチ1416では、電極部に電圧が印加されて屈折率変化領域が形成されるため、その屈折率変化領域にて入射光が反射される。この反射光は、反射ミラー1408へ向かう光路から外れる。制御信号がオフの期間(電圧供給停止期間)は、入射光は光スイッチ1416を透過して反射ミラー1408へ向かう。
 レーザ光源1403からのレーザ光の進行方向には、コリメータレンズ1406、光スイッチ1415、およびダイクロイックミラー1410が順に配置されている。光スイッチ1415には、コリメータレンズ1406からの平行光束が入射する。光スイッチ1415も、光スイッチ1416と同様に不図示の制御部から供給される制御信号にしたがって動作する。制御信号がオンの期間(電圧供給期間)、光スイッチ1415では、電極部に電圧が印加されて屈折率変化領域が形成されるため、その屈折率変化領域にて入射光が反射される。この反射光は、ダイクロイックミラー1410へ向かう光路から外れる。制御信号がオフの期間(電圧供給停止期間)は、入射光は光スイッチ1415を透過してダイクロイックミラー1410へ向かう。
 レーザ光源1404からのレーザ光の進行方向には、コリメータレンズ1405、光スイッチ1414、およびダイクロイックミラー1409が順に配置されている。コリメータレンズ1405からの平行光束が光スイッチ1414に入射する。光スイッチ1414は、光スイッチ1415、1416と同様に不図示の制御部から供給される制御信号にしたがって動作する。制御信号がオンの期間(電圧供給期間)、光スイッチ1414では、電極部に電圧が印加されて屈折率変化領域が形成されるため、その屈折率変化領域にて入射光が反射される。この反射光は、ダイクロイックミラー1409へ向かう光路から外れる。制御信号がオフの期間(電圧供給停止期間)、入射光は光スイッチ1414を透過してダイクロイックミラー1409へ向かう。
 ダイクロイックミラー1410は、光スイッチ1415からの光束と、反射ミラー1408にて反射された光束とが交差する位置に設けられている。ダイクロイックミラー1410は、光スイッチ1415からの光を反射し、反射ミラー1408からの光を透過するような波長選択特性を有する。
 ダイクロイックミラー1409は、光スイッチ1414からの光束とダイクロイックミラー1410からの光束とが交差する位置に設けられている。ダイクロイックミラー1409は、光スイッチ1414からの光を反射し、ダイクロイックミラー1410からの光を透過するような波長選択特性を有する。
 水平走査ミラー1411は、ダイクロイックミラー1409からの光束の進行方向に配置されており、不図示の制御部から出力される水平走査制御信号によりその動作が制御される。垂直走査ミラー1412は、水平走査ミラー1411からの光束の進行方向に配置されており、不図示の制御部から出力される垂直走査制御信号によりその動作が制御される。
 レーザ光源1402、1403、1404は、R、G、Bの3原色に対応する色のレーザ光を出射する。
 図18に示す画像表示装置では、光スイッチ1414、1415、1416をオンオフ制御し、かつ水平走査ミラー1411および垂直走査ミラー1412を制御することで、スクリーン1413上にカラー画像を表示できる。
 [画像形成装置]
 次に、本発明の光スイッチを備える画像形成装置について説明する。
 図19は本発明の光スイッチを備える画像形成装置の一構成例を示す模式図である。この画像形成装置1501は、レーザ光源1502、コリメータレンズ1503、反射ミラー1504、走査ミラー1505、光スイッチ1506、fθレンズ1507および感光体1508を有する。光スイッチ1506は、第1の実施の形態~第10の実施の形態で示した光スイッチである。
 レーザ光源1502からのレーザ光の進行方向には、コリメータレンズ1503、光スイッチ1506、および反射ミラー1504が順に配置されている。光スイッチ1506には、コリメータレンズ1503からの平行光束が入射する。光スイッチ1506は、不図示の制御部から供給される制御信号にしたがって動作する。制御信号がオンの期間(電圧供給期間)、光スイッチ1506では、電極部に電圧が印加されて屈折率変化領域が形成されるため、その屈折率変化領域にて入射光が反射される。この反射光は、反射ミラー1505へ向かう光路から外れる。制御信号がオフの期間(電圧供給停止期間)、入射光は光スイッチ1506を透過して反射ミラー1505へ向かう。
 走査ミラー1505は、反射ミラー1505からの光束の進行方向に配置されており、不図示の制御部から出力される走査制御信号によりその動作が制御される。走査ミラー1505からの光は、fθレンズ1507を介して感光体1508に照射される。
 図19に示す画像形成装置では、光スイッチ1506をオンオフ制御し、かつ走査ミラー1505を制御することで、感光体1508上に画像を形成するができる。
 なお、図19に示す画像形成装置は、感光体1508の直前に挿入したfθレンズ1507を使用せずに、スキャンした画像をそのまま感光体1508に投影させる装置としても利用できる。
 以上説明した第1~第10の実施の形態で示した光スイッチおよび該光スイッチを利用したシステムは、本発明の一例であり、その手順および構成は、発明の主旨を逸脱しない範囲で適宜に変更することができる。
 以上、実施形態を参照して本願発明を説明したが、本願発明は上記実施形態に限定されものではない。本願発明の構成や詳細は本願発明のスコープ内で当業者が理解し得る様々な変更が可能である。
 この出願は、2008年12月18日に出願された特願2008-322727号、特願2008-322734号及び特願2008-322735号を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (21)

  1.  電気光学結晶に電界を印加して前記電気光学結晶の屈折率を変化させることによって、前記電気光学結晶に入射した入射光の透過と全反射とを切り換える光スイッチであって、
     前記電気光学結晶内に配設され、かつ面積が最大となる主断面が同一平面内となるように配置された複数の電極から成る電極部と、
     前記電極部と平行な前記電気光学結晶の少なくとも一つの端面に形成された、前記電気光学結晶よりも誘電率が低い絶縁体から成る絶縁体層と、
     前記絶縁体層と接触するように形成された、前記電極部の温度を制御する、または前記電極部で発生する熱を放熱するための温度制御素子と、
    を有する光スイッチ。
  2.  電気光学結晶に電界を印加して前記電気光学結晶の屈折率を変化させることによって、前記電気光学結晶に入射した入射光の透過と全反射とを切り換える光スイッチであって、
     前記電気光学結晶内に配設され、かつ面積が最大となる主断面が同一平面内となるように配置された複数の電極から成る電極部と、
     前記電極部と平行な前記電気光学結晶の少なくとも一つの端面に形成された、前記電気光学結晶よりも誘電率が低い絶縁体から成る絶縁体層と、
     前記絶縁体層と接触するように形成された、前記電極部の温度を制御する、または前記電極部で発生する熱を放熱するための温度制御素子と、
    を有し、
     前記電極部による電界印加によって屈折率が変化する前記電気光学結晶の屈折率変化部が前記電極部全体を包含しており、前記屈折率変化部の屈折率界面が平坦に形成された光スイッチ。
  3.  前記絶縁体層は、
     前記電気光学結晶よりも熱伝導率が高い材料である請求項1または2記載の光スイッチ。
  4.  光が入射する光入射面および光が出射する光出射面を除く前記電気光学結晶の端面に、それぞれ前記絶縁体層および前記温度制御素子が形成された請求項1から3のいずれか1項記載の光スイッチ。
  5.  前記絶縁体層は、
     光を吸収する光吸収層としても作用する材料である請求項1から4のいずれか1項記載の光スイッチ。
  6.  電気光学結晶に電界を印加して前記電気光学結晶の屈折率を変化させることによって、前記電気光学結晶に入射した入射光の透過と全反射とを切り換える光スイッチであって、
     前記電気光学結晶内に配設され、かつ面積が最大となる主断面が同一平面内となるように配置された複数の電極から成る電極部を有し、
     光が入射される光入射面と、透過光が出射される光出射面または反射光が出射される光射出面の少なくともいずれか一方とに、それぞれ反射防止膜が形成された光スイッチ。
  7.  電気光学結晶に電界を印加して前記電気光学結晶の屈折率を変化させることによって、前記電気光学結晶に入射した入射光の透過と全反射とを切り換える光スイッチであって、
     前記電気光学結晶内に設けられた、電気光学結晶に電界を印加するための複数の電極から成る電極部と、
     光が入射される光入射面と、透過光が出射される光出射面または反射光が出射される光射出面の少なくともいずれか一方とに、それぞれ形成された反射防止膜と、
    を有し、
     前記電極部による電界印加によって屈折率が変化する前記電気光学結晶の屈折率変化部が前記電極部全体を包含しており、前記屈折率変化部の屈折率界面が平坦に形成された光スイッチ。
  8.  前記透過光が出射される光出射面または前記反射光が出射される光射出面のいずれか一方に、光を吸収する光吸収層が形成された請求項6または7記載の光スイッチ。
  9.  前記光の入射面および前記透過光の光出射面、または前記光の入射面および前記反射光の光射出面を除く前記電気光学結晶の端面の少なくとも1つの面に反射防止膜が形成された請求項6から8のいずれか1項記載の光スイッチ。
  10.  前記光の入射面および前記透過光の光出射面、または前記光の入射面および前記反射光の光射出面を除く前記電気光学結晶の端面の少なくとも1つの面に光を吸収する光吸収層が形成された請求項6から9のいずれか1項記載の光スイッチ。
  11.  前記電極部と平行な前記電気光学結晶の少なくとも一つの端面に形成された、前記電気光学結晶よりも誘電率が低い絶縁体から成る絶縁体層と、
     前記絶縁体層と接触するように形成された、前記電極部の温度を制御する、または前記電極部で発生する熱を放熱するための温度制御素子と、
    を有する請求項6から10のいずれか1項記載の光スイッチ。
  12.  前記絶縁体層は、
     前記電気光学結晶よりも熱伝導率が高い材料で形成されている請求項11記載の光スイッチ。
  13.  電気光学結晶に電界を印加して前記電気光学結晶の屈折率を変化させることによって、前記電気光学結晶に入射した入射光の透過と全反射とを切り換える光スイッチであって、
     前記電気光学結晶内に配設され、かつ面積が最大となる主断面が同一平面内となるように配置された複数の電極から成る電極部と、
     前記電気光学結晶よりも熱伝導率が高く、かつ誘電率が低い、前記電極部と少なくともその一部が接触するように形成された絶縁部と、
     前記絶縁部の端部に形成された、前記電極部で発生した熱を放熱または前記電極部の温度を制御するための温度制御部と、
    を有する光スイッチ。
  14.  電気光学結晶に電界を印加して前記電気光学結晶の屈折率を変化させることによって、前記電気光学結晶に入射した入射光の透過と全反射とを切り換える光スイッチであって、
     前記電気光学結晶内に設けられた、電気光学結晶に電界を印加するための複数の電極から成る電極部と、
     前記電気光学結晶よりも熱伝導率が高く、誘電率が低い、前記電極部と少なくともその一部が接触するように形成された絶縁部と、
     前記絶縁部の端部に形成された、前記電極部で発生した熱を放熱または前記電極部の温度を制御するための温度制御部と、
    を有し、
     前記電極部による電界印加によって屈折率が変化する前記電気光学結晶の屈折率変化部が前記電極部全体を包含しており、前記屈折率変化部の屈折率界面が平坦に形成された光スイッチ。
  15.  前記絶縁部は、
     前記電気光学結晶内における形状が、前記電極部の形状と同一である請求項13または14記載の光スイッチ。
  16.  前記電極は、
     前記電気光学結晶よりも熱伝導率が高い材料である請求項13から15のいずれか1項記載の光スイッチ。
  17.  前記複数の電極は、
     同じ膜厚を有し、平行かつ等間隔に配置されている請求項1から16のいずれか1項記載の光スイッチ。
  18.  前記電気光学結晶の内部に複数の前記電極部を備え、
     各電極部が、複数の電極によって構成される電極面が互いに平行となるように配設された請求項1から17のいずれか1項記載の光スイッチ。
  19.  前記複数の電極には、隣接する前記電極の極性が互いに異なるように電圧が印加される請求項1から18のいずれか1項記載の光スイッチ。
  20.  光源と、
     前記光源からの光を変調する請求項1から19のいずれか1項記載の光スイッチと、
     前記光スイッチからの変調された光ビームで外部スクリーン上を走査する走査手段と、
     外部からの制御信号に応じて前記光スイッチにおける変調動作を制御する制御部と、
    を有する画像表示装置。
  21.  光源と、
     感光体と、
     前記光源からの光を変調する請求項1から19のいずれか1項記載の光スイッチと、
     前記光スイッチからの変調された光ビームで前記感光体上を走査する走査手段と、
     外部からの制御信号に応じて前記光スイッチにおける変調動作を制御する制御部と、
    を有する画像形成装置。
PCT/JP2009/070948 2008-12-18 2009-12-16 光スイッチ WO2010071141A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010542982A JP5240296B2 (ja) 2008-12-18 2009-12-16 光スイッチ
US13/140,965 US8422110B2 (en) 2008-12-18 2009-12-16 Optical switch

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2008-322734 2008-12-18
JP2008322735 2008-12-18
JP2008322727 2008-12-18
JP2008-322735 2008-12-18
JP2008-322727 2008-12-18
JP2008322734 2008-12-18

Publications (1)

Publication Number Publication Date
WO2010071141A1 true WO2010071141A1 (ja) 2010-06-24

Family

ID=42268812

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/070948 WO2010071141A1 (ja) 2008-12-18 2009-12-16 光スイッチ

Country Status (3)

Country Link
US (1) US8422110B2 (ja)
JP (1) JP5240296B2 (ja)
WO (1) WO2010071141A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11156816B2 (en) * 2016-06-06 2021-10-26 Hamamatsu Photonics K.K. Reflective spatial light modulator having non-conducting adhesive material, optical observation device and optical irradiation device
JP6942701B2 (ja) 2016-06-06 2021-09-29 浜松ホトニクス株式会社 光変調器、光観察装置及び光照射装置
WO2017213101A1 (ja) 2016-06-06 2017-12-14 浜松ホトニクス株式会社 光学素子及び光学装置
CN109313362B (zh) 2016-06-06 2022-01-07 浜松光子学株式会社 反射型空间光调制器、光观察装置和光照射装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62293217A (ja) * 1986-06-12 1987-12-19 Konica Corp 透光性のよい光シヤツタ−
JPS63200119A (ja) * 1987-02-17 1988-08-18 Fujitsu Ltd 光スイツチ
JPS6446733A (en) * 1987-08-18 1989-02-21 Fujitsu Ltd Electrooptic element
JP2007079487A (ja) * 2005-09-16 2007-03-29 Sharp Corp 光学部品および光学装置
JP2007279681A (ja) * 2006-03-14 2007-10-25 Ricoh Co Ltd 電界形成素子と光偏向素子及び画像表示装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2666805B2 (ja) 1988-02-24 1997-10-22 富士通株式会社 電気光学素子
DE19643489C1 (de) * 1996-10-22 1998-05-07 Fraunhofer Ges Forschung Bragg-Modulator
US8400703B2 (en) * 2007-06-19 2013-03-19 Nec Corporation Optical switch
WO2009122969A1 (ja) * 2008-04-04 2009-10-08 日本電気株式会社 光スイッチ
JP5168076B2 (ja) * 2008-10-16 2013-03-21 日本電気株式会社 光スイッチ、光スイッチの製造方法、画像表示装置及び画像形成装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62293217A (ja) * 1986-06-12 1987-12-19 Konica Corp 透光性のよい光シヤツタ−
JPS63200119A (ja) * 1987-02-17 1988-08-18 Fujitsu Ltd 光スイツチ
JPS6446733A (en) * 1987-08-18 1989-02-21 Fujitsu Ltd Electrooptic element
JP2007079487A (ja) * 2005-09-16 2007-03-29 Sharp Corp 光学部品および光学装置
JP2007279681A (ja) * 2006-03-14 2007-10-25 Ricoh Co Ltd 電界形成素子と光偏向素子及び画像表示装置

Also Published As

Publication number Publication date
JPWO2010071141A1 (ja) 2012-05-31
JP5240296B2 (ja) 2013-07-17
US20110255148A1 (en) 2011-10-20
US8422110B2 (en) 2013-04-16

Similar Documents

Publication Publication Date Title
KR100991579B1 (ko) 실리콘 온 인슐레이터 웨이퍼들 상의 활성 디바이스들을 위한 열 분로
CN105938975B (zh) 一种温度不敏感激光器
KR20080095239A (ko) 발광 소자, 및 발광 소자를 동작시키는 방법
JP5240296B2 (ja) 光スイッチ
KR20090036138A (ko) 반도체 레이저 초소형 가열 소자 구조
US9256113B2 (en) Plasmonic modulator and optical apparatus including the same
JP2016142894A (ja) 表示装置
KR102530560B1 (ko) 레이저빔 스티어링 소자 및 이를 포함하는 시스템
JP2018041758A (ja) テラヘルツ量子カスケードレーザ装置
JP2014194478A (ja) 光デバイスおよび送信機
Tamanuki et al. Thermo-optic beam scanner employing silicon photonic crystal slow-light waveguides
WO2013175706A1 (ja) 光学素子、発光装置、及び投影装置
JP4211821B2 (ja) 走査型光学装置
JP2003098492A (ja) 半導体光変調器及び光変調器集積型半導体レーザ
US6211997B1 (en) Modulator for optical printing
US20110141393A1 (en) Optical devices
JP2013174744A (ja) 光変調器、光変調方法
JP2003057613A (ja) 変調器アセンブリー
JP7224539B2 (ja) 半導体光集積素子
CN104823341A (zh) 具有自对准泵浦光学器件和增强的增益的光学泵浦固态激光器设备
JP5168076B2 (ja) 光スイッチ、光スイッチの製造方法、画像表示装置及び画像形成装置
KR102501475B1 (ko) 광변조 소자 및 이를 포함하는 장치
JP2018112593A (ja) 光制御デバイス及びその製造方法、光集積回路並びに電磁波検出装置
JP2012083473A (ja) 光ゲート素子
JP2009206449A5 (ja)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09833444

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010542982

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13140965

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 09833444

Country of ref document: EP

Kind code of ref document: A1