WO2010071103A1 - アダマンタン誘導体、その製造方法及びアダマンタン誘導体を含む硬化物 - Google Patents

アダマンタン誘導体、その製造方法及びアダマンタン誘導体を含む硬化物 Download PDF

Info

Publication number
WO2010071103A1
WO2010071103A1 PCT/JP2009/070817 JP2009070817W WO2010071103A1 WO 2010071103 A1 WO2010071103 A1 WO 2010071103A1 JP 2009070817 W JP2009070817 W JP 2009070817W WO 2010071103 A1 WO2010071103 A1 WO 2010071103A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
adamantane derivative
meth
integer
adamantane
Prior art date
Application number
PCT/JP2009/070817
Other languages
English (en)
French (fr)
Inventor
克樹 伊藤
義崇 上野山
直弥 河野
英俊 大野
慎司 田中
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to JP2010542957A priority Critical patent/JP5548136B2/ja
Publication of WO2010071103A1 publication Critical patent/WO2010071103A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F20/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/24Preparation of carboxylic acid esters by reacting carboxylic acids or derivatives thereof with a carbon-to-oxygen ether bond, e.g. acetal, tetrahydrofuran
    • C07C67/26Preparation of carboxylic acid esters by reacting carboxylic acids or derivatives thereof with a carbon-to-oxygen ether bond, e.g. acetal, tetrahydrofuran with an oxirane ring
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • G03F7/0397Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition the macromolecular compound having an alicyclic moiety in a side chain
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/56Ring systems containing bridged rings
    • C07C2603/58Ring systems containing bridged rings containing three rings
    • C07C2603/70Ring systems containing bridged rings containing three rings containing only six-membered rings
    • C07C2603/74Adamantanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1811C10or C11-(Meth)acrylate, e.g. isodecyl (meth)acrylate, isobornyl (meth)acrylate or 2-naphthyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • C08F220/283Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing one or more carboxylic moiety in the chain, e.g. acetoacetoxyethyl(meth)acrylate

Definitions

  • the present invention relates to a novel adamantane derivative, a production method thereof, and a cured product containing the adamantane derivative.
  • resist materials for semiconductors resist materials for semiconductors, color resist materials for displays, base films for semiconductors, optical electronic members (optical waveguides, lenses for optical communication, optical films, etc.) and adhesives suitable for these, heat resistance, transparency
  • the present invention relates to an adamantane derivative that gives a cured product excellent in optical properties such as adhesion and light resistance, and electrical properties such as dielectric constant, a manufacturing method thereof, and a cured product containing the adamantane derivative.
  • Adamantane has a structure in which four cyclohexane rings are condensed into a cage shape, is a highly symmetric and stable compound, and its derivative exhibits a unique function. It is known that it is useful as a raw material for these. Since adamantane has, for example, optical characteristics, heat resistance, and the like, attempts have been made to use it for an optical disk substrate, an optical fiber, a lens, or the like (for example, see Patent Documents 1 and 2). In addition, an attempt has been made to use adamantane esters as a resin material for a photoresist by utilizing its acid sensitivity, dry etching resistance, ultraviolet transmittance, and the like (see, for example, Patent Document 3).
  • acrylic resins having excellent transparency and light resistance have been widely used as resins for optical members.
  • resins for optical members used in the field of optical and electronic equipment are required to have heat resistance and mechanical properties under mounting process on electronic substrates and high temperature operation, and epoxy resins are often used.
  • high-intensity laser light, blue light, and near-ultraviolet light has been expanded in the field of optical and electronic equipment, and a resin that is superior in transparency, heat resistance, and light resistance than ever is required (for example, , See Patent Document 4).
  • the monomer component A contains a (meth) acrylate having an aliphatic hydrocarbon group having 4 or less carbon atoms in the ester portion
  • the monomer component B contains an alicyclic polyfunctional (meth) acrylate
  • a polymerization initiator and is heated or A resin composition that is cured by light is disclosed (see, for example, Patent Document 4).
  • a composition of a polyfunctional (meth) acrylate having a (meth) acrylic acid ester having an alicyclic hydrocarbon group of 5 to 22 hydrocarbons and an alkylene oxide for use in an optical adhesive or the like is also disclosed.
  • a composition of a polyfunctional (meth) acrylate having a (meth) acrylic acid ester having an alicyclic hydrocarbon group of 5 to 22 hydrocarbons and an alkylene oxide for use in an optical adhesive or the like is also disclosed.
  • JP-A-6-305044 Japanese Patent Laid-Open No. 9-302077 Japanese Patent Laid-Open No. 4-39665 JP 2006-193660 A Japanese Patent Laid-Open No. 11-61081 JP 2008-133246 A
  • the present invention is a semiconductor photoresist material, a color resist material, a semiconductor base film, an optical electronic member and an adhesive thereof, a printed circuit board preparation resist and a solder resist, heat resistance, transparency, adhesion, It is an object of the present invention to provide an adamantane derivative that gives a cured product excellent in optical properties and electrical properties, a method for producing the adamantane derivative, and a cured product containing the adamantane derivative.
  • an adamantane derivative having a specific structure As a result of intensive studies, the present inventors have found that the above problems can be solved by using an adamantane derivative having a specific structure, and have completed the present invention. That is, the present invention provides the following 1 to 11. 1. An adamantane derivative represented by the general formula (I),
  • R 1 represents a hydrocarbon group represented by the formula C P H 2P + 1 (P is an integer of 1 to 7), and R 2 represents a hydroxyl group, a (meth) acryloyloxy group or a trifluoromethacryloyloxy group.
  • R 3 represents a hydrogen atom, a methyl group or a trifluoromethyl group, R 4 represents a methyl group, a hydroxyl group, a carboxyl group or two R 4 together to represent a ⁇ O group.
  • n is an integer of 1 to 4
  • k is an integer of 0 to 4
  • the plurality of R 1 and R 4 may be the same or different.
  • the above 1 or 2 characterized by reacting an epoxyadamantane represented by the following formula (II) with (meth) acrylic acid, trifluoromethacrylic acid, anhydrous (meth) acrylic acid or trifluoromethacrylic anhydride A method for producing an adamantane derivative as described in 1. above.
  • R 1 represents a hydrocarbon group represented by the formula C P H 2P + 1 (P is an integer of 1 to 7), and R 4 represents a methyl group, a hydroxyl group, a carboxyl group, or two R 4 Together it represents the ⁇ O group.
  • n is an integer of 1 to 4
  • k is an integer of 0 to 4, and the plurality of R 1 and R 4 may be the same or different.
  • adamantane derivative of the present invention By using the adamantane derivative of the present invention, a cured product having excellent optical characteristics such as transparency and light resistance and electrical characteristics such as dielectric constant is provided, and further, a color resist material, an optical electronic member (for example, an optical waveguide, optical communication) Lenses, optical films, etc.) and their adhesives, printed circuit board forming resists and solder resists.
  • the adamantane derivative of the present invention is an acrylate compound having an adamantane skeleton, and has excellent heat resistance, adhesion, and etching resistance. It is also useful.
  • Example 14 is a graph of normalized film thickness ( ⁇ ) with respect to exposure dose (mJ / cm 2 ) in Example 6.
  • the adamantane derivative of the present invention is an adamantane derivative having a (meth) acryloyloxy group or a trifluoromethacryloyloxy group represented by the following general formula (I) (hereinafter sometimes simply referred to as “adamantane derivative”).
  • the (meth) acryloyloxy group means an acryloyloxy group or a methacryloyloxy group, and the same applies hereinafter.
  • R 1 represents a hydrocarbon group represented by the formula C P H 2P + 1 (P is an integer of 1 to 7), which may be linear or branched.
  • P is an integer of 1 to 7
  • R 2 represents a hydroxyl group, a (meth) acryloyloxy group or a trifluoromethacryloyloxy group
  • R 3 represents a hydrogen atom, a methyl group or a trifluoromethyl group
  • R 4 represents a methyl group, a hydroxyl group, a carboxyl group or Two R 4 together represent a ⁇ O group.
  • R 2 is preferably a hydroxyl group.
  • n is an integer of 1 to 4
  • k is an integer of 0 to 4
  • the plurality of R 1 and R 4 may be the same or different.
  • the adamantane derivative represented by the general formula (I) includes an epoxy adamantane represented by the following formula (II), (meth) acrylic acid, trifluoromethacrylic acid, anhydrous (meth) acrylic acid, or trifluoromethacrylic anhydride. It can be obtained by reacting with an acid in the presence of a catalyst.
  • the reaction between the epoxy adamantane (II) and (meth) acrylic acid or trifluoromethacrylic acid can be represented by the following reaction formula (a).
  • R 1 , R 3 , R 4 , k and n are the same as described above.
  • the adamantane derivative represented by the general formula (Ia) is obtained by reacting the epoxy adamantane (II) with (meth) acrylic acid or trifluoromethacrylic acid (III).
  • the reaction of the epoxy adamantane (II) with anhydrous (meth) acrylic acid or trifluoromethacrylic anhydride can be represented by the following reaction formula (b).
  • the adamantane derivative represented by the general formula (Ib) is obtained by reacting the epoxy adamantane (II) with anhydrous (meth) acrylic acid or trifluoromethacrylic anhydride (IV).
  • Examples of the epoxy adamantane used as a raw material include 2- (1-adamantyl) -2-methyloxirane, 2- (1-adamantyl) -2-ethyloxirane, 2- (1-adamantyl) -2-propyloxirane, 2- (1-adamantyl) -2-butyloxirane, 2- (1-adamantyl) -2-pentyloxirane, 2- (1-adamantyl) -2-hexyloxirane, 2- (1-adamantyl) -2- Heptyloxirane, 2- (1-hydroxyadamantyl) -2-methyloxirane, 2- (1-hydroxyadamantyl) -2-ethyloxirane, 2- (1-hydroxyadamantyl) -2-propyloxirane, 2- (1- Hydroxyadamantyl) -2-butyloxirane, 2- (1-hydroxyadamantyl) -2 Pentyloxirane, 2- (1
  • 2- (1-adamantyl) -2-methyloxirane, 2- (1-adamantyl) -2-ethyloxirane, 2- (1-adamantyl) -2-propyloxirane, 2- (1-adamantyl)- 2-butyloxirane, 2- (1-adamantyl) -2-pentyloxirane, 2- (1-adamantyl) -2-hexyloxirane and 2- (1-adamantyl) -2-heptyloxirane are preferred.
  • the proportion of the epoxy adamantane (II) and (meth) acrylic acid or trifluoromethacrylic acid (III) used is 1 mol of the epoxy group in the compound (II) from the viewpoint of post-treatment.
  • (meth) acrylic acid or trifluoromethacrylic acid is preferably 1 to 5 mol, more preferably 1 to 3 mol.
  • the use ratio of the epoxy adamantane (II) and (meth) acrylic anhydride or trifluoromethacrylic anhydride (IV) is the epoxy in the compound (II) from the viewpoint of post-treatment.
  • the amount of (meth) acrylic anhydride or trifluoromethacrylic anhydride is preferably 1 to 5 mol, more preferably 1 to 3 mol, per mol of the group.
  • Examples of the catalyst used include sodium amide, triethylamine, tributylamine, trioctylamine, pyridine, lutidine, dimethylaminopyridine, N, N-dimethylaniline, 1,5-diazabicyclo [4,3,0] nonene- 5 (DBN), 1,8-diazabicyclo [5,4,0] undecene-7 (DBU), tetramethylammonium chloride, tetraethylammonium chloride, sodium, potassium, cesium, sodium hydride, potassium hydride, sodium hydroxide Potassium hydroxide, sodium phosphate, potassium phosphate, sodium carbonate, potassium carbonate, cesium carbonate, silver oxide, sodium methoxide, potassium t-butoxide and the like.
  • Preferable examples include dimethylaminopyridine, DBN, DBU, and tetraethylammonium bromide.
  • the amount of the catalyst used is usually preferably about 0.01 to 2 mol, more preferably 0.01 to 1 mol, based on the raw material epoxy adamantane. When the amount of the catalyst used is 0.01 mol or more, the reaction time is not excessively long and becomes appropriate. When the amount of the catalyst used is 2 mol or less, the balance between the obtained effect and the economical efficiency becomes good.
  • solvent In the reaction, no solvent may be used, but a solvent can be used as necessary.
  • a solvent a solvent having an epoxyadamantane solubility of preferably 0.5% by mass or more, more preferably 10% by mass or more can be used. Specific examples include hexane, heptane, toluene, dimethylformamide (DMF), dimethylacetamide (DMAc), dimethyl sulfoxide (DMSO), ethyl acetate, diethyl ether, tetrahydrofuran, acetone, methyl ethyl ketone, methyl isobutyl ketone, and the like. . These solvents may be used alone or in combination.
  • the amount of the solvent is such that the concentration of the epoxy adamantane is preferably 0.5% by mass or more, more preferably 10% by mass or more. At this time, the epoxy adamantane may be in a suspended state, but is preferably dissolved.
  • reaction temperature The reaction of epoxy adamantanes with (meth) acrylic acid, trifluoromethacrylic acid, anhydrous (meth) acrylic acid, or trifluoromethacrylic anhydride is usually preferably about 0 to 200 ° C., more preferably 20 to 150. Perform at °C. If the temperature is too low, the reaction rate decreases and the reaction time becomes long. If the reaction temperature is 0 ° C. or higher, the reaction rate does not decrease and becomes appropriate, so the reaction time is shortened. Further, when the reaction temperature is higher than 200 ° C., the product becomes intensely colored. Therefore, when the reaction temperature is 150 ° C. or less, a product with less coloring can be obtained.
  • reaction pressure / reaction time The pressure during the reaction is preferably about 0.01 to 10 MPa in absolute pressure, more preferably normal pressure to 1 MPa. If the pressure is too high, there is a safety problem and a special device is required, which is not industrially useful. However, if the pressure is 10 MPa or less, the safety is ensured, so a special device is not required, and the industry It is useful above.
  • the reaction time is usually preferably about 1 minute to 24 hours, more preferably 1 to 15 hours.
  • Purification method The reaction product can be purified if necessary. As the purification method, distillation, crystallization, column separation and the like are possible, and can be selected depending on the properties of the product and the type of impurities.
  • the cured product of the present invention is obtained by curing a curable composition containing an adamantane derivative represented by the general formula (I).
  • the curable composition can contain a polymerization initiator.
  • polymerization initiator for example, a thermal polymerization initiator is used when cured by heating, and a photopolymerization initiator is used when cured by light.
  • thermal polymerization initiator include organic peroxides such as benzoyl peroxide, methyl ethyl ketone peroxide, methyl isobutyl ketone peroxide, cumene hydroperoxide and t-butyl hydroperoxide, and azobisisobutyronitrile. Examples thereof include azo initiators.
  • Examples of the photopolymerization initiator include acetophenones, benzophenones, benzyls, benzoin ethers, benzyl diketals, thioxanthones, acylphosphine oxides, acylphosphinic acid esters, aromatic diazonium salts, and aromatics. Examples include sulfonium salts, aromatic iodonium salts, aromatic iodosyl salts, aromatic sulfoxonium salts, and metallocene compounds.
  • the amount of the polymerization initiator used is usually preferably 0.01 to 4 parts by mass, more preferably 0.5 to 2 parts by mass with respect to 100 parts by mass of the adamantane derivative. By setting the content of the polymerization initiator in the above range, good physical properties such as polymerization and optical characteristics can be expressed.
  • the curable composition containing the adamantane derivative of the present invention and a polymerization initiator is conventionally used as necessary, for example, a curing accelerator, a deterioration preventing agent, a modifier, a silane coupling.
  • a curing accelerator for example, a curing accelerator, a deterioration preventing agent, a modifier, a silane coupling.
  • additives such as agents, defoaming agents, inorganic powders, solvents, leveling agents, mold release agents, dyes and pigments may be appropriately blended.
  • Specific examples of the additives such as the curing accelerator, the deterioration preventing agent, and the modifying agent include those described in JP-A-2008-133246.
  • a curing method of the curable composition for example, various additives that can be used as needed are mixed and injected into a mold (resin mold) or formed into a desired shape by coating.
  • a method of curing by heating or light irradiation can be used.
  • the curing temperature is usually preferably about 50 to 200 ° C, more preferably 100 to 180 ° C. Setting it to 50 ° C. or higher does not cause curing failure, and setting it to 200 ° C. or less prevents coloring and the like.
  • the curing time varies depending on the curing component, curing agent, accelerator and initiator used, but is preferably 0.5 to 6 hours.
  • ultraviolet rays are used. Quantity of ultraviolet light is generally preferably about 500 ⁇ 5000mJ / cm 2, more preferably 1000 ⁇ 4000mJ / cm 2. Further, post-heating may be performed after the ultraviolet irradiation, and it is preferably performed at 70 to 200 ° C. for 0.5 to 12 hours.
  • the molding method is not particularly limited, such as injection molding, blow molding, press molding, and the like. Preferably, the molding can be performed by injection molding using a pellet-shaped composition in an injection molding machine.
  • the cured product of the present invention has excellent properties such as heat resistance, transparency and adhesion, an optical semiconductor (LED, etc.), a flat panel display (organic EL element, etc.), an electronic circuit, and an optical circuit (optical waveguide) It can be suitably used for encapsulants and adhesives for use, optical electronic members such as lenses for optical communication and optical films, resists for making printed circuit boards, solder resists, and the like.
  • semiconductor elements / integrated circuits (IC, etc.), individual semiconductors (diodes, transistors, thermistors, etc.), LEDs (LED lamps, chip LEDs, light receiving elements, optical semiconductor lenses, etc.), sensors (temperature sensors, optical sensors, Magnetic sensors, etc.), passive components (high-frequency devices, resistors, capacitors, etc.), mechanical components (connectors, switches, relays, etc.), automotive components (circuit systems, control systems, sensors, lamp seals, etc.), adhesives (optical) Parts, optical discs, pickup lenses, etc.) and optical films for surface coating.
  • IC integrated circuits
  • individual semiconductors diodes, transistors, thermistors, etc.
  • LEDs LED lamps, chip LEDs, light receiving elements, optical semiconductor lenses, etc.
  • sensors temperature sensors, optical sensors, Magnetic sensors, etc.
  • passive components high-frequency devices, resistors, capacitors, etc.
  • mechanical components connectors, switches, relays, etc.
  • automotive components circuit systems, control systems, sensors, lamp
  • a sealant for optical semiconductors LED, etc.
  • it can be applied to shell-type or surface-mount (SMT) type elements, and is in good contact with a semiconductor such as GaN formed on metal or polyamide, and further, YAG, etc.
  • the fluorescent dye can be used even if dispersed.
  • it can be used for a surface coating agent for a bullet type LED, a lens for an SMT type LED, and the like.
  • organic EL an organic EL device having a structure in which an anode / hole injection layer / light emitting layer / electron injection layer / cathode are sequentially provided on a light-transmitting substrate such as general glass or transparent resin It is applicable to.
  • a gas barrier property is applied to a curable composition containing an adhesive when covering a resin film coated with a metal can, a metal sheet, or SiN on the EL element, or the adamantane derivative of the present invention. It is also possible to directly seal the EL element by dispersing an inorganic filler or the like in order to impart the.
  • a display method it can be applied to the mainstream bottom emission type at present, but by applying it to the top emission type which is expected in the light extraction efficiency and the like, the transparency of the cured product of the present invention can be improved. Take advantage of heat resistance.
  • thermo-optic switch When used in an optical circuit, it can also be applied to a single-mode or multi-mode thermo-optic switch, arrayed waveguide grating, multiplexer / demultiplexer, wavelength tunable filter, or optical fiber core material or cladding material. Further, the present invention can be applied to a microlens array for condensing light in a waveguide or a mirror of a MEMS type optical switch. Moreover, it is applicable also to the pigment
  • the adamantane derivative used in the cured product of the present invention is a compound containing one group selected from an acryloyloxy group, a methacryloyloxy group, and a trifluoromethacryloyloxy group, and has excellent heat resistance and adhesion.
  • it since it has etching resistance, it is also useful as a semiconductor forming material such as a resist material for a semiconductor and a base film for a semiconductor.
  • the present invention also provides a semiconductor resist material, a color resist material, a semiconductor base film, an optical component adhesive, a printed circuit board preparation resist, and a solder resist using the adamantane derivative or cured product described above. .
  • the present invention also provides a (meth) acrylic polymer containing the above-mentioned adamantane derivative as a monomer unit and a resist composition containing the (meth) acrylic polymer.
  • the (meth) acrylic polymer preferably contains 5 to 90 mol% of monomer units based on the adamantane derivative represented by the general formula (I), and more preferably contains 10 to 30 mol%.
  • the polymerization method for obtaining the (meth) acrylic polymer is not particularly limited and can be performed by a conventional polymerization method. For example, solution polymerization (boiling point polymerization, polymerization below boiling point), emulsion polymerization, suspension polymerization A known polymerization method such as bulk polymerization can be used.
  • a polymerization reaction using a radical polymerization initiator in a solvent is particularly preferable.
  • a polymerization initiator A peroxide type polymerization initiator, an azo type polymerization initiator, etc. are used.
  • Peroxide polymerization initiators include organic peroxides such as peroxycarbonate, ketone peroxide, peroxyketal, hydroperoxide, dialkyl peroxide, diacyl peroxide, and peroxyester (lauroyl peroxide, benzoyl peroxide). Is mentioned.
  • Examples of the azo polymerization initiator include 2,2′-azobisisobutyronitrile, 2,2′-azobis (2-methylbutyronitrile), 2,2′-azobis (2,4-dimethylvalero). Nitrile) and azo compounds such as 2,2′-azobis (isobutyric acid) dimethyl.
  • the said polymerization initiator can use suitably 1 type (s) or 2 or more types of polymerization initiators according to reaction conditions, such as superposition
  • various methods can be adopted as a method for removing the used adamantane derivative and other copolymerization monomers of the present invention from the produced polymer.
  • an acrylic polymer is used.
  • a method of washing with a poor solvent for the is preferable.
  • the poor solvent for the acrylic polymer include methanol, ethanol, n-hexane, n-heptane, water, and the like. Further, by using a mixed solvent of methanol and water, it is possible to remove unnecessary substances such as unreacted monomer, polymerization initiator and reaction residue thereof without removing or hardly removing molecules having a molecular weight of 300 or more.
  • the amount of the washing solvent is preferably 2 times by mass or more, more preferably 4 to 8 times by mass with respect to the polymerization solvent from the viewpoint of removing impurities such as unreacted monomers.
  • the resist composition of the present invention is not particularly limited as long as it contains the above-mentioned (meth) acrylic polymer, but the (meth) acrylic system of the present invention with respect to 100 parts by mass of the resist composition of the present invention. Those containing 2 to 50 parts by mass of the polymer are preferred, and those containing 5 to 15 parts by mass are more preferred.
  • the resist composition of the present invention includes quenchers such as PAG (photo acid generator) and organic amines, alkali-soluble resins (for example, novolak resins, phenol resins, imide resins, carboxyls).
  • Group-containing resins, etc. colorants (eg, dyes), organic solvents (eg, hydrocarbons, halogenated hydrocarbons, alcohols, esters, ketones, ethers, cellosolves) , Carbitols, glycol ether esters, a mixed solvent thereof, and the like) can be added.
  • colorants eg, dyes
  • organic solvents eg, hydrocarbons, halogenated hydrocarbons, alcohols, esters, ketones, ethers, cellosolves
  • Carbitols eg.g, glycol ether esters, a mixed solvent thereof, and the like
  • the photoacid generator examples include conventional compounds that efficiently generate acid upon exposure, such as diazonium salts, iodonium salts (for example, diphenyliodohexafluorophosphate), sulfonium salts (for example, triphenylsulfonium hexafluoroantimonate, Triphenylsulfonium hexafluorophosphate, triphenylsulfonium nonafluorobutanesulfonate, triphenylsulfonium methanesulfonate, etc.), sulfonate esters [for example, 1-phenyl-1- (4-methylphenyl) sulfonyloxy-1-benzoylmethane, 1 , 2,3-Trisulfonyloxymethylbenzene, 1,3-dinitro-2- (4-phenylsulfonyloxymethyl) benzene, 1-phenyl-1- (4-methylphenylsulfo Ruok
  • the content of the photoacid generator in the resist composition of the present invention depends on the strength of the acid generated by light irradiation, the content of monomer units based on the adamantane derivative in the (meth) acrylic polymer, and the like. For example, it is preferably 0.1 to 30 parts by mass, more preferably 1 to 25 parts by mass, and further preferably 2 to 20 parts by mass with respect to 100 parts by mass of the (meth) acrylic polymer. Containing a photoacid generator.
  • the resist composition of the present invention is a mixture of the (meth) acrylic polymer, a photoacid generator, and, if necessary, an organic solvent, etc., and if necessary, impurities are separated by a conventional solid separation means such as a filter. It can be prepared by removing.
  • the resist composition is applied onto a substrate or a substrate, dried, and then exposed to light (or further post-exposure baked) through a predetermined mask to expose a latent image pattern. By forming and then developing, a fine resist pattern can be formed with high accuracy.
  • a resist film is formed on a support such as a silicon wafer, metal, plastic, glass, or ceramic using conventional coating means such as a spin coater, dip coater, or roller coater.
  • a pattern can be formed by selectively exposing the resist film and subjecting the selectively exposed resist film to an alkali development treatment.
  • the obtained object was a white solid having a melting point of 52 ° C. and 5.7 g (yield 72%).
  • the reaction mixture was cooled to room temperature (25 ° C.), extracted with hexane, and the extract was washed with water. Thereafter, the extract was concentrated to obtain the desired product.
  • the obtained target product was 5.8 g (yield 84.4%) as a transparent liquid.
  • Example 3 1 g of the adamantane derivative obtained in Example 1 was dissolved in 10 g of MEK (methyl ethyl ketone), 1% by mass of benzoisobutyl ether as a photopolymerization initiator was added, and the mixture was applied to a water-repellent treated glass substrate. Thereafter, the solvent was removed at 80 ° C. and cured by UV irradiation [1000 mJ / cm 2 ] using a high-pressure mercury lamp. The physical properties of the obtained cured product are shown in Table 1.
  • Example 4 1 g of the adamantane derivative obtained in Example 2 was dissolved in 10 g of MEK, 1% by mass of benzoisobutyl ether as a photopolymerization initiator was added, and the mixture was applied to a water-repellent treated glass substrate. Thereafter, the solvent was removed at 80 ° C. and cured by UV irradiation [1000 mJ / cm 2 ] using a high-pressure mercury lamp. The physical properties of the obtained cured product are shown in Table 1.
  • Comparative Example 1 In the same manner as in Examples 3 and 4, 1 g of (2-hydroxy-2-adamantyl) methyl-2-methacrylate, 1% by mass of benzoisobutyl ether as a photopolymerization initiator and 10 g of MEK were added to a water-repellent treated glass substrate. After coating, the film was dried at 70 ° C. and cured by UV irradiation [1000 mJ / cm 2 ] using a high-pressure mercury lamp. The physical properties of the obtained cured product are shown in Table 1.
  • the physical properties were evaluated as follows.
  • (1) Film formation test The state of the glass after MEK drying was examined by the presence or absence of a whitening phenomenon (precipitation of the compound). In the case where there is whitening, since it is difficult for polymerization to occur in the whitened portion, a uniform film cannot be formed.
  • Example 5 Synthesis of (meth) acrylic polymer Methyl isobutyl ketone, 2,2′-azobis (isobutyric acid) dimethyl / monomer A (following formula) / monomer B (following formula) / monomer C (following formula) The mixture was charged at 0.1 / 1.0 / 1.0 / 1.0, and stirred for 2 hours under reflux with heating. After that, the reaction solution was purified by pouring it into a large amount of methanol / water mixed solvent and precipitating three times.
  • Example 6 Preparation of resist composition and evaluation of physical properties thereof To 100 parts by mass of copolymer P1 obtained in Example 5, 5 parts by mass of triphenylsulfonium nonafluorobutane sulfonate was added as a photoacid generator, and these were added to 10% by mass.
  • the resist composition R1 was prepared by dissolving in propylene glycol monomethyl ether acetate.
  • the prepared resist composition R1 was applied onto a silicon wafer, and baked at 110 ° C. for 60 seconds to form a resist film.
  • the wafer thus obtained was subjected to several points of open exposure with light having a wavelength of 248 nm at different exposure amounts. Immediately after the exposure, the film was heated at 110 ° C.
  • Example 6 the change in film thickness depending on the exposure dose was confirmed from FIG. 1, and it was confirmed that the resist composition R1 had a function as a photosensitive resin.
  • the adamantane derivative of the present invention provides a cured product excellent in optical properties such as heat resistance, adhesion, transparency, light resistance, and electrical properties such as dielectric constant, and particularly in resist materials for semiconductors, color resist materials, and semiconductors. It can be suitably used for a base film, an adhesive for optical parts, a resist for making a printed circuit board, and a solder resist.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

 耐熱性、密着性、透明性、光学特性、及び電気特性に優れた硬化物を与える下記一般式(I)で表されるアダマンタン誘導体、その製造方法及びアダマンタン誘導体を含む硬化物である。[式中、R1は、式 CP2P+1(Pは1~7の整数)で表わされる炭化水素基を示し、R2は、水酸基、(メタ)アクリロイルオキシ基又はトリフルオロメタクリロイルオキシ基を示し、R3は、水素原子、メチル基又はトリフルオロメチル基を示し、R4は、メチル基、水酸基、カルボキシル基又は2つのR4が一緒になって=O基を示す。nは1~4の整数、kは0~4の整数であり、複数のR1及びR4はそれぞれ同一でも異なってもよい。]

Description

アダマンタン誘導体、その製造方法及びアダマンタン誘導体を含む硬化物
 本発明は、新規なアダマンタン誘導体、その製造方法及びアダマンタン誘導体を含む硬化物に関する。詳しくは、半導体用レジスト材料、ディスプレイ向けカラーレジスト材料、半導体用下地膜、光学電子部材(光導波路、光通信用レンズ及び光学フィルム等)及びこれらの接着剤として好適な、耐熱性、透明性、密着性、耐光性等の光学特性、及び誘電率等の電気特性に優れた硬化物を与えるアダマンタン誘導体、その製造方法及び該アダマンタン誘導体を含む硬化物に関するものである。
 アダマンタンは、シクロヘキサン環が4個、カゴ形に縮合した構造を有し、対称性が高く、安定な化合物であり、その誘導体は、特異な機能を示すことから、医薬品原料や高機能性工業材料の原料等として有用であることが知られている。アダマンタンは、例えば、光学特性や耐熱性等を有することから、光ディスク基板、光ファイバーあるいはレンズ等に用いることが試みられている(例えば、特許文献1及び2参照)。また、アダマンタンエステル類を、その酸感応性、ドライエッチング耐性、紫外線透過性等を利用して、フォトレジスト用樹脂原料として、使用することが試みられている(例えば、特許文献3参照)。
 従来、光学部材用の樹脂には透明性や耐光性に優れるアクリル系樹脂が一般に多用されてきた。一方、光・電子機器分野に利用される光学部材用の樹脂には、電子基板等への実装プロセスや高温動作下での耐熱性や機械特性が求められ、エポキシ系樹脂がよく用いられていた。しかし、近年、光・電子機器分野用途でも高強度のレーザ光や青色光や近紫外光の利用が広がり、従来以上に透明性、耐熱性、耐光性に優れた樹脂が求められている(例えば、特許文献4参照)。
 一方、光学特性に優れるアクリル系樹脂の欠点である耐熱性の向上も検討され、多官アクリレートモノマーを用いた架橋アクリル樹脂が検討されている。特に、脂環式アクリレートの硬化物は、ガラス転移温度が高く、硬化収縮率及び吸湿率が小さいことから、脂環式アクリレートを含むアクリレート共重合体に関する技術は多数開示されている。例えば、モノマー成分Aとしてエステル部分に炭素数4以下の脂肪族炭化水素基を有する(メタ)アクリレート、モノマー成分Bとして脂環式多官能(メタ)アクリレート、及び重合開始剤を含有し、加熱又は光によって硬化する樹脂組成物が開示されている(例えば、特許文献4参照)。また、光学接着剤等を用途とする、エステル部に炭化水素5~22の脂環式炭化水素基を有する(メタ)アクリル酸エステルとアルキレンオキサイドを有する多官能(メタ)アクリレートによる組成物が開示されている(例えば、特許文献5参照)。しかし、接着剤としての実装時の耐熱性を満足させるものではあるが、構造体としての耐熱性や機械特性については不十分である。
 さらに、透明性、耐熱性及び耐光性等が向上した樹脂を得るために、アダマンチル基及び水酸基を導入したアクリレート類が開示されている(例えば、特許文献6参照)が、結晶性があり、その精製に手間がかかる等ハンドリングが難しく、耐熱性に満足するものが得られない。
 したがって、アクリル系硬化性組成物において、その硬化物の光学的透明性が高く、耐熱性、密着性、電気特性に優れ、硬化収縮の小さい、光学部材に好適な組成物が望まれている。
特開平6-305044号公報 特開平9-302077号公報 特開平4-39665号公報 特開2006-193660号公報 特開平11-61081号公報 特開2008-133246号公報
 本発明は、半導体用フォトレジスト材料、カラーレジスト材料、半導体用下地膜、光学電子部材及びこれらの接着剤、プリント回路基板作成用レジスト及びソルダーレジストとして好適な、耐熱性、透明性、密着性、光学特性及び電気特性に優れた硬化物を与えるアダマンタン誘導体、その製造方法及びアダマンタン誘導体を含む硬化物を提供することを課題とするものである。
 本発明者らは鋭意検討した結果、特定の構造を有するアダマンタン誘導体を用いることにより上記課題を解決し得ることを見出し、本発明を完成するに至った。
 すなわち、本発明は、下記の1~11を提供する。
1.一般式(I)で表されるアダマンタン誘導体、
Figure JPOXMLDOC01-appb-C000003
[式中、R1は、式 CP2P+1(Pは1~7の整数)で表わされる炭化水素基を示し、R2は、水酸基、(メタ)アクリロイルオキシ基又はトリフルオロメタクリロイルオキシ基を示し、R3は、水素原子、メチル基又はトリフルオロメチル基を示し、R4は、メチル基、水酸基、カルボキシル基又は2つのR4が一緒になって=O基を示す。nは1~4の整数、kは0~4の整数であり、複数のR1及びR4はそれぞれ同一でも異なってもよい。]
2.一般式(I)において、R2が水酸基である上記1に記載のアダマンタン誘導体。
3.下記式(II)で表されるエポキシアダマンタン類と、(メタ)アクリル酸、トリフルオロメタクリル酸、無水(メタ)アクリル酸又は無水トリフルオロメタクリル酸とを反応させることを特徴とする上記1又は2に記載のアダマンタン誘導体の製造方法。
Figure JPOXMLDOC01-appb-C000004
[式中、R1は、式 CP2P+1(Pは1~7の整数)で表わされる炭化水素基を示し、R4は、メチル基、水酸基、カルボキシル基又は2つのR4が一緒になって=O基を示す。nは1~4の整数、kは0~4の整数であり、複数のR1及びR4はそれぞれ同一でも異なってもよい。]
4.上記1又は2に記載のアダマンタン誘導体を含む硬化性組成物を硬化させてなる硬化物。
5.上記1に記載のアダマンタン誘導体又は上記4に記載の硬化物を用いてなる半導体用レジスト材料。
6.上記1に記載のアダマンタン誘導体又は上記4に記載の硬化物を用いてなるカラーレジスト材料。
7.上記1に記載のアダマンタン誘導体又は上記4に記載の硬化物を用いてなる半導体用下地膜。
8.上記1に記載のアダマンタン誘導体又は上記4に記載の硬化物を用いてなる光学部品用接着剤。
9.上記1に記載のアダマンタン誘導体又は上記4に記載の硬化物を用いてなるプリント回路基板作成用レジスト及びソルダーレジスト。
10.上記1に記載のアダマンタン誘導体に基づく単量体単位を含む(メタ)アクリル系重合体。
11.上記10に記載の(メタ)アクリル系重合体を含有するレジスト組成物。
 本発明のアダマンタン誘導体を用いることにより、透明性、耐光性等の光学特性、及び誘電率等の電気特性に優れる硬化物を与え、さらにカラーレジスト材料、光学電子部材(例えば光導波路、光通信用レンズ、及び光学フィルム等)及びこれらの接着剤、プリント回路基板作成用レジスト及びソルダーレジストに好適に用いることができる。
 また、本発明のアダマンタン誘導体は、アダマンタン骨格を有するアクリレート化合物であり、耐熱性、密着性に優れておりかつエッチング耐性も備えていることから半導体用レジスト材料、半導体用下地膜等、半導体形成材料としても有用である。
実施例6における、露光量(mJ/cm2)に対する規格化膜厚(-)のグラフである。
[アダマンタン誘導体及びその製造方法]
 本発明のアダマンタン誘導体は、下記一般式(I)で表される(メタ)アクリロイルオキシ基又はトリフルオロメタクリロイルオキシ基を有するアダマンタン誘導体(以下、単に「アダマンタン誘導体」と称すことがある)である。なお、(メタ)アクリロイルオキシ基とは、アクリロイルオキシ基又はメタクリロイルオキシ基を指し、以下同様である。
Figure JPOXMLDOC01-appb-C000005
 上記一般式(I)中、R1は、式 CP2P+1(Pは1~7の整数)で表わされる炭化水素基を示し、直鎖状であっても分岐状であってもよく、例えば、メチル基、エチル基、n-プロピル基及びイソプロピル基等が挙げられる。
 R2は、水酸基、(メタ)アクリロイルオキシ基又はトリフルオロメタクリロイルオキシ基を示し、R3は、水素原子、メチル基又はトリフルオロメチル基を示し、R4は、メチル基、水酸基、カルボキシル基又は2つのR4が一緒になって=O基を示す。特に、R2が水酸基であることが好ましい。
 nは1~4の整数、kは0~4の整数であり、複数のR1及びR4はそれぞれ同一でも異なってもよい。
 上記一般式(I)で表されるアダマンタン誘導体は、下記式(II)で表されるエポキシアダマンタン類と、(メタ)アクリル酸、トリフルオロメタクリル酸、無水(メタ)アクリル酸又は無水トリフルオロメタクリル酸とを、触媒存在下で反応させることにより得ることができる。
 エポキシアダマンタン類(II)と、(メタ)アクリル酸又はトリフルオロメタクリル酸との反応は、下記の反応式(a)で示すことができる。
Figure JPOXMLDOC01-appb-C000006
 式中、R1、R3、R4、k及びnは前記と同様である。
 エポキシアダマンタン類(II)と(メタ)アクリル酸又はトリフルオロメタクリル酸(III)とを反応させることにより、一般式(I-a)で表わされるアダマンタン誘導体が得られる。
 一方、エポキシアダマンタン類(II)と、無水(メタ)アクリル酸又は無水トリフルオロメタクリル酸との反応は、下記反応式(b)で示すことができる。
Figure JPOXMLDOC01-appb-C000007
 式中、R1、R3、R4、k及びnは前記と同様である。
 エポキシアダマンタン類(II)と無水(メタ)アクリル酸又は無水トリフルオロメタクリル酸(IV)とを反応させることにより、一般式(I-b)で表わされるアダマンタン誘導体が得られる。
 原料となるエポキシアダマンタン類としては、例えば、2-(1-アダマンチル)-2-メチルオキシラン、2-(1-アダマンチル)-2-エチルオキシラン、2-(1-アダマンチル)-2-プロピルオキシラン、2-(1-アダマンチル)-2-ブチルオキシラン、2-(1-アダマンチル)-2-ペンチルオキシラン、2-(1-アダマンチル)-2-へキシルオキシラン、2-(1-アダマンチル)-2-ヘプチルオキシラン、2-(1-ヒドロキシアダマンチル)-2-メチルオキシラン、2-(1-ヒドロキシアダマンチル)-2-エチルオキシラン、2-(1-ヒドロキシアダマンチル)-2-プロピルオキシラン、2-(1-ヒドロキシアダマンチル)-2-ブチルオキシラン、2-(1-ヒドロキシアダマンチル)-2-ペンチルオキシラン、2-(1-ヒドロキシアダマンチル)-2-へキシルオキシラン、2-(1-ヒドロキシアダマンチル)-2-ヘプチルオキシラン、2-(1-メチルアダマンチル)-2-メチルオキシラン、2-(1-メチルアダマンチル)-2-エチルオキシラン、2-(1-メチルアダマンチル)-2-プロピルオキシラン、2-(1-メチルアダマンチル)-2-ブチルオキシラン、2-(1-メチルアダマンチル)-2-ペンチルオキシラン、2-(1-メチルアダマンチル)-2-へキシルオキシラン及び2-(1-メチルアダマンチル)-2-ヘプチルオキシラン等が挙げられる。
 好ましくは、2-(1-アダマンチル)-2-メチルオキシラン、2-(1-アダマンチル)-2-エチルオキシラン、2-(1-アダマンチル)-2-プロピルオキシラン、2-(1-アダマンチル)-2-ブチルオキシラン、2-(1-アダマンチル)-2-ペンチルオキシラン、2-(1-アダマンチル)-2-へキシルオキシラン及び2-(1-アダマンチル)-2-ヘプチルオキシランがよい。
 前記反応式(a)の場合、エポキシアダマンタン類(II)と(メタ)アクリル酸又はトリフルオロメタクリル酸(III)との使用割合は後処理の観点から、化合物(II)におけるエポキシ基1モルに対して、(メタ)アクリル酸又はトリフルオロメタクリル酸は1~5モルが好ましく、1~3モルがより好ましい。
 一方、前記反応式(b)の場合、エポキシアダマンタン類(II)と無水(メタ)アクリル酸又は無水トリフルオロメタクリル酸(IV)との使用割合は後処理の観点から、化合物(II)におけるエポキシ基1モルに対して、無水(メタ)アクリル酸又は無水トリフルオロメタクリル酸は1~5モルが好ましく、1~3モルがより好ましい。
(触媒)
 エポキシアダマンタン類(II)と、(メタ)アクリル酸、トリフルオロメタクリル酸、無水(メタ)アクリル酸、又は無水トリフルオロメタクリル酸との反応は、通常、触媒の存在下で行われる。使用される触媒としては、例えば、ナトリウムアミド、トリエチルアミン、トリブチルアミン、トリオクチルアミン、ピリジン、ルチジン、ジメチルアミノピリジン、N,N-ジメチルアニリン、1,5-ジアザビシクロ[4,3,0]ノネン-5(DBN)、1,8-ジアザビシクロ[5,4,0]ウンデセン-7(DBU)、テトラメチルアンモニウムクロリド、テトラエチルアンモニウムクロリド、ナトリウム、カリウム、セシウム、水素化ナトリウム、水素化カリウム、水酸化ナトリウム、水酸化カリウム、燐酸ナトリウム、燐酸カリウム、炭酸ナトリウム、炭酸カリウム、炭酸セシウム、酸化銀、ナトリウムメトキシド、カリウム-t-ブトキシド等が挙げられる。好ましくは、ジメチルアミノピリジン、DBN、DBU、テトラエチルアンモニウムブロマイドが挙げられる。
 この触媒の使用量は、原料であるエポキシアダマンタン類に対して、通常、0.01~2モル程度が好ましく、より好ましくは0.01~1モルである。触媒の使用量が、0.01モル以上であると、反応時間が長くなり過ぎず適度なものとなる。触媒の使用量が、2モル以下であると、得られる効果と経済性のバランスが良好となる。
(溶媒)
 反応の際は、無溶媒でも良いが、必要に応じて溶媒を使用することができる。溶媒は、エポキシアダマンタン類の溶解度が、好ましくは0.5質量%以上、より好ましくは10質量%以上の溶媒を使用することができる。具体的には、例えば、ヘキサン、ヘプタン、トルエン、ジメチルホルムアミド(DMF)、ジメチルアセトアミド(DMAc)、ジメチルスルホキシド(DMSO)、酢酸エチル、ジエチルエーテル、テトラヒドロフラン、アセトン、メチルエチルケトン、メチルイソブチルケトン等が挙げられる。これらの溶媒は、単独で使用してもよく、組み合わせて使用してもよい。これらの中で、反応時間の観点から、好ましくはDMF、DMSOが挙げられる。
 溶媒量は、エポキシアダマンタン類の濃度が、好ましくは0.5質量%以上、より好ましくは10質量%以上となる量である。この時、エポキシアダマンタン類が懸濁状態でもよいが、溶解していることが望ましい。
(反応温度)
 エポキシアダマンタン類と、(メタ)アクリル酸、トリフルオロメタクリル酸、無水(メタ)アクリル酸、又は無水トリフルオロメタクリル酸との反応は、通常、0~200℃程度が好ましく、より好ましくは20~150℃において行う。温度が低すぎると、反応速度が低下するため反応時間が長くなり、反応温度が0℃以上であると、反応速度が低下せず適度のものとなるため、反応時間が短縮される。また、反応温度が200℃より高いと、生成物の着色が激しくなるため、150℃以下であれば着色の少ない生成物を得ることができる。
(反応圧力・反応時間)
 反応の際の圧力は、絶対圧力で0.01~10MPa程度が好ましく、より好ましくは常圧~1MPaである。圧力が高すぎると、安全上問題があり、特別な装置が必要となるため産業上有用ではないが、圧力が10MPa以下であると、安全性が確保されるので特別な装置が不要となり、産業上有用である。反応時間は、通常、1分~24時間程度が好ましく、より好ましくは1~15時間である。
(精製方法)
 反応生成物を、必要に応じて精製することができる。精製方法としては、蒸留、晶析、カラム分離等が可能であり、生成物の性状と不純物の種類により選択できる。
[硬化物]
 本発明の硬化物は、前記一般式(I)で表されるアダマンタン誘導体を含む硬化性組成物を硬化させてなる。硬化性組成物には、該アダマンタン誘導体の他に、重合開始剤を含ませることができる。
(重合開始剤)
 重合開始剤としては、例えば、加熱により硬化させる場合には、熱重合開始剤が用いられ、光により硬化させる場合には、光重合開始剤が用いられる。
 熱重合開始剤としては、例えば、ベンゾイルパーオキサイド、メチルエチルケトンパーオキサイト、メチルイソブチルケトンパーオキサイド、クメンハイドロパーオキサイド及びt-ブチルハイドロパーオキサイド等の有機過酸化物やアゾビスイソブチロニトリル等のアゾ系開始剤等が挙げられる。
 また、光重合開始剤としては、例えば、アセトフェノン類、ベンゾフェノン類、ベンジル類、ベンゾインエーテル類、ベンジルジケタール類、チオキサントン類、アシルホスフィンオキサイド類、アシルホスフィン酸エステル類、芳香族ジアゾニウム塩、芳香族スルホニウム塩、芳香族ヨードニウム塩、芳香族ヨードシル塩、芳香族スルホキソニウム塩、メタロセン化合物等が挙げられる。
 重合開始剤の使用量は、上記アダマンタン誘導体100質量部に対して、通常、0.01~4質量部であることが好ましく、より好ましくは0.5~2質量部である。重合開始剤の含有率を上記範囲とすることにより、良好な重合及び光学特性等物性を発現できる。
(添加剤)
 また、本発明のアダマンタン誘導体と、重合開始剤とを含む硬化性組成物には、必要に応じて、従来から用いられている、例えば、硬化促進剤、劣化防止剤、変性剤、シランカップリング剤、脱泡剤、無機粉末、溶剤、レベリング剤、離型剤、染料及び顔料等の、公知の各種の添加剤を適宜配合してもよい。
 上記硬化促進剤、劣化防止剤及び変性剤等の添加剤の具体例としては、特開2008-133246号公報に記載されたものと同様のものが挙げられる。
(硬化方法)
 硬化性組成物の硬化方法としては、例えば、必要に応じて使用することのできる各種添加剤を混合し、成型する金型(樹脂金型)への注入、あるいはコーティングにより所望の形状にした後に、加熱又は光照射して硬化する方法を用いることができる。
 加熱による熱硬化の場合、硬化温度としては、通常、50~200℃程度が好ましく、より好ましくは100~180℃である。50℃以上とすることにより硬化不良となることがなく、200℃以下とすることにより着色等を生じることがなくなる。硬化時間は、使用する硬化成分、硬化剤、促進剤や開始剤によって異なるが、0.5~6時間が好ましい。
 光照射による硬化の場合、紫外線を用いることにより行う。紫外線の光量は、通常、500~5000mJ/cm2程度が好ましく、より好ましくは1000~4000mJ/cm2である。
 また、紫外線照射後に後加熱を行ってもよく、70~200℃で0.5~12時間行うことが好ましい。
(成形方法)
 成形方法としては射出成形、ブロー成形、プレス成形等、特に限定されるものではないが、好ましくはペレット状の組成物を射出成形機に用いて、射出成形することにより成形することができる。
 本発明の硬化物は、耐熱性、透明性及び密着性等に優れた特性を有するので、光半導体(LED等)、フラットパネルディスプレイ(有機EL素子等)、電子回路及び光回路(光導波路)用等の封止剤や接着剤、光学通信用レンズ及び光学用フィルム等の光学電子部材、プリント回路基板作成用レジスト及びソルダーレジスト等に好適に用いることができる。
 また、半導体素子/集積回路(IC他)、個別半導体(ダイオード、トランジスタ、サーミスタ等)として、LED(LEDランプ、チップLED、受光素子、光半導体用レンズ等)、センサー(温度センサー、光センサー、磁気センサー等)、受動部品(高周波デバイス、抵抗器、コンデンサ等)、機構部品(コネクター、スイッチ、リレー等)、自動車部品(回路系、制御系、センサー類、ランプシール等)、接着剤(光学部品、光学ディスク、ピックアップレンズ等)、表面コーティング用として光学用フィルム等にも用いられる。
 光半導体(LED等)用封止剤としては、砲弾型あるいはサーフェスマウント(SMT)型等の素子に適用でき、金属やポリアミド上に形成されたGaN等の半導体と良好に密着し、さらにYAG等の蛍光色素を分散しても使用できる。さらに、砲弾型LEDの表面コート剤、SMT型LEDのレンズ等にも使用可能である。
 有機EL用に適用する際は、一般的なガラスや透明樹脂等の透光性基板上に、陽極/正孔注入層/発光層/電子注入層/陰極が順次設けられた構成の有機EL素子に適用可能である。有機EL素子の封止材として、金属缶や金属シートあるいはSiN等のコーティングされた樹脂フィルムをEL素子にカバーする際の接着剤、あるいは本発明のアダマンタン誘導体を含む硬化性組成物にガスバリアー性を付与するために無機フィラー等を分散することで、直接、EL素子を封止することも可能である。表示方式として、現在、主流のボトムエミッション型にも適用可能であるが、今後、光の取出し効率等の点で期待されるトップエミッション型に適用することで、本発明の硬化物の透明性や耐熱性の効果を活かせる。
 光回路に使用する際は、シングルモードやマルチモード用の熱光学スイッチやアレイ導波路型格子、合分波器、波長可変フィルター、あるいは光ファイバーのコア材料やクラッド材料にも適用できる。また、導波路に光を集光するマイクロレンズアレイやMEMS型光スイッチのミラーにも適用できる。また、光電変換素子の色素バインダー等にも適用可能である。
 光学用フィルムとして用いる際は、液晶用のフィルム基板、有機EL用フィルム基板等のディスプレイ用として、あるいは光拡散フィルム、反射防止フィルム、蛍光色素等を分散することによる色変換フィルム等に適用可能である。
 カラーレジスト材料としては、液晶表示向けのカラーフィルタを構成するRGB及びブラックマトリックス等のレジストの主成分もしくは添加剤として適応可能である。
 また、本発明の硬化物に用いるアダマンタン誘導体は、アクリロイルオキシ基、メタアクリロイルオキシ基、トリフルオロメタクリロイルオキシ基から選ばれる1種の基を含有する化合物であり、耐熱性、密着性に優れており、かつエッチング耐性も備えていることから、半導体用レジスト材料、半導体用下地膜等の半導体形成材料としても有用である。
 したがって、本発明は、前述のアダマンタン誘導体又は硬化物を用いてなる半導体用レジスト材料、カラーレジスト材料、半導体用下地膜、光学部品用接着剤、プリント回路基板作成用レジスト及びソルダーレジストをも提供する。
 本発明はまた、先述のアダマンタン誘導体を単量体単位として含む(メタ)アクリル系重合体及び該(メタ)アクリル系重合体を含有するレジスト組成物を提供するものである。
 (メタ)アクリル系重合体としては、前記一般式(I)で表されるアダマンタン誘導体に基づく単量体単位を、5~90モル%含むものが好ましく、10~30モル%含むものがより好ましい。
 (メタ)アクリル系重合体を得るための重合法については特に限定されず、慣用の重合法で行うことができるが、例えば、溶液重合(沸点重合、沸点未満重合)、乳化重合、懸濁重合、塊状重合等の公知の重合方法を用いることができる。重合後の反応液中に残存している高沸点の未反応モノマー量が少ないほど好ましく、重合時あるいは重合終了後、必要に応じて未反応モノマーを除去する操作を施すことが好ましい。
 特に上記重合法のうち、溶媒中でラジカル重合開始剤を用いた重合反応が好ましい。重合開始剤としては特に限定はないが、パーオキサイド系重合開始剤、アゾ系重合開始剤等が用いられる。
 パーオキサイド系重合開始剤としてはパーオキシカーボネート、ケトンパーオキサイド、パーオキシケタール、ハイドロパーオキサイド、ジアルキルパーオキサイド、ジアシルパーオキサイド、パーオキシエステル(ラウロイルパーオキサイド、ベンゾイルパーオキサイド)等の有機過酸化物が挙げられる。また、アゾ系重合開始剤としては、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2-メチルブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(イソ酪酸)ジメチル等のアゾ化合物等が挙げられる。上記重合開始剤は、重合温度等の反応条件に応じて、1種又は2種以上の重合開始剤を適宜用いることができる。
 重合終了後、使用した本発明のアダマンタン誘導体や他の共重合モノマーを、製造した重合体から除去する方法としては種々の方法が採用され得るが、操作性や経済的な視点から、アクリル系ポリマーに対する貧溶媒を用いて洗浄する方法が好ましい。アクリル系ポリマーに対する貧溶媒は、代表的にはメタノール、エタノール、n-ヘキサン、n-ヘプタン、水等が挙げられる。
 また、メタノールと水の混合溶媒を用いることにより、分子量300以上の分子を除去しないか又はほとんど除去することなく、未反応モノマー、重合開始剤及びその反応残査物等の不要物を除去できる。メタノールと水との混合割合は、メタノール:水=100:8~30(質量比)の範囲内であることが好ましく、100:10~20がより好ましい。洗浄溶媒の量は、未反応モノマー等の不純物除去の観点から、重合溶媒に対して2質量倍以上が好ましく、4~8質量倍であることがさらに好ましい。
 本発明のレジスト組成物は、先述の(メタ)アクリル系重合体を含有するものであれば特に限定されないが、本発明のレジスト組成物100質量部に対して、本発明の(メタ)アクリル系重合体を2~50質量部含有するものが好ましく、5~15質量部含有するものがより好ましい。
 本発明のレジスト組成物は、上記(メタ)アクリル系重合体以外に、PAG(光酸発生剤)や有機アミン等のクエンチャー、アルカリ可溶性樹脂(例えば、ノボラック樹脂、フェノール樹脂、イミド樹脂、カルボキシル基含有樹脂等)等のアルカリ可溶成分、着色剤(例えば、染料等)、有機溶媒(例えば、炭化水素類、ハロゲン化炭化水素類、アルコール類、エステル類、ケトン類、エーテル類、セロソルブ類、カルビトール類、グリコールエーテルエステル類、これらの混合溶媒等)等を添加することができる。
 光酸発生剤としては、露光により効率よく酸を生成する慣用の化合物、例えば、ジアゾニウム塩、ヨードニウム塩(例えば、ジフェニルヨードヘキサフルオロホスフェート等)、スルホニウム塩(例えば、トリフェニルスルホニウムヘキサフルオロアンチモネート、トリフェニルスルホニウムヘキサフルオロホスフェート、トリフェニルスルホニウムノナフルオロブタンスルホネート、トリフェニルスルホニウムメタンスルホネート等)、スルホン酸エステル[例えば、1-フェニル-1-(4-メチルフェニル)スルホニルオキシ-1-ベンゾイルメタン、1,2,3-トリスルホニルオキシメチルベンゼン、1,3-ジニトロ-2-(4-フェニルスルホニルオキシメチル)ベンゼン、1-フェニル-1-(4-メチルフェニルスルホニルオキシメチル)-1-ヒドロキシ-1-ベンゾイルメタン等]、オキサチアゾール誘導体、s-トリアジン誘導体、ジスルホン誘導体(ジフェニルジスルホン等)、イミド化合物、オキシムスルホネート、ジアゾナフトキノン、ベンゾイントシレート等が挙げられる。これらの光酸発生剤は単独で又は2種以上組み合わせて使用できる。
 本発明のレジスト組成物における光酸発生剤の含有量は、光照射により生成する酸の強度や前記(メタ)アクリル系重合体における、上記アダマンタン誘導体に基づく単量体単位の含有量等に応じて適宜選択できるが、例えば、前記(メタ)アクリル系重合体100質量部に対して、好ましくは0.1~30質量部、より好ましくは1~25質量部、さらに好ましくは2~20質量部の光酸発生剤を含有する。
 本発明のレジスト組成物は、前記(メタ)アクリル系重合体と光酸発生剤、及び必要に応じて有機溶媒等を混合し、必要に応じて夾雑物をフィルター等の慣用の固体分離手段により除去することにより調製できる。このレジスト組成物を基材又は基板上に塗布し、乾燥した後、所定のマスクを介して、塗膜(レジスト膜)に光線を露光して(又は、さらに露光後ベークを行い)潜像パターンを形成し、次いで現像することにより、微細なレジストパターンを高い精度で形成できる。
 例えば、スピンコータ、ディップコータ、ローラコータ等の慣用の塗布手段を用い、シリコンウエハー、金属、プラスチック、ガラス、セラミック等の支持体上にレジスト膜を形成する。該レジスト膜を選択露光し、選択露光されたレジスト膜をアルカリ現像処理することにより、パターンを形成することができる。
 以下、本発明について、実施例及び比較例を示してより具体的に説明するが、本発明はこれらによって、制限されるものではない。
[アダマンタン誘導体の合成]
実施例1
2-(1-アダマンチル)-2-ヒドロキシプロピルメタクリレートの合成
 温度計、冷却管及び撹拌装置を備えた1Lの三つ口フラスコに、2-(1-アダマンチル)-2-メチルオキシラン5g(0.026mol)と、ジメチルホルムアミド50mlとを入れ、窒素雰囲気下で完全に溶けるまで撹拌した。溶解後、1,8-ジアザビシクロ[5,4,0]ウンデセン-7 0.99g(0.0065mol)、メタクリル酸6.73g(0.0781mol)を加え120℃で7時間撹拌した。反応終了後、室温(25℃)まで冷却したのち、ヘキサンで抽出し、抽出液の水洗をおこなった。その後、抽出液を濃縮し、目的物を得た。得られた目的物は、白色固体で融点52℃、5.7g(収率72%)であった。
Figure JPOXMLDOC01-appb-C000008
〈スペクトルデータ〉
1.核磁気共鳴スペクトル(溶媒:CDCl3、日本電子株式会社製 JNM-ECA500)
1H-NMR(500MHz):6.0(a1,1H),5.5(a2,1H),3.9-4.2(e,2H),1.89(c,3H),1.52-1.58(k,i,g,12H),1.0(l,6H)
13C-NMR(125MHz):167.7(d),136.3(b),125.8(a),75.3(f),68.7(e),37.0(l),36.2(i),28.5(k),19.1(g),18.4(c)
2.ガスクロマトグラフ質量分析スペクトル(株式会社島津製作所製 GC-MS-QP2010)
GC-MS:69(55%),135(100%),193(7.2%),278(0.1%)
実施例2
2-(1-アダマンチル)-2-ヒドロキシプロピルアクリレートの合成
 温度計、冷却管及び撹拌装置を備えた1Lの三つ口フラスコに、2-(1-アダマンチル)-2-メチルオキシラン5g(0.026mol)と、ジメチルホルムアミド50mlとを入れ、窒素雰囲気下で完全に溶けるまで撹拌した。溶解後、1,8-ジアザビシクロ[5,4,0]ウンデセン-7 0.99g(0.0065mol)、アクリル酸3.74g(0.052mol)を加え120℃で7時間撹拌した。反応終了後、室温(25℃)まで冷却したのち、ヘキサンで抽出し、抽出液の水洗をおこなった。その後、抽出液を濃縮し目的物を得た。得られた目的物は、透明液体で5.8g(収率84.4%)であった。
Figure JPOXMLDOC01-appb-C000009
〈スペクトルデータ〉
1.核磁気共鳴スペクトル(溶媒:CDCl3、日本電子株式会社製 JNM-ECA500)
1H-NMR(500MHz):6.3(a1,1H),6.1(b,1H),5.7(a2,1H),3.9-4.2(e,2H),1.52-1.58(k,i,g,12H),1.0(l,6H)
13C-NMR(125MHz):166.6(d),131.1(a),128.3(b),75.3(f),68.6(e),37.0(l),36.2(i),28.5(k),19.1(g)
2.ガスクロマトグラフ質量分析スペクトル(株式会社島津製作所製、GC-MS-QP2010)
GC-MS:55(50%),135(100%),193(7.2%),247(0.26%)
[硬化物の製造及びその物性評価]
実施例3
 実施例1で得られたアダマンタン誘導体1gをMEK(メチルエチルケトン)10gに溶解させ、光重合開始剤であるベンゾイソブチルエーテル1質量%を加え、撥水処理をしたガラス基板に塗布した。その後、80℃で溶媒を除去し、高圧水銀灯を用いてUV照射〔1000mJ/cm2〕により硬化させた。得られた硬化物の物性を表1に示した。
実施例4
 実施例2で得られたアダマンタン誘導体1gをMEK10gに溶解させ、光重合開始剤であるベンゾイソブチルエーテル1質量%を加え、撥水処理をしたガラス基板に塗布した。その後、80℃で溶媒を除去し、高圧水銀灯を用いてUV照射〔1000mJ/cm2〕により硬化させた。得られた硬化物の物性を表1に示した。
比較例1
 実施例3,4と同様に、(2-ヒドロキシ-2-アダマンチル)メチル-2-メタクリレート1gと光重合開始剤であるベンゾイソブチルエーテル1質量%、MEK10gを加え、撥水処理をしたガラス基板へ塗布してから、70℃で乾燥をおこない、高圧水銀灯を用いてUV照射〔1000mJ/cm2〕により硬化させた。得られた硬化物の物性を表1に示した。
 物性評価は、次のようにおこなった。
(1)成膜試験
 MEK乾燥後のガラスの状態を、白化現象(化合物の析出)の有無により調べた。白化がある場合は、白化の部分で重合が起こりにくいため、均一な膜が形成できない。
(2)熱分解温度(℃):Td(5%)
 硬化した試料をアルミ容器に5mg入れ、示差熱熱質量同時測定装置(エスアイアイ・ナノテクノロジー社製、TG/DAT6000)を用い、窒素雰囲気下、25℃から500℃まで、10℃/分で昇温させることにより得られた質量変化曲線にて質量が5%減少した時の温度を求めた。熱分解温度が高いと耐熱性に優れたものとなる。
(3)硬化率の評価
 実施例3及び4、比較例1で形成した薄膜をフーリエ変換型赤外分光装置(パーキネルマー社製、SP-1)にて、測定をおこない、下記の式に基づいて硬化率を算出した。測定波長は、二重結合の面外変角である約810cm-1のピーク強度から算出した。
(硬化率%)=[1-(硬化物のピーク強度)/(反応前のサンプルのピーク強度)]×100
Figure JPOXMLDOC01-appb-T000010
[レジスト組成物の調整及びその物性評価]
実施例5
(メタ)アクリル系重合体の合成
 メチルイソブチルケトンに、2,2’-アゾビス(イソ酪酸)ジメチル/モノマーA(下記式)/モノマーB(下記式)/モノマーC(下記式)を、質量比0.1/1.0/1.0/1.0で仕込み、加熱還流下、2時間撹拌した。その後、反応液を大量のメタノールと水の混合溶媒に注いで沈殿させる動作を3回行い精製した。
 その結果、モノマーA:モノマーB:モノマーCの共重合組成(mol)=28:42:30、重量平均分子量(Mw)が7542、分散度(Mw/Mn)1.56の共重合体P1を得た。
Figure JPOXMLDOC01-appb-C000011
実施例6
レジスト組成物の調整及びその物性評価
 実施例5で得られた共重合体P1 100質量部に対し、光酸発生剤としてトリフェニルスルホニウムノナフルオロブタンスルホネートを5質量部加え、これらが10質量%になるようにプロピレングリコールモノメチルエーテルアセテートで溶解し、レジスト組成物R1を調製した。シリコンウエハー上に、調製したレジスト組成物R1を塗布し、110℃で、60秒間ベークを行い、レジスト膜を形成した。
 こうして得られたウエハーを波長248nmの光により、異なる露光量で数点オープン露光した。露光直後に110℃で、60秒間加熱した後、テトラメチルアンモニウムハイドロオキサイド水溶液(2.38質量%)で60秒間現像した。このときの露光量に対する膜厚の変化を図1に示す。
 実施例6では、図1から露光量による膜厚変化が確認され、レジスト組成物R1が感光性樹脂としての機能を有することを確認できた。
 本発明のアダマンタン誘導体は、耐熱性、密着性、透明性、耐光性等の光学特性、及び誘電率等の電気特性に優れる硬化物を与え、特に半導体用レジスト材料、カラーレジスト材料、半導体用下地膜、光学部品用接着剤、プリント回路基板作成用レジスト及びソルダーレジストに好適に用いることができる。

Claims (11)

  1.  一般式(I)で表されるアダマンタン誘導体。
    Figure JPOXMLDOC01-appb-C000001
    [式中、R1は、式 CP2P+1(Pは1~7の整数)で表わされる炭化水素基を示し、R2は、水酸基、(メタ)アクリロイルオキシ基又はトリフルオロメタクリロイルオキシ基を示し、R3は、水素原子、メチル基又はトリフルオロメチル基を示し、R4は、メチル基、水酸基、カルボキシル基又は2つのR4が一緒になって=O基を示す。nは1~4の整数、kは0~4の整数であり、複数のR1及びR4はそれぞれ同一でも異なってもよい。]
  2.  一般式(I)において、R2が水酸基である請求項1に記載のアダマンタン誘導体。
  3.  下記式(II)で表されるエポキシアダマンタン類と、(メタ)アクリル酸、トリフルオロメタクリル酸、無水(メタ)アクリル酸又は無水トリフルオロメタクリル酸とを反応させることを特徴とする請求項1又は2に記載のアダマンタン誘導体の製造方法。
    Figure JPOXMLDOC01-appb-C000002
    [式中、R1は、式 CP2P+1(Pは1~7の整数)で表わされる炭化水素基を示し、R4は、メチル基、水酸基、カルボキシル基又は2つのR4が一緒になって=O基を示す。nは1~4の整数、kは0~4の整数であり、複数のR1及びR4はそれぞれ同一でも異なってもよい。]
  4.  請求項1又は2に記載のアダマンタン誘導体を含む硬化性組成物を硬化させてなる硬化物。
  5.  請求項1に記載のアダマンタン誘導体又は請求項4に記載の硬化物を用いてなる半導体用レジスト材料。
  6.  請求項1に記載のアダマンタン誘導体又は請求項4に記載の硬化物を用いてなるカラーレジスト材料。
  7.  請求項1に記載のアダマンタン誘導体又は請求項4に記載の硬化物を用いてなる半導体用下地膜。
  8.  請求項1に記載のアダマンタン誘導体又は請求項4に記載の硬化物を用いてなる光学部品用接着剤。
  9.  請求項1に記載のアダマンタン誘導体又は請求項4に記載の硬化物を用いてなるプリント回路基板作成用レジスト及びソルダーレジスト。
  10.  請求項1に記載のアダマンタン誘導体に基づく単量体単位を含む(メタ)アクリル系重合体。
  11.  請求項10に記載の(メタ)アクリル系重合体を含有するレジスト組成物。
PCT/JP2009/070817 2008-12-19 2009-12-14 アダマンタン誘導体、その製造方法及びアダマンタン誘導体を含む硬化物 WO2010071103A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010542957A JP5548136B2 (ja) 2008-12-19 2009-12-14 アダマンタン誘導体、その製造方法及びアダマンタン誘導体を含む硬化物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-323600 2008-12-19
JP2008323600 2008-12-19

Publications (1)

Publication Number Publication Date
WO2010071103A1 true WO2010071103A1 (ja) 2010-06-24

Family

ID=42268773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/070817 WO2010071103A1 (ja) 2008-12-19 2009-12-14 アダマンタン誘導体、その製造方法及びアダマンタン誘導体を含む硬化物

Country Status (3)

Country Link
JP (1) JP5548136B2 (ja)
TW (1) TW201038528A (ja)
WO (1) WO2010071103A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012008546A1 (ja) * 2010-07-16 2012-01-19 Jsr株式会社 感放射線性樹脂組成物、重合体及びレジストパターン形成方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007125890A1 (ja) * 2006-04-28 2007-11-08 Idemitsu Kosan Co., Ltd. アダマンチル基含有エポキシ変性(メタ)アクリレート及びそれを含む樹脂組成物
WO2008050796A1 (fr) * 2006-10-25 2008-05-02 Idemitsu Kosan Co., Ltd. Dérivé d'adamantane, procédé de production de celui-ci, composition de résine et produit polymérisé de la composition de résine
WO2008065939A1 (fr) * 2006-11-29 2008-06-05 Idemitsu Kosan Co., Ltd. Dérivé d'adamantane, son procédé de fabrication, et composition de résine contenant un dérivé d'adamantane
WO2009063829A1 (ja) * 2007-11-13 2009-05-22 Idemitsu Kosan Co., Ltd. アダマンタン誘導体、その製造方法及びアダマンタン誘導体を含む硬化性組成物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007125890A1 (ja) * 2006-04-28 2007-11-08 Idemitsu Kosan Co., Ltd. アダマンチル基含有エポキシ変性(メタ)アクリレート及びそれを含む樹脂組成物
WO2008050796A1 (fr) * 2006-10-25 2008-05-02 Idemitsu Kosan Co., Ltd. Dérivé d'adamantane, procédé de production de celui-ci, composition de résine et produit polymérisé de la composition de résine
WO2008065939A1 (fr) * 2006-11-29 2008-06-05 Idemitsu Kosan Co., Ltd. Dérivé d'adamantane, son procédé de fabrication, et composition de résine contenant un dérivé d'adamantane
WO2009063829A1 (ja) * 2007-11-13 2009-05-22 Idemitsu Kosan Co., Ltd. アダマンタン誘導体、その製造方法及びアダマンタン誘導体を含む硬化性組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
N. NEMOTO ET AL.: "Cationic Ring-Opening Polymerization Behavior of a Five-Membered Cyclic Thiocarbonate Having a Spiro-Linked Adamantane Moiety", J. POLY. SCI. PART A, vol. 41, no. 5, 2003, pages 699 - 707 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012008546A1 (ja) * 2010-07-16 2012-01-19 Jsr株式会社 感放射線性樹脂組成物、重合体及びレジストパターン形成方法
JP5765340B2 (ja) * 2010-07-16 2015-08-19 Jsr株式会社 感放射線性樹脂組成物及びレジストパターン形成方法

Also Published As

Publication number Publication date
JP5548136B2 (ja) 2014-07-16
TW201038528A (en) 2010-11-01
JPWO2010071103A1 (ja) 2012-05-31

Similar Documents

Publication Publication Date Title
JP5374380B2 (ja) アダマンタン誘導体、その製造方法及びアダマンタン誘導体を含む硬化性組成物
JP5514854B2 (ja) 新規な高感度アルファケトオキシムエステル光重合開始剤及びこの化合物を含む光重合組成物
KR101995085B1 (ko) 착색 경화성 수지 조성물
JP5442049B2 (ja) 高感度オキシムエステル光重合開始剤及びこの化合物を含む光重合組成物
WO2008013207A1 (fr) Composition de résine durcissable et procédé servant à former des films de revêtement durcis
KR101976442B1 (ko) 포지티브형 감광성 조성물
US20060188806A1 (en) Norbornene polymer for photoresist and photoresist composition comprising the same
TWI620011B (zh) 感光性樹脂組成物、彩色濾光片之製造方法、彩色濾光片以及液晶顯示裝置
KR101580898B1 (ko) 폴리실세스퀴옥산 공중합체 및 이를 포함하는 감광성 수지 조성물
KR20150011311A (ko) 포지티브형 감광성 조성물
TWI626508B (zh) 彩色濾光片用著色組成物、彩色濾光片及顯示元件
JP2010132576A (ja) アダマンタン誘導体、その反応物及びそれを含む硬化性樹脂組成物並びにそれらの製造方法及び用途
WO2011021398A1 (ja) 重合性基を有する糖誘導体及びそれを用いたレジスト材料
TWI452427B (zh) A photosensitive resin and a photosensitive resin composition using the same
KR20220128471A (ko) 착색 경화성 조성물
TW201831459A (zh) 組合物、硬化物、圖案形成方法、化合物、聚合物、及化合物之製造方法
KR20180029549A (ko) 감광성 수지 조성물 및 이로부터 제조된 광경화 패턴
JP5548136B2 (ja) アダマンタン誘導体、その製造方法及びアダマンタン誘導体を含む硬化物
JP5636196B2 (ja) アダマンタン誘導体、それを含有する樹脂組成物
CN111615650A (zh) 彩色滤光片用感光性树脂组合物、彩色滤光片、图像显示元件以及彩色滤光片的制造方法
KR20060049963A (ko) 마이크로렌즈 형성용 감방사선성 수지 조성물
TWI501031B (zh) 用於彩色濾光片的感光性樹脂組成物及使用其的彩色濾光片
JP2008176278A (ja) ドライフィルム、マイクロレンズおよびそれらの製造方法
JP2023150423A (ja) 感光性樹脂組成物、感光性樹脂組成物を硬化してなる硬化膜、硬化膜付き基板及び硬化膜付き基板の製造方法
TW201932498A (zh) 感光性樹脂組成物及透鏡

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09833406

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010542957

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09833406

Country of ref document: EP

Kind code of ref document: A1