WO2010067764A1 - 眼科用計測装置 - Google Patents

眼科用計測装置 Download PDF

Info

Publication number
WO2010067764A1
WO2010067764A1 PCT/JP2009/070419 JP2009070419W WO2010067764A1 WO 2010067764 A1 WO2010067764 A1 WO 2010067764A1 JP 2009070419 W JP2009070419 W JP 2009070419W WO 2010067764 A1 WO2010067764 A1 WO 2010067764A1
Authority
WO
WIPO (PCT)
Prior art keywords
eye
measurement unit
measurement
reference position
alignment
Prior art date
Application number
PCT/JP2009/070419
Other languages
English (en)
French (fr)
Inventor
中村 武
Original Assignee
株式会社トプコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トプコン filed Critical 株式会社トプコン
Priority to EP09831868A priority Critical patent/EP2356937A1/en
Priority to US13/133,279 priority patent/US20110242488A1/en
Publication of WO2010067764A1 publication Critical patent/WO2010067764A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/14Arrangements specially adapted for eye photography
    • A61B3/15Arrangements specially adapted for eye photography with means for aligning, spacing or blocking spurious reflection ; with means for relaxing
    • A61B3/152Arrangements specially adapted for eye photography with means for aligning, spacing or blocking spurious reflection ; with means for relaxing for aligning

Definitions

  • the present invention relates to an improvement in an ophthalmic measuring apparatus that measures the eye refractive power and intraocular pressure of an eye to be examined.
  • an ophthalmic measuring apparatus that measures the eye refractive power and intraocular pressure of an eye to be examined is known.
  • a measurement unit that sequentially measures eye characteristics such as eye refractive power and intraocular pressure of both eyes of a subject
  • a base unit that supports the measurement unit, and measurement with respect to the base unit
  • a driving means for moving the unit three-dimensionally, a control means for controlling the driving means, and a control means for controlling the driving means to automatically position the measuring unit with respect to any one eye of the subject.
  • an auto-alignment means for aligning with the camera.
  • a horizontal reference position of the measurement unit with respect to the base portion is set, and further, a reference position detection sensor for detecting the reference position is provided, and one of the two eyes is provided.
  • the main optical axis of the measurement unit is automatically aligned with the other eye (see, for example, Patent Document 1).
  • the measurement unit is moved to one eye to be measured, and the auto-alignment of the measurement unit with respect to the eye to be examined is performed. Measure.
  • the movement distance of the measurement unit from the horizontal reference position to the one eye is acquired, and the movement distance is moved when moving the measurement unit to the other eye.
  • the measurement unit is moved from the position where one eye is measured by a movement distance twice as long as that, and auto-alignment of the measurement unit with respect to the other eye is executed at that position.
  • the face of the subject 1 is directed straight to the measurement unit, and the left and right eyes EL and ER are the measurement unit.
  • the right eye ER is measured by moving the distance L1 from the horizontal reference position O to the right eye ER, and the left eye EL is measured.
  • the measurement unit is moved from the position where the right eye ER is measured by a movement distance 2 ⁇ L1 which is twice the movement distance.
  • the main optical axis O1 of the measurement unit is positioned in the vicinity of the center position of the cornea of the left eye EL, so that the measurement of the eye characteristic of the right eye ER to the measurement of the eye characteristic of the left eye EL is performed. A series of operations can be performed quickly.
  • the forehead of the subject 1 hits diagonally with respect to the forehead 2, and the face of the subject 1 is diagonal with respect to the measurement unit. Is inclined, the distance L2 from the right eye ER to the horizontal reference position O is different from the distance L3 from the left eye EL to the horizontal reference position O.
  • the measurement unit in order to shift to the measurement of the eye characteristics of the left eye EL, if the measurement unit is simply moved from the position where the right eye ER is measured by a movement distance 2 ⁇ L2 that is twice the movement distance, it is horizontal.
  • the reference position O of the direction may deviate greatly from the corneal apex of the left eye EL of the subject, and a series of operations from the measurement of the eye characteristics of the right eye ER to the measurement of the eye characteristics of the left eye EL should be performed quickly. May not be possible.
  • the subject 1 is biased toward the right eye ER with respect to the horizontal reference position O (the central position O ′ in the horizontal direction of the forehead 2). Even when the forehead is in contact, there is a possibility that a series of operations from the measurement of the eye characteristics of the right eye ER to the measurement of the eye characteristics of the left eye EL cannot be performed quickly.
  • an ophthalmology configured to move the measurement unit from the measurement position of one eye to the other eye by a predetermined distance in order to shift from the measurement of the eye characteristic of one eye to the measurement of the eye characteristic of the other eye.
  • the examiner In conventional ophthalmic measurement devices, in such cases, the examiner must operate the control lever to observe the anterior eye part and align the main optical axis roughly in the vicinity of the cornea center of the eye to be measured. After that, auto alignment was executed.
  • An object of the present invention is to provide an ophthalmic measurement apparatus that can quickly shift from measurement of eye characteristics of one eye to measurement of eye characteristics of the other eye.
  • An ophthalmic measurement apparatus includes a measurement unit that sequentially measures eye characteristics of both eyes of a subject, a base portion that supports the measurement unit, and a three-dimensional view of the measurement unit with respect to the base portion.
  • Driving means for automatically moving; control means for controlling the driving means; and controlling the driving means by the control means to automatically position the measuring unit with respect to any one eye of the subject
  • an auto-alignment means that performs automatic alignment, wherein a horizontal reference position of the measurement unit relative to the base portion is set, and a reference position detection sensor for detecting the reference position is further provided. After the measurement of the eye characteristics of one of the eyes is completed, the control unit moves from the position where the eye characteristics of the one eye is measured to the reference position.
  • the measurement unit is moved, and after the reference position is detected by the reference position detection sensor, the measurement unit is moved to the other eye side of both eyes, and an image of the anterior eye portion of the other eye is obtained. And acquiring the position of the iris edge of the other eye from the image of the anterior eye part, detecting the center position of the cornea of the other eye from the position of the edge of the other eye, and the main light of the measurement unit.
  • the measurement unit is moved by a predetermined distance so that the axis is directed from the position of the edge of the iris toward the center position of the cornea, and the alignment by the auto-alignment means is further executed.
  • a series of operations from the measurement of the eye characteristics of one eye to the measurement of the eye characteristics of the other eye can be automatically and quickly performed.
  • the view A is the figure which looked at the state where the subject's face is correctly hitting the forehead
  • the view B is the subject It is the figure which looked at the state where the person's face has correctly hit the forehead.
  • the view A is the figure which looked at the state where the subject's face is hitting the forehead diagonally
  • the view B FIG. 3 is a front view of a state in which a subject's face is hitting the forehead diagonally.
  • View A looked at the state which the subject's face has shifted sideways with respect to the center of a forehead from right above
  • View B is a view of the subject's face as seen from the front in a state where the face of the subject is shifted laterally with respect to the center of the forehead.
  • FIG. 7 is a block diagram illustrating an example of a signal processing unit illustrated in FIG. 6.
  • FIG. 6 is a diagram showing an example of iris detection according to the present invention, in which section A is a diagram showing an anterior eye image reflected on a liquid crystal display, and section B is a level of a detection signal by a scanning line shown in section A. It is explanatory drawing. It is explanatory drawing explaining the determination of the presence or absence of alignment completion, Comprising: It is explanatory drawing which shows the state in which the alignment luminescent spot image is located in the alignment mark. It is a flowchart explaining an example of an effect
  • FIG. 4 is an external view of an ophthalmic measuring apparatus according to the present invention.
  • reference numeral 10 denotes an ophthalmic measuring apparatus according to this embodiment.
  • the ophthalmic measuring apparatus 10 includes a base 11, an ophthalmic measuring head 12, a liquid crystal display 13, a control lever 14, a measurement start switch 15, a chin rest 16, and a forehead pad 17.
  • the liquid crystal display 13 is provided on the examiner side, and the chin rest 16 and the forehead pad 17 are provided on the subject side.
  • measurement is performed with the subject's chin placed on the chin rest 16 and the forehead in contact with the forehead pad 17.
  • the measuring head 12 is configured to be movable in the up and down direction (Y direction), the front and rear direction (Z direction), and the left and right direction (X direction) with respect to the base portion 11. Such movement of the measuring head 12 is performed by a moving mechanism described later.
  • the liquid crystal display 13 displays an image such as an image of the anterior segment of the eye to be examined, a measurement result, and the like.
  • the control lever 14 is used when the measuring head 12 is moved manually.
  • reference numeral 11 denotes a base portion of the ophthalmic measuring apparatus of the present invention.
  • a moving mechanism as shown in FIG. 5 for moving the measuring head 12 in a three-dimensional manner is provided inside the case of the base portion 11.
  • the moving mechanism includes a bottom plate 20, a stage 24 that moves in the vertical direction (Y direction shown in FIG. 5) with respect to the bottom plate 20, and a stage 26 that moves in the front-rear direction (Z direction shown in FIG. 5) with respect to the stage 24. And a stage 29 that moves in the left-right direction (the X direction shown in FIG. 5) with respect to the stage 26.
  • a support portion 21 and a motor 23 (driving means) are fixed to the upper surface of the bottom plate 20, and the stage 24 has a column 22 on the lower side thereof.
  • the support column 22 of the stage 24 is surrounded by vertical walls in the front, rear, left, and right sides constituting the support portion 21 and is supported by the support portion 21 so as to be movable up and down.
  • a driving force transmission mechanism (not shown) is provided between the motor 23 (driving means) and the column 22, and the column 22 of the stage 24 moves in the vertical direction by driving the motor 23 (driving unit). Is configured to do.
  • the stage 24 is provided with a motor 27 (driving means) and a pair of rails 25 and 25 for moving in the front-rear direction, and these rails 25 and 25 are provided with a stage 26 movable in the front-rear direction. It has been.
  • a driving force transmission mechanism (not shown) is provided between the stage 24 and the stage 26, and the stage 26 moves in the front-rear direction by driving a motor 27 (driving means). .
  • the stage 26 is provided with a motor 30 (driving means) and a pair of rails 28, 28 for moving in the left-right direction.
  • the rails 28, 28 are provided with a stage 29 movable in the left-right direction. It has been.
  • a driving force transmission mechanism (not shown) is provided between the stage 26 and the stage 29, and the stage 29 moves in the left-right direction by driving a motor 30 (driving means). .
  • the reference position O is set at the center position of the movable range of the stage 29 with respect to the stage 26.
  • a reference position detection sensor SO for detecting the reference position O is provided on the stage 26.
  • a photocoupler may be used as the reference position detection sensor SO.
  • the role of the reference position detection sensor SO will be described later.
  • the measurement head 12 is provided with a measurement unit 12A for eye refractive power and a measurement unit 12B for intraocular pressure, as schematically shown in FIG.
  • the measurement unit 12A for eye refractive power is used when measuring the eye refractive power (spherical power, astigmatism power, astigmatic axis angle, etc.) of the eye E, and the measurement unit 12B for intraocular pressure is used for the eye of the eye E. Used when measuring pressure.
  • the eye refractive power measurement unit 12A is provided, for example, above the intraocular pressure measurement unit 12B.
  • the eye refractive power measurement unit 12A has the optical system shown in FIG. This optical system is compactly arranged in a case (not shown).
  • reference numeral 41 denotes a visual target for fixing and clouding the eye E, and a projection optical system for a fixation target that projects the fundus Er.
  • Reference numeral 42 denotes an observation for observing the anterior eye portion Ef of the eye E.
  • Reference numeral 43 denotes a projection optical system for a scale that projects an aiming scale onto the CCD 44, and reference numeral 45 denotes a projection optical system for a pattern light beam that projects a pattern light beam that measures the refractive power of the eye E to be examined on the fundus Er.
  • 46 is a light receiving optical system for causing the CCD 44 to receive a light beam reflected from the fundus Er
  • 47 is an alignment light projection for projecting index light for detecting an alignment state in a direction perpendicular to the optical axis to the eye to be examined.
  • An optical system, 48 is a working distance detecting optical system for detecting a working distance between the eye E and the measuring head 12, and 49 is a signal processing unit.
  • the projection optical system 45 for pattern light flux and the optical system 46 for light reception constitute an optical system for measuring eye refractive power.
  • the projection optical system 41 for the fixation target includes a light source 51, a collimator lens 52, an indicator plate 53, a relay lens 54, a mirror 55, a relay lens 56, a dichroic mirror 57, a dichroic mirror 58, and an objective lens 59.
  • Visible light emitted from the light source 51 is converted into a parallel light flux by the collimator lens 52 and then passes through the indicator plate 53.
  • the indicator plate 53 is provided with a target that causes the eye E to be fixed and clouded.
  • the target light flux passes through the relay lens 54 and is reflected by the mirror 55, is guided to the dichroic mirror 57 through the relay lens 56, is reflected by the mirror 55, and is guided to the main optical axis O1 of the optical system, After passing through the dichroic mirror 58, it is guided to the eye E through the objective lens 59.
  • the light source 51, the collimator lens 52, and the index plate 53 constitute an index unit U10.
  • the index unit U10 uses the motor PM1 to fix the projection optical system 41 for the fixation target in order to fixate and cloud the eye E. It is possible to move integrally along the optical axis O2.
  • the observation optical system 42 includes a light source 61 for illumination, an objective lens 59, a dichroic mirror 58, a relay lens 62 having a diaphragm 61 ', a mirror 63, a relay lens 64, a dichroic mirror 65, an imaging lens 66, and a CCD 44. is doing.
  • the illumination light beam emitted from the illumination light source 61 illuminates the anterior eye portion Ef of the eye E to be examined.
  • the illumination light beam reflected by the anterior eye portion Ef is reflected by the dichroic mirror 58 through the objective lens 59, passes through the diaphragm 61 ′ of the relay lens 62, is reflected by the mirror 63, and then is relayed by the relay lens 64 and the dichroic mirror 65. And is guided to the CCD 44 by the imaging lens 66, and an image of the anterior segment described later is formed on the imaging surface of the CCD 44.
  • the scale projection optical system 43 includes a light source 71, a collimator lens 72 having an aiming scale, a relay lens 73, a dichroic mirror 58, a relay lens 62 having an aperture 61 ', a mirror 63, a relay lens 64, a dichroic mirror 65, and an image.
  • a lens 66 and a CCD 44 are provided.
  • the light beam emitted from the light source 71 is converted into a parallel light beam when passing through the collimator lens 72, is reflected by the mirror 63 through the relay lens 73, the dichroic mirror 58, and the relay lens 62 having the diaphragm 61 ′, and is then relayed to the relay lens 64. Then, the light passes through the dichroic mirror 65 and is imaged on the CCD 44 by the imaging lens 66.
  • the video signal from the CCD 44 is input to the liquid crystal display 13 via the signal processing unit 49, and the anterior eye image Ef ′ is displayed on the liquid crystal display 13, and alignment marks ALM 1 and ALM 2 are displayed. It should be noted that the light sources 61 and 71 are turned off when measuring the refractive power after the alignment is completed.
  • the projection optical system 45 for the pattern beam includes a light source 81, a collimator lens 82, a conical prism 83, a ring indicator plate 84, a relay lens 85, a mirror 86, a relay lens 87, a perforated prism 88, a dichroic mirror 57, a dichroic mirror 58, An objective lens 59 is provided.
  • the light source 81 and the ring indicator plate 84 are optically conjugate, and the ring indicator plate 84 and the pupil EP of the eye E are arranged at optically conjugate positions.
  • the light source 81, the collimator lens 82, the conical prism 83, and the ring indicator plate 84 constitute an indicator unit U40, and this indicator unit U40 is moved back and forth along the optical axis O3 by the motor PM2.
  • the light beam emitted from the light source 81 is converted into a parallel light beam by the collimator lens 82, passes through the conical prism 83, and is guided to the ring indicator plate 84.
  • the light beam is transmitted through the ring-shaped pattern portion formed on the ring indicator plate 84 to become a pattern light beam.
  • the pattern light beam is reflected by the mirror 86, passes through the relay lens 87, is reflected by the reflecting surface of the perforated prism 88, and is guided to the dichroic mirror 57 along the main optical axis Ol. After passing through the dichroic mirrors 57 and 58, an image is formed on the fundus Er by the objective lens 59.
  • the light receiving optical system 46 includes an objective lens 59, dichroic mirrors 58 and 57, a hole 88a of a perforated prism 88, a relay lens 91, a mirror 92, a relay lens 93, a mirror 94, a focusing lens 95, a mirror 96, and a dichroic.
  • a mirror 65, an imaging lens 66, and a CCD 44 are provided.
  • the focusing lens 95 is movable along the optical axis O4 in conjunction with the index unit U40.
  • the reflected light beam guided to the fundus Er by the projection optical system 45 for the pattern light beam and reflected by the fundus Er is condensed by the objective lens 59 and transmitted through the dichroic mirrors 58 and 57, and the perforated prism 88. It is guided to the hole 88a and passes through the hole 88a.
  • the pattern reflected light beam that has passed through the hole 88a is transmitted through the relay lens 91, reflected by the mirror 92, transmitted through the relay lens 93, reflected by the mirror 94, transmitted through the focusing lens 95, transmitted through the mirror 96, and dichroic.
  • the light is reflected by the mirror 65 and guided to the CCD 44 by the imaging lens 66. As a result, a pattern image is formed on the CCD 44.
  • the alignment optical projection optical system 47 includes an LED 101, a pinhole 102, a collimator lens 103, and a half mirror 104, and has a function of projecting an alignment index light beam toward the cornea C of the eye E (auto-alignment means).
  • an LED 101 a pinhole 102
  • a collimator lens 103 a collimator lens
  • a half mirror 104 a function of projecting an alignment index light beam toward the cornea C of the eye E (auto-alignment means).
  • the alignment index light beam projected as parallel light toward the eye E is reflected by the cornea C of the eye E, and the alignment index image T is projected onto the CCD 44 by the observation optical system 42.
  • the working distance detection optical system 48 has a function as auto-alignment means for detecting the working distance between the eye E and the measuring head 12.
  • the working distance detection optical system 48 has finite distance index projection optical systems 102R and 102L that project the index from a finite distance, respectively, symmetrically with respect to the main optical axis O1.
  • the projection optical systems 102R and 102L for the finite distance index projecting the index from the finite distance project the light beam from the light source 102a as an index light beam on the eye E from right and left sides.
  • the index light beams from these two finite distance index projection optical systems 102R and 102L are reflected by the cornea C of the eye E and imaged on the CCD 44 by the observation optical system 42.
  • the signal processing unit 49 Based on the output from the CCD 44, the signal processing unit 49 displays the index images 102R ′ and 102L ′ by the index light beams from the projection optical systems 102R and 102L for the finite distance index on the liquid crystal display 13.
  • the working distance is a distance WO suitable for measurement.
  • the signal processing unit 49 includes an arithmetic control circuit 110, an A / D converter 112, a frame memory 113, a D / A converter 114, and a D / A converter 115.
  • This arithmetic control circuit 110 has a CPU, ROM, RAM, input / output circuit, control circuit, etc. (not shown), and also serves as a movement control means, an iris detection means, and an arithmetic means for measuring and calculating eye characteristics. The calculation results are stored in the RAM.
  • the arithmetic control circuit 110 is connected to the CCD 44 via the frame memory 113 and the A / D converter 112 and is connected to the liquid crystal display 13 via the D / A converter 115.
  • the CCD 44 is connected to the liquid crystal display 13 via the A / D converter 112, the frame memory 113, and the D / A converter 114.
  • the arithmetic control circuit 110 controls movement of the pulse motors PM1 and PM2 and controls movement of the motors 23, 27, and 30. As a result, the measurement unit is moved in the X, Y, and Z directions.
  • the arithmetic control circuit 110 is connected to a driver (not shown) in order to control lighting of the various light sources 51, 61, 71, 81, 102a and the LED 101.
  • the arithmetic control circuit 110 calculates the light receiving positions of the alignment index image T and the index images 102R ′ and 102L ′ received by the CCD 44, and based on the calculation result, the main optical axis O1 and the optical axis of the eye E to be examined are calculated. A deviation amount ⁇ xy between them and a deviation amount ⁇ z from the appropriate working distance WO are calculated.
  • the arithmetic control circuit 110 outputs a movement signal for causing the light source 81 to emit light when the deviation amounts ⁇ xy, ⁇ z are equal to or less than the threshold values ⁇ xy0, ⁇ z0.
  • the threshold values ⁇ xy0 and ⁇ z0 are stored in a RAM (not shown) of the signal processing unit 49.
  • the arithmetic control circuit 110 functions as an auto-alignment means that automatically aligns the measuring head 12 with respect to the eye E.
  • the main optical axis O1 of the measuring unit 12A for eye refractive power is aligned with the eye E to be examined.
  • the arithmetic control circuit 110 turns on the light sources 61 and 71 and the light sources 102a of the optical system for detecting the working distance.
  • the examiner operates the control lever 14 so that the pupil EP of the eye E is positioned at the alignment mark ALM2 based on the anterior eye image Ef ′ projected on the liquid crystal display 13. . Thereby, a rough alignment is performed.
  • the alignment index image T and the index images 102R ′ and 102L ′ are displayed on the screen of the liquid crystal display 13.
  • the measuring head 12 is moved in the X, Y, and Z directions, and auto alignment adjustment is started.
  • the measurement head 12 is controlled to move in the X, Y, and Z directions so that the shift amounts ⁇ xy and ⁇ z with respect to the eye E are equal to or less than ⁇ xy0 and ⁇ z0, respectively.
  • the unit U40 is moved so that the ring index plate 84 is positioned at the fundus conjugate position when it is assumed that the eye E is a normal eye, and the light source 81 emits light.
  • a pattern light beam for measuring eye refractive power is projected onto the fundus Er of the eye E, and as a result, a pattern image is formed on the CCD 44.
  • the video signal from the CCD 44 is converted into a digital value by the AD converter 112 and stored in the frame memory 113.
  • the arithmetic control circuit 110 extracts a pattern image by binarization processing based on the image data stored in the frame memory 113.
  • spherical power, cylindrical power, and axial angle as eye refractive power are measured by a well-known method.
  • the configuration of the measurement unit for eye refractive power is the same as that disclosed in Japanese Patent Laid-Open No. 2002-253506, but is not limited to this configuration.
  • the signal processing unit 49 drives the motor 30 after the measurement of the right eye RL, and automatically moves the measuring head 12 in the left direction.
  • the arithmetic processing circuit 110 executes an iris edge detection process described below.
  • the measuring head 12 When the measuring head 12 is moved in the direction from the right eye ER to the left eye EL, the image shown on the liquid crystal display 13 changes, and the left eye EL eye is displayed on the screen of the liquid crystal display 13 as shown in FIG. Part of the characteristic is projected.
  • the signal processing unit 49 (control means) performs processing for detecting the edge of the iris simultaneously with detection of the reference position O in the horizontal direction by the reference position detection sensor SO.
  • the signal processing unit 49 has a function of executing the level detection process of the signal S by the scanning line Lm.
  • the signal processing unit 49 performs scanning by the scanning line Lm of the anterior segment Ef as shown in section A of FIG. 9 and section B of FIG.
  • the level of the detection signal S is higher in the level S2 of the detection signal S in the portion corresponding to the sclera Ej than in the level S1 of the detection signal S in the portion corresponding to the skin of the anterior segment EF, and in the portion corresponding to the iris Ei.
  • the level S3 of the detection signal S is lower than the level S1 of the detection signal S, and the level S4 of the detection signal S corresponding to the pupil Ep is the lowest.
  • the signal processing unit 49 compares the level of the detection signal S with the threshold value SL1 ′ to detect the edge Ei ′ between the sclera Ej and the iris Ei.
  • the signal processor 49 controls the motors 23, 27, and 30 so that the alignment bright spot image T falls within the range of the alignment mark ALM1, as shown in FIG.
  • the configuration of the intraocular pressure measurement unit 12B is the same as that of a conventional non-contact tonometer, a detailed description thereof will be omitted (see, for example, JP-A-2002-102170).
  • the measurement unit is moved to the other eye after measuring the eye refractive power of the eye characteristic of the right eye ER (S.2).
  • the measurement unit is moved from the right eye ER toward the left eye EL until the reference position detection sensor SO detects the horizontal reference position O (S.3).
  • the signal processing unit 49 acquires an anterior eye image Ef ′ (S.4), and the signal processing unit 49 determines whether there is an edge Ei ′ of the iris Ei. Is determined (S.5).
  • the measurement unit is continuously moved from the right eye ER side to the left eye EL side until the edge Ei ′ of the iris Ei is detected (S.6).
  • the signal processing unit 49 controls the motor 30 so as to move the measurement unit in the same direction continuously from the edge Ei ′ of the iris Ei by a predetermined distance (2.5 mm) (S .7).
  • the signal control unit 49 turns on the LED 71 of the projection optical system 47 for alignment light and the light source 102a of the optical system 102 for detecting the working distance after moving the measurement unit by a predetermined distance (S.8).
  • the signal processing unit 49 moves the measurement unit so that the main optical axis O1 of the optical system of the measurement unit coincides with the apex of the cornea C of the eye E (S.9, S.9 ′).
  • the signal processing unit 49 When the main optical axis O1 of the measurement unit is located within the range of the alignment mark ALM1, the signal processing unit 49 performs measurement of the eye refractive power as the alignment OK (S.10), thereby the left eye EL. The measurement of the eye refractive power is terminated (S.11).
  • the ophthalmic measurement apparatus that measures the ocular refractive power and the intraocular pressure has been described.
  • the present invention is not limited to this, and for example, the ophthalmologic that measures the ocular refractive power. It can also be applied to an ophthalmic measuring device, an ophthalmic measuring device that only measures intraocular pressure, an ophthalmic measuring device that measures a corneal curvature radius, and the like.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Ophthalmology & Optometry (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

【課題】一方の眼の眼特性の計測から、他方の眼の眼特性の計測への移行を迅速に行うことのできる眼科用計測装置を提供する。 【解決手段】 両眼のうち一方の眼の眼特性の計測が終了した後に、一方の眼の眼特性を計測した位置から基準位置Oに計測ユニット12A,12Bを移動させ、基準位置検出センサSOにより基準位置Oが検出された後に計測ユニット12A,12Bを両眼ER,ELのうち他方の眼の側に移動させ、他方の眼の前眼部の画像を取得し、前眼部の画像により他方の眼の虹彩の縁の位置を検知し、虹彩の縁の位置から他方の眼の角膜の中心位置を検知し、計測ユニット12A,12Bの主光軸O1が虹彩の縁の位置から角膜の中心位置に向かうように計測ユニット12A,12Bを所定距離dだけ移動させて、さらにオートアラインメント手段によるアラインメントを実行する。

Description

眼科用計測装置
 本発明は、被検眼の眼屈折力や眼圧を計測する眼科用計測装置の改良に関する。
 従来から、被検眼の眼屈折力や眼圧を計測する眼科用計測装置が知られている。
 このような眼科用計測装置として、被検者の両眼の眼屈折力や眼圧などの眼特性をそれぞれ順次計測する計測ユニットと、計測ユニットを支持するベース部と、ベース部に対して計測ユニットを三次元的に移動させる駆動手段と、駆動手段を制御する制御手段と、制御手段により駆動手段を制御することによって被検者の何れか一方の眼に対して計測ユニットの位置を自動的にアラインメントするオートアラインメント手段とを備えたものが知られている。
 また、このような眼科用計測装置において、ベース部に対する計測ユニットの水平方向の基準位置が設定され、さらに、この基準位置を検出する基準位置検出センサが備えられており、両眼のうち一方の眼の眼特性の計測が終了した後に、他方の眼の眼特性の計測を行うために、制御手段が、計測ユニットを、一方の眼を計測した位置から他方の眼の眼特性を計測する位置に移動させて、計測ユニットの主光軸が他方の眼に自動的にアラインメントされるように構成したものも知られている(例えば、特許文献1参照)。
特許第3610133号
 ところで、従来例の眼科用計測装置では、まず、計測しようとする一方の眼に、計測ユニットを移動させ、計測ユニットの被検眼に対するオートアラインメントを実行し、その後、上記一方の眼の眼特性の計測を行う。
 そして、この一方の眼の計測実行時に、水平方向の基準位置から上記一方の眼までの計測ユニットの移動距離を取得して、他方の眼の側に計測ユニットを移動させる際に、この移動距離の2倍の移動距離だけ一方の眼を計測した位置から計測ユニットを移動させ、その位置で他方の眼に対する計測ユニットのオートアラインメントを実行する。
 この従来の眼科用計測装置では、図1のビューA、ビューBに示すように、被検者1の顔が計測ユニットに対して真っ直ぐ向けられ、かつ、左右の眼EL、ERが計測ユニットの水平方向の基準位置Oに対して等距離にある場合には、例えば、水平方向の基準位置Oから距離L1だけ右眼ERに移動させて右眼ERの眼特性の計測を行い、左眼ELの眼特性の計測に移行する際に、この移動距離の2倍の移動距離2×L1だけ右眼ERを計測した位置から計測ユニットを移動させる。
 このように、左眼ELの眼特性の角膜中心位置の近傍に計測ユニットの主光軸O1が位置することになるので、右眼ERの眼特性の計測から左眼ELの眼特性の計測までの一連の作業を迅速に行うことができる。
 これに対して、図2のビューA、図2のビューBに示すように、被検者1の額が額当て2に対して斜めに当たり、被検者1の顔が計測ユニットに対して斜めに傾いている場合には、右眼ERから水平方向の基準位置Oまでの距離L2と左眼ELから水平方向の基準位置Oまでの距離L3とが異なる。
 このため、左眼ELの眼特性の計測に移行するのに、単に、計測ユニットを、右眼ERを計測した位置からその移動距離の2倍の移動距離2×L2だけ移動したのでは、水平方向の基準位置Oが被検者の左眼ELの角膜頂点から大きくずれることがあり、右眼ERの眼特性の計測から左眼ELの眼特性の計測までの一連の作業を迅速に行うことができない可能性がある。
 また、図3のビューA、ビューBに示すように、水平方向の基準位置O(額当て2の左右方向の中央位置O´)に対して右眼ERの側に偏って被検者1の額が当接している場合にも、右眼ERの眼特性の計測から左眼ELの眼特性の計測までの一連の作業を迅速に行うことができない可能性がある。
 さらに、一方の眼の眼特性の計測から他方の眼の眼特性の計測に移行するために、一方の眼を計測した位置から計測ユニットを予め定めた距離だけ他方の眼に移動させる構成の眼科用計測装置にも同様の問題が生じる。
 従来の眼科用計測装置では、このような場合には、やむなく、検者がコントロールレバーを操作して、前眼部を観察しつつ、計測する眼の角膜中心近傍に大まかに主光軸を合わせて、その後、オートアラインメントを実行させていた。
 本発明の目的は、一方の眼の眼特性の計測から他方の眼の眼特性の計測への移行を迅速に行うことのできる眼科用計測装置を提供することにある。
 本発明に係わる眼科用計測装置は、被検者の両眼の眼特性をそれぞれ順次計測する計測ユニットと、該計測ユニットを支持するベース部と、該ベース部に対して前記計測ユニットを三次元的に移動させる駆動手段と、該駆動手段を制御する制御手段と、該制御手段により前記駆動手段を制御することによって前記被検者の何れか一方の眼に対して前記計測ユニットの位置を自動的にアラインメントするオートアラインメント手段と、を備えた眼科用計測装置において、前記ベース部に対する前記計測ユニットの水平方向の基準位置が設定され、さらに、該基準位置を検出する基準位置検出センサが備えられ、前記両眼のうち一方の眼の眼特性の計測が終了した後に、前記制御手段が、該一方の眼の眼特性を計測した位置から前記基準位置に前記計測ユニットを移動させ、前記基準位置検出センサにより前記基準位置が検出された後に前記計測ユニットを前記両眼のうち他方の眼の側に移動させ、該他方の眼の前眼部の画像を取得し、該前眼部の画像により前記他方の眼の虹彩の縁の位置を検知し、該虹彩の縁の位置から前記他方の眼の角膜の中心位置を検知し、前記計測ユニットの主光軸が前記虹彩の縁の位置から前記角膜の中心位置に向かうように該計測ユニットを所定距離だけ移動させて、さらに、前記オートアラインメント手段によるアラインメントを実行することを特徴としている。
 本発明によれば、一方の眼の眼特性の計測から他方の眼の眼特性の計測までの一連の作業を自動的に迅速に行うことができる。
従来の眼科用計測装置の計測の一例を説明する図であって、ビューAは被検者の顔が額当てに正しく当っている状態を真上から見た図であり、ビューBは被検者の顔が額当てに正しく当っている状態を正面から見た図である。 従来の眼科用計測装置の計測の不具合の一例を説明する図であって、ビューAは被検者の顔が額当てに斜めに当っている状態を真上から見た図であり、ビューBは被検者の顔が額当てに斜めに当っている状態を正面から見た図である。 従来の眼科用計測装置の計測の不具合の他の例を説明する図であって、ビューAは被検者の顔が額当ての中心に対して横にずれている状態を真上から見た図であり、ビューBは被検者の顔が額当ての中心に対して横にずれている状態を正面から見た図である。 本発明に係わる眼科用計測装置の外観の一例を示す斜視図である。 図4に示すベース部内に配置されている移動機構の一例を示す斜視図である。 図4に示す眼科用計測装置の概略側面図である。 図6に示す眼屈折力用計測ユニットの光学系の一例を示す図である。 図6に示す信号処理部の一例を示すブロック図である。 本発明に係わる虹彩検出の一例を示す図であって、セクションAは液晶ディスプレイに映っている前眼部の像を示す図であり、セクションBはセクションAに示す走査線による検出信号のレベルの説明図である。 アラインメント完了の有無の判断を説明する説明図であって、アラインメントマーク内にアラインメント輝点像が位置している状態を示す説明図である。 本発明に係わる眼科用計測装置の作用の一例を説明するフローチャートである。
 以下に、本発明に係わる眼科用計測装置の発明の実施の形態を、図面を参照しつつ説明する。
 図4は本発明に係わる眼科用計測装置の外観図である。
 この図4において、符号10は本実施例の眼科用計測装置である。
 眼科用計測装置10は、ベース部11、眼科用の測定ヘッド12、液晶ディスプレイ13、コントロールレバー14、計測開始スイッチ15、顎受け16、額当て17を有している。
 その液晶ディスプレイ13は検者側に設けられ、顎受け16、額当て17は被検者側に設けられている。
 本発明の眼科用計測装置10では、被検者の顎を顎受け16に載せ、額を額当て17に当接させた状態で計測を行う。
 測定ヘッド12は、ベース部11に対して上下方向(Y方向)・前後方向(Z方向)・左右方向(X方向)に移動可能な構成とされている。
 このような測定ヘッド12の移動は、後述する移動機構によって行われる。
 液晶ディスプレイ13には、被検眼の前眼部の像等の画像や計測結果等が表示される。
 また、コントロールレバー14は、測定ヘッド12を手動で移動させる際に使用される。
 図4において、符号11は本発明の眼科用計測装置のベース部である。
 ベース部11のケースの内部には、測定ヘッド12を三次元的に移動させる図5に示すような移動機構が備えられている。
 移動機構は、底板20と、底板20に対して上下方向(図5に示すY方向)に移動するステージ24と、ステージ24に対して前後方向(図5に示すZ方向)に移動するステージ26と、ステージ26に対して左右方向(図5に示すX方向)に移動するステージ29とによって構成されている。
 底板20の上面には、支持部21と、モータ23(駆動手段)とが固定されており、ステージ24は、その下側に支柱22を有している。
 ステージ24の支柱22は、支持部21を構成する前後左右四方の縦壁によって取り囲まれており、支持部21によって上下動可能に支持されている。
 モータ23(駆動手段)と支柱22との間には、図示を略す駆動力伝達機構が備えられており、モータ23(駆動手段)を駆動することにより、ステージ24の支柱22が上下方向に移動するように構成されている。
 また、ステージ24には、モータ27(駆動手段)と、一対の前後方向移動用のレール25,25とが設けられており、これらのレール25,25には前後方向に可動なステージ26が設けられている。
 ステージ24とステージ26との間には、図示を略す駆動力伝達機構が備えられており、モータ27(駆動手段)を駆動することにより、ステージ26が前後方向に移動するように構成されている。
 また、ステージ26には、モータ30(駆動手段)と、一対の左右方向移動用のレール28,28とが設けられており、これらのレール28,28には左右方向に可動なステージ29が設けられている。
 ステージ26とステージ29との間には、図示を略す駆動力伝達機構が備えられており、モータ30(駆動手段)を駆動することにより、ステージ29が左右方向に移動するように構成されている。
 ところで、本実施例の眼科用計測装置10では、ステージ26に対するステージ29の可動範囲の中央位置に基準位置Oを設定する。
 そして、さらに、ステージ26に、この基準位置Oを検出するための基準位置検出センサSOを設けている。
 基準位置検出センサSOとしては、例えば、フォトカプラなどを利用してもよい。
 この基準位置検出センサSOの役割については後述する。
 測定ヘッド12には、図6に模式的に示すように、眼屈折力用の計測ユニット12Aと眼圧用の計測ユニット12Bとが設けられている。
 眼屈折力用の計測ユニット12Aは、被検眼Eの眼屈折力(球面度数、乱視度数、乱視軸角度等)を計測する際に用いられ、眼圧用の計測ユニット12Bは、被検眼Eの眼圧を計測する際に用いられる。
 眼屈折力用の計測ユニット12Aは、例えば、眼圧用の計測ユニット12Bの上部に設けられている。
 〔眼屈折力用の計測ユニット12Aの構成〕
 眼屈折力用の計測ユニット12Aは、図7に示す光学系を有している。
 この光学系は図示を略すケース内にコンパクトに配置されている。
 図7において、符号41は被検眼Eを固視・雲霧させる視標を、眼底Erに投影する固視標用の投影光学系、符号42は被検眼Eの前眼部Efを観察する観察用の光学系、符号43は照準スケールをCCD44に投影するスケール用の投影光学系、符号45は被検眼Eの屈折力を計測するパターン光束を眼底Erに投影するパターン光束用の投影光学系、符号46は眼底Erから反射された光束をCCD44に受光させる受光用の光学系、符号47は光軸と垂直な方向のアラインメント状態を検出する指標光を被検眼の側に投影するアラインメント光用の投影光学系、符号48は被検眼Eと測定ヘッド12との間の作動距離を検出する作動距離検出用の光学系、符号49は信号処理部となっている。
 なお、パターン光束用の投影光学系45、受光用の光学系46は、眼屈折力計測用の光学系を構成している。
 固視標用の投影光学系41は、光源51、コリメータレンズ52、指標板53、リレーレンズ54、ミラー55、リレーレンズ56、ダイクロイックミラー57、ダイクロイックミラー58、対物レンズ59を備えている。
 光源51から放射された可視光は、コリメータレンズ52によって平行光束とされた後、指標板53を透過する。
 指標板53には、被検眼Eを固視・雲霧させるターゲットが設けられている。
 そのターゲット光束は、リレーレンズ54を透過してミラー55により反射され、リレーレンズ56を経てダイクロイックミラー57に導かれ、かつ、このミラー55により反射されて光学系の主光軸O1に導かれ、ダイクロイックミラー58を透過した後、対物レンズ59を経て被検眼Eに導かれる。
 光源51、コリメータレンズ52、指標板53は、指標ユニットU10を構成し、指標ユニットU10は、被検眼Eを固視・雲霧させるために、モータPM1によって、固視標用の投影光学系41の光軸O2に沿って一体に移動可能とされている。
 観察用の光学系42は、照明用の光源61、対物レンズ59、ダイクロイックミラー58、絞り61´を有するリレーレンズ62、ミラー63、リレーレンズ64、ダイクロイックミラー65、結像レンズ66、CCD44を有している。
 照明用の光源61から放射された照明光束は、被検眼Eの前眼部Efを照明する。
 前眼部Efで反射された照明光束は、対物レンズ59を経てダイクロイックミラー58に反射され、リレーレンズ62の絞り61´を通過し、ミラー63により反射された後、リレーレンズ64、ダイクロイックミラー65を透過して、結像レンズ66によりCCD44に導かれ、CCD44の撮像面に後述する前眼部の像が形成される。
 スケール用の投影光学系43は、光源71、照準スケールを有するコリメータレンズ72、リレーレンズ73、ダイクロイックミラー58、絞り61´を有するリレーレンズ62、ミラー63、リレーレンズ64、ダイクロイックミラー65、結像レンズ66、CCD44を有している。
 光源71から放射された光束は、コリメータレンズ72を透過する際に平行光束とされ、リレーレンズ73、ダイクロイックミラー58、絞り61´を有するリレーレンズ62を経て、ミラー63により反射され、リレーレンズ64、ダイクロイックミラー65を経て、結像レンズ66によってCCD44に結像される。
 CCD44からの映像信号は、信号処理部49を介して液晶ディスプレイ13に入力され、液晶ディスプレイ13に前眼部の像Ef´が表示されると共に、アラインメントマークALM1、ALM2が表示される。
 なお、アラインメント完了後の屈折力計測時には、光源61、71は消灯される。
 パターン光束用の投影光学系45は、光源81、コリメータレンズ82、円錐プリズム83、リング指標板84、リレーレンズ85、ミラー86、リレーレンズ87、穴空きプリズム88、ダイクロイックミラー57、ダイクロイックミラー58、対物レンズ59を備えている。
光源81とリング指標板84とは光学的に共役であり、リング指標板84と被検眼Eの瞳孔EPとは光学的に共役な位置に配置されている。
 また、光源81、コリメータレンズ82、円錐プリズム83、リング指標板84は、指標ユニットU40を構成し、この指標ユニットU40は、モータPM2により光軸O3に沿って進退移動される。
 光源81から放射された光束は、コリメータレンズ82によって平行光束とされ、円錐プリズム83を透過して、リング指標板84に導かれる。
 このリング指標板84に形成されたリング状のパターン部分を透過してパターン光束となる。
 このパターン光束は、リレーレンズ85を透過した後、ミラー86により反射され、リレーレンズ87を透過して穴空きプリズム88の反射面によって反射され、主光軸Olに沿ってダイクロイックミラー57に導かれ、このダイクロイックミラー57、58を透過した後、対物レンズ59により眼底Erに結像される。
 受光用の光学系46は、対物レンズ59、ダイクロイックミラー58、57、穴空きプリズム88の穴部88a、リレーレンズ91、ミラー92、リレーレンズ93、ミラー94、合焦レンズ95、ミラー96、ダイクロイックミラー65、結像レンズ66、CCD44を有している。
 合焦レンズ95は、指標ユニットU40と連動して、光軸O4に沿って移動可能とされている。
 パターン光束用の投影光学系45によって眼底Erに導かれ、かつ、この眼底Erで反射された反射光束は、対物レンズ59により集光され、ダイクロイックミラー58、57を透過し、穴空きプリズム88の穴部88aへと導かれ、この穴部88aを通過する。
 この穴部88aを通過したパターン反射光束は、リレーレンズ91を透過してミラー92によって反射され、リレーレンズ93を透過してミラー94により反射され、合焦レンズ95を透過してミラー96、ダイクロイックミラー65により反射され、結像レンズ66によってCCD44に導かれる。
 これにより、CCD44にパターン像が結像される。
 アラインメント光用の投影光学系47は、LED101、ピンホール102、コリメートレンズ103、ハーフミラー104を備え、被検眼Eの角膜Cに向けてアラインメント用の指標光束を投影する機能(オートアラインメント手段)を有している。
 被検眼Eに向けて平行光として投影されたアラインメント用の指標光束は、被検眼Eの角膜Cにおいて反射され、観察用の光学系42によりCCD44上にアラインメント指標像Tが投影される。
 アラインメント指標像TがアラインメントスケールALM1内に位置すると、アラインメント完了と判断される。
 作動距離検出用の光学系48は、被検眼Eと測定ヘッド12との間の作動距離を検出するオートアラインメント手段としての機能を有している。
 この作動距離検出用の光学系48は、有限距離から指標を投影する有限距離指標用の投影光学系102R、102Lをそれぞれ主光軸O1に関して左右対称に有している。
 有限距離から指標を投影する有限距離指標用の投影光学系102R、102Lは光源102aからの光束を指標光束として被検眼Eに左右の斜めから投影する。
 これらの2つの有限距離指標用の投影光学系102R、102Lからの指標光束は、被検眼Eの角膜Cで反射されて、観察用の光学系42によりCCD44上に結像される。
 信号処理部49は、このCCD44からの出力に基づいて、有限距離指標用の投影光学系102R、102Lからの指標光束による指標像102R´、102L´が液晶ディスプレイ13に表示される。
 なお、CCD44上には指標像´102R´、102L´と同じ指標像が結像されている。
 これらの指標像がCCD44上で一定の位置関係になった場合、作動距離が計測に適した距離WOになったと検出される。
 信号処理部49は、図8に示すように、演算制御回路110、A/D変換器112、フレームメモリ113、D/A変換器114、D/A変換器115とからなる。
 この演算制御回路110は、CPU、ROM、RAM、入出力回路、コントロール回路等(図示せず)を有すると共に、移動制御手段と虹彩検出手段と眼特性を計測・算出する演算手段とを兼用しており、演算結果等はRAMに記憶される。
 演算制御回路110は、フレームメモリ113、A/D変換器112を介してCCD44に接続されていると共に、D/A変換器115を介して液晶ディスプレイ13に接続されている。
 CCD44は、A/D変換器112、フレームメモリ113、D/A変換器114を介して液晶ディスプレイ13に接続されている。
 演算制御回路110は、パルスモータPM1、PM2を移動制御すると共に、モータ23、27、30を移動制御する。
 これにより、計測ユニットがX、Y、Z方向に移動される。
 また、演算制御回路110は、各種光源51、61、71、81、102a、LED101の点灯制御を行うため、図示を略すドライバに接続されている。
 演算制御回路110は、CCD44に受光されたアラインメント指標像T、指標像102R´、102L´の受光位置を算出して、この演算結果に基づき、主光軸O1と被検眼Eの光軸との間のズレ量Δxy、適正作動距離WOからのズレ量Δzを演算する。
 また、演算制御回路110は、ズレ量Δxy、Δzが、閾値Δxy0、Δz0以下となった場合には、光源81を発光させる移動信号を出力する。
 閾値Δxy0、Δz0は信号処理部49のRAM(図示を略す)に記憶されている。
 すなわち、演算制御回路110は被検眼Eに対して測定ヘッド12を自動的にアラインメントするオートアラインメント手段として機能する。
 ここでは、眼屈折力用の計測ユニット12Aの主光軸O1が被検眼Eに対してアラインメントされる。
 すなわち、電源スイッチがONにされると、演算制御回路110は光源61、71、作動距離検出用の光学系の各光源102aを点灯させる。
 検者は、図7に示すように、液晶ディスプレイ13に映し出された前眼部の像Ef´に基づき、被検眼Eの瞳孔EPがアラインメントマークALM2に位置するように、コントロールレバー14を操作する。
 これにより、概略のアラインメントが行なわれる。
 この概略のアラインメントが終了すると、アラインメント指標像T、指標像102R´、102L´が液晶ディスプレイ13の画面に映し出される。
 この後、アラインメント光用の投影光学系47、作動距離検出用の光学系48に基づくアラインメント検出が開始される。
 これにより、測定ヘッド12がX,Y,Z方向に移動され、オートアラインメント調整が開始される。
 すなわち、測定ヘッド12は、その被検眼Eに対するズレ量Δxy、ΔzがそれぞれΔxy0、Δz0以下となるようにX、Y、Z方向に移動制御される。
 これにより、アラインメント指標像TがアラインメントマークALM1内に位置すると、被検眼Eの角膜Cの頂点に対するオートアラインメントが完了する。
 このオートアラインメントが完了すると、被検眼Eが正視眼であると仮定した場合の眼底共役位置にリング指標板84が位置するようにユニットU40が移動されて光源81が発光される。
 これにより、被検眼Eの眼底Erに眼屈折力計測用のパターン光束が投影され、その結果、CCD44上にパターン像が結像される。
 CCD44からの映像信号は、AD変換器112によりデジタル値に変換され、フレームメモリ113に記憶される。
 演算制御回路110は、フレームメモリ113に記憶された画像データに基づき、パターン像を2値化処理により抽出する。
 これにより、眼屈折力としての球面度数、円柱度数、軸角度が周知の手法により計測される。
 この眼屈折力用の計測ユニットの構成は特開2002-253506号公報に開示のものと同一であるが、この構成に限られるものではない。
 ここでは、このようにして、右眼ERの眼特性の眼屈折力の計測が実行されたものとして、次に、左眼の計測を行う場合について説明する。
 信号処理部49は、右眼RLの計測終了後、モータ30を駆動し、自動的に、測定ヘッド12を左方向に移動させる。
 演算処理回路110は、ベース部11に対する左右方向に可動なステージ29の水平方向の基準位置Oが基準位置検出センサSOにより検出されると、以下に、説明する虹彩縁検出処理を実行する。
 測定ヘッド12が右眼ERから左眼ELに向かう方向に移動されると、液晶ディスプレイ13に映っている画像が変化し、図9に示すように、液晶ディスプレイ13の画面に左眼ELの眼特性の一部が映し出される。
 信号処理部49(制御手段)は、基準位置検出センサSOによる水平方向の基準位置Oの検出と同時に、虹彩の縁を検出する処理を行う。
 すなわち、信号処理部49は、走査線Lmによる信号Sのレベル検出処理を実行する機能を有している。
 信号処理部49は、図9のセクションA、図9のセクションBに示すように、前眼部Efの走査線Lmによる走査を実行する。
 検出信号Sのレベルは、前眼部EFの皮膚に相当する部分の検出信号SのレベルS1よりも強膜Ejに相当する部分の検出信号SのレベルS2が高く、虹彩Eiに相当する部分の検出信号SのレベルS3は検出信号SのレベルS1よりも低く、瞳孔Epに相当する部分の検出信号SのレベルS4は最も低い。
 信号処理部49は、検出信号Sのレベルを閾値SL1´と比較して強膜Ejと虹彩Eiとの縁Ei´を検出する。
 信号処理部49は、縁Ei´の検出結果に基づいて計測ユニットを縁Ei´が検出された位置から左眼ELの眼特性の瞳孔Epに向かって所定距離d(例えば、d=2.5mm)だけ移動させる処理を行う。
 これにより、測定ヘッド12の主光軸O1がアラインメントマークALM2内になる。
 信号処理部49は、図10に示すように、アラインメント輝点像TがアラインメントマークALM1の範囲内に入るようにモータ23、27、30を制御する。
 眼圧用の計測ユニット12Bの構成は、従来の非接触式眼圧計と同様の構成であるので、その詳細な説明は省略する(例えば、特開2002-102170号公報参照)。
 〔作用〕
 以下、本発明に係わる眼科用計測装置の作用を図11に示すフローチャートを参照しながら説明する。
 右眼ERとしての眼屈折力の計測が終了したものとする(S.1)。
 計測ユニットは右眼ERの眼特性の眼屈折力の計測後に他方の眼に移動される(S.2)。
 基準位置検出センサSOが水平方向の基準位置Oを検出するまで(S.3)、計測ユニットは右眼ERから左眼ELに向かって移動される。
 基準位置検出センサSOが水平方向の基準位置Oを検出すると、信号処理部49は前眼部の像Ef´を取得し(S.4)、信号処理部49は虹彩Eiの縁Ei´の有無を判断する(S.5)。
 計測ユニットは、虹彩Eiの縁Ei´が検出されるまで、引き続き右眼ER側から左眼EL側に移動される(S.6)。
 信号処理部49は、虹彩Eiの縁Ei´が検出されると、虹彩Eiの縁Ei´から所定距離(2.5mm)引き続き同方向に計測ユニットを移動するようにモータ30を制御する(S.7)。
 信号制御部49は、その計測ユニットの所定距離だけ移動後、アラインメント光用の投影光学系47のLED71、作動距離検出用の光学系102の光源102aを点灯させる(S.8)。
 ついで、信号処理部49は、被検眼Eの角膜Cの頂点に計測ユニットの光学系の主光軸O1が一致するように計測ユニットを移動させる(S.9,S.9´)。
 信号処理部49は、計測ユニットの主光軸O1がアラインメントマークALM1の範囲内に位置したとき、アラインメントOKとして、眼屈折力の計測を実行し(S.10)、これにより、左眼ELとしての眼屈折力の計測が終了する(S.11)。
 以上、この発明の実施の形態では、眼屈折力、眼圧の計測を行う眼科用計測装置について説明したが、本発明は、これに限るものでなく、例えば、眼屈折力の計測を行う眼科用計測装置、眼圧の計測のみを行う眼科用計測装置、角膜曲率半径の計測を行う眼科用計測装置等にも適用できる。

Claims (3)

  1.  被検者の両眼の眼特性をそれぞれ順次計測する計測ユニットと、
     該計測ユニットを支持するベース部と、
     該ベース部に対して前記計測ユニットを三次元的に移動させる駆動手段と、
     該駆動手段を制御する制御手段と、
     該制御手段により前記駆動手段を制御することによって前記被検者の何れか一方の眼に対して前記計測ユニットの位置を自動的にアラインメントするオートアラインメント手段と、
    を備えた眼科用計測装置において、
     前記ベース部に対する前記計測ユニットの水平方向の基準位置が設定され、
     さらに、該基準位置を検出する基準位置検出センサが備えられ、
     前記両眼のうち一方の眼の眼特性の計測が終了した後に、
     前記制御手段が、
     該一方の眼の眼特性を計測した位置から前記基準位置に前記計測ユニットを移動させ、
     前記基準位置検出センサにより前記基準位置が検出された後に前記計測ユニットを前記両眼のうち他方の眼の側に移動させ、
     該他方の眼の前眼部の画像を取得し、
     該前眼部の画像により前記他方の眼の虹彩の縁の位置を検知し、
     該虹彩の縁の位置から前記他方の眼の角膜の中心位置を検知し、
     前記計測ユニットの主光軸が前記虹彩の縁の位置から前記角膜の中心位置に向かうように該計測ユニットを所定距離だけ移動させて、
     さらに、前記オートアラインメント手段によるアラインメントを実行することを特徴とする眼科用計測装置。
  2.  前記眼特性が眼屈折力であることを特徴とする請求項1に記載の眼科用計測装置。
  3.  前記眼特性が眼圧であることを特徴とする請求項1に記載の眼科用計測装置。
PCT/JP2009/070419 2008-12-08 2009-12-04 眼科用計測装置 WO2010067764A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP09831868A EP2356937A1 (en) 2008-12-08 2009-12-04 Ophthalmic measurement device
US13/133,279 US20110242488A1 (en) 2008-12-08 2009-12-04 Ophthalmic measurement apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-311812 2008-12-08
JP2008311812A JP5292079B2 (ja) 2008-12-08 2008-12-08 眼科装置

Publications (1)

Publication Number Publication Date
WO2010067764A1 true WO2010067764A1 (ja) 2010-06-17

Family

ID=42242752

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/070419 WO2010067764A1 (ja) 2008-12-08 2009-12-04 眼科用計測装置

Country Status (4)

Country Link
US (1) US20110242488A1 (ja)
EP (1) EP2356937A1 (ja)
JP (1) JP5292079B2 (ja)
WO (1) WO2010067764A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5220155B2 (ja) * 2011-03-31 2013-06-26 キヤノン株式会社 眼科装置および眼科装置の制御方法
JP2014079494A (ja) * 2012-10-18 2014-05-08 Canon Inc 眼科装置および眼科制御方法並びにプログラム
JP6349701B2 (ja) * 2013-11-29 2018-07-04 株式会社ニデック 眼科測定装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1071122A (ja) * 1996-06-28 1998-03-17 Nidek Co Ltd 眼科装置
JPH1080397A (ja) * 1996-09-11 1998-03-31 Topcon Corp 眼科装置
JP2002102170A (ja) 2000-10-03 2002-04-09 Topcon Corp 眼科装置
JP2002253506A (ja) 2001-02-28 2002-09-10 Topcon Corp 眼屈折力測定装置
JP2004024471A (ja) * 2002-06-25 2004-01-29 Canon Inc 眼科装置
JP2004147825A (ja) * 2002-10-30 2004-05-27 Canon Inc 眼科装置
JP3610133B2 (ja) 1995-09-29 2005-01-12 キヤノン株式会社 眼科装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3610133B2 (ja) 1995-09-29 2005-01-12 キヤノン株式会社 眼科装置
JPH1071122A (ja) * 1996-06-28 1998-03-17 Nidek Co Ltd 眼科装置
JPH1080397A (ja) * 1996-09-11 1998-03-31 Topcon Corp 眼科装置
JP2002102170A (ja) 2000-10-03 2002-04-09 Topcon Corp 眼科装置
JP2002253506A (ja) 2001-02-28 2002-09-10 Topcon Corp 眼屈折力測定装置
JP2004024471A (ja) * 2002-06-25 2004-01-29 Canon Inc 眼科装置
JP2004147825A (ja) * 2002-10-30 2004-05-27 Canon Inc 眼科装置

Also Published As

Publication number Publication date
JP5292079B2 (ja) 2013-09-18
US20110242488A1 (en) 2011-10-06
EP2356937A1 (en) 2011-08-17
JP2010131286A (ja) 2010-06-17

Similar Documents

Publication Publication Date Title
US7470025B2 (en) Ophthalmic apparatus
JP5955193B2 (ja) 眼科装置および眼科装置の制御方法並びにプログラム
EP2415393B1 (en) Ophthalmic apparatus
JP3970141B2 (ja) 非接触式眼圧計
KR20140016167A (ko) 안과장치 및 얼라인먼트 방법
JP4267133B2 (ja) 眼屈折力測定装置
US7219999B2 (en) Device for measuring optical characteristic of eye
WO2010067764A1 (ja) 眼科用計測装置
WO2014115659A1 (ja) 眼科装置
JP2013022122A (ja) 眼特性の測定方法及び眼科装置
JP5916301B2 (ja) 検眼装置
KR102039195B1 (ko) 비접촉식 안압계
JP5643662B2 (ja) 眼科装置
JPH11137523A (ja) 眼科装置
JPH0810225A (ja) 眼科装置
JP5924219B2 (ja) 非接触式眼圧計
JPH07231875A (ja) 検眼装置
JP5916333B2 (ja) Zアラインメント装置と眼科装置
JP5749500B2 (ja) 眼科装置
JP2001275985A (ja) 眼科装置
JP4478672B2 (ja) 非接触式眼圧計
JP3895007B2 (ja) 眼科装置
JP2023146882A (ja) 眼科装置及び非接触式センサ動作確認方法
JP2006334441A (ja) 非接触式眼圧計
JP5924220B2 (ja) 非接触式眼圧計

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09831868

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13133279

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009831868

Country of ref document: EP