WO2010067539A1 - 空調システム - Google Patents

空調システム Download PDF

Info

Publication number
WO2010067539A1
WO2010067539A1 PCT/JP2009/006534 JP2009006534W WO2010067539A1 WO 2010067539 A1 WO2010067539 A1 WO 2010067539A1 JP 2009006534 W JP2009006534 W JP 2009006534W WO 2010067539 A1 WO2010067539 A1 WO 2010067539A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
air conditioning
temperature
conditioning system
cooling
Prior art date
Application number
PCT/JP2009/006534
Other languages
English (en)
French (fr)
Inventor
伊能利郎
池上豊
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Publication of WO2010067539A1 publication Critical patent/WO2010067539A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/044Systems in which all treatment is given in the central station, i.e. all-air systems
    • F24F3/0442Systems in which all treatment is given in the central station, i.e. all-air systems with volume control at a constant temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/0008Control or safety arrangements for air-humidification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/77Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/001Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems in which the air treatment in the central station takes place by means of a heat-pump or by means of a reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/153Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification with subsequent heating, i.e. with the air, given the required humidity in the central station, passing a heating element to achieve the required temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to an air conditioning system that includes an inflatable air conditioning means and a direct expansion air conditioning means for air conditioning in the same room.
  • an air-conditioning system including a plurality of air-conditioning means for air-conditioning a plurality of areas in the same room.
  • the air conditioning system of Patent Document 1 includes a first humidity control device that humidifies an indoor perimeter zone, a second humidity control device that humidifies an indoor interior zone, a first air conditioner that heats and cools an indoor perimeter zone, And a second air conditioner for cooling and heating the interior zone of the room.
  • the first air conditioner which is provided with a refrigerant circuit in which the refrigerant circulates and performs a vapor compression refrigeration cycle.
  • an inflatable type such as a chiller is often used.
  • the second air conditioner increases the chilled water supply temperature in response to a decrease in the cooling load in the interior zone.
  • the energy saving performance of the heat source can be improved, in the first air conditioner, the evaporating temperature is controlled at a constant level and does not cope with the fluctuation of the cooling load. Therefore, there is room for improving the energy saving performance of the entire system.
  • the present invention has been made in view of such a point, and an object of the present invention is to cool the first zone with an inflatable first air conditioner and to directly expand the second zone in the same room as the first zone.
  • an air conditioner When cooling with an air conditioner, it is possible to cope with fluctuations in the cooling load and to improve energy saving.
  • the first aspect of the invention includes a first air conditioning unit (5) provided with a cooling unit (22) that is supplied with a cooling liquid and heat-exchanges the cooling liquid and air to cool the air, and a vapor compression refrigeration cycle.
  • An air conditioning system that performs air conditioning in the first zone and the second zone in the room is assumed.
  • the air conditioning system of this invention is the said 1st air conditioning part (5) according to the cooling load of the said 1st air conditioning part (5).
  • the controller (50) which changes the setting value of the evaporation temperature of the refrigerant in the air conditioning unit (6) is provided.
  • the first zone is cooled and heated by the first air conditioning unit (5)
  • the second zone is cooled and heated by the second air conditioning unit (6).
  • the evaporation temperature set value of the second air conditioning unit (6) is changed according to the cooling load of the first air conditioning unit (5).
  • the cooling load of the first air conditioning unit (5) decreases
  • the evaporation temperature set value of the second air conditioning unit (6) is increased.
  • the supply air temperature rises in the second zone. That is, in the present invention, the evaporating temperature set value of the second air conditioning unit (6) is changed in conjunction with the change in the cooling load of the first zone.
  • the first air conditioning unit (5) is configured to cool the cooling unit (22) so that the cooling temperature of the air by the cooling unit (22) becomes a predetermined value.
  • the flow rate adjusting valve (26) for adjusting the liquid supply amount and the air supply amount from the cooling section (22) to the first zone according to the temperature difference between the temperature of the first zone and the set temperature thereof And an air volume adjusting section (14) to perform.
  • the controller (50) changes the set value of the evaporation temperature of the refrigerant in the second air conditioning unit (6) according to the opening of the flow rate adjusting valve (26).
  • the air from the cooling section (22) to the first zone Supply is reduced.
  • the amount of air in the cooling section (22) is also reduced by the reduced amount, and the cooling temperature of the air by the cooling section (22) is lowered. If it does so, the opening degree of a flow regulating valve (26) will be reduced so that the cooling temperature of air may be raised to a predetermined value, and the supply amount of the cooling fluid to a cooling part (22) will be reduced. Then, the evaporation temperature set value of the second air conditioning unit (6) is increased by a predetermined amount according to the opening degree of the flow rate adjusting valve (26) after the decrease.
  • the second air conditioning unit (6) when both the first air conditioning unit (5) and the second air conditioning unit (6) perform the cooling operation, the second air conditioning unit (6) according to the cooling load of the first air conditioning unit (5).
  • the evaporating temperature setting value was changed. Therefore, when the cooling load of the first air conditioning unit (5) decreases, the evaporating temperature set value can be increased.
  • the COP coefficient of performance
  • the cooling load of the first zone decreases, relatively low temperature air continues to be supplied in the second zone unless the evaporating temperature set value of the second air conditioning unit (6) is increased or changed. Then, the low-temperature air flows into the first zone, and comfort is impaired by the draft in the first zone.
  • the evaporating temperature set value is increased and changed, the supply air temperature in the second zone rises. Thereby, the inflow of air from the second zone to the first zone can be prevented, and comfort can be improved.
  • FIG. 1 is a piping system diagram illustrating an overall configuration of an air conditioning system according to an embodiment.
  • FIG. 2 is a flowchart showing the control operation of the first operation pattern.
  • FIG. 3 is a flowchart showing the control operation of the second operation pattern.
  • FIG. 4 is a flowchart showing the control operation of the third operation pattern.
  • the air conditioning system (1) of the present embodiment is for air conditioning an office room, for example.
  • the air conditioning system (1) includes an interior air conditioning system (5), a perimeter air conditioning system (6), and a controller (50).
  • the interior air conditioning system (5) and the perimeter air conditioning system (6) perform air conditioning of the interior zone and the perimeter zone, respectively. That is, the air conditioning system (1) of the present embodiment includes a plurality of air conditioning systems that air-condition different areas in the same space.
  • the interior air conditioning system (5) and the perimeter air conditioning system (6) constitute a first air conditioning unit and a second air conditioning unit according to the present invention, respectively.
  • the air supply system (10) includes an air supply channel (11) and an air conditioner (20).
  • the air supply channel (11) receives outdoor air from one end that is an inflow end, and is supplied to the interior zone from the other end that is an outflow end.
  • the other end of the air supply channel (11) is branched into a plurality (two in this embodiment) and connected to the room.
  • variable air volume device (14) is an air supply amount adjusting means including a damper and a wind speed sensor. That is, in the variable air volume device (14), the opening degree of the damper is adjusted based on the measured value of the wind speed sensor so that the air flow rate (air volume) of each air supply channel (11) becomes a set value.
  • the air conditioner (20) is provided downstream of the outside air damper (12) in the air supply passage (11).
  • a filter (21), a cold water coil (22), a hot water coil (23), a humidifier (24), and an air supply fan (25) are arranged in this order from the upstream side.
  • the filter (21) removes dust and the like in the passing air.
  • the cold water coil (22) is supplied with cold water and exchanges heat with air to cool the air, and constitutes a cooling unit according to the present invention.
  • the hot water coil (23) is supplied with hot water, exchanges heat with air, and heats the air.
  • the humidifier (24) is supplied with humidifying water and humidifies the air to a set humidity.
  • the amount of water supplied is adjusted by changing the opening degree of the flow rate adjusting valves (26, 27, 28).
  • the air supply fan (25) is configured to have a variable air volume by inverter control.
  • the air supply system (10) includes a temperature / humidity sensor (13) and a room temperature sensor (15).
  • the temperature / humidity sensor (13) is for detecting the temperature and humidity of the air, and is provided on the downstream side of the air conditioner (20) in the air supply passage (11).
  • the room temperature sensor (15) is for detecting the air temperature in the indoor perimeter zone.
  • water at a predetermined temperature cooled or heated by a heat source device such as a chiller is supplied to the cold water coil (22) and the hot water coil (23). And the cooling capability and heating capability in a chilled water coil (22) etc. are adjusted by the opening degree change of the flow regulating valve (26, 27) mentioned above.
  • the humidifier (24) is supplied with steam for humidification.
  • the interior air conditioning system (5) of the present embodiment cools or heats a heat medium (water) cooled or heated by a heat source machine to exchange heat with air. That is, the interior air conditioning system (5) is constituted by a so-called interstitial air conditioner.
  • the return air system (30) includes a return air channel (31).
  • the return air flow path (31) has one end that is an inflow end connected to an interior zone in the room and the other end that is an outflow end connected to the upstream side of the air conditioner (20). That is, in the return air system (30) of the present embodiment, the exhausted air in the interior zone is conditioned by the air conditioner (20) and then supplied to the interior zone again.
  • the return air flow path (31) is provided with a variable air volume device (33) and a temperature sensor (32).
  • the variable air volume device (33) opens the valve based on the measured value of the wind speed sensor so that the air flow rate (air volume) in the return air passage (31) is constant. Is adjusted.
  • the temperature sensor (32) is for detecting the air temperature, and is provided on the upstream side of the variable air volume device (33).
  • the perimeter air conditioning system (6) includes an outdoor unit (41) and an indoor unit (42).
  • the outdoor unit (41) and the indoor unit (42) constitute a so-called direct expansion refrigeration apparatus.
  • the outdoor unit (41) is provided with a compressor, an expansion mechanism, an outdoor heat exchanger, and an outdoor fan
  • the indoor unit (42) is provided with an indoor heat exchanger and an indoor fan.
  • the compressor, the outdoor heat exchanger, the expansion mechanism, and the indoor heat exchanger are connected by piping to form a refrigerant circuit.
  • the refrigerant is reversibly circulated to perform a vapor compression refrigeration cycle.
  • the outdoor heat exchanger In the outdoor heat exchanger, the outdoor air taken in by the outdoor fan exchanges heat with the refrigerant, and in the indoor heat exchanger, the indoor air in the perimeter zone taken in by the indoor fan exchanges heat with the refrigerant.
  • the cooling operation and the heating operation are switched by switching the refrigerant circulation direction of the refrigerant circuit.
  • the outdoor heat exchanger functions as a condenser and the indoor heat exchanger functions as an evaporator, and air cooled by the indoor heat exchanger is supplied to the perimeter zone.
  • the outdoor heat exchanger functions as an evaporator and the indoor heat exchanger functions as a condenser, and air heated by the indoor heat exchanger is supplied to the perimeter zone.
  • the controller (50) controls the interior air conditioning system (5) and the perimeter air conditioning system (6).
  • the controller (50) receives detection signals from the temperature / humidity sensor (13) and the temperature sensor (32) and an opening signal of the flow rate adjustment valve (26, 27, 28).
  • the controller (50) controls the air supply fan (25) and outputs a signal of the set air volume to the variable air volume device (14, 33).
  • the controller (50) is configured to change the evaporating temperature set value or the condensing temperature set value of the refrigerant in the indoor heat exchanger based on the operating state. Detailed control operation of the controller (50) will be described later.
  • the interior air conditioning system (5) is configured to be able to switch between a cooling operation, a heating operation, and a humidifying operation.
  • the perimeter air conditioning system (6) is configured to be switchable between a cooling operation and a heating operation.
  • the “first operation pattern” in which both the interior air conditioning system (5) and the perimeter air conditioning system (6) perform the cooling operation, and the interior air conditioning system (5) performs the humidifying operation and the perimeter air conditioning system.
  • outdoor air flows into the air conditioner (20).
  • outdoor air passes through the filter (21) and is then cooled by the cold water coil (22).
  • the cooled air sequentially passes through the hot water coil (23) and the humidifier (24) and flows out of the air conditioner (20), and is supplied to the indoor interior zone.
  • the interior zone is cooled.
  • the room air in the interior zone flows into the air conditioner (20) through the return air flow path (31) and merges with the outdoor air.
  • the combined air is cooled by the cold water coil (22) as described above, and then supplied to the interior zone. Note that the flow rate adjustment valves (27, 28) of the hot water coil (23) and the humidifier (24) are fully closed.
  • the indoor air in the perimeter zone is taken into the indoor unit (42), is cooled by exchanging heat with the refrigerant in the indoor heat exchanger, and then supplied to the perimeter zone. Thereby, the perimeter zone is cooled.
  • the refrigerant exchanges heat with room air and evaporates at the evaporation temperature set value.
  • the taken outdoor air exchanges heat with the refrigerant in the outdoor heat exchanger, and the refrigerant condenses.
  • the controller (50) performs a control operation as shown in FIG.
  • the controller (50) controls the variable air volume device (14) of the air supply system (10) (step ST1).
  • the damper opening degree is controlled so that the air volume is predetermined according to the temperature difference between the room temperature set value of the interior zone and the detected temperature of the room temperature sensor (15). .
  • the air volume of the variable air volume device (14) is determined to increase as the temperature difference increases.
  • the controller (50) performs air volume control of the air supply fan (25) (step ST2).
  • the air supply fan (25) is air volume controlled based on the air volume of the variable air volume device (14).
  • the air volume of the air supply fan (25) increases as the air volume of the variable air volume device (14) increases.
  • the controller (50) controls the opening degree of the flow rate adjustment valve (26) for the cold water coil (22) (step ST3).
  • the opening degree of the flow rate adjusting valve (26) is controlled so that the temperature detected by the temperature / humidity sensor (13) becomes a predetermined value. That is, the opening degree of the flow rate adjusting valve (26) is adjusted so that the temperature of the supply air fan (25) is a predetermined value. For example, when the temperature detected by the temperature / humidity sensor (13) is lower than a predetermined value, the opening degree of the flow rate adjustment valve (26) is reduced, and the amount of cold water supplied to the cold water coil (22) is reduced. Conversely, when the temperature detected by the temperature / humidity sensor (13) is higher than a predetermined value, the opening degree of the flow rate adjustment valve (26) is increased, and the amount of cold water supplied to the cold water coil (22) is increased.
  • the cooling load of the interior zone has decreased.
  • the temperature difference between the room temperature set value and the temperature detected by the room temperature sensor (15) decreases.
  • the air volume of the variable air volume device (14) is reduced, and accordingly, the air volume of the air supply fan (25) is also reduced.
  • the temperature detected by the temperature / humidity sensor (13) decreases. That is, when the air volume of the air supply fan (25) decreases, the air volume decreases in the cold water coil (22), and the degree of cooling with respect to the air increases by the decreased amount.
  • the controller (50) changes the refrigerant evaporation temperature set value of the perimeter air conditioning system (6) based on the decreased opening of the flow rate adjustment valve (26) (step ST4). Specifically, the evaporation temperature set value is increased by a predetermined amount corresponding to the opening degree of the flow rate adjusting valve (26) after the decrease.
  • the evaporation temperature set value increases, the supply temperature of air from the indoor unit (42) increases. That is, the cooling capacity of the perimeter air conditioning system (6) decreases.
  • the air volume of the variable air volume device (14) increases, and the air supply fan ( The air volume of 25) is also increased.
  • the air volume of the supply fan (25) increases, the temperature detected by the temperature / humidity sensor (13) rises and the opening of the flow rate adjustment valve (26) increases.
  • the evaporating temperature set value is decreased by a predetermined amount corresponding to the opening degree of the increased flow regulating valve (26), the supply temperature of air from the indoor unit (42) is lowered, and the perimeter air conditioning system (6) Increases cooling capacity.
  • the controller (50) determines the decrease or increase of the cooling load in the interior zone based on the opening degree of the flow regulating valve (26), and estimates the cooling load in the perimeter zone based on that, and the perimeter air conditioning system (6) Increase or decrease the evaporating temperature setting value. That is, in the first operation pattern, as the cooling load of the interior air conditioning system (5) increases or decreases, the evaporating temperature set value of the perimeter air conditioning system (6) is increased or decreased to increase or decrease the cooling capacity of the perimeter air conditioning system (6). I made it. Thereby, since the capability of the perimeter air conditioning system (6) can be changed according to the cooling load, energy saving of the entire system can be achieved.
  • the cooling operation of the perimeter air conditioning system (6) is the same as the first operation pattern described above.
  • the controller (50) performs a control operation as shown in FIG.
  • the controller (50) controls the opening degree of the flow rate adjustment valve (28) for the humidifier (24) (step ST21).
  • the opening degree of the flow rate adjusting valve (28) is controlled so that the detected humidity of the temperature / humidity sensor (13) becomes a predetermined value. That is, the opening degree of the flow rate adjustment valve (28) is adjusted so that the humidity of the air blown from the air supply fan (25) becomes a predetermined value.
  • the opening degree of the flow rate adjusting valve (28) is increased, and the supply amount of humidifying steam in the humidifier (24) is increased.
  • the opening degree of the flow rate adjustment valve (28) is decreased, and the supply amount of the humidifying steam in the humidifier (24) is decreased.
  • the controller (50) changes the evaporation temperature set value of the perimeter air conditioning system (6) according to the opening degree of the flow rate adjustment valve (28) (step ST22). Specifically, the larger the opening degree of the flow rate adjustment valve (28), the larger the evaporation temperature set value. That is, the larger the humidification load in the interior zone, the greater the evaporation temperature set value.
  • the evaporation temperature set value in the second operation pattern is set to a relatively higher value than the evaporation temperature set value in the first operation pattern described above.
  • the blown air temperature of the indoor unit (42) increases. Thereby, the fall of the relative humidity by a cooling operation in a perimeter zone is suppressed. Therefore, the humidification load in the interior zone is reduced, and the interior air conditioning system (5) and the entire system can be saved.
  • the cooling operation of the interior air conditioning system (5) is the same as the first operation pattern described above. *
  • the indoor air in the perimeter zone is taken into the indoor unit (42), heated by exchanging heat with the refrigerant in the indoor heat exchanger, and then supplied to the perimeter zone. Thereby, heating of a perimeter zone is performed.
  • the refrigerant exchanges heat with room air and condenses at the condensation temperature set value.
  • the outdoor air taken in exchanges heat with the refrigerant in the outdoor heat exchanger, and the refrigerant evaporates.
  • the controller (50) performs a control operation as shown in FIG.
  • the controller (50) performs control (step ST11) of the variable air volume device (14) of the air supply system (10) and air volume control (step ST12) of the air supply fan (25) in the same manner as the first operation pattern described above. Do each.
  • the controller (50) controls the opening degree of the flow rate adjusting valve (26) for the cold water coil (22) (step ST13). Specifically, the opening degree of the flow rate adjusting valve (26) is controlled so that the temperature detected by the temperature / humidity sensor (13) becomes a predetermined value. That is, the opening degree of the flow rate adjusting valve (26) is adjusted so that the temperature of the supply air fan (25) is a predetermined value. For example, when the temperature detected by the temperature / humidity sensor (13) is lower than a predetermined value, the opening degree of the flow rate adjustment valve (26) is increased, and the amount of cold water supplied to the cold water coil (22) is increased. Conversely, when the temperature detected by the temperature / humidity sensor (13) is higher than a predetermined value, the opening degree of the flow rate adjustment valve (26) is decreased, and the amount of cold water supplied to the cold water coil (22) is decreased.
  • the controller (50) changes the condensation temperature set value of the perimeter air conditioning system (6) (step ST14).
  • the controller (50) requires that the flow regulating valve (26) for the chilled water coil (22) is open and that the refrigerant circulates in the heating cycle in the refrigerant circuit of the perimeter air conditioning system (6).
  • the condensation temperature set value of the perimeter air conditioning system (6) is decreased. That is, when the interior air conditioning system (5) performs the cooling operation and the perimeter air conditioning system (6) performs the heating operation, the controller (50) decreases and changes the condensing temperature set value of the perimeter air conditioning system (6).
  • the condensation temperature set value of the perimeter air conditioning system (6) is set at a constant ⁇ ° C, the ⁇ ° C To a predetermined ⁇ ° C. ( ⁇ ° C.).
  • the value of ⁇ may be constant, but may be changed according to the opening degree of the flow rate adjustment valve (26) for the cold water coil (22). For example, you may set so that the value of (beta) may become small as the opening degree of a flow regulating valve (26) becomes large. That is, as the cooling capacity (cooling load) of the interior air conditioning system (5) increases, it may be decreased to a lower condensing temperature set value. Thereby, the temperature of the air blown from the indoor unit (42) can be lowered in accordance with the temperature of the interior zone, and the difference between the temperature of the perimeter zone and the temperature of the interior zone can be accurately reduced. As a result, heat loss due to mixing of air in both zones can be effectively reduced.
  • the evaporation temperature is not increased and changed, relatively low temperature air is supplied in the perimeter zone. Then, the low-temperature air flows into the interior zone, and comfort is impaired by the draft in the interior zone.
  • the supply air temperature in the perimeter zone increases. Thereby, the inflow of air from the perimeter zone to the interior zone can be prevented, and comfort can be improved.
  • the perimeter air conditioning is performed according to the humidification load (latent heat load) of the interior air conditioning system (5).
  • the evaporating temperature setting value of the system (6) was changed. Therefore, when the humidification load of the interior air conditioning system (5) increases, the evaporating temperature set value can be increased. Thereby, in the perimeter zone, the supply air temperature rises, so the dehumidifying action is reduced. Therefore, it is possible to prevent the humidification load in the interior zone from increasing due to the cooling operation of the perimeter air conditioning system (6). Furthermore, in the perimeter air conditioning system (6), the evaporation temperature increases, so the COP (coefficient of performance) is improved. As a result, energy saving of the system can be achieved.
  • the condensing temperature set value of the perimeter air conditioning system (6) is set to both the air conditioning systems (5, 6) Reduced the condensation temperature that is set when heating operation is performed. Accordingly, the supply air temperature is low in the perimeter zone, and the difference between the temperature of the perimeter zone and the temperature of the interior zone is relatively small. The Therefore, the heat loss (namely, mixing loss) which arises when the air of an interior zone and the air of a perimeter zone mix can be reduced. Therefore, energy saving of the system can be achieved.
  • the evaporating temperature set value may be changed according to the air volume of the variable air volume device (14) rather than the opening of the flow rate adjustment valve (26). That is, any means may be used as long as it can determine the cooling load in the interior zone.
  • the present invention is useful for an air conditioning system including a plurality of air conditioning means for performing air conditioning in the same room.
  • Air conditioning system 5 Interior air conditioning system (first air conditioning unit) 6 Perimeter air conditioning system (second air conditioning unit) 14 Variable air volume device (air volume control unit) 22 Chilled water coil (cooling section) 26 Flow control valve 50 controller

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

 インテリア空調系統(5)は、インテリアゾーンの室温と設定温度との温度差に応じて空気供給量を調節する可変風量装置(14)と、冷水コイル(22)の空気の冷却温度が所定値となるように冷水コイル(22)への冷水供給量を調節する流量調整弁(26)とを備えている。ペリメータ空調系統(6)は、冷媒が循環し蒸気圧縮式冷凍サイクルを行う冷媒回路を備えている。インテリア空調系統(5)およびペリメータ空調系統(6)の双方が冷房運転を行う場合、流量調整弁(26)の開度が減少すると、ペリメータ空調系統(6)の冷媒の蒸発温度設定値が増大される。

Description

空調システム
  本発明は、間膨式の空調手段と直膨式の空調手段を備え同一室内の空調を行う空調システムに関するものである。
  従来より、同一室内の複数領域を空気調和する複数の空調手段を備えた空調システムが知られている。例えば特許文献1の空調システムは、室内のペリメータゾーンを加湿する第1調湿装置と、室内のインテリアゾーンを加湿する第2調湿装置と、室内のペリメータゾーンを冷暖房する第1空調機と、室内のインテリアゾーンを冷暖房する第2空調機とを備えているものである。
特開2006-329600号公報
  ところで、上述したような空調システムでは、第1空調機として冷媒が循環し蒸気圧縮式冷凍サイクルを行う冷媒回路を備えたもの、いわゆる直膨式のものが用いられ、第2空調機の熱源として例えばチラー等の間膨式のものが用いられることがよくある。そして、このようなシステムでは、第1空調機および第2空調機の双方で冷房運転を行う場合、インテリアゾーンの冷房負荷の減少に対して、第2空調機では冷水供給温度を上昇させるなどして熱源の省エネ性を良くすることができるが、第1空調機では蒸発温度が一定で制御され冷房負荷の変動に対応していなかった。そのため、システム全体の省エネ性を改善する余地が残されていた。
  本発明は、かかる点に鑑みてなされたものであり、その目的は、第1ゾーンを間膨式の第1空調機で冷房し、第1ゾーンと同一室内の第2ゾーンを直膨式の空調機で冷房する場合に、冷房負荷の変動に対応可能とし省エネ性を向上させることにある。
  第1の発明は、冷却液が供給され、該冷却液と空気が熱交換して該空気を冷却する冷却部(22)を備えた第1空調部(5)と、蒸気圧縮式冷凍サイクルを行う冷媒回路の冷媒と空気が熱交換して冷媒が蒸発し空気を冷却する第2空調部(6)とを備え、上記第1空調部(5)および第2空調部(6)がそれぞれ同一室内における第1ゾーンおよび第2ゾーンの空調を行う空調システムを前提としている。そして、本発明の空調システムは、上記第1空調部(5)および第2空調部(6)が共に冷房運転を行う場合、上記第1空調部(5)の冷房負荷に応じて、上記第2空調部(6)における冷媒の蒸発温度の設定値を変更するコントローラ(50)を備えているものである。
  上記第1の発明では、第1ゾーンが第1空調部(5)によって冷房や暖房が行われ、第2ゾーンが第2空調部(6)によって冷房や暖房が行われる。そして、両方の空調部(5,6)で冷房運転が行われる場合、第1空調部(5)の冷房負荷に応じて第2空調部(6)の蒸発温度設定値が変更される。例えば、第1空調部(5)の冷房負荷が減少すると、第2空調部(6)の蒸発温度設定値が増大される。これにより、第2ゾーンでは供給空気温度が上昇する。つまり、本発明では、第1ゾーンの冷房負荷の変動に連動して第2空調部(6)の蒸発温度設定値が変更される。
  第2の発明は、上記第1の発明において、上記第1空調部(5)は、上記冷却部(22)による空気の冷却温度が所定値となるように上記冷却部(22)への冷却液の供給量を調節する流量調整弁(26)と、上記第1ゾーンの温度とその設定温度との温度差に応じて上記冷却部(22)から上記第1ゾーンへの空気供給量を調節する風量調節部(14)とを備えている。そして、上記コントローラ(50)は、上記流量調整弁(26)の開度に応じて上記第2空調部(6)における冷媒の蒸発温度の設定値を変更するものである。
  上記第2の発明では、第1ゾーンの冷房負荷が減少すると、即ち第1ゾーンの温度(室温)とその設定温度との温度差が小さくなると、冷却部(22)から第1ゾーンへの空気供給量が減少される。その減少した分だけ、冷却部(22)における空気量も減少するため、冷却部(22)による空気の冷却温度が低下する。そうすると、空気の冷却温度を所定値まで上昇させるように、流量調整弁(26)の開度が減少されて冷却部(22)への冷却液の供給量が減少される。そして、減少後の流量調整弁(26)の開度に応じて第2空調部(6)の蒸発温度設定値が所定量だけ増大される。
  本発明によれば、第1空調部(5)および第2空調部(6)の双方が冷房運転を行う場合、第1空調部(5)の冷房負荷に応じて第2空調部(6)の蒸発温度設定値を変更するようにした。したがって、第1空調部(5)の冷房負荷が減少した場合、蒸発温度設定値を増大させることができる。第2空調部(6)の冷凍サイクルにおいて蒸発温度が増大すると、COP(成績係数)が向上する。よって、システムの省エネを図ることができる。
  また、第1ゾーンの冷房負荷が減少しても第2空調部(6)の蒸発温度設定値が増大変更されないと第2ゾーンでは比較的低い温度の空気が供給され続ける。そうすると、その低温の空気が第1ゾーンへ流れ込み、第1ゾーンではドラフトにより快適性が損なわれる。ところが、本発明では、蒸発温度設定値が増大変更されるため、第2ゾーンにおける供給空気温度が上昇する。これにより、第2ゾーンから第1ゾーンへの空気の流れ込みを防止でき、快適性を向上させることができる。
図1は、実施形態に係る空調システムの全体構成を示す配管系統図である。 図2は、第1運転パターンの制御動作を示すフローチャートである。 図3は、第2運転パターンの制御動作を示すフローチャートである。 図4は、第3運転パターンの制御動作を示すフローチャートである。
  以下、本発明の実施形態を図面に基づいて詳細に説明する。なお、以下の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。
  本実施形態の空調システム(1)は、例えばオフィスの室内を空調するものである。この空調システム(1)は、インテリア空調系統(5)と、ペリメータ空調系統(6)と、コントローラ(50)とを備えている。インテリア空調系統(5)およびペリメータ空調系統(6)は、それぞれ室内におけるインテリアゾーンおよびペリメータゾーンの空調を行う。つまり、本実施形態の空調システム(1)は、同一空間において異なる領域を空調する複数の空調系統を備えている。なお、インテリア空調系統(5)およびペリメータ空調系統(6)は、それぞれ本発明に係る第1空調部および第2空調部を構成している。
  上記インテリア空調系統(5)は、インテリアゾーンに調和空気を供給するための給気系統(10)と、インテリアゾーンの室内空気を循環するための還気系統(30)を備えている。
  上記給気系統(10)は、給気流路(11)と空調機(20)を備えている。給気流路(11)は、流入端である一端から室外空気が取り込まれ流出端である他端から室内のインテリアゾーンに供給される。また、給気流路(11)の他端側は複数(本実施形態では2つ)に分岐して室内へ接続されている。
  上記給気流路(11)の一端側には、外気ダンパ(12)が設けられている。また、他端側の分岐した各給気流路(11)には、本発明に係る風量調節部としての可変風量装置(14)が設けられている。この可変風量装置(14)は、図示しないが、ダンパと風速センサを備えた給気量調節手段である。つまり、この可変風量装置(14)は、各給気流路(11)の空気流量(風量)が設定値になるように、風速センサの計測値に基づいてダンパの開度が調節される。
  上記空調機(20)は、給気流路(11)における外気ダンパ(12)の下流に設けられている。空調機(20)は、上流側から順に、フィルタ(21)、冷水コイル(22)、温水コイル(23)、加湿器(24)および給気ファン(25)が配設されている。フィルタ(21)は通過する空気中の塵埃等を除去するものである。冷水コイル(22)は、冷水が供給され空気と熱交換し該空気を冷却するもので、本発明に係る冷却部を構成している。温水コイル(23)は、温水が供給され空気と熱交換し、該空気を加熱するものである。加湿器(24)は、加湿用水が供給され空気を設定湿度に加湿するものである。そして、冷水コイル(22)、温水コイル(23)および加湿器(24)では、それぞれ水の供給量が流量調整弁(26,27,28)の開度変更によって調節される。給気ファン(25)は、インバータ制御によって風量可変に構成されている。
  また、上記給気系統(10)は、温湿度センサ(13)と室温センサ(15)を備えている。温湿度センサ(13)は、空気の温度と湿度を検出するためのもので、給気流路(11)における空調機(20)の下流側に設けられている。室温センサ(15)は、室内のペリメータゾーンの空気温度を検出するためのものである。
  また、本実施形態のインテリア空調系統(5)では、チラー等の熱源機によって冷却または加熱された所定温度の水が上記冷水コイル(22)や温水コイル(23)に供給される。そして、上述した流量調整弁(26,27)の開度変更によって、冷水コイル(22)等での冷却能力や加熱能力が調節される。なお、加湿器(24)には加湿用蒸気などが供給される。
  このように、本実施形態のインテリア空調系統(5)は、熱源機によって冷却または加熱された熱媒体(水)が空気と熱交換して該空気を冷却または加熱するものである。つまり、インテリア空調系統(5)はいわゆる間膨式の空調装置で構成されている。
  上記還気系統(30)は、還気流路(31)を備えている。還気流路(31)は、流入端である一端が室内のインテリアゾーンに接続され、流出端である他端が空調機(20)の上流側に接続されている。つまり、本実施形態の還気系統(30)では、排出されたインテリアゾーンの空気が空調機(20)で調和された後、再びインテリアゾーンへ供給される。
  上記還気流路(31)には、可変風量装置(33)と温度センサ(32)が設けられている。可変風量装置(33)は、給気系統(10)のものと同様、還気流路(31)の空気流量(風量)が一定となるように、風速センサの計測値に基づいてバルブの開度が調節される。温度センサ(32)は、空気温度を検出するためのもので、可変風量装置(33)の上流側に設けられている。
  一方、上記ペリメータ空調系統(6)は、室外機(41)と室内機(42)を備えている。室外機(41)と室内機(42)とは、いわゆる直膨式の冷凍装置を構成している。
  図示しないが、室外機(41)には圧縮機や膨張機構、室外熱交換器、室外ファンが設けられ、室内機(42)には室内熱交換器や室内ファンが設けられている。そして、これら圧縮機、室外熱交換器、膨張機構および室内熱交換器が配管接続されて冷媒回路を構成している。冷媒回路では、冷媒が可逆に循環して蒸気圧縮式冷凍サイクルが行われる。
  上記室外熱交換器では室外ファンによって取り込まれた室外空気が冷媒と熱交換し、室内熱交換器では室内ファンによって取り込まれたペリメータゾーンの室内空気が冷媒と熱交換する。そして、ペリメータ空調系統(6)では、冷媒回路の冷媒循環方向を切り換えることにより、冷房運転と暖房運転とが切り換わる。冷房運転では、室外熱交換器が凝縮器として機能し且つ室内熱交換器が蒸発器として機能し、室内熱交換器で冷却された空気がペリメータゾーンに供給される。暖房運転では、室外熱交換器が蒸発器として機能し且つ室内熱交換器が凝縮器として機能し、室内熱交換器で加熱された空気がペリメータゾーンに供給される。
  上記コントローラ(50)は、インテリア空調系統(5)およびペリメータ空調系統(6)を制御するものである。コントローラ(50)には、温湿度センサ(13)および温度センサ(32)の検出信号や、流量調整弁(26,27,28)の開度信号が入力される。また、コントローラ(50)は、給気ファン(25)の制御を行ったり、可変風量装置(14,33)に対し設定風量の信号を出力する。また、コントローラ(50)は、運転状態に基づいて室内熱交換器における冷媒の蒸発温度設定値または凝縮温度設定値を変更するように構成されている。コントローラ(50)の詳細な制御動作については後述する。
  -運転動作-
  次に、この空調システム(1)の運転動作について説明する。インテリア空調系統(5)では、冷房運転と暖房運転と加湿運転とが切換可能に構成されている。ペリメータ空調系統(6)では、冷房運転と暖房運転とが切換可能に構成されている。ここでは、代表して、インテリア空調系統(5)およびペリメータ空調系統(6)の双方とも冷房運転を行う「第1運転パターン」と、インテリア空調系統(5)が加湿運転を行い且つペリメータ空調系統(6)が冷房運転を行う「第2運転パターン」と、インテリア空調系統(5)が冷房運転を行い且つペリメータ空調系統(6)が暖房運転を行う「第3運転パターン」の3つの運転パターンにおけるコントローラ(50)の制御動作について順に説明する。
  〈第1運転パターンの制御〉
  この第1運転パターンは、インテリア空調系統(5)およびペリメータ空調系統(6)の双方において冷房運転が行われる。この運転パターンは特に夏場に行われる。
  インテリア空調系統(5)の冷房運転では、室外空気が空調機(20)へ流入する。空調機(20)では、室外空気がフィルタ(21)を通過した後、冷水コイル(22)で冷却される。冷却された空気は、温水コイル(23)および加湿器(24)を順に通過して空調機(20)から流出し、室内のインテリアゾーンに供給される。これにより、インテリアゾーンの冷房が行われる。また、インテリアゾーンの室内空気は、還気流路(31)を通じて空調機(20)に流入し、室外空気と合流する。合流した空気は上述したように冷水コイル(22)で冷却された後、インテリアゾーンに供給される。なお、温水コイル(23)および加湿器(24)の各流量調整弁(27,28)は全閉状態である。
  一方、ペリメータ空調系統(6)の冷房運転では、ペリメータゾーンの室内空気が室内機(42)に取り込まれ、室内熱交換器で冷媒と熱交換して冷却され、その後ペリメータゾーンに供給される。これにより、ペリメータゾーンの冷房が行われる。室内熱交換器では、冷媒が室内空気と熱交換して蒸発温度設定値で蒸発する。なお、室外機(41)では、取り込まれた室外空気が室外熱交換器で冷媒と熱交換し、冷媒が凝縮する。
  この第1運転パターンにおいて、コントローラ(50)は図2に示すような制御動作を行う。コントローラ(50)は、給気系統(10)の可変風量装置(14)の制御を行う(ステップST1)。具体的に、可変風量装置(14)は、インテリアゾーンの室温設定値と室温センサ(15)の検出温度との温度差に応じて予め定められた風量となるようにダンパ開度が制御される。可変風量装置(14)の風量は温度差が大きいほど増大するように定められている。
  次いで、コントローラ(50)は、給気ファン(25)の風量制御を行う(ステップST2)。具体的に、給気ファン(25)は、可変風量装置(14)の風量に基づいて風量制御される。給気ファン(25)の風量は、可変風量装置(14)の風量が多いほど多くなる。
  次いで、コントローラ(50)は、冷水コイル(22)用の流量調整弁(26)の開度制御を行う(ステップST3)。具体的に、流量調整弁(26)は、温湿度センサ(13)の検出温度が所定値となるように開度が制御される。つまり、給気ファン(25)の吹出温度が所定値となるように流量調整弁(26)の開度が調節される。例えば、温湿度センサ(13)の検出温度が所定値よりも低いときは流量調整弁(26)の開度が減少され、冷水コイル(22)における冷水の供給量が減少される。逆に、温湿度センサ(13)の検出温度が所定値よりも高いときは流量調整弁(26)の開度が増加され、冷水コイル(22)における冷水の供給量が増加される。
  ここで、インテリアゾーンの冷房負荷が減少した場合を考える。インテリアゾーンの冷房負荷が減少すると、室温設定値と室温センサ(15)の検出温度との温度差が小さくなる。そうすると、可変風量装置(14)の風量が減少され、それに伴い給気ファン(25)の風量も減少される。給気ファン(25)の風量が減少すると、温湿度センサ(13)の検出温度が低下する。つまり、給気ファン(25)の風量が減少すると、冷水コイル(22)において空気量が減少し、その減少した分だけ空気に対する冷却度が増大する。温湿度センサ(13)の検出温度が低下すると、その検出温度が所定値まで上昇するように流量調整弁(26)の開度が減少される。そうすると、コントローラ(50)は、減少した流量調整弁(26)の開度に基づいてペリメータ空調系統(6)の冷媒の蒸発温度設定値を変更する(ステップST4)。具体的には、減少後の流量調整弁(26)の開度に相当する所定量だけ蒸発温度設定値が増大される。蒸発温度設定値が増大すると、室内機(42)からの空気の供給温度が上昇する。つまり、ペリメータ空調系統(6)の冷房能力が低下する。
  逆に、インテリアゾーンの冷房負荷が増大すると、室温設定値と室温センサ(15)の検出温度との温度差が大きくなり、可変風量装置(14)の風量が増大され、それに伴い給気ファン(25)の風量も増大される。給気ファン(25)の風量が増大すると、温湿度センサ(13)の検出温度が上昇し、流量調整弁(26)の開度が増加される。そうすると、増加後の流量調整弁(26)の開度に相当する所定量だけ蒸発温度設定値が減少され、室内機(42)からの空気の供給温度が低下し、ペリメータ空調系統(6)の冷房能力が増大する。
  このように、コントローラ(50)は、流量調整弁(26)の開度をもってインテリアゾーンにおける冷房負荷の減少または増大を判断し、それに基づいてペリメータゾーンにおける冷房負荷を推定しペリメータ空調系統(6)の蒸発温度設定値を増減させる。つまり、第1運転パターンでは、インテリア空調系統(5)の冷房負荷の増減に伴い、ペリメータ空調系統(6)の蒸発温度設定値を増減させてペリメータ空調系統(6)の冷房能力を増減させるようにした。これにより、ペリメータ空調系統(6)を冷房負荷に応じて能力を変更することができるので、システム全体の省エネ化を図ることができる。
  〈第2運転パターンの制御〉
  この第2運転パターンは、インテリア空調系統(5)において加湿運転が行われ、ペリメータ空調系統(6)において冷房運転が行われる。この運転パターンは特に秋から冬場にかけて行われる。
  インテリア空調系統(5)の加湿運転では、空調機(20)に流入した室外空気がフィルタ(21)、冷水コイル(22)および温水コイル(23)を順に通過した後、加湿器(24)で加湿される。加湿された空気は、空調機(20)から流出して室内のインテリアゾーンに供給される。これにより、インテリアゾーンの加湿が行われる。また、インテリアゾーンの室内空気が還気流路(31)を通じて空調機(20)に流入し室外空気と合流する点は上述した第1運転パターンと同様である。なお、冷水コイル(22)および温水コイル(23)の各流量調整弁(26,27)は室内負荷に応じて何れかが開放状態となっている。
  一方、ペリメータ空調系統(6)の冷房運転は、上述した第1運転パターンと同様である。
  この第2運転パターンにおいて、コントローラ(50)は図3に示すような制御動作を行う。コントローラ(50)は、加湿器(24)用の流量調整弁(28)の開度制御を行う(ステップST21)。具体的に、流量調整弁(28)は、温湿度センサ(13)の検出湿度が所定値となるように開度が制御される。つまり、給気ファン(25)の吹出空気の湿度が所定値となるように流量調整弁(28)の開度が調節される。例えば、温湿度センサ(13)の検出湿度が所定値よりも低いときは流量調整弁(28)の開度が増加され、加湿器(24)における加湿用蒸気の供給量が増大される。逆に、温湿度センサ(13)の検出湿度が所定値よりも高いときは流量調整弁(28)の開度が減少され、加湿器(24)における加湿用蒸気の供給量が減少される。
  次いで、コントローラ(50)は、流量調整弁(28)の開度に応じてペリメータ空調系統(6)の蒸発温度設定値を変更する(ステップST22)。具体的に、流量調整弁(28)の開度が大きいほど、蒸発温度設定値は増大される。即ち、インテリアゾーンにおける加湿負荷が大きいほど、蒸発温度設定値は増大される。この第2運転パターンにおける蒸発温度設定値は、上述した第1運転パターンにおける蒸発温度設定値よりも比較的高い値に設定される。蒸発温度設定値が高くなると、室内機(42)の吹出空気温度が上昇する。これにより、ペリメータゾーンにおいて冷房運転による相対湿度の低下が抑制される。そのため、インテリアゾーンにおける加湿負荷が低減され、インテリア空調系統(5)およびシステム全体の省エネ化を図ることができる。
  〈第3運転パターンの制御〉
  この第3運転パターンは、インテリア空調系統(5)において冷房運転が行われ、ペリメータ空調系統(6)において暖房運転が行われる。この運転パターンは特に冬場に行われる。
  インテリア空調系統(5)の冷房運転は、上述した第1運転パターンと同様である。   
  ペリメータ空調系統(6)の暖房運転では、ペリメータゾーンの室内空気が室内機(42)に取り込まれ、室内熱交換器で冷媒と熱交換して加熱され、その後ペリメータゾーンに供給される。これにより、ペリメータゾーンの暖房が行われる。室内熱交換器では、冷媒が室内空気と熱交換して凝縮温度設定値で凝縮する。なお、室外機(41)では、取り込まれた室外空気が室外熱交換器で冷媒と熱交換し、冷媒が蒸発する。
  この第3運転パターンにおいて、コントローラ(50)は図4に示すような制御動作を行う。コントローラ(50)は、上述した第1運転パターンと同様に、給気系統(10)の可変風量装置(14)の制御(ステップST11)、給気ファン(25)の風量制御(ステップST12)をそれぞれ行う。
  次いで、コントローラ(50)は、冷水コイル(22)用の流量調整弁(26)の開度制御を行う(ステップST13)。具体的に、流量調整弁(26)は、温湿度センサ(13)の検出温度が所定値となるように開度が制御される。つまり、給気ファン(25)の吹出温度が所定値となるように流量調整弁(26)の開度が調節される。例えば、温湿度センサ(13)の検出温度が所定値よりも低いときは流量調整弁(26)の開度が増加され、冷水コイル(22)における冷水の供給量が増大される。逆に、温湿度センサ(13)の検出温度が所定値よりも高いときは流量調整弁(26)の開度が減少され、冷水コイル(22)における冷水の供給量が減少される。
  次いで、コントローラ(50)は、ペリメータ空調系統(6)の凝縮温度設定値を変更する(ステップST14)。コントローラ(50)は、冷水コイル(22)用の流量調整弁(26)が開放していること、且つ、ペリメータ空調系統(6)の冷媒回路において冷媒が暖房サイクルで循環していることを条件として、ペリメータ空調系統(6)の凝縮温度設定値を減少させる。つまり、コントローラ(50)は、インテリア空調系統(5)が冷房運転を行い且つペリメータ空調系統(6)が暖房運転を行うと、ペリメータ空調系統(6)の凝縮温度設定値を減少変更させる。例えば、インテリア空調系統(5)およびペリメータ空調系統(6)の双方が暖房運転を行う場合ではペリメータ空調系統(6)の凝縮温度設定値が一定のα℃で定められている場合、そのα℃から所定のβ℃(<α℃)に減少される。   
  凝縮温度設定値が減少されると、室内機(42)からの吹出空気温度が低下する。そうすると、ペリメータゾーンにおいて暖房運転を行いつつもそのペリメータゾーンの温度とインテリアゾーンの温度との差が比較的小さくなる。これにより、インテリアゾーンの空気とペリメータゾーンの空気とが混合することによって生じる熱ロス(即ち、ミキシングロス)を低減することができる。よって、インテリア空調系統(5)およびペリメータ空調系統(6)の省エネ化を図ることができる。
  なお、上記βの値は、一定であってもよいが、冷水コイル(22)用の流量調整弁(26)の開度に応じて変更するようにしてもよい。例えば、流量調整弁(26)の開度が大きくなるに従ってβの値が小さくなるように設定してもよい。つまり、インテリア空調系統(5)の冷房能力(冷房負荷)が大きくなるに従って、より低い凝縮温度設定値に減少させるようにしてもよい。これにより、インテリアゾーンの温度に合わせて室内機(42)からの吹出空気温度を低下させることができ、ペリメータゾーンの温度とインテリアゾーンの温度との差を的確に小さくすることができる。その結果、両ゾーンの空気が混合することによる熱ロスを効果的に低減することができる。
  -実施形態の効果-
  本実施形態によれば、インテリア空調系統(5)およびペリメータ空調系統(6)の双方が冷房運転を行う場合、インテリア空調系統(5)の冷房負荷に応じてペリメータ空調系統(6)の蒸発温度設定値を変更するようにした。したがって、インテリア空調系統(5)の冷房負荷が減少した場合、蒸発温度設定値を増大させることができる。ペリメータ空調系統(6)の冷凍サイクルにおいて蒸発温度が増大すると、COP(成績係数)が向上する。よって、システムの省エネを図ることができる。
  また、蒸発温度が増大変更されないとペリメータゾーンでは比較的低い温度の空気が供給される。そうすると、その低温の空気がインテリアゾーンへ流れ込み、インテリアゾーンではドラフトによって快適性が損なわれる。ところが、本実施形態では、蒸発温度が増大変更されるため、ペリメータゾーンにおける供給空気温度が上昇する。これにより、ペリメータゾーンからインテリアゾーンへの空気の流れ込みを防止でき、快適性を向上させることができる。
  また、本実施形態では、インテリア空調系統(5)が加湿運転を行い、ペリメータ空調系統(6)が冷房運転を行う場合、インテリア空調系統(5)の加湿負荷(潜熱負荷)に応じてペリメータ空調系統(6)の蒸発温度設定値を変更するようにした。したがって、インテリア空調系統(5)の加湿負荷が増大した場合、蒸発温度設定値を増大させることができる。これにより、ペリメータゾーンでは供給空気温度が上昇するため除湿作用が減少する。そのため、インテリアゾーンにおける加湿負荷がペリメータ空調系統(6)の冷房運転によって増大することを防止できる。さらには、ペリメータ空調系統(6)では蒸発温度が増大するのでCOP(成績係数)が向上する。これらの結果、システムの省エネを図ることができる。
  また、本実施形態では、インテリア空調系統(5)が冷房運転を行い、ペリメータ空調系統(6)が暖房運転を行う場合、ペリメータ空調系統(6)の凝縮温度設定値を両空調系統(5,6)が暖房運転を行う場合に設定される凝縮温度よりも減少させるようにした。したがって、ペリメータゾーンでは供給空気温度が低くなり、ペリメータゾーンの温度とインテリアゾーンの温度との差が比較的小さくなる。る。よって、インテリアゾーンの空気とペリメータゾーンの空気とが混合することによって生じる熱ロス(即ち、ミキシングロス)を低減することができる。よって、システムの省エネを図ることができる。
 《その他の実施形態》
  上記実施形態については、以下のような構成としてもよい。
  例えば、上記実施形態の第1運転パターンにおいて、流量調整弁(26)の開度ではなく可変風量装置(14)の風量に応じて蒸発温度設定値を変更するようにしてもよい。つまり、インテリアゾーンの冷房負荷を判断し得るものであれば如何なる手段を用いてもよい。
  以上説明したように、本発明は、同一室内の空調を行う複数の空調手段を備えた空調システムについて有用である。
1     空調システム
5     インテリア空調系統(第1空調部)
6     ペリメータ空調系統(第2空調部)
14    可変風量装置(風量調節部)
22    冷水コイル(冷却部)
26    流量調整弁
50    コントローラ

Claims (2)

  1.   冷却液が供給され、該冷却液と空気が熱交換して該空気を冷却する冷却部(22)を備えた第1空調部(5)と、蒸気圧縮式冷凍サイクルを行う冷媒回路の冷媒と空気が熱交換して冷媒が蒸発し空気を冷却する第2空調部(6)とを備え、上記第1空調部(5)および第2空調部(6)がそれぞれ同一室内における第1ゾーンおよび第2ゾーンの空調を行う空調システムであって、
      上記第1空調部(5)および第2空調部(6)が共に冷房運転を行う場合、上記第1空調部(5)の冷房負荷に応じて、上記第2空調部(6)における冷媒の蒸発温度の設定値を変更するコントローラ(50)を備えている
    ことを特徴とする空調システム。
  2.   請求項1において、
      上記第1空調部(5)は、上記冷却部(22)による空気の冷却温度が所定値となるように上記冷却部(22)への冷却液の供給量を調節する流量調整弁(26)と、上記第1ゾーンの温度とその設定温度との温度差に応じて上記冷却部(22)から上記第1ゾーンへの空気供給量を調節する風量調節部(14)とを備え、
      上記コントローラ(50)は、上記流量調整弁(26)の開度に応じて上記第2空調部(6)における冷媒の蒸発温度の設定値を変更する
    ことを特徴とする空調システム。
PCT/JP2009/006534 2008-12-11 2009-12-02 空調システム WO2010067539A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008315850A JP2010139162A (ja) 2008-12-11 2008-12-11 空調システム
JP2008-315850 2008-12-11

Publications (1)

Publication Number Publication Date
WO2010067539A1 true WO2010067539A1 (ja) 2010-06-17

Family

ID=42242536

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/006534 WO2010067539A1 (ja) 2008-12-11 2009-12-02 空調システム

Country Status (2)

Country Link
JP (1) JP2010139162A (ja)
WO (1) WO2010067539A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106152318A (zh) * 2016-08-22 2016-11-23 苏州市创建空调设备有限公司 一种基于冷却水总线的变负荷调节一体化系统及运行方法
JP2019215108A (ja) * 2018-06-11 2019-12-19 ダイキン工業株式会社 空調システム
EP3967944A4 (en) * 2019-06-26 2022-10-19 Daikin Industries, Ltd. EXTERNAL AIR TREATMENT AND AIR CONDITIONING DEVICE

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2802229T3 (es) 2016-09-23 2021-01-18 Daikin Ind Ltd Sistema para acondicionamiento de aire y suministro de agua caliente
CN106247494A (zh) * 2016-10-24 2016-12-21 珠海格力电器股份有限公司 一种可净化加湿的卧式风机盘管机组及其自动控制方法
WO2023058158A1 (ja) * 2021-10-06 2023-04-13 三菱電機ビルソリューションズ株式会社 空気調和システム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02110243A (ja) * 1988-10-19 1990-04-23 Matsushita Seiko Co Ltd デマンド制御装置
JPH10148376A (ja) * 1996-11-19 1998-06-02 Kajima Corp 床吹出空調方式の運転制御方法及びその空調システム
JP2001074290A (ja) * 1999-08-31 2001-03-23 Taisei Corp 空調システム解析方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3443392B2 (ja) * 2000-08-01 2003-09-02 東芝キヤリア株式会社 空気調和装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02110243A (ja) * 1988-10-19 1990-04-23 Matsushita Seiko Co Ltd デマンド制御装置
JPH10148376A (ja) * 1996-11-19 1998-06-02 Kajima Corp 床吹出空調方式の運転制御方法及びその空調システム
JP2001074290A (ja) * 1999-08-31 2001-03-23 Taisei Corp 空調システム解析方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106152318A (zh) * 2016-08-22 2016-11-23 苏州市创建空调设备有限公司 一种基于冷却水总线的变负荷调节一体化系统及运行方法
JP2019215108A (ja) * 2018-06-11 2019-12-19 ダイキン工業株式会社 空調システム
JP7355987B2 (ja) 2018-06-11 2023-10-04 ダイキン工業株式会社 空調システム
EP3967944A4 (en) * 2019-06-26 2022-10-19 Daikin Industries, Ltd. EXTERNAL AIR TREATMENT AND AIR CONDITIONING DEVICE

Also Published As

Publication number Publication date
JP2010139162A (ja) 2010-06-24

Similar Documents

Publication Publication Date Title
WO2017029741A1 (ja) 空気調和システム
CN110345659A (zh) 一种再热除湿一体化制冷系统和控制方法
JP3800210B2 (ja) 水熱源ヒートポンプユニット
AU2018201508B2 (en) Air Conditioner and Air Conditioning System Including the Same
WO2010067539A1 (ja) 空調システム
CN108800375B (zh) 空气热源热泵式空调机
JP2016090098A (ja) 空気調和機
JP2006284175A (ja) 空調装置
JP2021004724A (ja) 空調システム
JP3852553B2 (ja) 空調装置
JP5453795B2 (ja) 空調システム
JP2017089950A (ja) 空気調和システム
JP2013002749A (ja) 空気調和装置
JP4505486B2 (ja) ヒートポンプ式空調機
JP3936345B2 (ja) 空気調和機
JP4258117B2 (ja) 空気調和機
JP2010243005A (ja) 除湿システム
JP3614775B2 (ja) ヒートポンプ式空調機
JP5168118B2 (ja) 空調システム
JP7374633B2 (ja) 空気調和機及び空気調和システム
JP2018112356A (ja) 空気調和システム
JP4199643B2 (ja) 空気調和装置
JP2006052882A (ja) ヒートポンプ式空調機
JP6389859B2 (ja) 空調システム
JPH1183125A (ja) 空気調和機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09831647

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09831647

Country of ref document: EP

Kind code of ref document: A1