WO2010064505A1 - Electronic component - Google Patents

Electronic component Download PDF

Info

Publication number
WO2010064505A1
WO2010064505A1 PCT/JP2009/068382 JP2009068382W WO2010064505A1 WO 2010064505 A1 WO2010064505 A1 WO 2010064505A1 JP 2009068382 W JP2009068382 W JP 2009068382W WO 2010064505 A1 WO2010064505 A1 WO 2010064505A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
magnetic
electronic component
layer
magnetic layers
Prior art date
Application number
PCT/JP2009/068382
Other languages
French (fr)
Japanese (ja)
Inventor
秀二 木原
治 松本
勝之 内田
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2010541273A priority Critical patent/JP5327231B2/en
Priority to CN2009801483054A priority patent/CN102232233A/en
Publication of WO2010064505A1 publication Critical patent/WO2010064505A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F17/0013Printed inductances with stacked layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/10Composite arrangements of magnetic circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F17/0033Printed inductances with the coil helically wound around a magnetic core
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F2017/0066Printed inductances with a magnetic layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/10Composite arrangements of magnetic circuits
    • H01F3/14Constrictions; Gaps, e.g. air-gaps

Definitions

  • the present invention relates to an electronic component, and more particularly, to an electronic component having a coil incorporated in a laminated body.
  • a multilayer inductor described in Patent Document 1 As a conventional electronic component incorporating a coil, for example, a multilayer inductor described in Patent Document 1 is known.
  • a coil composed of a plurality of coil patterns is incorporated in a multilayer body composed of magnetic layers.
  • the nonmagnetic layer is provided so as to intersect the coil axis inside the coil.
  • the multilayer inductor since the nonmagnetic material layer is provided, the magnetic flux density in the multilayer body is reduced. As a result, even if the direct current flowing through the multilayer inductor is increased, magnetic saturation is less likely to occur in the multilayer body, and a sudden decrease in inductance value due to magnetic saturation is less likely to occur. That is, the DC superimposition characteristic of the multilayer inductor is improved.
  • the multilayer inductor described in Patent Document 1 may be used in, for example, a DC-DC converter in an electronic device such as a mobile phone.
  • a multilayer inductor when a relatively small DC current flows through the coil, a large inductance value can be obtained, and even if a relatively large DC current flows through the coil, the inductance value does not rapidly decrease. DC superposition characteristics are required.
  • an object of the present invention is to obtain a large inductance value when a relatively small DC current flows through the coil, and the inductance value rapidly decreases even when a relatively large DC current flows through the coil. It is to provide an electronic component having a direct current superimposition characteristic.
  • An electronic component includes a laminated body in which a plurality of first insulator layers are laminated, and a coil having a coil shaft that is built in the laminated body and extends in the laminating direction. And the laminate has a lower magnetic permeability than the first insulator layer, and is provided in the laminate so as to intersect the coil axis. And a high magnetic permeability that is higher than that of the first insulator layer and that is provided on each of the upper side and the lower side in the stacking direction of the second insulator layer inside the coil. And a portion.
  • the present invention when a relatively small DC current is flowing through the coil, a large inductance value is obtained, and even if a relatively large DC current flows through the coil, the inductance value does not rapidly decrease. Superimposition characteristics can be obtained.
  • FIG. 2 is a cross-sectional structural view taken along line AA of the electronic component in FIG. It is the graph which showed the result of computer simulation. It is the perspective view which showed the manufacturing process of the ceramic green sheet which should become a magnetic body layer.
  • FIG. 6 is a cross-sectional structure view taken along the line AA of an electronic component according to another embodiment.
  • FIG. 1 is a perspective view of electronic components 10a and 10b according to an embodiment of the present invention.
  • FIG. 2 is an exploded perspective view of the multilayer body 12a of the electronic component 10a according to the first embodiment.
  • FIG. 3 is a sectional structural view taken along the line AA of the electronic component 10a of FIG.
  • the stacking direction of the electronic component 10a is defined as the z-axis direction
  • the direction along the long side of the electronic component 10a is defined as the x-axis direction
  • the direction along the short side of the electronic component 10a is defined as the y-axis direction.
  • the x axis, the y axis, and the z axis are orthogonal to each other.
  • the electronic component 10a includes a laminate 12a and external electrodes 14a and 14b as shown in FIG.
  • the laminated body 12a has a rectangular parallelepiped shape and incorporates a coil L.
  • the external electrodes 14a and 14b are each electrically connected to the coil L, and are provided so as to cover the side surfaces located at both ends in the x-axis direction.
  • the laminated body 12a is formed by laminating magnetic layers (insulator layers) 16a to 16k and a nonmagnetic layer (insulator layer) 17. Furthermore, the laminated body 12a includes a high magnetic permeability portion 19 (see FIG. 3) described later.
  • the magnetic layers 16a to 16k are made of ferromagnetic ferrite (for example, Ni—Zn—Cu ferrite).
  • the nonmagnetic layer 17 is made of a material having a lower magnetic permeability than the magnetic layers 16a to 16k. In the present embodiment, the nonmagnetic layer 17 is made of nonmagnetic ferrite (for example, Zn—Cu ferrite).
  • the nonmagnetic layer 17 is provided in the stacked body 12a, and more specifically, is provided between the magnetic layer 16e and the magnetic layer 16f.
  • the magnetic layers 16a to 16k are constituted by eleven magnetic layers, but the total number of the magnetic layers 16a to 16k is not limited to this. Further, only one nonmagnetic layer 17 is provided, but two or more layers may be provided.
  • an alphabet is appended to the reference symbol, and when referring to these, the alphabet after the reference symbol is omitted.
  • the coil L is a spiral coil that advances in the z-axis direction while rotating as shown in FIG. That is, the coil axis X of the coil L extends along the z-axis direction as shown in FIG. In the present embodiment, the coil axis X is parallel to the z-axis direction. Thereby, the nonmagnetic layer 17 intersects the coil axis X. As shown in FIG. 2, the coil L includes coil conductors 18a to 18f and via-hole conductors b1 to b5.
  • the coil conductors 18a to 18f are provided on the main surfaces of the magnetic layers 16d and 16e, the nonmagnetic layer 17, and the magnetic layers 16f to 16h, respectively.
  • Each of the coil conductors 18a to 18f is made of a conductive material made of Ag, has a length of 7/8 turns, and is arranged so as to overlap each other in the z-axis direction.
  • the coil L constituted by the coil conductors 18a to 18f forms a rectangular ring when viewed in plan from the z-axis direction.
  • the length of the coil conductors 18a to 18f is not limited to 7/8 turns.
  • each of the via-hole conductors b1 to b5 is provided so as to penetrate the magnetic layers 16d and 16e, the nonmagnetic layer 17, and the magnetic layers 16f and 16g in the z-axis direction.
  • the via-hole conductors b1 to b5 function as connecting portions that connect the ends of the adjacent coil conductors 18 when the magnetic layers 16a to 16k and the nonmagnetic layer 17 are laminated. More specifically, the via-hole conductor b1 connects the end of the coil conductor 18a where the lead-out portion 20a is not provided and the end of the coil conductor 18b.
  • the via-hole conductor b2 connects the end of the coil conductor 18b to which the via-hole conductor b1 is not connected and the end of the coil conductor 18c.
  • the via hole conductor b3 connects the end of the coil conductor 18c to which the via hole conductor b2 is not connected and the end of the coil conductor 18d.
  • the via-hole conductor b4 connects the end of the coil conductor 18d to which the via-hole conductor b3 is not connected and the end of the coil conductor 18e.
  • the via-hole conductor b5 includes an end of the coil conductor 18e that is not connected to the via-hole conductor b4, and an end of the coil conductor 18f that is not provided with the lead-out portion 20b. Is connected. Thereby, the coil conductors 18a to 18f and the via-hole conductors b1 to b5 constitute a spiral coil L.
  • the high magnetic permeability portion 19 has a higher magnetic permeability than the magnetic layer 16 and, as shown in FIGS. 2 and 3, the z-axis direction so as to cross the non-magnetic layer 17 inside the coil L. It is provided to extend. As shown in FIGS. 2 and 3, the high magnetic permeability portion 19 has a coil axis within a rectangular region formed by being surrounded by the coil conductors 18a to 18f when viewed in plan from the z-axis direction. X is provided so as to overlap with X.
  • the high magnetic permeability portion 19 is composed of magnetic layers 19d to 19i. As shown in FIG.
  • the magnetic layers 19d to 19i are respectively magnetic layers 16d and 16e and nonmagnetic layer 17 in regions surrounded by the coil conductors 18a to 18f when viewed in plan from the z-axis direction. And the magnetic layers 16f to 16h are provided so as to penetrate in the z-axis direction. Then, the magnetic layers 16a to 16k and the nonmagnetic layer 17 are laminated, so that the magnetic layers 19d to 19i constitute a prismatic high permeability portion 19.
  • an alphabet is appended to the reference symbol, and when these are collectively referred to, the alphabet after the reference symbol is omitted. .
  • each of the coil conductors 18a and 18f has lead portions 20a and 20b at the ends thereof.
  • the lead portions 20a and 20b are drawn to the side surfaces of the multilayer body 12a and connected to the external electrodes 14a and 14b, respectively. Thereby, the coil L is connected to the external electrodes 14a and 14b.
  • the electronic component 10a configured as described above has a large inductance value when a relatively small DC current is flowing through the coil L, as will be described below, and a relatively large DC current. Even if it flows through the coil L, it has a DC superposition characteristic in which the inductance value does not rapidly decrease.
  • the nonmagnetic layer 17 is provided so as to cross the coil L.
  • the magnetic saturation is suppressed from occurring in the stacked body 12a, and an abrupt decrease in inductance value due to magnetic saturation is suppressed.
  • a high magnetic permeability portion 19 having a magnetic permeability higher than that of the magnetic layer 16 is provided inside the coil L. Therefore, when a small direct current that does not cause magnetic saturation in the high magnetic permeability portion 19 flows through the coil L, a sufficient inductance value can be obtained.
  • an electronic component used for a DC-DC converter As an electronic component used for a DC-DC converter, it operates with a stable inductance value when a large current flows, and can exhibit excellent conversion efficiency when a small current flows. It is necessary to operate with a large inductance value. Therefore, the electronic component 10a can be suitably used for such a DC-DC converter.
  • the inventor of the present application performed the following computer simulation in order to make the effect of the electronic component 10a clearer.
  • this inventor produced the electronic component 10a as a 1st model.
  • the inventor of the present application manufactured an electronic component 10a in which the high magnetic permeability portion 19 is not provided as a second model according to the comparative example.
  • the change of the inductance value was computed by changing the direct current passed through the first model and the second model.
  • FIG. 4 is a graph showing the results of this computer simulation.
  • the vertical axis represents the inductance value
  • the horizontal axis represents the direct current.
  • a high permeability portion 19 is provided in addition to the second model. Therefore, when a relatively small DC current flows through the coil L, an inductance value higher than that of the second model can be obtained. Even when a relatively large direct current flows through the coil L, a stable inductance value can be obtained. Therefore, according to this computer simulation, even if a relatively large direct current flows through the coil L in the electronic component 10a, the occurrence of magnetic saturation in the stacked body 12a is suppressed, and the inductance value due to magnetic saturation is reduced. It can be seen that the rapid decrease is suppressed.
  • ferric oxide (Fe 2 O 3 ), zinc oxide (ZnO), nickel oxide (NiO), and copper oxide (CuO) were weighed at a predetermined ratio and each material was put into a ball mill as a raw material, and wet blended I do.
  • the obtained mixture is dried and pulverized, and the obtained powder is calcined at 800 ° C. for 1 hour.
  • the obtained calcined powder is wet pulverized by a ball mill, dried and crushed to obtain a first ferrite ceramic powder.
  • a binder (vinyl acetate, water-soluble acrylic, etc.), a plasticizer, a wetting material, and a dispersing agent are added to the first ferrite ceramic powder, mixed by a ball mill, and then defoamed by reduced pressure.
  • the obtained ceramic slurry is formed into a sheet shape on a carrier sheet by a doctor blade method and dried to produce a ceramic green sheet to be the magnetic layer 16.
  • each material obtained by weighing ferric oxide (Fe 2 O 3 ), zinc oxide (ZnO) and copper oxide (CuO) at a predetermined ratio is put into a ball mill as a raw material, and wet blending is performed.
  • the obtained mixture is dried and pulverized, and the obtained powder is calcined at 800 ° C. for 1 hour.
  • the obtained calcined powder is wet pulverized by a ball mill, dried and then crushed to obtain a second ferrite ceramic powder.
  • a binder (vinyl acetate, water-soluble acrylic, etc.), a plasticizer, a wetting material and a dispersing agent are added and mixed by a ball mill, and then defoamed by reduced pressure.
  • the obtained ceramic slurry is formed into a sheet shape on a carrier sheet by a doctor blade method and dried to produce a ceramic green sheet to be the nonmagnetic layer 17.
  • ferric oxide (Fe 2 O 3 ), zinc oxide (ZnO), nickel oxide (NiO), and copper oxide (CuO) are weighed at a predetermined ratio, and the respective materials are put into a ball mill as raw materials. Mix. At this time, the respective materials are mixed so that the ratio of nickel oxide (NiO) is lower than that of the first ferrite ceramic powder.
  • the obtained mixture is dried and pulverized, and the obtained powder is calcined at 800 ° C. for 1 hour.
  • the obtained calcined powder is wet pulverized by a ball mill, then dried and crushed to obtain a third ferrite ceramic powder.
  • a binder (vinyl acetate, water-soluble acrylic, etc.), a plasticizer, a wetting material, and a dispersing agent are added and mixed with a ball mill. Ceramic slurry used for the body layers 19d to 19i is obtained.
  • FIG. 5 is a perspective view showing a manufacturing process of a ceramic green sheet to be the magnetic layer 16e.
  • a ceramic green sheet to be a magnetic layer 16e with a carrier film 22e as shown in FIG. 5 (a) is prepared.
  • a hole H2 to be the magnetic layer 19e and a via hole h2 to be the via-hole conductor b2 are formed by irradiating a laser beam or the like.
  • the laser beam is irradiated while adjusting the strength so that only the ceramic green sheet is burned out and the carrier film 22e is not burned out.
  • the ceramic slurry used for the magnetic layer 19e is filled into the holes H2 by screen printing or the like.
  • a conductive paste mainly composed of Ag, Pd, Cu, Au, or an alloy thereof is screen printed on the ceramic green sheet to be the magnetic layer 16e.
  • the coil conductor 18b is formed by coating by a method such as photolithography. Further, in the step of forming the coil conductor 18b, the via hole h2 is filled with a conductive paste to form the via hole conductor b2.
  • the ceramic green sheets to be the magnetic layers 16a to 16e, the nonmagnetic layer 17 and the magnetic layers 16f to 16k are stacked so as to be arranged in this order from the positive direction side in the z-axis direction. . More specifically, a ceramic green sheet to be the magnetic layer 16k is disposed. Next, the ceramic green sheet to be the magnetic layer 16j is disposed and temporarily pressed onto the ceramic green sheet to be the magnetic layer 16k. Thereafter, the ceramic green sheets to be the magnetic layers 16i, 16h, 16g and 16f, the nonmagnetic layer 17 and the magnetic layers 16e, 16d, 16c, 16b and 16a are similarly laminated and temporarily pressed in this order. To obtain a mother laminate. Further, the mother laminate is subjected to main pressure bonding by a hydrostatic pressure press or the like.
  • the mother laminated body is cut into a laminated body 12a having a predetermined size by pressing to obtain an unfired laminated body 12a.
  • This unfired laminate 12a is subjected to binder removal processing and firing.
  • the binder removal treatment is performed, for example, in a low oxygen atmosphere at 500 ° C. for 2 hours. Firing is performed, for example, at 1000 ° C. for 2 hours.
  • the fired laminated body 12a is obtained through the above steps.
  • the laminated body 12a is chamfered by barrel processing.
  • a silver electrode to be the external electrodes 14a and 14b is formed on the surface of the laminated body 12a by applying and baking an electrode paste whose main component is silver by a method such as dipping.
  • the silver electrode is dried at 120 ° C. for 10 minutes, and the silver electrode is baked at 890 ° C. for 1 hour.
  • the external electrodes 14a and 14b are formed by performing Ni plating / Sn plating on the surface of the silver electrode.
  • FIG. 6 is a cross-sectional structural view taken along line AA of the electronic component 10b according to another embodiment.
  • the high magnetic permeability portion 19 is provided so as to penetrate the nonmagnetic layer 17.
  • the high magnetic permeability portion 19 is provided separately on each of the positive direction side and the negative direction side in the z-axis direction of the nonmagnetic layer 17. Also in the electronic component 10b having such a structure, it is possible to achieve the same operational effects as the electronic component 10a.
  • the high magnetic permeability portion 19 forms one prism, but the structure of the high magnetic permeability portion 19 is not limited to this.
  • the magnetic layers 19d to 19i may be provided on the magnetic layers 16d to 16h without forming the holes H. In this case, in the coil L, the magnetic layers 19d to 19i and the magnetic layers 16d to 16h are alternately arranged.
  • the nonmagnetic layer 17 is provided in the electronic components 10a and 10b.
  • a magnetic layer having a magnetic permeability lower than that of the magnetic layer 16 may be provided instead of the nonmagnetic layer 17, a magnetic layer having a magnetic permeability lower than that of the magnetic layer 16 may be provided. .
  • the present invention is useful for electronic components. Particularly, when a relatively small direct current flows through the coil, a large inductance value can be obtained, and even if a relatively large direct current flows through the coil, Further, it is excellent in that a direct current superimposition characteristic in which the inductance value does not decrease can be obtained.

Abstract

Provided is an electronic component that has direct current superposition characteristics such that a large inductance value can be obtained when a relatively low direct current is flowing in a coil and such that the inductance value does not drop abruptly even when a relatively high direct current is flowing in the coil. A laminate (12a) is created by lamination of magnetic layers (16a-16k). A coil (L) is built into the laminate (12a) and has a coil axis (X) that extends in the z-axis direction. The magnetic permeability of the laminate (12a) is lower than that of the magnetic layers (16a-16k), and further includes a nonmagnetic layer (17), which is laminated with the magnetic layers (16a-16k) to intersect the coil axis (X), and a high magnetic permeability part (19) that has magnetic permeability higher than that of the magnetic layers (16a-16k) and is provided to penetrate through the nonmagnetic layer (17) inside the coil (L).

Description

電子部品Electronic components
 本発明は、電子部品に関し、より特定的には、積層体内にコイルを内蔵している電子部品に関する。 The present invention relates to an electronic component, and more particularly, to an electronic component having a coil incorporated in a laminated body.
 コイルを内蔵している従来の電子部品としては、例えば、特許文献1に記載の積層インダクタが知られている。該積層インダクタでは、複数のコイルパターンからなるコイルが、磁性体層からなる積層体内に内蔵されている。そして、非磁性体層が、コイル内部においてコイル軸と交差するように設けられている。 As a conventional electronic component incorporating a coil, for example, a multilayer inductor described in Patent Document 1 is known. In the multilayer inductor, a coil composed of a plurality of coil patterns is incorporated in a multilayer body composed of magnetic layers. The nonmagnetic layer is provided so as to intersect the coil axis inside the coil.
 前記積層インダクタによれば、非磁性体層が設けられているので、積層体内における磁束密度が低下する。その結果、積層インダクタを流れる直流電流が大きくなっても、積層体内において磁気飽和が発生しにくくなり、磁気飽和によるインダクタンス値の急激な低下が発生しにくくなる。すなわち、積層インダクタの直流重畳特性が向上する。 According to the multilayer inductor, since the nonmagnetic material layer is provided, the magnetic flux density in the multilayer body is reduced. As a result, even if the direct current flowing through the multilayer inductor is increased, magnetic saturation is less likely to occur in the multilayer body, and a sudden decrease in inductance value due to magnetic saturation is less likely to occur. That is, the DC superimposition characteristic of the multilayer inductor is improved.
 ところで、特許文献1に記載の積層インダクタは、例えば、携帯電話等の電子機器内のDC-DCコンバータに用いられることがある。このような積層インダクタでは、相対的に小さな直流電流がコイルに流れているときには、大きなインダクタンス値が得られ、かつ、相対的に大きな直流電流がコイルに流れても、急激にインダクタンス値が低下しない直流重畳特性が要求される。 Incidentally, the multilayer inductor described in Patent Document 1 may be used in, for example, a DC-DC converter in an electronic device such as a mobile phone. In such a multilayer inductor, when a relatively small DC current flows through the coil, a large inductance value can be obtained, and even if a relatively large DC current flows through the coil, the inductance value does not rapidly decrease. DC superposition characteristics are required.
 しかしながら、特許文献1に記載の積層インダクタでは、相対的に小さな直流電流がコイルに流れているときには、大きなインダクタンス値を得ることが困難である。より詳細には、該積層インダクタでは、コイル内に非磁性体層が設けられている。これにより、積層体内において磁気飽和が発生することが抑制される。よって、相対的に大きな直流電流がコイルに流れても、急激にインダクタンス値が低下することが抑制される。その一方で、非磁性体層は、積層体内の磁束密度を低下させる。そのため、非磁性体層は、相対的に小さな直流電流がコイルに流れているときに、積層インダクタが大きなインダクタンス値を生じることを妨げてしまう。 However, in the multilayer inductor described in Patent Document 1, it is difficult to obtain a large inductance value when a relatively small DC current flows through the coil. More specifically, in the multilayer inductor, a nonmagnetic material layer is provided in the coil. This suppresses the occurrence of magnetic saturation in the stack. Therefore, even if a relatively large direct current flows through the coil, the inductance value is suppressed from rapidly decreasing. On the other hand, the nonmagnetic material layer reduces the magnetic flux density in the stacked body. For this reason, the non-magnetic layer prevents the multilayer inductor from generating a large inductance value when a relatively small direct current flows through the coil.
特開2006-216916号公報JP 2006-216916 A
 そこで、本発明の目的は、相対的に小さな直流電流がコイルに流れているときには、大きなインダクタンス値が得られ、かつ、相対的に大きな直流電流がコイルに流れても、急激にインダクタンス値が低下しない直流重畳特性を有する電子部品を提供することである。 Therefore, an object of the present invention is to obtain a large inductance value when a relatively small DC current flows through the coil, and the inductance value rapidly decreases even when a relatively large DC current flows through the coil. It is to provide an electronic component having a direct current superimposition characteristic.
 本発明の一形態に係る電子部品は、複数の第1の絶縁体層が積層されてなる積層体と、前記積層体に内蔵され、かつ、積層方向に沿って延在するコイル軸を有するコイルと、を備え、前記積層体は、前記第1の絶縁体層よりも低い透磁率を有し、かつ、前記コイル軸と交差するように前記積層体内に設けられている第2の絶縁体層と、前記第1の絶縁体層よりも高い透磁率を有し、かつ、前記コイルの内部において前記第2の絶縁体層の積層方向の上側及び下側のそれぞれに設けられている高透磁率部と、を更に含んでいること、を特徴とする。 An electronic component according to an aspect of the present invention includes a laminated body in which a plurality of first insulator layers are laminated, and a coil having a coil shaft that is built in the laminated body and extends in the laminating direction. And the laminate has a lower magnetic permeability than the first insulator layer, and is provided in the laminate so as to intersect the coil axis. And a high magnetic permeability that is higher than that of the first insulator layer and that is provided on each of the upper side and the lower side in the stacking direction of the second insulator layer inside the coil. And a portion.
 本発明によれば、相対的に小さな直流電流がコイルに流れているときには、大きなインダクタンス値が得られ、かつ、相対的に大きな直流電流がコイルに流れても、急激にインダクタンス値が低下しない直流重畳特性を得ることができる。 According to the present invention, when a relatively small DC current is flowing through the coil, a large inductance value is obtained, and even if a relatively large DC current flows through the coil, the inductance value does not rapidly decrease. Superimposition characteristics can be obtained.
本発明の実施形態に係る電子部品の透視図である。It is a perspective view of the electronic component which concerns on embodiment of this invention. 本発明の一実施形態に係る電子部品の積層体の分解斜視図である。It is a disassembled perspective view of the laminated body of the electronic component which concerns on one Embodiment of this invention. 図1の電子部品のA-Aにおける断面構造図である。FIG. 2 is a cross-sectional structural view taken along line AA of the electronic component in FIG. コンピュータシミュレーションの結果を示したグラフである。It is the graph which showed the result of computer simulation. 磁性体層となるべきセラミックグリーンシートの製造工程を示した斜視図である。It is the perspective view which showed the manufacturing process of the ceramic green sheet which should become a magnetic body layer. その他の実施形態に係る電子部品のA-Aにおける断面構造図である。FIG. 6 is a cross-sectional structure view taken along the line AA of an electronic component according to another embodiment.
 以下に、本発明の実施形態に係る電子部品について説明する。 Hereinafter, an electronic component according to an embodiment of the present invention will be described.
(電子部品の構成)
 以下に、本発明の一実施形態に係る電子部品10aについて図面を参照しながら説明する。図1は、本発明の実施形態に係る電子部品10a,10bの透視図である。図2は、第1の実施形態に係る電子部品10aの積層体12aの分解斜視図である。図3は、図1の電子部品10aのA-Aにおける断面構造図である。以下、電子部品10aの積層方向をz軸方向と定義し、電子部品10aの長辺に沿った方向をx軸方向と定義し、電子部品10aの短辺に沿った方向をy軸方向と定義する。x軸、y軸及びz軸は互いに直交している。
(Configuration of electronic parts)
Hereinafter, an electronic component 10a according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a perspective view of electronic components 10a and 10b according to an embodiment of the present invention. FIG. 2 is an exploded perspective view of the multilayer body 12a of the electronic component 10a according to the first embodiment. FIG. 3 is a sectional structural view taken along the line AA of the electronic component 10a of FIG. Hereinafter, the stacking direction of the electronic component 10a is defined as the z-axis direction, the direction along the long side of the electronic component 10a is defined as the x-axis direction, and the direction along the short side of the electronic component 10a is defined as the y-axis direction. To do. The x axis, the y axis, and the z axis are orthogonal to each other.
 電子部品10aは、図1に示すように、積層体12a及び外部電極14a,14bを備えている。積層体12aは、直方体状を有しており、コイルLを内蔵している。外部電極14a,14bはそれぞれ、コイルLに電気的に接続されており、x軸方向の両端に位置する側面を覆うように設けられている。 The electronic component 10a includes a laminate 12a and external electrodes 14a and 14b as shown in FIG. The laminated body 12a has a rectangular parallelepiped shape and incorporates a coil L. The external electrodes 14a and 14b are each electrically connected to the coil L, and are provided so as to cover the side surfaces located at both ends in the x-axis direction.
 積層体12aは、図2に示すように、磁性体層(絶縁体層)16a~16k及び非磁性体層(絶縁体層)17が積層されて構成されている。更に、積層体12aは、後述する高透磁率部19(図3参照)を含んでいる。磁性体層16a~16kは、強磁性のフェライト(例えば、Ni-Zn-Cuフェライト)により作製されている。非磁性体層17は、磁性体層16a~16kよりも低い透磁率を有する材料により作製されており、本実施形態では、非磁性のフェライト(例えば、Zn-Cuフェライト)により作製されている。非磁性体層17は、積層体12a内に設けられており、より詳細には、磁性体層16eと磁性体層16fとの間に設けられている。なお、図2において、磁性体層16a~16kは、11層の磁性体層により構成されているが、磁性体層16a~16kの総数はこれに限らない。また、非磁性体層17は、1層のみ設けられているが、2層以上設けられていてもよい。以下では、個別の磁性体層16a~16kを指す場合には、参照符号の後ろにアルファベットを付し、これらを総称する場合には、参照符号の後ろのアルファベットを省略する。 As shown in FIG. 2, the laminated body 12a is formed by laminating magnetic layers (insulator layers) 16a to 16k and a nonmagnetic layer (insulator layer) 17. Furthermore, the laminated body 12a includes a high magnetic permeability portion 19 (see FIG. 3) described later. The magnetic layers 16a to 16k are made of ferromagnetic ferrite (for example, Ni—Zn—Cu ferrite). The nonmagnetic layer 17 is made of a material having a lower magnetic permeability than the magnetic layers 16a to 16k. In the present embodiment, the nonmagnetic layer 17 is made of nonmagnetic ferrite (for example, Zn—Cu ferrite). The nonmagnetic layer 17 is provided in the stacked body 12a, and more specifically, is provided between the magnetic layer 16e and the magnetic layer 16f. In FIG. 2, the magnetic layers 16a to 16k are constituted by eleven magnetic layers, but the total number of the magnetic layers 16a to 16k is not limited to this. Further, only one nonmagnetic layer 17 is provided, but two or more layers may be provided. Hereinafter, when referring to the individual magnetic layers 16a to 16k, an alphabet is appended to the reference symbol, and when referring to these, the alphabet after the reference symbol is omitted.
 コイルLは、図2に示すように、旋廻しながらz軸方向に進行する螺旋状のコイルである。すなわち、コイルLのコイル軸Xは、図3に示すように、z軸方向に沿って延在している。本実施形態では、コイル軸Xは、z軸方向と平行である。これにより、非磁性体層17は、コイル軸Xと交差している。コイルLは、図2に示すように、コイル導体18a~18f及びビアホール導体b1~b5を含んでいる。 The coil L is a spiral coil that advances in the z-axis direction while rotating as shown in FIG. That is, the coil axis X of the coil L extends along the z-axis direction as shown in FIG. In the present embodiment, the coil axis X is parallel to the z-axis direction. Thereby, the nonmagnetic layer 17 intersects the coil axis X. As shown in FIG. 2, the coil L includes coil conductors 18a to 18f and via-hole conductors b1 to b5.
 コイル導体18a~18fはそれぞれ、図2に示すように、磁性体層16d,16e、非磁性体層17、磁性体層16f~16hの主面上に設けられている。各コイル導体18a~18fは、Agからなる導電性材料からなり、7/8ターン分の長さを有しており、z軸方向に互いに重なるように配置されている。これにより、コイル導体18a~18fにより構成されるコイルLは、z軸方向から平面視したときに、長方形状の環を形成するようになる。なお、コイル導体18a~18fの長さは、7/8ターンに限らない。以下では、個別のコイル導体18a~18fを指す場合には、参照符号の後ろにアルファベットを付し、これらを総称する場合には、参照符号の後ろのアルファベットを省略する。 As shown in FIG. 2, the coil conductors 18a to 18f are provided on the main surfaces of the magnetic layers 16d and 16e, the nonmagnetic layer 17, and the magnetic layers 16f to 16h, respectively. Each of the coil conductors 18a to 18f is made of a conductive material made of Ag, has a length of 7/8 turns, and is arranged so as to overlap each other in the z-axis direction. As a result, the coil L constituted by the coil conductors 18a to 18f forms a rectangular ring when viewed in plan from the z-axis direction. The length of the coil conductors 18a to 18f is not limited to 7/8 turns. In the following, when referring to the individual coil conductors 18a to 18f, an alphabet is appended to the reference symbol, and when referring to these, the alphabet after the reference symbol is omitted.
 ビアホール導体b1~b5はそれぞれ、図2に示すように、磁性体層16d,16e、非磁性体層17、磁性体層16f,16gをz軸方向に貫通するように設けられている。ビアホール導体b1~b5は、磁性体層16a~16k及び非磁性体層17が積層されたときに、隣り合うコイル導体18の端部同士を接続する接続部として機能する。より詳細には、ビアホール導体b1は、コイル導体18aの端部の内、引き出し部20aが設けられていない方の端部と、コイル導体18bの端部とを接続している。ビアホール導体b2は、コイル導体18bの端部の内、ビアホール導体b1が接続されていない方の端部と、コイル導体18cの端部とを接続している。ビアホール導体b3は、コイル導体18cの端部の内、ビアホール導体b2が接続されていない方の端部と、コイル導体18dの端部とを接続している。ビアホール導体b4は、コイル導体18dの端部の内、ビアホール導体b3が接続されていない方の端部と、コイル導体18eの端部とを接続している。ビアホール導体b5は、コイル導体18eの端部の内、ビアホール導体b4が接続されていない方の端部と、コイル導体18fの端部の内、引き出し部20bが設けられていない方の端部とを接続している。これにより、コイル導体18a~18f及びビアホール導体b1~b5は、螺旋状のコイルLを構成している。 As shown in FIG. 2, each of the via-hole conductors b1 to b5 is provided so as to penetrate the magnetic layers 16d and 16e, the nonmagnetic layer 17, and the magnetic layers 16f and 16g in the z-axis direction. The via-hole conductors b1 to b5 function as connecting portions that connect the ends of the adjacent coil conductors 18 when the magnetic layers 16a to 16k and the nonmagnetic layer 17 are laminated. More specifically, the via-hole conductor b1 connects the end of the coil conductor 18a where the lead-out portion 20a is not provided and the end of the coil conductor 18b. The via-hole conductor b2 connects the end of the coil conductor 18b to which the via-hole conductor b1 is not connected and the end of the coil conductor 18c. The via hole conductor b3 connects the end of the coil conductor 18c to which the via hole conductor b2 is not connected and the end of the coil conductor 18d. The via-hole conductor b4 connects the end of the coil conductor 18d to which the via-hole conductor b3 is not connected and the end of the coil conductor 18e. The via-hole conductor b5 includes an end of the coil conductor 18e that is not connected to the via-hole conductor b4, and an end of the coil conductor 18f that is not provided with the lead-out portion 20b. Is connected. Thereby, the coil conductors 18a to 18f and the via-hole conductors b1 to b5 constitute a spiral coil L.
 高透磁率部19は、磁性体層16よりも高い透磁率を有し、かつ、図2及び図3に示すように、コイルLの内部において、非磁性体層17を横切るようにz軸方向に延在して設けられている。該高透磁率部19は、図2及び図3に示すように、z軸方向から平面視したときに、コイル導体18a~18fにより囲まれて形成されている長方形状の領域内において、コイル軸Xと重なるように設けられている。該高透磁率部19は、磁性体層19d~19iにより構成されている。磁性体層19d~19iはそれぞれ、図2に示すように、z軸方向から平面視したときにコイル導体18a~18fに囲まれている領域において、磁性体層16d,16e、非磁性体層17及び磁性体層16f~16hをz軸方向に貫通するように設けられている。そして、磁性体層16a~16k及び非磁性体層17が積層されることにより、磁性体層19d~19iは、角柱状の高透磁率部19を構成している。以下では、個別のコイル導体18a~18f及び磁性体層19d~19iを指す場合には、参照符号の後ろにアルファベットを付し、これらを総称する場合には、参照符号の後ろのアルファベットを省略する。 The high magnetic permeability portion 19 has a higher magnetic permeability than the magnetic layer 16 and, as shown in FIGS. 2 and 3, the z-axis direction so as to cross the non-magnetic layer 17 inside the coil L. It is provided to extend. As shown in FIGS. 2 and 3, the high magnetic permeability portion 19 has a coil axis within a rectangular region formed by being surrounded by the coil conductors 18a to 18f when viewed in plan from the z-axis direction. X is provided so as to overlap with X. The high magnetic permeability portion 19 is composed of magnetic layers 19d to 19i. As shown in FIG. 2, the magnetic layers 19d to 19i are respectively magnetic layers 16d and 16e and nonmagnetic layer 17 in regions surrounded by the coil conductors 18a to 18f when viewed in plan from the z-axis direction. And the magnetic layers 16f to 16h are provided so as to penetrate in the z-axis direction. Then, the magnetic layers 16a to 16k and the nonmagnetic layer 17 are laminated, so that the magnetic layers 19d to 19i constitute a prismatic high permeability portion 19. Hereinafter, when referring to the individual coil conductors 18a to 18f and the magnetic layers 19d to 19i, an alphabet is appended to the reference symbol, and when these are collectively referred to, the alphabet after the reference symbol is omitted. .
 また、コイル導体18a,18fはそれぞれ、図2に示すように、その端部において引き出し部20a,20bを有している。引き出し部20a,20bはそれぞれ、積層体12aの側面に引き出されて外部電極14a,14bと接続されている。これにより、コイルLは、外部電極14a,14bに接続されている。 Further, as shown in FIG. 2, each of the coil conductors 18a and 18f has lead portions 20a and 20b at the ends thereof. The lead portions 20a and 20b are drawn to the side surfaces of the multilayer body 12a and connected to the external electrodes 14a and 14b, respectively. Thereby, the coil L is connected to the external electrodes 14a and 14b.
(効果)
 以上のように構成された電子部品10aは、以下に説明するように、相対的に小さな直流電流がコイルLに流れているときには、大きなインダクタンス値が得られ、かつ、相対的に大きな直流電流がコイルLに流れても、急激にインダクタンス値が低下しない直流重畳特性を有するようになる。
(effect)
The electronic component 10a configured as described above has a large inductance value when a relatively small DC current is flowing through the coil L, as will be described below, and a relatively large DC current. Even if it flows through the coil L, it has a DC superposition characteristic in which the inductance value does not rapidly decrease.
 より詳細には、電子部品10aでは、非磁性体層17がコイルLを横切るように設けられている。これにより、コイルLに相対的に大きな直流電流が流れたとしても、積層体12a内において磁気飽和が発生することが抑制され、磁気飽和によるインダクタンス値の急激な低下が抑制される。また、電子部品10aでは、コイルLの内部に磁性体層16よりも高い透磁率を有する高透磁率部19が設けられている。そのため、高透磁率部19において磁気飽和が発生しない程度の小さな直流電流がコイルLに流れたときに、十分なインダクタンス値を得ることが可能となる。ここで、DC-DCコンバータに用いられる電子部品としては、大きな電流が流れているときに安定したインダクタンス値で動作し、かつ、小さな電流が流れているときに優れた変換効率を発揮できるように大きなインダクタンス値で動作する必要がある。したがって、電子部品10aは、このようなDC-DCコンバータに好適に用いることが可能である。 More specifically, in the electronic component 10a, the nonmagnetic layer 17 is provided so as to cross the coil L. As a result, even if a relatively large direct current flows through the coil L, magnetic saturation is suppressed from occurring in the stacked body 12a, and an abrupt decrease in inductance value due to magnetic saturation is suppressed. Further, in the electronic component 10a, a high magnetic permeability portion 19 having a magnetic permeability higher than that of the magnetic layer 16 is provided inside the coil L. Therefore, when a small direct current that does not cause magnetic saturation in the high magnetic permeability portion 19 flows through the coil L, a sufficient inductance value can be obtained. Here, as an electronic component used for a DC-DC converter, it operates with a stable inductance value when a large current flows, and can exhibit excellent conversion efficiency when a small current flows. It is necessary to operate with a large inductance value. Therefore, the electronic component 10a can be suitably used for such a DC-DC converter.
 本願発明者は、電子部品10aが奏する効果をより明確なものとするために、以下に示すコンピュータシミュレーションを行った。まず、本願発明者は、電子部品10aを第1のモデルとして作製した。また、本願発明者は、高透磁率部19が設けられていない電子部品10aを比較例に係る第2のモデルとして作製した。そして、第1のモデル及び第2のモデルに流す直流電流を変化させて、インダクタンス値の変化を演算した。図4は、本コンピュータシミュレーションの結果を示したグラフである。縦軸はインダクタンス値を示し、横軸は直流電流を示している。 The inventor of the present application performed the following computer simulation in order to make the effect of the electronic component 10a clearer. First, this inventor produced the electronic component 10a as a 1st model. In addition, the inventor of the present application manufactured an electronic component 10a in which the high magnetic permeability portion 19 is not provided as a second model according to the comparative example. And the change of the inductance value was computed by changing the direct current passed through the first model and the second model. FIG. 4 is a graph showing the results of this computer simulation. The vertical axis represents the inductance value, and the horizontal axis represents the direct current.
 図4に示すように、第2のモデルでは、非磁性体層17が設けられているので、相対的に大きな直流電流がコイルLに流れている場合でも、インダクタンス値の急激な低下は抑制されている。しかしながら、第2のモデルでは、相対的に小さな直流電流がコイルLに流れている場合に、大きなインダクタンス値を得ることができていない。 As shown in FIG. 4, in the second model, since the nonmagnetic layer 17 is provided, even when a relatively large DC current flows through the coil L, a rapid decrease in the inductance value is suppressed. ing. However, in the second model, when a relatively small direct current flows through the coil L, a large inductance value cannot be obtained.
 一方、第1のモデルでは、第2のモデルに加えて高透磁率部19が設けられている。そのため、相対的に小さな直流電流がコイルLに流れている場合に、第2のモデルよりも高いインダクタンス値を得ることができている。また、相対的に大きな直流電流がコイルLに流れている場合にも、安定したインダクタンス値を得ることができている。よって、本コンピュータシミュレーションによれば、電子部品10aにおいて、コイルLに相対的に大きな直流電流が流れたとしても、積層体12a内において磁気飽和が発生することが抑制され、磁気飽和によるインダクタンス値の急激な低下が抑制されることが分かる。 On the other hand, in the first model, a high permeability portion 19 is provided in addition to the second model. Therefore, when a relatively small DC current flows through the coil L, an inductance value higher than that of the second model can be obtained. Even when a relatively large direct current flows through the coil L, a stable inductance value can be obtained. Therefore, according to this computer simulation, even if a relatively large direct current flows through the coil L in the electronic component 10a, the occurrence of magnetic saturation in the stacked body 12a is suppressed, and the inductance value due to magnetic saturation is reduced. It can be seen that the rapid decrease is suppressed.
(電子部品の製造方法)
 以下に、電子部品10aの製造方法について図面を参照しながら説明する。なお、以下では、一つの電子部品10aの製造方法について説明する。しかしながら、実際には、マザーセラミックシートを積層してマザー積層体を作製し、マザー積層体をカットすることにより複数の電子部品10aを同時に得ている。
(Method for manufacturing electronic parts)
Below, the manufacturing method of the electronic component 10a is demonstrated, referring drawings. Hereinafter, a method for manufacturing one electronic component 10a will be described. However, in practice, a mother laminated body is produced by laminating mother ceramic sheets, and the mother laminated body is cut to simultaneously obtain a plurality of electronic components 10a.
 まず、酸化第二鉄(Fe23)、酸化亜鉛(ZnO)、酸化ニッケル(NiO)及び酸化銅(CuO)を所定の比率で秤量したそれぞれの材料を原材料としてボールミルに投入し、湿式調合を行う。得られた混合物を乾燥してから粉砕し、得られた粉末を800℃で1時間仮焼する。得られた仮焼粉末をボールミルにて湿式粉砕した後、乾燥してから解砕して、第1のフェライトセラミック粉末を得る。 First, ferric oxide (Fe 2 O 3 ), zinc oxide (ZnO), nickel oxide (NiO), and copper oxide (CuO) were weighed at a predetermined ratio and each material was put into a ball mill as a raw material, and wet blended I do. The obtained mixture is dried and pulverized, and the obtained powder is calcined at 800 ° C. for 1 hour. The obtained calcined powder is wet pulverized by a ball mill, dried and crushed to obtain a first ferrite ceramic powder.
 この第1のフェライトセラミック粉末に対して結合剤(酢酸ビニル、水溶性アクリル等)と可塑剤、湿潤材、分散剤を加えてボールミルで混合を行い、その後、減圧により脱泡を行う。得られたセラミックスラリーをドクターブレード法により、キャリアシート上にシート状に形成して乾燥させ、磁性体層16となるべきセラミックグリーンシートを作製する。 A binder (vinyl acetate, water-soluble acrylic, etc.), a plasticizer, a wetting material, and a dispersing agent are added to the first ferrite ceramic powder, mixed by a ball mill, and then defoamed by reduced pressure. The obtained ceramic slurry is formed into a sheet shape on a carrier sheet by a doctor blade method and dried to produce a ceramic green sheet to be the magnetic layer 16.
 次に、酸化第二鉄(Fe23)、酸化亜鉛(ZnO)及び酸化銅(CuO)を所定の比率で秤量したそれぞれの材料を原材料としてボールミルに投入し、湿式調合を行う。得られた混合物を乾燥してから粉砕し、得られた粉末を800℃で1時間仮焼する。得られた仮焼粉末をボールミルにて湿式粉砕した後、乾燥してから解砕して、第2のフェライトセラミック粉末を得る。 Next, each material obtained by weighing ferric oxide (Fe 2 O 3 ), zinc oxide (ZnO) and copper oxide (CuO) at a predetermined ratio is put into a ball mill as a raw material, and wet blending is performed. The obtained mixture is dried and pulverized, and the obtained powder is calcined at 800 ° C. for 1 hour. The obtained calcined powder is wet pulverized by a ball mill, dried and then crushed to obtain a second ferrite ceramic powder.
 この第2のフェライトセラミック粉末に対して結合剤(酢酸ビニル、水溶性アクリル等)と可塑剤、湿潤材、分散剤を加えてボールミルで混合を行い、その後、減圧により脱泡を行う。得られたセラミックスラリーをドクターブレード法により、キャリアシート上にシート状に形成して乾燥させ、非磁性体層17となるべきセラミックグリーンシートを作製する。 To this second ferrite ceramic powder, a binder (vinyl acetate, water-soluble acrylic, etc.), a plasticizer, a wetting material and a dispersing agent are added and mixed by a ball mill, and then defoamed by reduced pressure. The obtained ceramic slurry is formed into a sheet shape on a carrier sheet by a doctor blade method and dried to produce a ceramic green sheet to be the nonmagnetic layer 17.
 次に、酸化第二鉄(Fe23)、酸化亜鉛(ZnO)、酸化ニッケル(NiO)及び酸化銅(CuO)を所定の比率で秤量したそれぞれの材料を原材料としてボールミルに投入し、湿式調合を行う。この際、第1のフェライトセラミック粉末よりも、酸化ニッケル(NiO)の割合が低くなるように、各材料を混合する。得られた混合物を乾燥してから粉砕し、得られた粉末を800℃で1時間仮焼する。得られた仮焼粉末をボールミルにて湿式粉砕した後、乾燥してから解砕して、第3のフェライトセラミック粉末を得る。 Next, ferric oxide (Fe 2 O 3 ), zinc oxide (ZnO), nickel oxide (NiO), and copper oxide (CuO) are weighed at a predetermined ratio, and the respective materials are put into a ball mill as raw materials. Mix. At this time, the respective materials are mixed so that the ratio of nickel oxide (NiO) is lower than that of the first ferrite ceramic powder. The obtained mixture is dried and pulverized, and the obtained powder is calcined at 800 ° C. for 1 hour. The obtained calcined powder is wet pulverized by a ball mill, then dried and crushed to obtain a third ferrite ceramic powder.
 この第3のフェライトセラミック粉末に対して結合剤(酢酸ビニル、水溶性アクリル等)と可塑剤、湿潤材、分散剤を加えてボールミルで混合を行い、その後、減圧により脱泡を行って、磁性体層19d~19iに用いるセラミックスラリーを得る。 To this third ferrite ceramic powder, a binder (vinyl acetate, water-soluble acrylic, etc.), a plasticizer, a wetting material, and a dispersing agent are added and mixed with a ball mill. Ceramic slurry used for the body layers 19d to 19i is obtained.
 次に、図2に示すような、コイル導体18a~18f及び磁性体層19d~19iが設けられた磁性体層16d,16e、非磁性体層17及び磁性体層16f~16hとなるべきセラミックグリーンシートを作製する。以下に、磁性体層16eとなるべきセラミックグリーンシートを例にとって説明する。図5は、磁性体層16eとなるべきセラミックグリーンシートの製造工程を示した斜視図である。 Next, as shown in FIG. 2, the ceramic green to be the magnetic layers 16d and 16e provided with the coil conductors 18a to 18f and the magnetic layers 19d to 19i, the nonmagnetic layer 17 and the magnetic layers 16f to 16h. A sheet is produced. Hereinafter, a ceramic green sheet to be the magnetic layer 16e will be described as an example. FIG. 5 is a perspective view showing a manufacturing process of a ceramic green sheet to be the magnetic layer 16e.
 まず、図5(a)に示すようなキャリアフィルム22e付きの磁性体層16eとなるべきセラミックグリーンシートを準備する。次に、図5(b)に示すように、レーザビームなどを照射することにより、磁性体層19eとなるべき孔H2及びビアホール導体b2となるべきビアホールh2を形成する。この際、セラミックグリーンシートのみが焼失し、キャリアフィルム22eが焼失しないように、強度を調整しながらレーザビームを照射する。 First, a ceramic green sheet to be a magnetic layer 16e with a carrier film 22e as shown in FIG. 5 (a) is prepared. Next, as shown in FIG. 5B, a hole H2 to be the magnetic layer 19e and a via hole h2 to be the via-hole conductor b2 are formed by irradiating a laser beam or the like. At this time, the laser beam is irradiated while adjusting the strength so that only the ceramic green sheet is burned out and the carrier film 22e is not burned out.
 次に、図5(c)に示すように、磁性体層19eに用いるセラミックスラリーを、孔H2に対してスクリーン印刷等により充填する。最後に、図5(d)に示すように、磁性体層16eとなるべきセラミックグリーンシート上に、Ag,Pd,Cu,Auやこれらの合金などを主成分とする導電性ペーストをスクリーン印刷法やフォトリソグラフィ法などの方法で塗布することにより、コイル導体18bを形成する。更に、コイル導体18bを形成する工程においてビアホールh2に対して導電性ペーストを充填してビアホール導体b2を形成する。なお、その他の磁性体層16及び非磁性体層17となるべきセラミックグリーンシートへのコイル導体18等の形成は、コイル導体18bと同様の工程により形成されるので、説明を省略する。 Next, as shown in FIG. 5C, the ceramic slurry used for the magnetic layer 19e is filled into the holes H2 by screen printing or the like. Finally, as shown in FIG. 5D, a conductive paste mainly composed of Ag, Pd, Cu, Au, or an alloy thereof is screen printed on the ceramic green sheet to be the magnetic layer 16e. The coil conductor 18b is formed by coating by a method such as photolithography. Further, in the step of forming the coil conductor 18b, the via hole h2 is filled with a conductive paste to form the via hole conductor b2. In addition, since formation of the coil conductor 18 grade | etc., To the ceramic green sheet which should become the other magnetic body layer 16 and the nonmagnetic body layer 17 is formed by the process similar to the coil conductor 18b, description is abbreviate | omitted.
 次に、図2に示すように、磁性体層16a~16e、非磁性体層17及び磁性体層16f~16kとなるセラミックグリーンシートをz軸方向の正方向側からこの順に並ぶように積層する。より詳細には、磁性体層16kとなるセラミックグリーンシートを配置する。次に、磁性体層16kとなるセラミックグリーンシート上に、磁性体層16jとなるセラミックグリーンシートの配置及び仮圧着を行う。この後、磁性体層16i,16h,16g,16f、非磁性体層17及び磁性体層16e,16d,16c,16b,16aとなるセラミックグリーンシートについても同様にこの順番に積層及び仮圧着して、マザー積層体を得る。更に、マザー積層体には、静水圧プレスなどにより本圧着が施される。 Next, as shown in FIG. 2, the ceramic green sheets to be the magnetic layers 16a to 16e, the nonmagnetic layer 17 and the magnetic layers 16f to 16k are stacked so as to be arranged in this order from the positive direction side in the z-axis direction. . More specifically, a ceramic green sheet to be the magnetic layer 16k is disposed. Next, the ceramic green sheet to be the magnetic layer 16j is disposed and temporarily pressed onto the ceramic green sheet to be the magnetic layer 16k. Thereafter, the ceramic green sheets to be the magnetic layers 16i, 16h, 16g and 16f, the nonmagnetic layer 17 and the magnetic layers 16e, 16d, 16c, 16b and 16a are similarly laminated and temporarily pressed in this order. To obtain a mother laminate. Further, the mother laminate is subjected to main pressure bonding by a hydrostatic pressure press or the like.
 次に、マザー積層体を押し切りにより所定寸法の積層体12aにカットして、未焼成の積層体12aを得る。この未焼成の積層体12aには、脱バインダー処理及び焼成がなされる。脱バインダー処理は、例えば、低酸素雰囲気中において500℃で2時間の条件で行う。焼成は、例えば、1000℃で2時間の条件で行う。 Next, the mother laminated body is cut into a laminated body 12a having a predetermined size by pressing to obtain an unfired laminated body 12a. This unfired laminate 12a is subjected to binder removal processing and firing. The binder removal treatment is performed, for example, in a low oxygen atmosphere at 500 ° C. for 2 hours. Firing is performed, for example, at 1000 ° C. for 2 hours.
 以上の工程により、焼成された積層体12aが得られる。積層体12aには、バレル加工を施して、面取りを行う。その後、積層体12aの表面には、例えば、浸漬法等の方法により主成分が銀である電極ペーストを塗布及び焼き付けすることにより、外部電極14a,14bとなるべき銀電極を形成する。銀電極の乾燥は、120℃で10分間行われ、銀電極の焼き付けは、890℃で1時間行われる。最後に、銀電極の表面に、Niめっき/Snめっきを施すことにより、外部電極14a,14bを形成する。以上の工程を経て、図1に示すような電子部品10aが完成する。 The fired laminated body 12a is obtained through the above steps. The laminated body 12a is chamfered by barrel processing. Thereafter, a silver electrode to be the external electrodes 14a and 14b is formed on the surface of the laminated body 12a by applying and baking an electrode paste whose main component is silver by a method such as dipping. The silver electrode is dried at 120 ° C. for 10 minutes, and the silver electrode is baked at 890 ° C. for 1 hour. Finally, the external electrodes 14a and 14b are formed by performing Ni plating / Sn plating on the surface of the silver electrode. Through the above steps, an electronic component 10a as shown in FIG. 1 is completed.
(その他の実施形態)
 本発明に係る電子部品は、前記電子部品10aに限らず、その要旨の範囲内において変更されてもよい。図6は、その他の実施形態に係る電子部品10bのA-Aにおける断面構造図である。
(Other embodiments)
The electronic component according to the present invention is not limited to the electronic component 10a, and may be changed within the scope of the gist thereof. FIG. 6 is a cross-sectional structural view taken along line AA of the electronic component 10b according to another embodiment.
 電子部品10aでは、高透磁率部19は、非磁性体層17を貫通するように設けられていた。一方、電子部品10bでは、高透磁率部19は、非磁性体層17のz軸方向の正方向側と負方向側とのそれぞれに分けて設けられている。このような構造を有する電子部品10bにおいても、電子部品10aと同じ作用効果を奏することが可能である。 In the electronic component 10 a, the high magnetic permeability portion 19 is provided so as to penetrate the nonmagnetic layer 17. On the other hand, in the electronic component 10b, the high magnetic permeability portion 19 is provided separately on each of the positive direction side and the negative direction side in the z-axis direction of the nonmagnetic layer 17. Also in the electronic component 10b having such a structure, it is possible to achieve the same operational effects as the electronic component 10a.
 また、電子部品10aでは、高透磁率部19は、一つの角柱をなしているが、該高透磁率部19の構造はこれに限らない。例えば、磁性体層19d~19iは、孔Hを形成することなく、磁性体層16d~16h上に設けられていてもよい。この場合、コイルLの内部において、磁性体層19d~19iと磁性体層16d~16hとが交互に並ぶようになる。 Further, in the electronic component 10a, the high magnetic permeability portion 19 forms one prism, but the structure of the high magnetic permeability portion 19 is not limited to this. For example, the magnetic layers 19d to 19i may be provided on the magnetic layers 16d to 16h without forming the holes H. In this case, in the coil L, the magnetic layers 19d to 19i and the magnetic layers 16d to 16h are alternately arranged.
 また、電子部品10a,10bでは、非磁性体層17が設けられているが、非磁性体層17の代わりに、磁性体層16よりも低い透磁率を有する磁性体層が設けられてもよい。 In the electronic components 10a and 10b, the nonmagnetic layer 17 is provided. However, instead of the nonmagnetic layer 17, a magnetic layer having a magnetic permeability lower than that of the magnetic layer 16 may be provided. .
 本発明は、電子部品に有用であり、特に、相対的に小さな直流電流がコイルに流れているときには、大きなインダクタンス値が得られ、かつ、相対的に大きな直流電流がコイルに流れても、急激にインダクタンス値が低下しない直流重畳特性を得ることができる点において優れている。 INDUSTRIAL APPLICABILITY The present invention is useful for electronic components. Particularly, when a relatively small direct current flows through the coil, a large inductance value can be obtained, and even if a relatively large direct current flows through the coil, Further, it is excellent in that a direct current superimposition characteristic in which the inductance value does not decrease can be obtained.
 L コイル
 X コイル軸
 b1~b5 ビアホール導体
 10a,10b 電子部品
 12a 積層体
 14a,14b 外部電極
 16a~16k,19d~19i 磁性体層
 17 非磁性体層
 18a~18f コイル導体
 19 高透磁率部
 20a,20b 引き出し部
L coil X coil axis b1 to b5 via hole conductor 10a, 10b electronic component 12a laminated body 14a, 14b external electrode 16a to 16k, 19d to 19i magnetic body layer 17 nonmagnetic body layer 18a to 18f coil conductor 19 high permeability portion 20a, 20b drawer

Claims (3)

  1.  複数の第1の絶縁体層が積層されてなる積層体と、
     前記積層体に内蔵され、かつ、積層方向に沿って延在するコイル軸を有するコイルと、
     を備え、
     前記積層体は、
      前記第1の絶縁体層よりも低い透磁率を有し、かつ、前記コイル軸と交差するように前記積層体内に設けられている第2の絶縁体層と、
      前記第1の絶縁体層よりも高い透磁率を有し、かつ、前記コイルの内部において前記第2の絶縁体層の積層方向の上側及び下側のそれぞれに設けられている高透磁率部と、
     を更に含んでいること、
     を特徴とする電子部品。
    A laminate in which a plurality of first insulator layers are laminated;
    A coil built in the laminate and having a coil axis extending along the lamination direction;
    With
    The laminate is
    A second insulator layer having a lower magnetic permeability than the first insulator layer and provided in the stacked body so as to intersect the coil axis;
    A high permeability portion having a higher magnetic permeability than the first insulator layer, and provided in each of an upper side and a lower side in the stacking direction of the second insulator layer inside the coil; ,
    Further including,
    Electronic parts characterized by
  2.  前記高透磁率部は、前記第2の絶縁体層を横切るように設けられていること、
     を特徴とする請求項1に記載の電子部品。
    The high permeability portion is provided so as to cross the second insulator layer;
    The electronic component according to claim 1.
  3.  前記第2の絶縁体層は、非磁性体層であること、
     を特徴とする請求項1又は請求項2のいずれかに記載の電子部品。
    The second insulator layer is a non-magnetic layer;
    The electronic component according to claim 1, wherein:
PCT/JP2009/068382 2008-12-03 2009-10-27 Electronic component WO2010064505A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010541273A JP5327231B2 (en) 2008-12-03 2009-10-27 Electronic components
CN2009801483054A CN102232233A (en) 2008-12-03 2009-10-27 Electronic component

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-308602 2008-12-03
JP2008308602 2008-12-03

Publications (1)

Publication Number Publication Date
WO2010064505A1 true WO2010064505A1 (en) 2010-06-10

Family

ID=42233159

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/068382 WO2010064505A1 (en) 2008-12-03 2009-10-27 Electronic component

Country Status (3)

Country Link
JP (1) JP5327231B2 (en)
CN (1) CN102232233A (en)
WO (1) WO2010064505A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012138496A (en) * 2010-12-27 2012-07-19 Murata Mfg Co Ltd Coil built-in substrate
CN103563022A (en) * 2011-07-06 2014-02-05 株式会社村田制作所 Electronic component
JP2015119033A (en) * 2013-12-18 2015-06-25 京セラ株式会社 Coil built-in substrate and dc-dc converter

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101994724B1 (en) * 2013-11-05 2019-07-01 삼성전기주식회사 Laminated Inductor and Manufacturing Method Thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001267129A (en) * 2000-03-16 2001-09-28 Murata Mfg Co Ltd Chip inductor and manufacturing method thereof
JP2002008922A (en) * 2000-06-19 2002-01-11 Tdk Corp Coil part
JP2005045108A (en) * 2003-07-24 2005-02-17 Fdk Corp Core type multilayer inductor
WO2007088914A1 (en) * 2006-01-31 2007-08-09 Hitachi Metals, Ltd. Laminated component and module using same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH023605Y2 (en) * 1980-09-18 1990-01-29
US5349743A (en) * 1991-05-02 1994-09-27 At&T Bell Laboratories Method of making a multilayer monolithic magnet component
JPH0714716A (en) * 1993-06-22 1995-01-17 Taiyo Yuden Co Ltd Multilayer ceramic magnetic component and production thereof
JP2944898B2 (en) * 1994-09-29 1999-09-06 富士電気化学株式会社 Laminated chip transformer and method of manufacturing the same
JP2000182834A (en) * 1998-12-10 2000-06-30 Tokin Corp Laminate inductance element and manufacture thereof
JP4525066B2 (en) * 2003-12-11 2010-08-18 株式会社村田製作所 Manufacturing method of multilayer ceramic electronic component
JP4725120B2 (en) * 2005-02-07 2011-07-13 日立金属株式会社 Multilayer inductor and multilayer substrate
WO2008004633A1 (en) * 2006-07-05 2008-01-10 Hitachi Metals, Ltd. Laminated component

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001267129A (en) * 2000-03-16 2001-09-28 Murata Mfg Co Ltd Chip inductor and manufacturing method thereof
JP2002008922A (en) * 2000-06-19 2002-01-11 Tdk Corp Coil part
JP2005045108A (en) * 2003-07-24 2005-02-17 Fdk Corp Core type multilayer inductor
WO2007088914A1 (en) * 2006-01-31 2007-08-09 Hitachi Metals, Ltd. Laminated component and module using same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012138496A (en) * 2010-12-27 2012-07-19 Murata Mfg Co Ltd Coil built-in substrate
CN103563022A (en) * 2011-07-06 2014-02-05 株式会社村田制作所 Electronic component
JP2015119033A (en) * 2013-12-18 2015-06-25 京セラ株式会社 Coil built-in substrate and dc-dc converter

Also Published As

Publication number Publication date
CN102232233A (en) 2011-11-02
JPWO2010064505A1 (en) 2012-05-10
JP5327231B2 (en) 2013-10-30

Similar Documents

Publication Publication Date Title
JP5533673B2 (en) Electronic components
KR101319059B1 (en) Electronic component and method for producing the same
JP5381983B2 (en) Electronic components
JP5644852B2 (en) Electronic component and manufacturing method thereof
JP5598452B2 (en) Electronic component and manufacturing method thereof
KR101156987B1 (en) Electronic component
WO2010079804A1 (en) Electronic component
WO2009125656A1 (en) Electronic component
JPWO2013054736A1 (en) Electronic components
JP5327231B2 (en) Electronic components
JP2011187535A (en) Electronic component, and method of manufacturing the same
WO2011145517A1 (en) Electronic component
JP4780232B2 (en) Multilayer electronic components
JP5181694B2 (en) Electronic components
WO2009130935A1 (en) Electronic part
JP2011014709A (en) Electronic component
JP2014078650A (en) Electronic component and manufacturing method of the same
WO2010010799A1 (en) Electronic component and method for manufacturing same
JP2011192737A (en) Electronic component and method of manufacturing the same
JP4930228B2 (en) Laminated electronic components
WO2009147899A1 (en) Electronic part and method for manufacturing the same
JP2011091221A (en) Electronic component
JP2010067758A (en) Electronic part
WO2010061679A1 (en) Electronic part
JP2009277689A (en) Electronic parts

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980148305.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09830273

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010541273

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09830273

Country of ref document: EP

Kind code of ref document: A1