WO2010061679A1 - Electronic part - Google Patents

Electronic part Download PDF

Info

Publication number
WO2010061679A1
WO2010061679A1 PCT/JP2009/065748 JP2009065748W WO2010061679A1 WO 2010061679 A1 WO2010061679 A1 WO 2010061679A1 JP 2009065748 W JP2009065748 W JP 2009065748W WO 2010061679 A1 WO2010061679 A1 WO 2010061679A1
Authority
WO
WIPO (PCT)
Prior art keywords
strip
insulating layer
coil
axis direction
electronic component
Prior art date
Application number
PCT/JP2009/065748
Other languages
French (fr)
Japanese (ja)
Inventor
秀二 木原
治 松本
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2010061679A1 publication Critical patent/WO2010061679A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F17/0033Printed inductances with the coil helically wound around a magnetic core
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F17/0013Printed inductances with stacked layers

Definitions

  • the present invention relates to an electronic component, and more particularly to an electronic component including a coil having a coil axis orthogonal to the stacking direction.
  • a multilayer chip inductor described in Patent Document 1 is known as a conventional electronic component.
  • a coil having a coil axis orthogonal to the stacking direction is provided inside a multilayer body in which a plurality of ferrite sheets are stacked.
  • the external electrode connected to the both ends of a coil is provided in the two side surfaces of the laminated body which cross
  • the number of turns of the coil can be increased or decreased without changing the number of laminated ferrite sheets.
  • the multilayer chip inductor is composed of a ferrite sheet made of a magnetic material. Therefore, when the direct current flowing through the coil is increased, magnetic saturation occurs only when a relatively small direct current flows. As a result, the inductance value of the multilayer chip inductor is rapidly reduced. That is, the multilayer chip inductor does not have a preferable direct current superposition characteristic.
  • an object of the present invention is to improve DC superposition characteristics in an electronic component having a coil having a coil axis orthogonal to the stacking direction.
  • An electronic component includes a stacked body in which a plurality of first insulating layers and a second insulating layer having a lower magnetic permeability than the first insulating layers are stacked. And a coil having a coil axis that is built in the laminated body and orthogonal to the laminating direction.
  • the DC superposition characteristics can be improved in an electronic component having a coil having a coil axis orthogonal to the stacking direction.
  • FIG. 2 is a cross-sectional structural view taken along line AA of the electronic component in FIG. It is the graph which showed the direct current
  • FIG. 1 is a perspective view of an electronic component 10 according to an embodiment of the present invention.
  • FIG. 2 is an exploded perspective view of the multilayer body 12 of the electronic component 10.
  • FIG. 3 is a sectional structural view taken along the line AA of the electronic component 10 of FIG.
  • the stacking direction of the electronic component 10 is defined as the z-axis direction
  • the direction along the long side of the electronic component 10 is defined as the x-axis direction
  • the direction along the short side of the electronic component 10 is defined as the y-axis direction.
  • the x axis, the y axis, and the z axis are orthogonal to each other.
  • a part of the external electrode 14 b is cut and described so that the internal state can be easily understood.
  • the electronic component 10 includes a laminate 12 and external electrodes 14a and 14b as shown in FIG.
  • the laminated body 12 has a rectangular parallelepiped shape and incorporates a coil L.
  • the external electrodes 14a and 14b are electrically connected to both ends of the coil L, respectively, and are provided so as to cover the side surfaces of the multilayer body 12 located at both ends in the x-axis direction.
  • the laminate 12 is configured by laminating a plurality of rectangular insulating layers 16a, 16b, 17, 16c to 16k in order from the positive direction side in the z-axis direction.
  • the insulating layers (first insulating layers) 16a to 16k are magnetic layers made of soft magnetic ferrite (for example, Ni—Zn—Cu ferrite).
  • the insulating layers 16a to 16k are composed of 11 insulating layers, but the total number of the insulating layers 16a to 16k is not limited to this.
  • the insulating layer (second insulating layer) 17 is provided so as to be sandwiched between the insulating layers 16b and 16c, and has a lower magnetic permeability than the magnetic material constituting the insulating layers 16a to 16k. It is made of a magnetic material having non-magnetic material or a non-magnetic material. In the present embodiment, the insulating layer 17 is made of a non-magnetic material ferrite (eg, Zn—Cu ferrite).
  • the coil L is a spiral coil that advances in the x-axis direction while rotating as shown in FIG. Therefore, the coil axis X of the coil L is parallel to the x-axis direction.
  • the coil L includes lead conductors 18a and 18b, a plurality of strip conductors 20a to 20f, 22a to 22g, and a plurality of via hole conductors b1 to b14, b21 to b34.
  • the lead conductors 18a and 18b and the strip-like conductors 20a to 20f are provided in the multilayer body 12 as shown in FIGS. More specifically, the lead conductors 18a and 18b and the strip-shaped conductors 20a to 20f are provided on the insulating layer 16d.
  • the strip conductors 20a to 20f are inclined so as to have a positive inclination in the xy plane when viewed from the positive side in the z-axis direction, and are arranged in the x-axis direction at equal intervals so as to be parallel to each other. Is provided.
  • Each of the strip conductors 20a to 20f has end portions t1 and t2 (in FIG.
  • the end portions t1 and t2 of the strip conductors 20a and 20b are marked).
  • the end portions t1 and t2 are positioned so as to sandwich the coil axis X when viewed from the positive side in the z-axis direction. Specifically, the end t1 is located on the positive direction side in the y-axis direction with respect to the coil axis X, and the end t2 is located on the negative direction side in the y-axis direction with respect to the coil axis X.
  • the strip conductors 20a to 20f are not necessarily parallel.
  • the lead conductor 18a has a substantially L-shape. More specifically, the lead conductor 18a extends in parallel with the strip conductors 20a to 20f from the positive side in the y-axis direction, and is bent in the middle to extend in the x-axis direction. It has a shape drawn to the side on the negative direction side.
  • the lead conductor 18b has a substantially L shape. More specifically, the lead conductor 18b extends in parallel with the strip conductors 20a to 20f from the negative direction side in the y-axis direction, and is bent in the middle to be x It has a shape drawn to the side on the positive direction side in the axial direction.
  • the lead conductors 18a and 18b are connected to the external electrodes 14a and 14b, respectively.
  • the strip conductors 22a to 22g are provided in the multilayer body 12 as shown in FIGS. More specifically, the strip conductors 22a to 22g are provided on the insulating layer 16i.
  • the band-shaped conductors 22a to 22g are inclined so as to have a negative inclination in the xy plane when viewed from the positive side in the z-axis direction, and are arranged in the x-axis direction at equal intervals so as to be parallel to each other. Is provided.
  • Each of the strip conductors 22a to 22g has ends t3 and t4 (in FIG. 1, only the ends t3 and t4 of the strip conductors 22a and 22b are marked).
  • the ends t3 and t4 are located so as to sandwich the coil axis X when viewed in plan from the positive side in the z-axis direction. Specifically, the end t3 is located on the positive side in the y-axis direction from the coil axis X, and the end t4 is located on the negative direction side in the y-axis direction from the coil axis X.
  • the strip conductors 22a to 22g do not necessarily have to be parallel.
  • the end t1 and the end t3 overlap each other.
  • the end t2 and the end t4 overlap. More specifically, the strip conductor 22b overlaps at an end t1 and an end t3 of one strip conductor 20a of two adjacent strip conductors 20a and 20b, and the end of the other strip conductor 20b. It overlaps in the part t2 and the edge part t4.
  • the strip conductors 20a to 20f and 22a to 22g form one zigzag line.
  • the via-hole conductors b21 to b27 are connected to the end on the positive side in the y-axis direction of the lead conductor 18a and the end t1 of the strip conductors 20a to 20f, respectively, and the insulating layer 16d is connected to z It is formed so as to penetrate in the axial direction.
  • the via-hole conductors b28 to b34 are connected to the end t2 of the strip-like conductors 20a to 20f and the end on the negative side in the y-axis direction of the lead conductor 18b, and are formed so as to penetrate the insulating layer 16d in the z-axis direction. Has been.
  • the via-hole conductors b1 to b7 are provided at positions corresponding to the via-hole conductors b21 to b27 when viewed in plan from the z-axis direction in each of the insulating layers 16e to 16h, and the insulating layers 16e to 16h are arranged in the z-axis direction. It is provided so that it may penetrate.
  • the via-hole conductors b8 to b14 are provided at positions corresponding to the via-hole conductors b28 to b34 when viewed in plan from the z-axis direction in each of the insulating layers 16e to 16h. It is provided so as to penetrate in the axial direction.
  • the spiral shape that advances in the x-axis direction while rotating in the stacked body 12 is formed.
  • Coil L is formed. More specifically, the via-hole conductor b1 and the via-hole conductor b21 are connected to each other so as to extend in the z-axis direction and the end of the lead conductor 18a on the positive side in the y-axis direction and the strip-shaped conductor It functions as a connecting portion that connects the end t3 of 22a.
  • the via-hole conductor b2 and the via-hole conductor b22 are connected to each other so as to extend in the z-axis direction, and as a connection portion that connects the end t1 of the strip-shaped conductor 20a and the end t3 of the strip-shaped conductor 22b. It is functioning.
  • the via-hole conductor b3 and the via-hole conductor b23 are connected to each other so as to extend in the z-axis direction and serve as a connection portion that connects the end t1 of the strip-shaped conductor 20b and the end t3 of the strip-shaped conductor 22c. It is functioning.
  • the via-hole conductor b4 and the via-hole conductor b24 extend in the z-axis direction by being connected to each other, and serve as a connection portion that connects the end t1 of the strip-shaped conductor 20c and the end t3 of the strip-shaped conductor 22d. It is functioning.
  • the via-hole conductor b5 and the via-hole conductor b25 extend in the z-axis direction by being connected to each other, and serve as a connection portion that connects the end t1 of the strip-shaped conductor 20d and the end t3 of the strip-shaped conductor 22e. It is functioning.
  • the via-hole conductor b6 and the via-hole conductor b26 are connected to each other so as to extend in the z-axis direction and serve as a connection portion that connects the end t1 of the strip-shaped conductor 20e and the end t3 of the strip-shaped conductor 22f. It is functioning.
  • the via-hole conductor b7 and the via-hole conductor b27 extend in the z-axis direction by being connected to each other, and serve as a connection portion that connects the end t1 of the strip-shaped conductor 20f and the end t3 of the strip-shaped conductor 22g. It is functioning.
  • the via-hole conductor b8 and the via-hole conductor b28 are connected to each other so as to extend in the z-axis direction and connect the end t2 of the strip-shaped conductor 20a and the end t4 of the strip-shaped conductor 22a. It functions as a department.
  • the via-hole conductor b9 and the via-hole conductor b29 are connected to each other so as to extend in the z-axis direction, and as a connection portion that connects the end t2 of the strip-shaped conductor 20b and the end t4 of the strip-shaped conductor 22b. It is functioning.
  • the via-hole conductor b10 and the via-hole conductor b30 extend in the z-axis direction by being connected to each other, and serve as a connection portion that connects the end t2 of the strip-shaped conductor 20c and the end t4 of the strip-shaped conductor 22c. It is functioning.
  • the via-hole conductor b11 and the via-hole conductor b31 are connected to each other so as to extend in the z-axis direction, and as a connection portion that connects the end t2 of the strip-shaped conductor 20d and the end t4 of the strip-shaped conductor 22d. It is functioning.
  • the via-hole conductor b12 and the via-hole conductor b32 are connected to each other so as to extend in the z-axis direction, and as a connection portion that connects the end t2 of the strip-shaped conductor 20e and the end t4 of the strip-shaped conductor 22e. It is functioning.
  • the via-hole conductor b13 and the via-hole conductor b33 are connected to each other so as to extend in the z-axis direction, and as a connection portion that connects the end t2 of the strip-shaped conductor 20f and the end t4 of the strip-shaped conductor 22f. It is functioning.
  • the via-hole conductor b14 and the via-hole conductor b34 are connected to each other so as to extend in the z-axis direction, and the end of the lead conductor 18b on the negative side in the y-axis direction and the end t4 of the strip-shaped conductor 22g. Functions as a connection part.
  • FIG. 4 is a graph showing the DC superposition characteristics of the electronic component 10 and the type of electronic component 10 in which the insulating layer 17 is not provided (that is, a conventional electronic component).
  • the vertical axis represents the impedance
  • the horizontal axis represents the direct current value.
  • the magnetic flux generated in the coil L consists of a magnetic flux ⁇ that circulates around the strip conductors 20a to 20f and the strip conductors 22a to 22g.
  • the insulating layer 17 is provided in the vicinity of the strip conductors 20a to 20f. Therefore, as shown in FIG. 3, the magnetic flux ⁇ circulating around the strip conductors 20a to 20f crosses the insulating layer 17. Therefore, even if the direct current flowing through the coil L increases, the occurrence of magnetic saturation in the coil L is suppressed. As a result, a sudden decrease in inductance value due to an increase in direct current is suppressed, and the direct current superimposition characteristics of the electronic component 10 are improved. For example, as shown in FIG.
  • the inductance value decreases rapidly when the direct current value increases, whereas the insulating layer 17 is formed on the electronic component 10.
  • the direct current value is increased, the inductance value is not greatly reduced even if the direct current value is increased.
  • the electronic component 10 as described above can improve the conversion efficiency of the DCDC converter, for example.
  • Ceramic green sheets to be the insulating layers 16a to 16k are produced by the following steps.
  • Ferric oxide (Fe 2 O 3 ), zinc oxide (ZnO), nickel oxide (NiO), and copper oxide (CuO) are weighed at a predetermined ratio, and each material is put into a ball mill as a raw material. Mix.
  • the obtained mixture is dried and pulverized, and the obtained powder is calcined at 750 ° C. for 1 hour.
  • the obtained calcined powder is wet pulverized by a ball mill, dried and then crushed to obtain a ferrite ceramic powder.
  • a binder (vinyl acetate, water-soluble acrylic, etc.), a plasticizer, a wetting material, and a dispersing agent are added and mixed with a ball mill, and then defoamed under reduced pressure.
  • the obtained ceramic slurry is formed into a sheet shape by the doctor blade method and dried to produce ceramic green sheets to be the insulating layers 16a to 16k.
  • a ceramic green sheet to be the insulating layer 17 is produced by the following process.
  • Ferric oxide (Fe 2 O 3 ), zinc oxide (ZnO), and copper oxide (CuO) are weighed at a predetermined ratio, and the respective materials are put into a ball mill as raw materials, and wet blending is performed.
  • the obtained mixture is dried and pulverized, and the obtained powder is calcined at 750 ° C. for 1 hour.
  • the obtained calcined powder is wet pulverized by a ball mill, dried and then crushed to obtain a ferrite ceramic powder.
  • a binder (vinyl acetate, water-soluble acrylic, etc.), a plasticizer, a wetting material, and a dispersing agent are added and mixed with a ball mill, and then defoamed under reduced pressure.
  • the obtained ceramic slurry is formed into a sheet by the doctor blade method and dried to produce a ceramic green sheet to be the insulating layer 17.
  • via-hole conductors b21 to b34 are formed on the ceramic green sheet to be the insulating layer 16d. Specifically, as shown in FIG. 2, a via hole is formed by irradiating a ceramic green sheet to be the insulating layer 16d with a laser beam. Next, the via hole is filled with a conductive paste such as Ag, Pd, Cu, Au or an alloy thereof by a method such as printing.
  • a conductive paste such as Ag, Pd, Cu, Au or an alloy thereof by a method such as printing.
  • via-hole conductors b1 to b14 are formed on the ceramic green sheets to be the insulating layers 16e to 16h. Specifically, as shown in FIG. 2, via holes are formed by irradiating a ceramic green sheet to be the insulating layers 16e to 16h with a laser beam. Next, the via hole is filled with a conductive paste such as Ag, Pd, Cu, Au or an alloy thereof by a method such as printing.
  • a conductive paste such as Ag, Pd, Cu, Au or an alloy thereof by a method such as printing.
  • a conductive paste mainly composed of Ag, Pd, Cu, Au, or an alloy thereof is applied onto the ceramic green sheet to be the insulating layer 16d by a method such as a screen printing method or a photolithography method.
  • the lead conductors 18a and 18b and the strip conductors 20a to 20f are formed. Note that the step of forming the strip conductors 20a to 20f and the step of filling the via hole with the conductive paste may be performed in the same step.
  • a conductive paste mainly composed of Ag, Pd, Cu, Au, or an alloy thereof is applied onto the ceramic green sheet to be the insulating layer 16i by a method such as a screen printing method or a photolithography method.
  • the strip conductors 22a to 22g are formed.
  • ceramic green sheets to be the insulating layers 16a, 16b, 17, 16c to 16k are stacked in this order from the positive direction side in the z-axis direction. More specifically, a ceramic green sheet to be the insulating layer 16k is disposed. Next, the ceramic green sheet to be the insulating layer 16j is disposed and temporarily pressed onto the ceramic green sheet to be the insulating layer 16k. Thereafter, the ceramic green sheets to be the insulating layers 16i, 16h, 16g, 16f, 16e, 16d, 16c, 17, 16b, and 16a are similarly laminated and temporarily pressed in this order to obtain a mother laminated body. Further, the mother laminate is subjected to main pressure bonding by a hydrostatic pressure press or the like.
  • the mother laminated body is cut into a laminated body 12 having a predetermined size by pressing and the unfired laminated body 12 is obtained.
  • the unfired laminate 12 is subjected to binder removal processing and firing.
  • the binder removal treatment is performed, for example, in a low oxygen atmosphere at 500 ° C. for 2 hours. Firing is performed, for example, at 1000 ° C. for 2 hours.
  • the fired laminated body 12 is obtained through the above steps.
  • the laminated body 12 is chamfered by barrel processing.
  • a silver electrode to be the external electrodes 14a and 14b is formed on the surface of the laminate 12 by applying and baking a conductive paste whose main component is silver by a method such as dipping.
  • the silver electrode is dried at 120 ° C. for 10 minutes, and the silver electrode is baked at 890 ° C. for 1 hour.
  • the external electrodes 14a and 14b are formed by performing Ni plating / Sn plating on the surface of the silver electrode.
  • the electronic component 10 according to the present invention is not limited to that shown in the embodiment. Therefore, it can be changed within the scope of the gist.
  • the magnetic flux ⁇ that circulates the strip conductors 20a to 20f and 22a to 22g needs to cross the insulating layer 17. Therefore, the insulating layer 17 is desirably provided in a region through which the magnetic flux ⁇ generated by the coil L passes. Therefore, the insulating layer 17 is desirably provided in the vicinity of the strip-shaped conductors 20a to 20f and 22a to 22g.
  • the place where the insulating layer 17 is provided is not limited to the positive side in the z-axis direction from the strip conductors 20a to 20f. Therefore, the insulating layer 17 may be provided between the strip conductors 20a to 20f and the strip conductors 22a to 22g, or may be provided on the negative side in the z-axis direction from the strip conductors 22a to 22g. Good.
  • insulating layers 17 may be provided.
  • the insulating layer 17 has the same shape as the insulating layer 16, but the insulating layer 17 may be smaller than the insulating layer 16. That is, the insulating layer 17 may be provided on a part of the stacked body 12 in a plane perpendicular to the z-axis direction.
  • the present invention is useful for electronic parts, and is particularly excellent in that the direct current superposition characteristics can be improved in an electronic part having a coil having a coil axis orthogonal to the stacking direction.
  • Electronic component 12 Laminated body 14a, 14b External electrode 16a to 16k, 17 Insulating layer 18a, 18b Lead conductor 20a to 20f, 22a to 22g conductor

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

In an electronic part equipped with a coil having a coil axis orthogonally intersecting the layering direction, the DC superposition characteristics can be improved. A layered body (12) is formed by layering insulation layers (16a to 16k) and an insulation layer (17) having a lower permeability than the insulation layers (16a to 16k).  The coil (L) is built in the layered body (12) and has a coil axis which orthogonally intersects the layering direction.

Description

電子部品Electronic components
 本発明は、電子部品に関し、より特定的には、積層方向に直交するコイル軸を有するコイルを備えた電子部品に関する。 The present invention relates to an electronic component, and more particularly to an electronic component including a coil having a coil axis orthogonal to the stacking direction.
 従来の電子部品として、例えば、特許文献1に記載の積層形チップインダクタが知られている。該積層形チップインダクタでは、複数のフェライトシートが積層されてなる積層体の内部に、積層方向と直交するコイル軸を有するコイルが設けられている。そして、コイル軸と交差する積層体の2つの側面にはそれぞれ、コイルの両端と接続されている外部電極が設けられている。該積層形チップインダクタによれば、フェライトシートの積層数を変化させることなくコイルの巻き数を増減させることができる。 For example, a multilayer chip inductor described in Patent Document 1 is known as a conventional electronic component. In the multilayer chip inductor, a coil having a coil axis orthogonal to the stacking direction is provided inside a multilayer body in which a plurality of ferrite sheets are stacked. And the external electrode connected to the both ends of a coil is provided in the two side surfaces of the laminated body which cross | intersects a coil axis | shaft, respectively. According to the multilayer chip inductor, the number of turns of the coil can be increased or decreased without changing the number of laminated ferrite sheets.
 しかしながら、前記積層形チップインダクタは、磁性体からなるフェライトシートにより構成されている。そのため、コイルに流す直流電流を大きくしていくと、比較的小さな直流電流が流れただけで、磁気飽和が発生する。その結果、積層形チップインダクタのインダクタンス値が急激に減少してしまう。すなわち、積層形チップインダクタは、好ましい直流重畳特性を有していない。 However, the multilayer chip inductor is composed of a ferrite sheet made of a magnetic material. Therefore, when the direct current flowing through the coil is increased, magnetic saturation occurs only when a relatively small direct current flows. As a result, the inductance value of the multilayer chip inductor is rapidly reduced. That is, the multilayer chip inductor does not have a preferable direct current superposition characteristic.
特開平7-320936号公報Japanese Unexamined Patent Publication No. 7-320936
 そこで、本発明の目的は、積層方向と直交するコイル軸を有するコイルを備えた電子部品において、直流重畳特性を改善することである。 Therefore, an object of the present invention is to improve DC superposition characteristics in an electronic component having a coil having a coil axis orthogonal to the stacking direction.
 本発明の一形態に係る電子部品は、複数の第1の絶縁層、及び、該第1の絶縁層よりも低い透磁率を有している第2の絶縁層が積層されてなる積層体と、前記積層体に内蔵され、かつ、積層方向と直交するコイル軸を有するコイルと、を備えていること、を特徴とする。 An electronic component according to an embodiment of the present invention includes a stacked body in which a plurality of first insulating layers and a second insulating layer having a lower magnetic permeability than the first insulating layers are stacked. And a coil having a coil axis that is built in the laminated body and orthogonal to the laminating direction.
 本発明によれば、積層方向と直交するコイル軸を有するコイルを備えた電子部品において、直流重畳特性を改善できる。 According to the present invention, the DC superposition characteristics can be improved in an electronic component having a coil having a coil axis orthogonal to the stacking direction.
本発明の一実施形態に係る電子部品の透視図である。It is a perspective view of the electronic component which concerns on one Embodiment of this invention. 図1の電子部品の積層体の分解斜視図である。It is a disassembled perspective view of the laminated body of the electronic component of FIG. 図1の電子部品のA-Aにおける断面構造図である。FIG. 2 is a cross-sectional structural view taken along line AA of the electronic component in FIG. 図1の電子部品と従来の電子部品との直流重畳特性を示したグラフである。It is the graph which showed the direct current | flow superimposition characteristic of the electronic component of FIG. 1, and the conventional electronic component.
 以下に、本発明の実施形態に係る電子部品について説明する。 Hereinafter, an electronic component according to an embodiment of the present invention will be described.
(電子部品の構成)
 図1は、本発明の一実施形態に係る電子部品10の透視図である。図2は、電子部品10の積層体12の分解斜視図である。図3は、図1の電子部品10のA-Aにおける断面構造図である。以下、電子部品10の積層方向をz軸方向と定義し、電子部品10の長辺に沿った方向をx軸方向と定義し、電子部品10の短辺に沿った方向をy軸方向と定義する。x軸、y軸及びz軸は互いに直交している。図1では、内部の様子が理解し易いように、外部電極14bの一部をカットして記載した。
(Configuration of electronic parts)
FIG. 1 is a perspective view of an electronic component 10 according to an embodiment of the present invention. FIG. 2 is an exploded perspective view of the multilayer body 12 of the electronic component 10. FIG. 3 is a sectional structural view taken along the line AA of the electronic component 10 of FIG. Hereinafter, the stacking direction of the electronic component 10 is defined as the z-axis direction, the direction along the long side of the electronic component 10 is defined as the x-axis direction, and the direction along the short side of the electronic component 10 is defined as the y-axis direction. To do. The x axis, the y axis, and the z axis are orthogonal to each other. In FIG. 1, a part of the external electrode 14 b is cut and described so that the internal state can be easily understood.
 電子部品10は、図1に示すように、積層体12及び外部電極14a,14bを備えている。積層体12は、直方体状を有しており、コイルLを内蔵している。外部電極14a,14bはそれぞれ、コイルLの両端に電気的に接続されており、x軸方向の両端に位置する積層体12の側面を覆うように設けられている。 The electronic component 10 includes a laminate 12 and external electrodes 14a and 14b as shown in FIG. The laminated body 12 has a rectangular parallelepiped shape and incorporates a coil L. The external electrodes 14a and 14b are electrically connected to both ends of the coil L, respectively, and are provided so as to cover the side surfaces of the multilayer body 12 located at both ends in the x-axis direction.
 積層体12は、図2に示すように、複数の長方形状の絶縁層16a,16b,17,16c~16kがz軸方向の正方向側から順に積層されて構成されている。絶縁層(第1の絶縁層)16a~16kは、軟磁性のフェライト(例えば、Ni-Zn-Cuフェライト等)により作製されている磁性体層である。なお、図2において、絶縁層16a~16kは、11層の絶縁層により構成されているが、絶縁層16a~16kの総数はこれに限らない。電子部品10において、実際には、絶縁層16aと絶縁層16bとの間、絶縁層16eと絶縁層16fとの間、絶縁層16gと絶縁層16hとの間、及び、絶縁層16jと絶縁層16kとの間に更なる絶縁層が挿入されている。そのため、絶縁層16aと絶縁層16bとの間、絶縁層16eと絶縁層16fとの間、絶縁層16gと絶縁層16hとの間、及び、絶縁層16jと絶縁層16kとの間は、点線で繋いである。 As shown in FIG. 2, the laminate 12 is configured by laminating a plurality of rectangular insulating layers 16a, 16b, 17, 16c to 16k in order from the positive direction side in the z-axis direction. The insulating layers (first insulating layers) 16a to 16k are magnetic layers made of soft magnetic ferrite (for example, Ni—Zn—Cu ferrite). In FIG. 2, the insulating layers 16a to 16k are composed of 11 insulating layers, but the total number of the insulating layers 16a to 16k is not limited to this. In the electronic component 10, in practice, between the insulating layer 16a and the insulating layer 16b, between the insulating layer 16e and the insulating layer 16f, between the insulating layer 16g and the insulating layer 16h, and between the insulating layer 16j and the insulating layer. A further insulating layer is inserted between 16k. Therefore, the dotted lines between the insulating layer 16a and the insulating layer 16b, between the insulating layer 16e and the insulating layer 16f, between the insulating layer 16g and the insulating layer 16h, and between the insulating layer 16j and the insulating layer 16k It is connected with.
 また、絶縁層(第2の絶縁層)17は、絶縁層16bと絶縁層16cとに挟まれるように設けられており、絶縁層16a~16kを構成している磁性体材料よりも低い透磁率を有する磁性体材料又は非磁性体材料により作製されている。本実施形態では、絶縁層17は、非磁性体材料のフェライト(例えば、Zn-Cuフェライト等)により作製されている。 The insulating layer (second insulating layer) 17 is provided so as to be sandwiched between the insulating layers 16b and 16c, and has a lower magnetic permeability than the magnetic material constituting the insulating layers 16a to 16k. It is made of a magnetic material having non-magnetic material or a non-magnetic material. In the present embodiment, the insulating layer 17 is made of a non-magnetic material ferrite (eg, Zn—Cu ferrite).
 以下では、個別の絶縁層16a~16kを指す場合には、参照符号の後ろにアルファベットを付し、これらを総称する場合には、参照符号の後ろのアルファベットを省略する。 In the following, when referring to the individual insulating layers 16a to 16k, an alphabet is appended to the reference symbol, and when referring to them collectively, the alphabet after the reference symbol is omitted.
 コイルLは、図1に示すように、旋廻しながらx軸方向に進行する螺旋状のコイルである。よって、コイルLのコイル軸Xは、x軸方向に平行である。コイルLは、図2に示すように、引き出し導体18a,18b、複数の帯状導体20a~20f,22a~22g及び複数のビアホール導体b1~b14,b21~b34を含んでいる。 The coil L is a spiral coil that advances in the x-axis direction while rotating as shown in FIG. Therefore, the coil axis X of the coil L is parallel to the x-axis direction. As shown in FIG. 2, the coil L includes lead conductors 18a and 18b, a plurality of strip conductors 20a to 20f, 22a to 22g, and a plurality of via hole conductors b1 to b14, b21 to b34.
 引き出し導体18a,18b及び帯状導体20a~20fは、図1及び図2に示すように、積層体12内に設けられている。より具体的には、引き出し導体18a,18b及び帯状導体20a~20fは、絶縁層16d上に設けられている。帯状導体20a~20fは、z軸方向の正方向側から平面視したときに、xy平面において正の傾きを有するように傾斜すると共に、互いに平行となるように等間隔にx軸方向に並ぶように設けられている。また、帯状導体20a~20fはそれぞれ、端部t1,t2(図1において帯状導体20a,20bの端部t1,t2のみ記号を記入)を有している。端部t1,t2は、z軸方向の正方向側から平面視したときに、コイル軸Xを挟むように位置している。具体的には、端部t1は、コイル軸Xよりもy軸方向の正方向側に位置し、端部t2は、コイル軸Xよりもy軸方向の負方向側に位置している。なお、帯状導体20a~20fは、必ずしも平行である必要はない。 The lead conductors 18a and 18b and the strip-like conductors 20a to 20f are provided in the multilayer body 12 as shown in FIGS. More specifically, the lead conductors 18a and 18b and the strip-shaped conductors 20a to 20f are provided on the insulating layer 16d. The strip conductors 20a to 20f are inclined so as to have a positive inclination in the xy plane when viewed from the positive side in the z-axis direction, and are arranged in the x-axis direction at equal intervals so as to be parallel to each other. Is provided. Each of the strip conductors 20a to 20f has end portions t1 and t2 (in FIG. 1, only the end portions t1 and t2 of the strip conductors 20a and 20b are marked). The end portions t1 and t2 are positioned so as to sandwich the coil axis X when viewed from the positive side in the z-axis direction. Specifically, the end t1 is located on the positive direction side in the y-axis direction with respect to the coil axis X, and the end t2 is located on the negative direction side in the y-axis direction with respect to the coil axis X. The strip conductors 20a to 20f are not necessarily parallel.
 引き出し導体18aは、略L字型を有しており、より詳細には、y軸方向の正方向側から帯状導体20a~20fと平行に延びていると共に、途中で折り曲げられてx軸方向の負方向側の辺まで引き出された形状を有している。同様に、引き出し導体18bは、略L字型を有しており、より詳細には、y軸方向の負方向側から帯状導体20a~20fと平行に延びていると共に、途中で折り曲げられてx軸方向の正方向側の辺まで引き出された形状を有している。引き出し導体18a,18bはそれぞれ、外部電極14a,14bに対して接続されている。 The lead conductor 18a has a substantially L-shape. More specifically, the lead conductor 18a extends in parallel with the strip conductors 20a to 20f from the positive side in the y-axis direction, and is bent in the middle to extend in the x-axis direction. It has a shape drawn to the side on the negative direction side. Similarly, the lead conductor 18b has a substantially L shape. More specifically, the lead conductor 18b extends in parallel with the strip conductors 20a to 20f from the negative direction side in the y-axis direction, and is bent in the middle to be x It has a shape drawn to the side on the positive direction side in the axial direction. The lead conductors 18a and 18b are connected to the external electrodes 14a and 14b, respectively.
 帯状導体22a~22gは、図1及び図2に示すように、積層体12内に設けられている。より具体的には、帯状導体22a~22gは、絶縁層16i上に設けられている。帯状導体22a~22gは、z軸方向の正方向側から平面視したときに、xy平面において負の傾きを有するように傾斜すると共に、互いに平行となるように等間隔にx軸方向に並ぶように設けられている。また、帯状導体22a~22gはそれぞれ、端部t3,t4(図1において帯状導体22a,22bの端部t3,t4のみ記号を記入)を有している。端部t3,t4は、z軸方向の正方向側から平面視したときに、コイル軸Xを挟むように位置している。具体的には、端部t3は、コイル軸Xよりもy軸方向の正方向側に位置し、端部t4は、コイル軸Xよりもy軸方向の負方向側に位置している。なお、帯状導体22a~22gは、必ずしも平行である必要はない。 The strip conductors 22a to 22g are provided in the multilayer body 12 as shown in FIGS. More specifically, the strip conductors 22a to 22g are provided on the insulating layer 16i. The band-shaped conductors 22a to 22g are inclined so as to have a negative inclination in the xy plane when viewed from the positive side in the z-axis direction, and are arranged in the x-axis direction at equal intervals so as to be parallel to each other. Is provided. Each of the strip conductors 22a to 22g has ends t3 and t4 (in FIG. 1, only the ends t3 and t4 of the strip conductors 22a and 22b are marked). The ends t3 and t4 are located so as to sandwich the coil axis X when viewed in plan from the positive side in the z-axis direction. Specifically, the end t3 is located on the positive side in the y-axis direction from the coil axis X, and the end t4 is located on the negative direction side in the y-axis direction from the coil axis X. The strip conductors 22a to 22g do not necessarily have to be parallel.
 ここで、図1及び図2に示すように、z軸方向から平面視したときに、端部t1と端部t3とが重なっている。また、z軸方向から平面視したときに、端部t2と端部t4とが重なっている。より詳細には、帯状導体22bは、隣り合っている2つの帯状導体20a,20bの内の一方の帯状導体20aの端部t1と端部t3において重なっていると共に、他方の帯状導体20bの端部t2と端部t4において重なっている。他の帯状導体22c~22fの端部t3,t4についても、帯状導体22bと同じように帯状導体20b~20fの端部t1,t2と重なっている。これにより、z軸方向から平面視したときに、帯状導体20a~20f,22a~22gは、1本のジグザグの線を形成している。 Here, as shown in FIGS. 1 and 2, when viewed in plan from the z-axis direction, the end t1 and the end t3 overlap each other. Further, when viewed in plan from the z-axis direction, the end t2 and the end t4 overlap. More specifically, the strip conductor 22b overlaps at an end t1 and an end t3 of one strip conductor 20a of two adjacent strip conductors 20a and 20b, and the end of the other strip conductor 20b. It overlaps in the part t2 and the edge part t4. The end portions t3 and t4 of the other strip conductors 22c to 22f overlap the end portions t1 and t2 of the strip conductors 20b to 20f in the same manner as the strip conductor 22b. Thus, when viewed in plan from the z-axis direction, the strip conductors 20a to 20f and 22a to 22g form one zigzag line.
 ビアホール導体b21~b27はそれぞれ、図2に示すように、引き出し導体18aのy軸方向の正方向側の端部及び帯状導体20a~20fの端部t1と接続されており、絶縁層16dをz軸方向に貫通するように形成されている。ビアホール導体b28~b34は、帯状導体20a~20fの端部t2及び引き出し導体18bのy軸方向の負方向側の端部と接続されており、絶縁層16dをz軸方向に貫通するように形成されている。 As shown in FIG. 2, the via-hole conductors b21 to b27 are connected to the end on the positive side in the y-axis direction of the lead conductor 18a and the end t1 of the strip conductors 20a to 20f, respectively, and the insulating layer 16d is connected to z It is formed so as to penetrate in the axial direction. The via-hole conductors b28 to b34 are connected to the end t2 of the strip-like conductors 20a to 20f and the end on the negative side in the y-axis direction of the lead conductor 18b, and are formed so as to penetrate the insulating layer 16d in the z-axis direction. Has been.
 ビアホール導体b1~b7は、絶縁層16e~16hのそれぞれにおいて、z軸方向から平面視したときに、ビアホール導体b21~b27と一致する位置に設けられており、絶縁層16e~16hをz軸方向に貫通するように設けられている。また、ビアホール導体b8~b14は、絶縁層16e~16hのそれぞれにおいて、z軸方向から平面視したときに、ビアホール導体b28~b34と一致する位置に設けられており、絶縁層16e~16hをz軸方向に貫通するように設けられている。 The via-hole conductors b1 to b7 are provided at positions corresponding to the via-hole conductors b21 to b27 when viewed in plan from the z-axis direction in each of the insulating layers 16e to 16h, and the insulating layers 16e to 16h are arranged in the z-axis direction. It is provided so that it may penetrate. The via-hole conductors b8 to b14 are provided at positions corresponding to the via-hole conductors b28 to b34 when viewed in plan from the z-axis direction in each of the insulating layers 16e to 16h. It is provided so as to penetrate in the axial direction.
 以上のように構成された絶縁層16a,16b,17,16c~16kがこの順に積層されることにより、図1に示すように、積層体12内を旋廻しながらx軸方向に進行する螺旋状のコイルLが形成される。より詳細には、ビアホール導体b1とビアホール導体b21とは、互いに接続されることにより、z軸方向に延在していると共に、引き出し導体18aのy軸方向の正方向側の端部と帯状導体22aの端部t3とを接続する接続部として機能している。ビアホール導体b2とビアホール導体b22とは、互いに接続されることにより、z軸方向に延在していると共に、帯状導体20aの端部t1と帯状導体22bの端部t3とを接続する接続部として機能している。ビアホール導体b3とビアホール導体b23とは、互いに接続されることにより、z軸方向に延在していると共に、帯状導体20bの端部t1と帯状導体22cの端部t3とを接続する接続部として機能している。ビアホール導体b4とビアホール導体b24とは、互いに接続されることにより、z軸方向に延在していると共に、帯状導体20cの端部t1と帯状導体22dの端部t3とを接続する接続部として機能している。ビアホール導体b5とビアホール導体b25とは、互いに接続されることにより、z軸方向に延在していると共に、帯状導体20dの端部t1と帯状導体22eの端部t3とを接続する接続部として機能している。ビアホール導体b6とビアホール導体b26とは、互いに接続されることにより、z軸方向に延在していると共に、帯状導体20eの端部t1と帯状導体22fの端部t3とを接続する接続部として機能している。ビアホール導体b7とビアホール導体b27とは、互いに接続されることにより、z軸方向に延在していると共に、帯状導体20fの端部t1と帯状導体22gの端部t3とを接続する接続部として機能している。 As the insulating layers 16a, 16b, 17, 16c to 16k configured as described above are stacked in this order, as shown in FIG. 1, the spiral shape that advances in the x-axis direction while rotating in the stacked body 12 is formed. Coil L is formed. More specifically, the via-hole conductor b1 and the via-hole conductor b21 are connected to each other so as to extend in the z-axis direction and the end of the lead conductor 18a on the positive side in the y-axis direction and the strip-shaped conductor It functions as a connecting portion that connects the end t3 of 22a. The via-hole conductor b2 and the via-hole conductor b22 are connected to each other so as to extend in the z-axis direction, and as a connection portion that connects the end t1 of the strip-shaped conductor 20a and the end t3 of the strip-shaped conductor 22b. It is functioning. The via-hole conductor b3 and the via-hole conductor b23 are connected to each other so as to extend in the z-axis direction and serve as a connection portion that connects the end t1 of the strip-shaped conductor 20b and the end t3 of the strip-shaped conductor 22c. It is functioning. The via-hole conductor b4 and the via-hole conductor b24 extend in the z-axis direction by being connected to each other, and serve as a connection portion that connects the end t1 of the strip-shaped conductor 20c and the end t3 of the strip-shaped conductor 22d. It is functioning. The via-hole conductor b5 and the via-hole conductor b25 extend in the z-axis direction by being connected to each other, and serve as a connection portion that connects the end t1 of the strip-shaped conductor 20d and the end t3 of the strip-shaped conductor 22e. It is functioning. The via-hole conductor b6 and the via-hole conductor b26 are connected to each other so as to extend in the z-axis direction and serve as a connection portion that connects the end t1 of the strip-shaped conductor 20e and the end t3 of the strip-shaped conductor 22f. It is functioning. The via-hole conductor b7 and the via-hole conductor b27 extend in the z-axis direction by being connected to each other, and serve as a connection portion that connects the end t1 of the strip-shaped conductor 20f and the end t3 of the strip-shaped conductor 22g. It is functioning.
 また、ビアホール導体b8とビアホール導体b28とは、互いに接続されることにより、z軸方向に延在していると共に、帯状導体20aの端部t2と帯状導体22aの端部t4とを接続する接続部として機能している。ビアホール導体b9とビアホール導体b29とは、互いに接続されることにより、z軸方向に延在していると共に、帯状導体20bの端部t2と帯状導体22bの端部t4とを接続する接続部として機能している。ビアホール導体b10とビアホール導体b30とは、互いに接続されることにより、z軸方向に延在していると共に、帯状導体20cの端部t2と帯状導体22cの端部t4とを接続する接続部として機能している。ビアホール導体b11とビアホール導体b31とは、互いに接続されることにより、z軸方向に延在していると共に、帯状導体20dの端部t2と帯状導体22dの端部t4とを接続する接続部として機能している。ビアホール導体b12とビアホール導体b32とは、互いに接続されることにより、z軸方向に延在していると共に、帯状導体20eの端部t2と帯状導体22eの端部t4とを接続する接続部として機能している。ビアホール導体b13とビアホール導体b33とは、互いに接続されることにより、z軸方向に延在していると共に、帯状導体20fの端部t2と帯状導体22fの端部t4とを接続する接続部として機能している。ビアホール導体b14とビアホール導体b34とは、互いに接続されることにより、z軸方向に延在していると共に、引き出し導体18bのy軸方向の負方向側の端部と帯状導体22gの端部t4とを接続する接続部として機能している。 The via-hole conductor b8 and the via-hole conductor b28 are connected to each other so as to extend in the z-axis direction and connect the end t2 of the strip-shaped conductor 20a and the end t4 of the strip-shaped conductor 22a. It functions as a department. The via-hole conductor b9 and the via-hole conductor b29 are connected to each other so as to extend in the z-axis direction, and as a connection portion that connects the end t2 of the strip-shaped conductor 20b and the end t4 of the strip-shaped conductor 22b. It is functioning. The via-hole conductor b10 and the via-hole conductor b30 extend in the z-axis direction by being connected to each other, and serve as a connection portion that connects the end t2 of the strip-shaped conductor 20c and the end t4 of the strip-shaped conductor 22c. It is functioning. The via-hole conductor b11 and the via-hole conductor b31 are connected to each other so as to extend in the z-axis direction, and as a connection portion that connects the end t2 of the strip-shaped conductor 20d and the end t4 of the strip-shaped conductor 22d. It is functioning. The via-hole conductor b12 and the via-hole conductor b32 are connected to each other so as to extend in the z-axis direction, and as a connection portion that connects the end t2 of the strip-shaped conductor 20e and the end t4 of the strip-shaped conductor 22e. It is functioning. The via-hole conductor b13 and the via-hole conductor b33 are connected to each other so as to extend in the z-axis direction, and as a connection portion that connects the end t2 of the strip-shaped conductor 20f and the end t4 of the strip-shaped conductor 22f. It is functioning. The via-hole conductor b14 and the via-hole conductor b34 are connected to each other so as to extend in the z-axis direction, and the end of the lead conductor 18b on the negative side in the y-axis direction and the end t4 of the strip-shaped conductor 22g. Functions as a connection part.
(効果)
 以上のように構成された電子部品10によれば、積層体12が絶縁層16よりも低い透磁率を有する絶縁層17を含んでいるので、以下に説明するように、電子部品10の直流重畳特性が改善される。図4は、電子部品10と絶縁層17が設けられていないタイプの電子部品10(すなわち、従来の電子部品)との直流重畳特性を示したグラフである。縦軸はインピーダンスを示し、横軸は直流電流値を示している。
(effect)
According to the electronic component 10 configured as described above, since the multilayer body 12 includes the insulating layer 17 having a lower magnetic permeability than the insulating layer 16, as described below, the DC superposition of the electronic component 10 is performed. The characteristics are improved. FIG. 4 is a graph showing the DC superposition characteristics of the electronic component 10 and the type of electronic component 10 in which the insulating layer 17 is not provided (that is, a conventional electronic component). The vertical axis represents the impedance, and the horizontal axis represents the direct current value.
 コイルLに発生する磁束は、図3に示すように、帯状導体20a~20f及び帯状導体22a~22gを周回する磁束φからなっている。絶縁層17は、帯状導体20a~20fの近傍に設けられている。そのため、図3に示すように、帯状導体20a~20fを周回している磁束φは、絶縁層17を横切っている。よって、コイルLを流れる直流電流が大きくなったとしても、コイルLにおいて磁気飽和が発生することが抑制される。その結果、直流電流の増加によって急激にインダクタンス値が低下することが抑制され、電子部品10の直流重畳特性が向上する。例えば、図4に示すように、電子部品10に絶縁層17を設けなかった場合には、直流電流値が大きくなると、急激にインダクタンス値が低下するのに対して、電子部品10に絶縁層17を設けた場合には、直流電流値が大きくなっても、インダクタンス値は大きく低下しない。以上のような電子部品10は、例えば、DCDCコンバータの変換効率を向上させることができる。 As shown in FIG. 3, the magnetic flux generated in the coil L consists of a magnetic flux φ that circulates around the strip conductors 20a to 20f and the strip conductors 22a to 22g. The insulating layer 17 is provided in the vicinity of the strip conductors 20a to 20f. Therefore, as shown in FIG. 3, the magnetic flux φ circulating around the strip conductors 20a to 20f crosses the insulating layer 17. Therefore, even if the direct current flowing through the coil L increases, the occurrence of magnetic saturation in the coil L is suppressed. As a result, a sudden decrease in inductance value due to an increase in direct current is suppressed, and the direct current superimposition characteristics of the electronic component 10 are improved. For example, as shown in FIG. 4, when the insulating layer 17 is not provided on the electronic component 10, the inductance value decreases rapidly when the direct current value increases, whereas the insulating layer 17 is formed on the electronic component 10. When the direct current value is increased, the inductance value is not greatly reduced even if the direct current value is increased. The electronic component 10 as described above can improve the conversion efficiency of the DCDC converter, for example.
(電子部品の製造方法)
 以下に、電子部品10の製造方法について図面を参照しながら説明する。
(Method for manufacturing electronic parts)
Below, the manufacturing method of the electronic component 10 is demonstrated, referring drawings.
 絶縁層16a~16kとなるセラミックグリーンシートを、以下の工程により作製する。酸化第二鉄(Fe23)、酸化亜鉛(ZnO)、酸化ニッケル(NiO)、及び、酸化銅(CuO)を所定の比率で秤量し、それぞれの材料を原材料としてボールミルに投入し、湿式調合を行う。得られた混合物を乾燥してから粉砕し、得られた粉末を750℃で1時間仮焼する。得られた仮焼粉末をボールミルにて湿式粉砕した後、乾燥してから解砕して、フェライトセラミック粉末を得る。 Ceramic green sheets to be the insulating layers 16a to 16k are produced by the following steps. Ferric oxide (Fe 2 O 3 ), zinc oxide (ZnO), nickel oxide (NiO), and copper oxide (CuO) are weighed at a predetermined ratio, and each material is put into a ball mill as a raw material. Mix. The obtained mixture is dried and pulverized, and the obtained powder is calcined at 750 ° C. for 1 hour. The obtained calcined powder is wet pulverized by a ball mill, dried and then crushed to obtain a ferrite ceramic powder.
 このフェライトセラミック粉末に対して結合剤(酢酸ビニル、水溶性アクリル等)と可塑剤、湿潤材、分散剤を加えてボールミルで混合を行い、その後、減圧により脱泡を行う。得られたセラミックスラリーをドクターブレード法により、シート状に形成して乾燥させ、絶縁層16a~16kとなるセラミックグリーンシートを作製する。 To this ferrite ceramic powder, a binder (vinyl acetate, water-soluble acrylic, etc.), a plasticizer, a wetting material, and a dispersing agent are added and mixed with a ball mill, and then defoamed under reduced pressure. The obtained ceramic slurry is formed into a sheet shape by the doctor blade method and dried to produce ceramic green sheets to be the insulating layers 16a to 16k.
 次に、絶縁層17となるセラミックグリーンシートを、以下の工程により作製する。酸化第二鉄(Fe23)、酸化亜鉛(ZnO)、及び、酸化銅(CuO)を所定の比率で秤量し、それぞれの材料を原材料としてボールミルに投入し、湿式調合を行う。得られた混合物を乾燥してから粉砕し、得られた粉末を750℃で1時間仮焼する。得られた仮焼粉末をボールミルにて湿式粉砕した後、乾燥してから解砕して、フェライトセラミック粉末を得る。 Next, a ceramic green sheet to be the insulating layer 17 is produced by the following process. Ferric oxide (Fe 2 O 3 ), zinc oxide (ZnO), and copper oxide (CuO) are weighed at a predetermined ratio, and the respective materials are put into a ball mill as raw materials, and wet blending is performed. The obtained mixture is dried and pulverized, and the obtained powder is calcined at 750 ° C. for 1 hour. The obtained calcined powder is wet pulverized by a ball mill, dried and then crushed to obtain a ferrite ceramic powder.
 このフェライトセラミック粉末に対して結合剤(酢酸ビニル、水溶性アクリル等)と可塑剤、湿潤材、分散剤を加えてボールミルで混合を行い、その後、減圧により脱泡を行う。得られたセラミックスラリーをドクターブレード法により、シート状に形成して乾燥させ、絶縁層17となるセラミックグリーンシートを作製する。 To this ferrite ceramic powder, a binder (vinyl acetate, water-soluble acrylic, etc.), a plasticizer, a wetting material, and a dispersing agent are added and mixed with a ball mill, and then defoamed under reduced pressure. The obtained ceramic slurry is formed into a sheet by the doctor blade method and dried to produce a ceramic green sheet to be the insulating layer 17.
 次に、絶縁層16dとなるセラミックグリーンシートに、ビアホール導体b21~b34を形成する。具体的には、図2に示すように、絶縁層16dとなるセラミックグリーンシートにレーザビームを照射してビアホールを形成する。次に、このビアホールに対して、Ag,Pd,Cu,Auやこれらの合金などの導電性ペーストを印刷塗布などの方法により充填する。 Next, via-hole conductors b21 to b34 are formed on the ceramic green sheet to be the insulating layer 16d. Specifically, as shown in FIG. 2, a via hole is formed by irradiating a ceramic green sheet to be the insulating layer 16d with a laser beam. Next, the via hole is filled with a conductive paste such as Ag, Pd, Cu, Au or an alloy thereof by a method such as printing.
 また、絶縁層16e~16hとなるセラミックグリーンシートに、ビアホール導体b1~b14を形成する。具体的には、図2に示すように、絶縁層16e~16hとなるセラミックグリーンシートにレーザビームを照射してビアホールを形成する。次に、このビアホールに対して、Ag,Pd,Cu,Auやこれらの合金などの導電性ペーストを印刷塗布などの方法により充填する。 Further, via-hole conductors b1 to b14 are formed on the ceramic green sheets to be the insulating layers 16e to 16h. Specifically, as shown in FIG. 2, via holes are formed by irradiating a ceramic green sheet to be the insulating layers 16e to 16h with a laser beam. Next, the via hole is filled with a conductive paste such as Ag, Pd, Cu, Au or an alloy thereof by a method such as printing.
 次に、絶縁層16dとなるセラミックグリーンシート上に、Ag,Pd,Cu,Auやこれらの合金などを主成分とする導電性ペーストをスクリーン印刷法やフォトリソグラフィ法などの方法で塗布することにより、引き出し導体18a,18b及び帯状導体20a~20fを形成する。なお、帯状導体20a~20fを形成する工程とビアホールに対して導電性ペーストを充填する工程とは、同じ工程において行われてもよい。 Next, a conductive paste mainly composed of Ag, Pd, Cu, Au, or an alloy thereof is applied onto the ceramic green sheet to be the insulating layer 16d by a method such as a screen printing method or a photolithography method. The lead conductors 18a and 18b and the strip conductors 20a to 20f are formed. Note that the step of forming the strip conductors 20a to 20f and the step of filling the via hole with the conductive paste may be performed in the same step.
 次に、絶縁層16iとなるセラミックグリーンシート上に、Ag,Pd,Cu,Auやこれらの合金などを主成分とする導電性ペーストをスクリーン印刷法やフォトリソグラフィ法などの方法で塗布することにより、帯状導体22a~22gを形成する。 Next, a conductive paste mainly composed of Ag, Pd, Cu, Au, or an alloy thereof is applied onto the ceramic green sheet to be the insulating layer 16i by a method such as a screen printing method or a photolithography method. The strip conductors 22a to 22g are formed.
 次に、図2に示すように、絶縁層16a,16b,17,16c~16kとなるセラミックグリーンシートをz軸方向の正方向側からこの順に積層する。より詳細には、絶縁層16kとなるセラミックグリーンシートを配置する。次に、絶縁層16kとなるセラミックグリーンシート上に、絶縁層16jとなるセラミックグリーンシートの配置及び仮圧着を行う。この後、絶縁層16i,16h,16g,16f,16e,16d,16c,17,16b,16aとなるセラミックグリーンシートについても同様にこの順番に積層及び仮圧着して、マザー積層体を得る。更に、マザー積層体には、静水圧プレスなどにより本圧着が施される。 Next, as shown in FIG. 2, ceramic green sheets to be the insulating layers 16a, 16b, 17, 16c to 16k are stacked in this order from the positive direction side in the z-axis direction. More specifically, a ceramic green sheet to be the insulating layer 16k is disposed. Next, the ceramic green sheet to be the insulating layer 16j is disposed and temporarily pressed onto the ceramic green sheet to be the insulating layer 16k. Thereafter, the ceramic green sheets to be the insulating layers 16i, 16h, 16g, 16f, 16e, 16d, 16c, 17, 16b, and 16a are similarly laminated and temporarily pressed in this order to obtain a mother laminated body. Further, the mother laminate is subjected to main pressure bonding by a hydrostatic pressure press or the like.
 次に、マザー積層体を押し切りにより所定寸法の積層体12にカットして、未焼成の積層体12を得る。この未焼成の積層体12には、脱バインダー処理及び焼成がなされる。脱バインダー処理は、例えば、低酸素雰囲気中において500℃で2時間の条件で行う。焼成は、例えば、1000℃で2時間の条件で行う。 Next, the mother laminated body is cut into a laminated body 12 having a predetermined size by pressing and the unfired laminated body 12 is obtained. The unfired laminate 12 is subjected to binder removal processing and firing. The binder removal treatment is performed, for example, in a low oxygen atmosphere at 500 ° C. for 2 hours. Firing is performed, for example, at 1000 ° C. for 2 hours.
 以上の工程により、焼成された積層体12が得られる。積層体12には、バレル加工を施して、面取りを行う。その後、積層体12の表面には、例えば、浸漬法等の方法により主成分が銀である導電ペーストを塗布及び焼き付けすることにより、外部電極14a,14bとなるべき銀電極を形成する。銀電極の乾燥は、120℃で10分間行われ、銀電極の焼き付けは、890℃で1時間行われる。最後に、銀電極の表面に、Niめっき/Snめっきを施すことにより、外部電極14a,14bを形成する。以上の工程を経て、図1に示すような電子部品10が完成する。 The fired laminated body 12 is obtained through the above steps. The laminated body 12 is chamfered by barrel processing. Thereafter, a silver electrode to be the external electrodes 14a and 14b is formed on the surface of the laminate 12 by applying and baking a conductive paste whose main component is silver by a method such as dipping. The silver electrode is dried at 120 ° C. for 10 minutes, and the silver electrode is baked at 890 ° C. for 1 hour. Finally, the external electrodes 14a and 14b are formed by performing Ni plating / Sn plating on the surface of the silver electrode. Through the above steps, the electronic component 10 as shown in FIG. 1 is completed.
(その他の実施形態)
 本発明に係る電子部品10は、前記実施形態に示したものに限らない。よって、その要旨の範囲内において変更可能である。
(Other embodiments)
The electronic component 10 according to the present invention is not limited to that shown in the embodiment. Therefore, it can be changed within the scope of the gist.
 なお、電子部品10の直流重畳特性を改善するには、帯状導体20a~20f,22a~22gを周回する磁束φが絶縁層17を横切る必要がある。よって、絶縁層17は、コイルLが発生した磁束φが通過する領域に設けられることが望ましい。したがって、絶縁層17は、帯状導体20a~20f,22a~22gの近傍に設けられることが望ましい。 In order to improve the direct current superimposition characteristic of the electronic component 10, the magnetic flux φ that circulates the strip conductors 20a to 20f and 22a to 22g needs to cross the insulating layer 17. Therefore, the insulating layer 17 is desirably provided in a region through which the magnetic flux φ generated by the coil L passes. Therefore, the insulating layer 17 is desirably provided in the vicinity of the strip-shaped conductors 20a to 20f and 22a to 22g.
 また、絶縁層17が設けられる場所は、帯状導体20a~20fよりもz軸方向の正方向側に限らない。よって、絶縁層17は、帯状導体20a~20fと帯状導体22a~22gとの間に設けられていてもよいし、帯状導体22a~22gよりもz軸方向の負方向側に設けられていてもよい。 Further, the place where the insulating layer 17 is provided is not limited to the positive side in the z-axis direction from the strip conductors 20a to 20f. Therefore, the insulating layer 17 may be provided between the strip conductors 20a to 20f and the strip conductors 22a to 22g, or may be provided on the negative side in the z-axis direction from the strip conductors 22a to 22g. Good.
 また、絶縁層17は、複数設けられていてもよい。また、絶縁層17は、絶縁層16と同じ形状を有しているが、絶縁層17は、絶縁層16よりも小さくてもよい。すなわち、絶縁層17は、z軸方向に垂直な面内において積層体12の一部に設けられていてもよい。 Further, a plurality of insulating layers 17 may be provided. The insulating layer 17 has the same shape as the insulating layer 16, but the insulating layer 17 may be smaller than the insulating layer 16. That is, the insulating layer 17 may be provided on a part of the stacked body 12 in a plane perpendicular to the z-axis direction.
 本発明は、電子部品に有用であり、特に、積層方向と直交するコイル軸を有するコイルを備えた電子部品において、直流重畳特性を改善できる点において優れている。 The present invention is useful for electronic parts, and is particularly excellent in that the direct current superposition characteristics can be improved in an electronic part having a coil having a coil axis orthogonal to the stacking direction.
 L コイル
 X コイル軸
 b1~b14,b21~b34 ビアホール導体
 t1~t4 端部
 10 電子部品
 12 積層体
 14a,14b 外部電極
 16a~16k,17 絶縁層
 18a,18b 引き出し導体
 20a~20f,22a~22g 帯状導体
L coil X coil axis b1 to b14, b21 to b34 Via hole conductor t1 to t4 End 10 Electronic component 12 Laminated body 14a, 14b External electrode 16a to 16k, 17 Insulating layer 18a, 18b Lead conductor 20a to 20f, 22a to 22g conductor

Claims (3)

  1.  複数の第1の絶縁層、及び、該第1の絶縁層よりも低い透磁率を有している第2の絶縁層が積層されてなる積層体と、
     前記積層体に内蔵され、かつ、積層方向と直交するコイル軸を有するコイルと、
     を備えていること、
     を特徴とする電子部品。
    A stacked body in which a plurality of first insulating layers and a second insulating layer having a lower magnetic permeability than the first insulating layers are stacked;
    A coil built in the laminate and having a coil axis perpendicular to the lamination direction;
    Having
    Electronic parts characterized by
  2.  前記第2の絶縁層は、前記第1の絶縁層に挟まれるように設けられていること、
     を特徴とする請求項1に記載の電子部品。
    The second insulating layer is provided so as to be sandwiched between the first insulating layers;
    The electronic component according to claim 1.
  3.  前記コイルは、
      積層方向から平面視したときに、前記コイル軸に沿って並んでいると共に、該コイル軸を挟むように位置する第1の端部及び第2の端部を有する複数の第1の帯状電極と、
      積層方向から平面視したときに、前記コイル軸に沿って並んでいると共に、該コイル軸を挟むように位置する第3の端部及び第4の端部を有する複数の第2の帯状電極と、
      積層方向に延在している第1の接続部及び第2の接続部と、
     を備え、
     前記複数の第2の帯状電極は、隣り合っている2つの前記第1の帯状電極の内の一方の前記第1の帯状電極の前記第1の端部と前記第3の端部において重なっていると共に、他方の前記第1の帯状電極の前記第2の端部と前記第4の端部において重なっており、
     前記第1の接続部は、前記第1の端部と前記第3の端部とを接続し、
     前記第2の接続部は、前記第2の端部と前記第4の端部とを接続していること、
     を特徴とする請求項1又は請求項2のいずれかに記載の電子部品。
    The coil is
    A plurality of first band-like electrodes that are arranged along the coil axis and have a first end and a second end located so as to sandwich the coil axis when viewed in plan from the stacking direction; ,
    A plurality of second strip electrodes arranged in a line along the coil axis and having a third end and a fourth end located so as to sandwich the coil axis when viewed in plan from the stacking direction; ,
    A first connection portion and a second connection portion extending in the stacking direction;
    With
    The plurality of second strip electrodes overlap each other at the first end portion and the third end portion of one of the two adjacent first strip electrodes. And overlaps at the second end and the fourth end of the other first strip electrode,
    The first connection portion connects the first end portion and the third end portion,
    The second connecting portion connecting the second end portion and the fourth end portion;
    The electronic component according to claim 1, wherein:
PCT/JP2009/065748 2008-11-28 2009-09-09 Electronic part WO2010061679A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-303610 2008-11-28
JP2008303610 2008-11-28

Publications (1)

Publication Number Publication Date
WO2010061679A1 true WO2010061679A1 (en) 2010-06-03

Family

ID=42225559

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/065748 WO2010061679A1 (en) 2008-11-28 2009-09-09 Electronic part

Country Status (1)

Country Link
WO (1) WO2010061679A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08293416A (en) * 1995-04-24 1996-11-05 Canon Inc Noise filter
JPH09219314A (en) * 1996-02-08 1997-08-19 Oki Densen Kk Fpc inductor
JP2001044036A (en) * 1999-08-03 2001-02-16 Taiyo Yuden Co Ltd Laminated inductor
JP2003017325A (en) * 2001-06-27 2003-01-17 Murata Mfg Co Ltd Lamination type metal magnetic electronic component and its manufacturing method
JP2005268455A (en) * 2004-03-17 2005-09-29 Murata Mfg Co Ltd Laminated electronic part
WO2008018203A1 (en) * 2006-08-07 2008-02-14 Murata Manufacturing Co., Ltd. Multilayer coil component and method for manufacturing the same
WO2008018187A1 (en) * 2006-08-08 2008-02-14 Murata Manufacturing Co., Ltd. Laminated coil component and method of manufacturing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08293416A (en) * 1995-04-24 1996-11-05 Canon Inc Noise filter
JPH09219314A (en) * 1996-02-08 1997-08-19 Oki Densen Kk Fpc inductor
JP2001044036A (en) * 1999-08-03 2001-02-16 Taiyo Yuden Co Ltd Laminated inductor
JP2003017325A (en) * 2001-06-27 2003-01-17 Murata Mfg Co Ltd Lamination type metal magnetic electronic component and its manufacturing method
JP2005268455A (en) * 2004-03-17 2005-09-29 Murata Mfg Co Ltd Laminated electronic part
WO2008018203A1 (en) * 2006-08-07 2008-02-14 Murata Manufacturing Co., Ltd. Multilayer coil component and method for manufacturing the same
WO2008018187A1 (en) * 2006-08-08 2008-02-14 Murata Manufacturing Co., Ltd. Laminated coil component and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US8188828B2 (en) Multilayer electronic component and electronic component module including the same
JP5533673B2 (en) Electronic components
JP4530043B2 (en) Multilayer coil component and manufacturing method thereof
JP5900373B2 (en) Electronic components
WO2010150602A1 (en) Electronic component and method for producing the same
JP5381983B2 (en) Electronic components
JP5644852B2 (en) Electronic component and manufacturing method thereof
US9373435B2 (en) Electronic component and method for manufacturing the same
JP5029761B2 (en) Multilayer inductor
US20140085038A1 (en) Electronic component
JP2011187535A (en) Electronic component, and method of manufacturing the same
JP4780232B2 (en) Multilayer electronic components
WO2010084794A1 (en) Electronic component and method for manufacturing same
JP5327231B2 (en) Electronic components
US8143989B2 (en) Multilayer inductor
JP2014078650A (en) Electronic component and manufacturing method of the same
WO2010010799A1 (en) Electronic component and method for manufacturing same
JP2009176829A (en) Electronic component
WO2010061679A1 (en) Electronic part
JP5402077B2 (en) Electronic components
WO2009147899A1 (en) Electronic part and method for manufacturing the same
WO2009147925A1 (en) Electronic component
JP2009170446A (en) Electronic component and method of manufacturing the same
JP2011091221A (en) Electronic component
JP2010034175A (en) Electronic component and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09828928

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09828928

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP