WO2009147899A1 - Electronic part and method for manufacturing the same - Google Patents

Electronic part and method for manufacturing the same Download PDF

Info

Publication number
WO2009147899A1
WO2009147899A1 PCT/JP2009/057383 JP2009057383W WO2009147899A1 WO 2009147899 A1 WO2009147899 A1 WO 2009147899A1 JP 2009057383 W JP2009057383 W JP 2009057383W WO 2009147899 A1 WO2009147899 A1 WO 2009147899A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic component
coil
insulating layer
strip
magnetic
Prior art date
Application number
PCT/JP2009/057383
Other languages
French (fr)
Japanese (ja)
Inventor
都美 河田
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2009147899A1 publication Critical patent/WO2009147899A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F17/0033Printed inductances with the coil helically wound around a magnetic core
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/041Printed circuit coils

Definitions

  • the present invention relates to an electronic component and a method for manufacturing the same, and more specifically to an electronic component having a coil incorporated in a laminate and a method for manufacturing the same.
  • FIG. 8 is a perspective view of the laminated coil component 200 described in Patent Document 1.
  • a laminated coil component 200 shown in FIG. 8 includes a laminated body 202 and a coil L ′ built in the laminated body 202.
  • the laminate 202 is configured by laminating a plurality of magnetic layers.
  • the coil L ′ has a coil axis in a direction orthogonal to the stacking direction, and is configured by connecting a plurality of strip electrodes 204 and 206 and a plurality of via-hole conductors 208. More specifically, the belt-like electrode 204 is formed of lines formed in parallel to each other on the magnetic layer that is relatively disposed on the upper side in the stacking direction among the magnetic layers constituting the stacked body 202. Electrode.
  • the strip electrode 206 is a linear electrode formed in parallel with each other on the magnetic layer disposed relatively on the lower layer side in the stacking direction among the magnetic layers constituting the stacked body 202. It is.
  • the via-hole conductor 206 is formed so as to extend in the stacking direction, and connects the strip electrode 204 and the strip electrode 206.
  • the coil L ′ is configured as described above.
  • the laminated coil component 200 there is a problem that magnetic saturation occurs due to a relatively small direct current, and the inductance value of the coil L ′ is rapidly reduced. That is, the laminated coil component 200 has a problem that the direct current superimposition characteristic is poor.
  • the magnetic material layer is laminated on both the upper layer side of the magnetic material layer where the belt-like electrode 204 is formed and the lower layer side of the magnetic material layer where the belt-like electrode 206 is formed. ing. Therefore, the periphery of the coil L ′ is surrounded by a magnetic layer, and the laminated coil component 200 constitutes a so-called closed magnetic circuit type coil.
  • the closed magnetic circuit type coil since the magnetic flux circulating around the coil becomes a closed magnetic circuit, magnetic flux leakage hardly occurs around the coil. Therefore, in the laminated coil component 200, even with a relatively small direct current, the magnetic flux density becomes too large, magnetic saturation occurs, and the inductance value rapidly decreases. Therefore, when the laminated coil component 200 is used as a power inductor for a DCDC converter, sufficient conversion efficiency cannot be obtained.
  • an object of the present invention is to provide an electronic component having good direct current superposition characteristics and a method for manufacturing the same.
  • An electronic component includes a stacked body in which insulating layers are stacked, and a spiral coil formed in the stacked body, and the stacked body includes only the inside of the coil.
  • the magnetic material is provided.
  • An electronic component includes a laminated body in which insulating layers are laminated, and a spiral coil formed in the laminated body, and the coil is relatively laminated.
  • a plurality of first strip electrodes formed on the insulating layer disposed on the upper side in the direction, and a plurality of second electrodes formed on the insulating layer disposed on the lower side in the stacking direction.
  • a plurality of connecting portions formed so as to extend in the stacking direction on the side surface of the insulating layer and connecting the first belt electrode and the second belt electrode.
  • the plurality of first strip electrodes and the plurality of second strip electrodes are connected by the plurality of via-hole conductors, thereby forming a spiral shape in the stacked body.
  • the plurality of first band-like electrodes are provided on each of the plurality of first regions defined on the first insulating sheet and arranged in a matrix.
  • the magnetic body is provided only inside the coil, it is possible to obtain good direct current superposition characteristics.
  • the coil is disposed on the lower side in the stacking direction and the plurality of first strip electrodes formed in the insulating layer disposed on the upper side in the stacking direction.
  • FIG. 1 is an external perspective view of an electronic component according to an embodiment of the present invention. It is a disassembled perspective view of the laminated body of the electronic component of FIG. 3A is an exploded perspective view of the laminate of FIG. 2, and FIG. 3B is an external perspective view of an electronic component being manufactured.
  • 4A is a perspective view of the electronic component from the x-axis direction
  • FIG. 4B is a perspective view of the laminated coil component from the arrow X direction. It is the graph which showed the direct current superposition characteristic of the 1st model and the 2nd model. It is the perspective view which showed the ceramic green sheet used for manufacture of an electronic component. It is a cross-section figure of the electronic component which concerns on other embodiment.
  • 2 is a perspective view of a laminated coil component described in Patent Document 1.
  • FIG. 1 is an external perspective view of an electronic component according to an embodiment of the present invention. It is a disassembled perspective view of the laminated body of the electronic component of FIG. 3A is an exploded perspective view of
  • FIG. 1 is an external perspective view of an electronic component 10a according to an embodiment of the present invention.
  • FIG. 2 is an exploded perspective view of the multilayer body 12 of the electronic component 10a.
  • FIG. 3A is an exploded perspective view of the laminated body 12, and
  • FIG. 3B is an external perspective view of the electronic component 10a being manufactured.
  • the stacking direction of the electronic component 10a is defined as the z-axis direction
  • the direction along the long side of the electronic component 10a is defined as the x-axis direction
  • the direction along the short side of the electronic component 10a is defined as the y-axis direction.
  • the x axis, the y axis, and the z axis are orthogonal to each other.
  • the electronic component 10a includes a laminate 12 and external electrodes 14a and 14b as shown in FIG.
  • the laminated body 12 has a rectangular parallelepiped shape, and a coil L (not shown in FIG. 1) is formed.
  • the laminate 12 has side surfaces S1 and S2 at both ends in the x-axis direction, and side surfaces S3 and S4 at both ends in the y-axis direction.
  • the external electrodes 14a and 14b are electrically connected to the coil L, and are formed to cover the side surfaces S1 and S2.
  • the multilayer body 12 includes a plurality of rectangular nonmagnetic layers 16a to 16c, magnetic layers 16d to 16f, and nonmagnetic layers 16g to 16j (insulating layers) from above in the z-axis direction. They are stacked in order.
  • the multilayer body 12 includes a plurality of magnetic layers 16d to 16f made of ferromagnetic ferrite (for example, Ni—Zn—Cu ferrite or Ni—Zn ferrite) and nonmagnetic ferrite (for example, A plurality of non-magnetic layers 16a to 16c and 16g to 16j made of Zn—Cu ferrite or Zn ferrite) are laminated.
  • the magnetic layer refers to a layer made of a material that functions as a magnetic body in the range of ⁇ 55 ° C. to 125 ° C.
  • the nonmagnetic layer refers to a nonmagnetic layer in the range of ⁇ 55 ° C. to 125 ° C.
  • the coil L is a spiral coil that advances in the x-axis direction while rotating as shown in FIG. That is, the coil axis of the coil L is parallel to the x-axis direction.
  • the coil L includes lead electrodes 18a and 18b, a plurality of strip electrodes 20 and 22, and a plurality of via-hole conductors b1 to b4.
  • the lead electrodes 18a and 18b and the plurality of strip-shaped electrodes 20 are formed on the nonmagnetic layer 16g that is relatively disposed on the lower side in the z-axis direction. More specifically, the plurality of strip-like electrodes 20 are formed so as to have a negative inclination in the xy plane and to be parallel to each other when viewed in plan from the upper side in the z-axis direction. Yes. Furthermore, the strip electrode 20 is formed so as to connect sides located at both ends in the y-axis direction. Each strip electrode 20 does not necessarily have to be parallel.
  • the extraction electrode 18a has a substantially L shape, and more specifically, extends in parallel with the strip electrode 20 from the near side in the y-axis direction, and is bent in the middle to be left in the x-axis direction. It has a shape drawn to the side.
  • the extraction electrode 18b has a substantially L shape, and more specifically, extends in parallel with the strip electrode 20 from the back side in the y-axis direction and is bent in the middle to be x-axis. It has a shape drawn to the right side in the direction.
  • the extraction electrodes 18a and 18b are connected to the external electrodes 14a and 14b, respectively.
  • the plurality of strip electrodes 22 are formed on the magnetic layer 16d that is relatively disposed on the upper side in the z-axis direction. More specifically, the plurality of strip electrodes 22 are formed so as to have a positive inclination in the xy plane and to be parallel to each other when viewed in plan from the upper side in the z-axis direction. Yes. Furthermore, the strip electrode 22 is formed so as to connect the sides located at both ends in the y-axis direction. Each strip electrode 22 does not necessarily have to be parallel.
  • the via-hole conductor b3 is connected to the end on the back side in the y-axis direction of the strip electrode 22 and is formed so as to penetrate the magnetic layer 16d in the z-axis direction.
  • the via-hole conductor b4 is connected to the end on the near side in the y-axis direction of the strip electrode 22 and is formed so as to penetrate the magnetic layer 16d in the z-axis direction.
  • the via-hole conductors b3 and b4 are in contact with the back side in the y-axis direction or the near side in the y-axis direction of the magnetic layer 16d and have a semicircular shape. That is, the via-hole conductors b3 and b4 have a shape obtained by dividing a normal via-hole conductor in half.
  • the via-hole conductors b1 and b2 are formed at positions corresponding to the via-hole conductors b3 and b4 when viewed in plan from the z-axis direction in each of the magnetic layers 16e and 16f.
  • the via-hole conductors b1 and b2 are in contact with the back side in the y-axis direction or the near side in the y-axis direction of the magnetic layers 16e and 16f, respectively, and have a semicircular shape. That is, the via-hole conductors b1 and b2 have a shape obtained by dividing a normal via-hole conductor in half.
  • the magnetic layers 16d to 16f and the nonmagnetic layer 16g are formed.
  • a spiral coil L is formed which travels in the x-axis direction while rotating the laminated body 24 made of.
  • the via-hole conductors b1 and b3 are connected to each other so as to extend in the z-axis direction on the side surface on the far side in the y-axis direction of the multilayer body 24 and to extend in the y-axis direction of the strip electrode 20 It functions as a connecting portion that connects the end on the back side and the end on the back side in the y-axis direction of the strip electrode 22.
  • the via-hole conductors b2 and b4 are connected to each other so as to extend in the z-axis direction on the side surface on the near side in the y-axis direction of the multilayer body 24 and on the near side in the y-axis direction of the strip electrode 20 And an end portion on the near side in the y-axis direction of the strip electrode 22 functions as a connection portion.
  • the nonmagnetic layers 16a to 16c are stacked on the upper side of the stacked body 24 in the z-axis direction, and the nonmagnetic layers 16h to 16c are stacked on the lower side of the stacked body 24 in the z-axis direction.
  • the stacked body 12 is configured by stacking 16j.
  • the external electrodes 14a and 14b are formed so as to cover the side surfaces S1 and S2 located at both ends in the x-axis direction of the multilayer body 12, respectively.
  • the via-hole conductors b1 to b4 (the via-hole conductors b1 and b3 are not shown in FIG.
  • the side surface S3 on the near side in the y-axis direction of the laminate 12 and the side surface S4 on the far side in the y-axis direction of the laminate 12 have relatively low magnetic permeability and insulating properties. It is covered with an insulating material such as a high epoxy resin.
  • the via-hole conductors b1 to b4 are formed so as to extend in the z-axis direction on the side surfaces of the magnetic layers 16d to 16f.
  • the laminated coil component 200 in which a magnetic body is present around ' it has better direct current superimposition characteristics.
  • FIG. 4A is a perspective view of the electronic component 10a from the x-axis direction
  • FIG. 4B is a perspective view of the laminated coil component 200 from the arrow X direction.
  • the magnetic flux generated in the coil L ′ is a via-hole as indicated by an arrow ⁇ 1 ′. It passes through the magnetic body both inside and outside the conductor 208. Therefore, the magnetic flux generated in the coil L ′ is less likely to leak, and the laminated coil component 200 has a magnetic flux density that is too large even if the DC current is relatively small, causing magnetic saturation.
  • the layers located between the strip electrode 20 and the strip electrode 22 in the z-axis direction are the magnetic layers 16d, 16e, and 16f. Further, the layers stacked above the magnetic layer 16d in the z-axis direction and the layers stacked below the magnetic layer 16f in the z-axis direction are non-magnetic layers 16a to 16c, 16g to 16j.
  • the magnetic material is present only in the coil L in the laminated body 12.
  • the electronic component 10a has a better DC superposition characteristic than the laminated coil component 200 in which the magnetic material is present around the coil L ′.
  • the magnetic flux generated in the coil L ′ is as indicated by arrows ⁇ 1 ′ and ⁇ 2 ′.
  • the magnetic material passes through both inside and outside of the coil L ′. Therefore, the magnetic flux generated in the coil L ′ is less likely to leak, and the laminated coil component 200 has a magnetic flux density that is too large even if the DC current is relatively small, causing magnetic saturation.
  • the magnetic flux generated in the coil L passes through the magnetic body only inside the coil L and does not pass through the magnetic body outside the coil L, as indicated by arrows ⁇ 1 and ⁇ 2. For this reason, the magnetic flux generated in the coil L is likely to leak, and in the electronic component 10a, the magnetic flux density increases and magnetic saturation is suppressed.
  • the electronic component 10 a since the inductance value due to magnetic saturation is less likely to be suddenly reduced than in the laminated coil component 200, the electronic component 10 a is more excellent in direct current superposition than the laminated coil component 200. It has characteristics.
  • the inventor of the present application conducted an experiment described below. More specifically, a first model corresponding to the electronic component 10a and a second model corresponding to the laminated coil component 200 were produced, and the DC superposition characteristics of these models were examined.
  • the conditions of the first model and the second model are as follows.
  • the side gap L is a distance from the via-hole conductors b1 and 208 in FIG. 4 to the side surfaces of the multilayer bodies 12 and 202.
  • the vertical outer layer thickness is the distance from the strip electrodes 20, 22, 204, 206 to the upper surface or the lower surface of the laminate 12, 202.
  • First model Size 2.5mm x 2.0mm x 0.9mm Side gap: 0mm Outer layer thickness in the vertical direction: 0.1 mm Number of turns: 10
  • FIG. 5 is a graph showing the DC superposition characteristics of the first model and the second model.
  • the vertical axis represents the inductance value
  • the horizontal axis represents the direct current value.
  • the via-hole conductors b1 to b4 are formed to extend in the z-axis direction on the side surfaces of the magnetic layers 16d to 16f.
  • the via-hole conductor 208 is formed inside the multilayer body 202. Therefore, the via-hole conductors b1 to b4 are positioned on the outer side in the y-axis direction of the multilayer body 12 as compared with the via-hole conductor 208. Thereby, the inner diameter of the coil L of the electronic component 10 a becomes larger than the inner diameter of the coil L ′ of the multilayer coil component 200, and the electronic component 10 a can easily obtain an inductance value larger than that of the multilayer coil component 200.
  • FIG. 6 is a perspective view showing the ceramic green sheets 116a to 116j used for manufacturing the electronic component 10a.
  • the ceramic green sheets 116a to 116j are sheets before firing and cutting of the nonmagnetic layers 16a to 16c, the magnetic layers 16d to 16f, and the nonmagnetic layers 16g to 16j, respectively.
  • Ceramic green sheets 116d to 116f to be the magnetic layers 16d to 16f are produced by the following steps.
  • Ferric oxide (Fe 2 O 3 ), zinc oxide (ZnO), nickel oxide (NiO), and copper oxide (CuO) are weighed at a predetermined ratio, and each material is put into a ball mill as a raw material. Mix.
  • the obtained mixture is dried and then pulverized, and the obtained powder is calcined at 750 ° C. for 1 hour.
  • the obtained calcined powder is wet pulverized by a ball mill, dried and then crushed to obtain a ferrite ceramic powder.
  • a binder (vinyl acetate, water-soluble acrylic, etc.), a plasticizer, a wetting material, and a dispersing agent are added and mixed with a ball mill, and then defoamed under reduced pressure.
  • the obtained ceramic slurry is formed into a sheet by the doctor blade method and dried to produce ceramic green sheets 116d to 116f.
  • ceramic green sheets 116a to 116c and 116g to 116j to be the nonmagnetic layers 16a to 16c and 16g to 16j are manufactured by the following steps.
  • Ferric oxide (Fe 2 O 3 ), zinc oxide (ZnO), and copper oxide (CuO) are weighed at a predetermined ratio, and the respective materials are put into a ball mill as raw materials, and wet blending is performed.
  • the obtained mixture is dried and then pulverized, and the obtained powder is calcined at 750 ° C. for 1 hour.
  • the obtained calcined powder is wet pulverized by a ball mill, dried and then crushed to obtain a ferrite ceramic powder.
  • a binder (vinyl acetate, water-soluble acrylic, etc.), a plasticizer, a wetting material, and a dispersing agent are added and mixed with a ball mill, and then defoamed under reduced pressure.
  • the obtained ceramic slurry is formed into a sheet by a doctor blade method and dried to produce ceramic green sheets 116a to 116c and 116g to 116j.
  • the via-hole conductor B1 is formed in each of the ceramic green sheets 116e and 116f.
  • the ceramic green sheets 116e and 116f have a region E1 corresponding to one of the magnetic layers 16e and 16f.
  • the region E1 is arranged in a matrix in the ceramic green sheets 116e and 116f.
  • a via hole is formed by irradiating the boundary of each region E1 with a laser beam.
  • the via hole is filled with a conductive paste such as Ag, Pd, Cu, Au or an alloy thereof by a method such as printing.
  • a via-hole conductor B2 is formed on the ceramic green sheet 116d.
  • the ceramic green sheet 116d has a region E2 corresponding to one magnetic layer 16d.
  • the region E2 is arranged in a matrix in the ceramic green sheet 116d.
  • a via hole is formed by irradiating the boundary of each region E2 with a laser beam.
  • the via hole is filled with a conductive paste such as Ag, Pd, Cu, Au or an alloy thereof by a method such as printing.
  • a conductive paste mainly composed of Ag, Pd, Cu, Au, or an alloy thereof is applied on the ceramic green sheet 116d by a method such as a screen printing method or a photolithography method, whereby the strip electrode 22 is applied.
  • a method such as a screen printing method or a photolithography method, whereby the strip electrode 22 is applied.
  • the strip electrode 22 is applied.
  • a method such as a screen printing method or a photolithography method
  • a conductive paste mainly composed of Ag, Pd, Cu, Au, or an alloy thereof is applied onto the ceramic green sheet 116g by a method such as a screen printing method or a photolithography method, whereby the extraction electrode 18a. , 18b and the strip electrode 20 are formed.
  • a region E3 corresponding to one nonmagnetic layer 16g is defined in the ceramic green sheet 116g.
  • the region E3 is arranged in a matrix in the ceramic green sheet 116g.
  • lead electrodes 18a and 18b and four strip electrodes 22 are formed in each of the plurality of regions E3.
  • ceramic green sheets 116a to 116j are laminated.
  • the ceramic green sheets 116a to 116j are stacked one by one with the regions E1 to E3 coinciding from the lower side in the z-axis direction to the upper side. More specifically, the ceramic green sheet 116j is disposed.
  • the ceramic green sheet 116i is disposed and temporarily pressed onto the ceramic green sheet 116j.
  • the ceramic green sheets 116h, 116g, 116f, 116e, 116d, 116c, 116b, and 116a are similarly laminated and temporarily pressed in this order to obtain a mother laminated body. Further, the mother laminate is subjected to main pressure bonding by a hydrostatic pressure press or the like at a pressure of 1.0 to 1.2 t / cm 2 .
  • the mother laminate is cut into a laminate 12 having a size of 2.5 mm ⁇ 2.0 mm by guillotine cutting to obtain an unfired laminate 12.
  • the mother laminate is cut along the region E1 of FIG.
  • the via-hole conductors B1 and B2 located on the respective boundaries of the regions E1 and E2 are divided in half, and the via-hole conductors b1 to b4 are formed.
  • the unfired laminate 12 is subjected to binder removal processing and firing.
  • the binder removal treatment is performed, for example, in a low oxygen atmosphere at 500 ° C. for 2 hours. Firing is performed, for example, at 1000 ° C. for 2 hours.
  • the fired laminated body 12 is obtained through the above steps.
  • the laminated body 12 is chamfered by barrel processing.
  • a silver electrode to be the external electrodes 14a and 14b is formed on the surface of the laminate 12 by applying and baking an electrode paste whose main component is silver by a method such as an immersion method.
  • the silver electrode is dried at 120 ° C. for 10 minutes, and the silver electrode is baked at 890 ° C. for 60 minutes.
  • the external electrodes 14a and 14b are formed by performing Ni plating / Sn plating on the surface of the silver electrode.
  • the electronic component 10a being manufactured has a structure shown in FIG.
  • an insulating material such as an epoxy resin having a relatively low magnetic permeability and high insulation is applied on the via-hole conductors b1 to b4.
  • the electronic component 10a is not limited to that shown in the embodiment. Therefore, it can be modified within the scope of the gist.
  • the extraction electrodes 18a and 18b and the strip electrode 20 are formed on the non-magnetic layer 16g, but may be formed on the magnetic layer. That is, the nonmagnetic layer 16g is not necessarily made of a nonmagnetic material and may be made of a magnetic material.
  • FIG. 7 is a sectional structural view of the electronic component 10b.
  • the stacking direction of the electronic component 10b is defined as the z-axis direction.
  • the coil axis of the coil L of the electronic component 10b is parallel to the z-axis direction.
  • the electronic component 10b includes a laminated body 212, external electrodes 214a and 214b, and a coil L.
  • the laminated body 212 is configured by laminating an insulating layer including a magnetic layer 218 and a nonmagnetic layer 220.
  • the coil L is configured by connecting a plurality of coil electrodes 222 arranged in the z-axis direction.
  • the magnetic layer 218 is provided only inside the coil L, and the non-magnetic layer 220 is provided outside the coil L. Also in the electronic component 10b having the above configuration, a good DC superposition characteristic can be obtained as compared with the laminated coil component 200, similarly to the electronic component 10a.
  • the present invention is useful for an electronic component and a manufacturing method thereof, and is particularly excellent in that it has a good direct current superposition characteristic.
  • B1, B2, b1 to b4 Via-hole conductor L Coil 10a, 10b Electronic component 12, 24, 212 Laminated body 14a, 14b, 214a, 214b External electrode 16a to 16c, 16g to 16j, 220 Nonmagnetic layer 16d to 16f, 218 Magnetic layer 18a, 18b Lead electrode 20, 22 Strip electrode E1-E3 region 116a-116j Ceramic green sheet 222 Coil electrode

Abstract

Provided is an electronic part having a preferable DC superposition characteristic. Also provided is a method for manufacturing the electronic part. The electronic part includes: a layered body (12) formed by layering magnetic layers (16d to 16f) and non-magnetic layers (16a to 16c and 16g to 16j); and a coil (L) which is a spiral coil formed on the layered body (12). The coil (L) has: a plurality of belt-shaped electrodes (22) formed to be aligned on the magnetic layer (16d); a plurality of belt-shaped electrodes (20) formed to be aligned on the non-magnetic layer (16g); and via hole conductors (b1, b2) formed to extend in the z-axis direction in the layered body (12) and connecting the belt-shaped electrodes (20, 22).

Description

電子部品及びその製造方法Electronic component and manufacturing method thereof
 本発明は、電子部品及びその製造方法に関し、より特定的には、積層体内にコイルを内蔵している電子部品及びその製造方法に関する。 The present invention relates to an electronic component and a method for manufacturing the same, and more specifically to an electronic component having a coil incorporated in a laminate and a method for manufacturing the same.
 従来の電子部品としては、例えば、特許文献1に記載の積層コイル部品が知られている。以下に、特許文献1に記載の積層コイル部品について図面を参照しながら説明する。図8は、特許文献1に記載の積層コイル部品200の透視図である。 As a conventional electronic component, for example, a multilayer coil component described in Patent Document 1 is known. The laminated coil component described in Patent Document 1 will be described below with reference to the drawings. FIG. 8 is a perspective view of the laminated coil component 200 described in Patent Document 1. FIG.
 図8に示す積層コイル部品200は、積層体202及び該積層体202に内蔵されたコイルL'を備えている。積層体202は、複数の磁性体層が積層されて構成されている。コイルL'は、積層方向と直交する方向にコイル軸を有しており、複数の帯状電極204,206及び複数のビアホール導体208が接続されて構成されている。より詳細には、帯状電極204は、積層体202を構成している磁性体層の内、相対的に積層方向の上層側に配置されている磁性体層上において、互いに平行に形成された線状の電極である。また、帯状電極206は、積層体202を構成している磁性体層の内、相対的に積層方向の下層側に配置されている磁性体層上において、互いに平行に形成された線状の電極である。ビアホール導体206は、積層方向に延びるように形成され、帯状電極204と帯状電極206とを接続している。以上のような構成により、コイルL'が構成されている。 A laminated coil component 200 shown in FIG. 8 includes a laminated body 202 and a coil L ′ built in the laminated body 202. The laminate 202 is configured by laminating a plurality of magnetic layers. The coil L ′ has a coil axis in a direction orthogonal to the stacking direction, and is configured by connecting a plurality of strip electrodes 204 and 206 and a plurality of via-hole conductors 208. More specifically, the belt-like electrode 204 is formed of lines formed in parallel to each other on the magnetic layer that is relatively disposed on the upper side in the stacking direction among the magnetic layers constituting the stacked body 202. Electrode. The strip electrode 206 is a linear electrode formed in parallel with each other on the magnetic layer disposed relatively on the lower layer side in the stacking direction among the magnetic layers constituting the stacked body 202. It is. The via-hole conductor 206 is formed so as to extend in the stacking direction, and connects the strip electrode 204 and the strip electrode 206. The coil L ′ is configured as described above.
 ところで、前記積層コイル部品200では、比較的小さな直流電流によって磁気飽和が発生し、コイルL'のインダクタンス値が急激に低下してしまうという問題がある。すなわち、積層コイル部品200では、直流重畳特性が悪いという問題がある。 By the way, in the laminated coil component 200, there is a problem that magnetic saturation occurs due to a relatively small direct current, and the inductance value of the coil L ′ is rapidly reduced. That is, the laminated coil component 200 has a problem that the direct current superimposition characteristic is poor.
 より詳細には、積層コイル部品200では、帯状電極204が形成されている磁性体層の上層側及び帯状電極206が形成されている磁性体層の下層側の両方に、磁性体層が積層されている。したがって、コイルL'の周囲は、磁性体層により囲まれており、積層コイル部品200は、所謂、閉磁路型のコイルを構成している。閉磁路型のコイルでは、コイルを周回する磁束は、閉磁路となるので、周囲に磁束の漏れが発生しにくい。そのため、積層コイル部品200では、比較的小さな直流電流であっても、磁束密度が大きくなりすぎて、磁気飽和が発生してしまい、インダクタンス値の急激な低下が発生してしまう。故に、積層コイル部品200をDCDCコンバータ用のパワーインダクタとして用いた場合には、十分な変換効率を得ることができなかった。 More specifically, in the laminated coil component 200, the magnetic material layer is laminated on both the upper layer side of the magnetic material layer where the belt-like electrode 204 is formed and the lower layer side of the magnetic material layer where the belt-like electrode 206 is formed. ing. Therefore, the periphery of the coil L ′ is surrounded by a magnetic layer, and the laminated coil component 200 constitutes a so-called closed magnetic circuit type coil. In the closed magnetic circuit type coil, since the magnetic flux circulating around the coil becomes a closed magnetic circuit, magnetic flux leakage hardly occurs around the coil. Therefore, in the laminated coil component 200, even with a relatively small direct current, the magnetic flux density becomes too large, magnetic saturation occurs, and the inductance value rapidly decreases. Therefore, when the laminated coil component 200 is used as a power inductor for a DCDC converter, sufficient conversion efficiency cannot be obtained.
特開2005-142302号公報JP 2005-142302 A
 そこで、本発明の目的は、良好な直流重畳特性を有する電子部品及びその製造方法を提供することである。 Therefore, an object of the present invention is to provide an electronic component having good direct current superposition characteristics and a method for manufacturing the same.
 本発明の一形態に係る電子部品は、絶縁層が積層されてなる積層体と、前記積層体に形成されている螺旋状のコイルと、を備え、前記積層体において、前記コイルの内部にのみ、磁性体が設けられていること、を特徴とする。 An electronic component according to an aspect of the present invention includes a stacked body in which insulating layers are stacked, and a spiral coil formed in the stacked body, and the stacked body includes only the inside of the coil. The magnetic material is provided.
 また、本発明のその他の形態に係る電子部品は、絶縁層が積層されてなる積層体と、前記積層体に形成されている螺旋状のコイルと、を備え、前記コイルは、相対的に積層方向の上側に配置されている前記絶縁層に形成されている複数の第1の帯状電極と、相対的に積層方向の下側に配置されている前記絶縁層に形成されている複数の第2の帯状電極と、前記絶縁層の側面において積層方向に延びるように形成され、前記第1の帯状電極と前記第2の帯状電極とを接続している複数の接続部と、を含んでいる。 An electronic component according to another aspect of the present invention includes a laminated body in which insulating layers are laminated, and a spiral coil formed in the laminated body, and the coil is relatively laminated. A plurality of first strip electrodes formed on the insulating layer disposed on the upper side in the direction, and a plurality of second electrodes formed on the insulating layer disposed on the lower side in the stacking direction. And a plurality of connecting portions formed so as to extend in the stacking direction on the side surface of the insulating layer and connecting the first belt electrode and the second belt electrode.
 また、本発明の一形態に係る電子部品の製造方法は、複数の第1の帯状電極と、複数の第2の帯状電極とが複数のビアホール導体により接続されることにより、積層体において螺旋状のコイルを構成している電子部品の製造方法において、第1の絶縁シート上に規定され、かつ、マトリクス状に並んでいる複数の第1の領域のそれぞれに、前記複数の第1の帯状電極を形成する工程と、第2の絶縁シート上に規定され、かつ、マトリクス状に並んでいる複数の第2の領域のそれぞれに、前記複数の第2の帯状電極を形成する工程と、第3の絶縁シート上に規定され、かつ、マトリクス状に並んでいる複数の第3の領域の境界に、前記複数のビアホール導体を形成する工程と、前記第1の領域ないし前記第3の領域を一致させて、前記第1の絶縁シートないし前記第3の絶縁シートを積層して、マザー積層体を得る工程と、前記複数の第2の領域の境界に沿って、前記マザー積層体を切断して積層体を得る工程と、を備えること、を特徴とする。 In the electronic component manufacturing method according to an aspect of the present invention, the plurality of first strip electrodes and the plurality of second strip electrodes are connected by the plurality of via-hole conductors, thereby forming a spiral shape in the stacked body. In the method of manufacturing the electronic component constituting the coil, the plurality of first band-like electrodes are provided on each of the plurality of first regions defined on the first insulating sheet and arranged in a matrix. Forming a plurality of second strip electrodes in each of a plurality of second regions defined on the second insulating sheet and arranged in a matrix, and a third Forming the plurality of via-hole conductors at the boundaries of the plurality of third regions defined on the insulating sheet and arranged in a matrix, and the first region to the third region coincide with each other Let the first Laminating an edge sheet or the third insulating sheet to obtain a mother laminated body, and cutting the mother laminated body along the boundaries of the plurality of second regions to obtain a laminated body; It is characterized by providing.
 本発明によれば、コイルの内部にのみ、磁性体が設けられているので、良好な直流重畳特性を得ることができる。 According to the present invention, since the magnetic body is provided only inside the coil, it is possible to obtain good direct current superposition characteristics.
 また、本発明によれば、コイルが、相対的に積層方向の上側に配置されている絶縁層に形成されている複数の第1の帯状電極と、相対的に積層方向の下側に配置されている絶縁層に形成されている複数の第2の帯状電極と、絶縁層の側面において積層方向に延びるように形成され、第1の帯状電極と第2の帯状電極とを接続している複数の接続部と、を含んでいるので、良好な直流重畳特性を得ることができる。 According to the present invention, the coil is disposed on the lower side in the stacking direction and the plurality of first strip electrodes formed in the insulating layer disposed on the upper side in the stacking direction. A plurality of second strip electrodes formed on the insulating layer, and a plurality of strips formed on the side surfaces of the insulating layer so as to extend in the stacking direction and connecting the first strip electrode and the second strip electrode. Therefore, good direct current superposition characteristics can be obtained.
本発明の一実施形態に係る電子部品の外観斜視図である。1 is an external perspective view of an electronic component according to an embodiment of the present invention. 図1の電子部品の積層体の分解斜視図である。It is a disassembled perspective view of the laminated body of the electronic component of FIG. 図3(a)は、図2の積層体の分解斜視図であり、図3(b)は、作製途中の電子部品の外観斜視図である。3A is an exploded perspective view of the laminate of FIG. 2, and FIG. 3B is an external perspective view of an electronic component being manufactured. 図4(a)は、x軸方向からの電子部品の透視図であり、図4(b)は、矢印X方向からの積層コイル部品の透視図である。4A is a perspective view of the electronic component from the x-axis direction, and FIG. 4B is a perspective view of the laminated coil component from the arrow X direction. 第1のモデル及び第2のモデルの直流重畳特性を示したグラフである。It is the graph which showed the direct current superposition characteristic of the 1st model and the 2nd model. 電子部品の製造に用いられるセラミックグリーンシートを示した斜視図である。It is the perspective view which showed the ceramic green sheet used for manufacture of an electronic component. その他の実施形態に係る電子部品の断面構造図である。It is a cross-section figure of the electronic component which concerns on other embodiment. 特許文献1に記載の積層コイル部品の透視図である。2 is a perspective view of a laminated coil component described in Patent Document 1. FIG.
 以下に、本発明の実施形態に係る電子部品及びその製造方法について説明する。 Hereinafter, an electronic component and a manufacturing method thereof according to an embodiment of the present invention will be described.
(電子部品構成)
 図1は、本発明の一実施形態に係る電子部品10aの外観斜視図である。図2は、電子部品10aの積層体12の分解斜視図である。図3(a)は、積層体12の分解斜視図であり、図3(b)は、作製途中の電子部品10aの外観斜視図である。以下、電子部品10aの積層方向をz軸方向と定義し、電子部品10aの長辺に沿った方向をx軸方向と定義し、電子部品10aの短辺に沿った方向をy軸方向と定義する。x軸、y軸及びz軸は互いに直交している。
(Electronic component configuration)
FIG. 1 is an external perspective view of an electronic component 10a according to an embodiment of the present invention. FIG. 2 is an exploded perspective view of the multilayer body 12 of the electronic component 10a. FIG. 3A is an exploded perspective view of the laminated body 12, and FIG. 3B is an external perspective view of the electronic component 10a being manufactured. Hereinafter, the stacking direction of the electronic component 10a is defined as the z-axis direction, the direction along the long side of the electronic component 10a is defined as the x-axis direction, and the direction along the short side of the electronic component 10a is defined as the y-axis direction. To do. The x axis, the y axis, and the z axis are orthogonal to each other.
 電子部品10aは、図1に示すように、積層体12及び外部電極14a,14bを備えている。積層体12は、直方体状を有しており、コイルL(図1では図示せず)が形成されている。また、積層体12は、x軸方向の両端に側面S1,S2を有し、y軸方向の両端に側面S3,S4を有している。外部電極14a,14bはそれぞれ、コイルLに電気的に接続されており、側面S1,S2を覆うように形成されている。 The electronic component 10a includes a laminate 12 and external electrodes 14a and 14b as shown in FIG. The laminated body 12 has a rectangular parallelepiped shape, and a coil L (not shown in FIG. 1) is formed. The laminate 12 has side surfaces S1 and S2 at both ends in the x-axis direction, and side surfaces S3 and S4 at both ends in the y-axis direction. The external electrodes 14a and 14b are electrically connected to the coil L, and are formed to cover the side surfaces S1 and S2.
 積層体12は、図2に示すように、複数の長方形状の非磁性体層16a~16c、磁性体層16d~16f及び非磁性体層16g~16j(絶縁層)がz軸方向の上から順に積層されて構成されている。具体的には、積層体12は、強磁性のフェライト(例えば、Ni-Zn-Cuフェライト又はNi-Znフェライト等)からなる複数の磁性体層16d~16f、及び、非磁性のフェライト(例えば、Zn-Cuフェライト又はZnフェライト等)からなる複数の非磁性体層16a~16c,16g~16jが積層されて構成されている。本実施形態において、磁性体層とは、-55℃~125℃の範囲で磁性体として機能する材料からなる層をいい、非磁性体層とは、-55℃~125℃の範囲で非磁性体として機能する材料からなる層をいう。以下では、個別の磁性体層16d~16f及び非磁性体層16a~16c,16g~16jを指す場合には、参照符号の後ろにアルファベットを付し、これらを総称する場合には、参照符号の後ろのアルファベットを省略する。 As shown in FIG. 2, the multilayer body 12 includes a plurality of rectangular nonmagnetic layers 16a to 16c, magnetic layers 16d to 16f, and nonmagnetic layers 16g to 16j (insulating layers) from above in the z-axis direction. They are stacked in order. Specifically, the multilayer body 12 includes a plurality of magnetic layers 16d to 16f made of ferromagnetic ferrite (for example, Ni—Zn—Cu ferrite or Ni—Zn ferrite) and nonmagnetic ferrite (for example, A plurality of non-magnetic layers 16a to 16c and 16g to 16j made of Zn—Cu ferrite or Zn ferrite) are laminated. In the present embodiment, the magnetic layer refers to a layer made of a material that functions as a magnetic body in the range of −55 ° C. to 125 ° C., and the nonmagnetic layer refers to a nonmagnetic layer in the range of −55 ° C. to 125 ° C. A layer made of a material that functions as a body. In the following, when referring to the individual magnetic layers 16d to 16f and the nonmagnetic layers 16a to 16c and 16g to 16j, an alphabet is added after the reference symbol, and when referring to them collectively, the reference symbol is used. Omit the back alphabet.
 コイルLは、図3(a)に示すように、旋廻しながらx軸方向に進行する螺旋状のコイルである。すなわち、コイルLのコイル軸は、x軸方向に平行である。コイルLは、図2に示すように、引き出し電極18a,18b、複数の帯状電極20,22及び複数のビアホール導体b1~b4を含んでいる。 The coil L is a spiral coil that advances in the x-axis direction while rotating as shown in FIG. That is, the coil axis of the coil L is parallel to the x-axis direction. As shown in FIG. 2, the coil L includes lead electrodes 18a and 18b, a plurality of strip electrodes 20 and 22, and a plurality of via-hole conductors b1 to b4.
 引き出し電極18a,18b及び複数の帯状電極20は、相対的にz軸方向の下側に配置されている非磁性体層16gに形成されている。より詳細には、複数の帯状電極20は、z軸方向の上側から平面視したときに、xy平面において負の傾きを有するように傾斜すると共に、互いに平行となるように等間隔に形成されている。更に、帯状電極20は、y軸方向の両端に位置する辺を繋ぐように形成されている。なお、各帯状電極20は、必ずしも平行である必要はない。 The lead electrodes 18a and 18b and the plurality of strip-shaped electrodes 20 are formed on the nonmagnetic layer 16g that is relatively disposed on the lower side in the z-axis direction. More specifically, the plurality of strip-like electrodes 20 are formed so as to have a negative inclination in the xy plane and to be parallel to each other when viewed in plan from the upper side in the z-axis direction. Yes. Furthermore, the strip electrode 20 is formed so as to connect sides located at both ends in the y-axis direction. Each strip electrode 20 does not necessarily have to be parallel.
 引き出し電極18aは、略L字型を有しており、より詳細には、y軸方向の手前側の辺から帯状電極20と平行に延びていると共に、途中で折り曲げられてx軸方向の左側の辺まで引き出された形状を有している。同様に、引き出し電極18bは、略L字型を有しており、より詳細には、y軸方向の奥側の辺から帯状電極20と平行に延びていると共に、途中で折り曲げられてx軸方向の右側の辺まで引き出された形状を有している。引き出し電極18a,18bはそれぞれ、外部電極14a,14bに対して接続されている。 The extraction electrode 18a has a substantially L shape, and more specifically, extends in parallel with the strip electrode 20 from the near side in the y-axis direction, and is bent in the middle to be left in the x-axis direction. It has a shape drawn to the side. Similarly, the extraction electrode 18b has a substantially L shape, and more specifically, extends in parallel with the strip electrode 20 from the back side in the y-axis direction and is bent in the middle to be x-axis. It has a shape drawn to the right side in the direction. The extraction electrodes 18a and 18b are connected to the external electrodes 14a and 14b, respectively.
 複数の帯状電極22は、相対的にz軸方向の上側に配置されている磁性体層16dに形成されている。より詳細には、複数の帯状電極22は、z軸方向の上側から平面視したときに、xy平面において正の傾きを有するように傾斜すると共に、互いに平行となるように等間隔に形成されている。更に、帯状電極22は、y軸方向の両端に位置する辺を繋ぐように形成されている。なお、各帯状電極22は、必ずしも平行である必要はない。 The plurality of strip electrodes 22 are formed on the magnetic layer 16d that is relatively disposed on the upper side in the z-axis direction. More specifically, the plurality of strip electrodes 22 are formed so as to have a positive inclination in the xy plane and to be parallel to each other when viewed in plan from the upper side in the z-axis direction. Yes. Furthermore, the strip electrode 22 is formed so as to connect the sides located at both ends in the y-axis direction. Each strip electrode 22 does not necessarily have to be parallel.
 ビアホール導体b3は、帯状電極22のy軸方向の奥側の端部と接続されており、磁性体層16dをz軸方向に貫通するように形成されている。ビアホール導体b4は、帯状電極22のy軸方向の手前側の端部と接続されており、磁性体層16dをz軸方向に貫通するように形成されている。ビアホール導体b3,b4はそれぞれ、磁性体層16dのy軸方向の奥側又はy軸方向の手前側の辺に接しており、半円形状を有している。すなわち、ビアホール導体b3,b4は、通常のビアホール導体を半分に割った形状を有している。 The via-hole conductor b3 is connected to the end on the back side in the y-axis direction of the strip electrode 22 and is formed so as to penetrate the magnetic layer 16d in the z-axis direction. The via-hole conductor b4 is connected to the end on the near side in the y-axis direction of the strip electrode 22 and is formed so as to penetrate the magnetic layer 16d in the z-axis direction. The via-hole conductors b3 and b4 are in contact with the back side in the y-axis direction or the near side in the y-axis direction of the magnetic layer 16d and have a semicircular shape. That is, the via-hole conductors b3 and b4 have a shape obtained by dividing a normal via-hole conductor in half.
 ビアホール導体b1,b2は、磁性体層16e、16fのそれぞれにおいて、z軸方向から平面視したときに、ビアホール導体b3,b4と一致する位置に形成されている。また、ビアホール導体b1,b2はそれぞれ、磁性体層16e,16fのy軸方向の奥側又はy軸方向の手前側の辺に接しており、半円形状を有している。すなわち、ビアホール導体b1,b2は、通常のビアホール導体を半分に割った形状を有している。 The via-hole conductors b1 and b2 are formed at positions corresponding to the via-hole conductors b3 and b4 when viewed in plan from the z-axis direction in each of the magnetic layers 16e and 16f. The via-hole conductors b1 and b2 are in contact with the back side in the y-axis direction or the near side in the y-axis direction of the magnetic layers 16e and 16f, respectively, and have a semicircular shape. That is, the via-hole conductors b1 and b2 have a shape obtained by dividing a normal via-hole conductor in half.
 以上のように構成された磁性体層16d~16f及び非磁性体層16gがこの順に積層されることにより、図3(a)に示すように、磁性体層16d~16f及び非磁性体層16gからなる積層体24を旋廻しながらx軸方向に進行する螺旋状のコイルLが形成される。より詳細には、ビアホール導体b1,b3は、互いに接続されることにより、積層体24のy軸方向の奥側の側面においてz軸方向に延びており、かつ、帯状電極20のy軸方向の奥側の端部と帯状電極22のy軸方向の奥側の端部とを接続する接続部として機能している。同様に、ビアホール導体b2,b4は、互いに接続されることにより、積層体24のy軸方向の手前側の側面においてz軸方向に延びており、かつ、帯状電極20のy軸方向の手前側の端部と帯状電極22のy軸方向の手前側の端部とを接続する接続部として機能している。 By laminating the magnetic layers 16d to 16f and the nonmagnetic layer 16g configured as described above in this order, as shown in FIG. 3A, the magnetic layers 16d to 16f and the nonmagnetic layer 16g are formed. A spiral coil L is formed which travels in the x-axis direction while rotating the laminated body 24 made of. More specifically, the via-hole conductors b1 and b3 are connected to each other so as to extend in the z-axis direction on the side surface on the far side in the y-axis direction of the multilayer body 24 and to extend in the y-axis direction of the strip electrode 20 It functions as a connecting portion that connects the end on the back side and the end on the back side in the y-axis direction of the strip electrode 22. Similarly, the via-hole conductors b2 and b4 are connected to each other so as to extend in the z-axis direction on the side surface on the near side in the y-axis direction of the multilayer body 24 and on the near side in the y-axis direction of the strip electrode 20 And an end portion on the near side in the y-axis direction of the strip electrode 22 functions as a connection portion.
 図3(a)に示すように、積層体24のz軸方向の上側に非磁性体層16a~16cが積層されると共に、積層体24のz軸方向の下側に非磁性体層16h~16jが積層されることにより、積層体12は構成されている。更に、外部電極14a,14bは、図3(b)に示すように、積層体12のx軸方向の両端に位置する側面S1,S2のそれぞれを覆うように形成されている。ただし、図3(b)に示す状態では、ビアホール導体b1~b4(図3(b)には、ビアホール導体b1,b3を図示せず)が外部に露出しているので、ショートが生じるおそれがある。そこで、図1に示すように、積層体12のy軸方向の手前側の側面S3及び積層体12のy軸方向の奥側の側面S4は、比較的低透磁率であり、かつ、絶縁性の高いエポキシ樹脂等の絶縁性材料により覆われている。 As shown in FIG. 3A, the nonmagnetic layers 16a to 16c are stacked on the upper side of the stacked body 24 in the z-axis direction, and the nonmagnetic layers 16h to 16c are stacked on the lower side of the stacked body 24 in the z-axis direction. The stacked body 12 is configured by stacking 16j. Further, as shown in FIG. 3B, the external electrodes 14a and 14b are formed so as to cover the side surfaces S1 and S2 located at both ends in the x-axis direction of the multilayer body 12, respectively. However, in the state shown in FIG. 3B, the via-hole conductors b1 to b4 (the via-hole conductors b1 and b3 are not shown in FIG. 3B) are exposed to the outside, which may cause a short circuit. is there. Therefore, as shown in FIG. 1, the side surface S3 on the near side in the y-axis direction of the laminate 12 and the side surface S4 on the far side in the y-axis direction of the laminate 12 have relatively low magnetic permeability and insulating properties. It is covered with an insulating material such as a high epoxy resin.
(効果)
 以上のように構成された電子部品10aによれば、ビアホール導体b1~b4は、磁性体層16d~16fの側面においてz軸方向に延びるように形成されているので、電子部品10aは、コイルL'の周囲に磁性体が存在する積層コイル部品200に比べて、良好な直流重畳特性を有するようになる。以下に、図面を参照しながら説明する。図4(a)は、x軸方向からの電子部品10aの透視図であり、図4(b)は、矢印X方向からの積層コイル部品200の透視図である。
(effect)
According to the electronic component 10a configured as described above, the via-hole conductors b1 to b4 are formed so as to extend in the z-axis direction on the side surfaces of the magnetic layers 16d to 16f. Compared with the laminated coil component 200 in which a magnetic body is present around ', it has better direct current superimposition characteristics. Hereinafter, description will be given with reference to the drawings. 4A is a perspective view of the electronic component 10a from the x-axis direction, and FIG. 4B is a perspective view of the laminated coil component 200 from the arrow X direction.
 図4(b)に示すように、積層コイル部品200では、ビアホール導体208の外側にも磁性体が存在しているので、コイルL'で発生した磁束は、矢印Φ1'に示すように、ビアホール導体208の内部及び外部の両方において磁性体を通過している。そのため、コイルL'で発生した磁束には、漏れが発生しにくく、積層コイル部品200では、比較的小さな直流電流であっても、磁束密度が大きくなりすぎて、磁気飽和が発生してしまう。 As shown in FIG. 4B, in the laminated coil component 200, since the magnetic material is also present outside the via-hole conductor 208, the magnetic flux generated in the coil L ′ is a via-hole as indicated by an arrow Φ1 ′. It passes through the magnetic body both inside and outside the conductor 208. Therefore, the magnetic flux generated in the coil L ′ is less likely to leak, and the laminated coil component 200 has a magnetic flux density that is too large even if the DC current is relatively small, causing magnetic saturation.
 一方、図4(a)に示すように、電子部品10aでは、ビアホール導体b1~b4よりy軸方向の外側において磁性体が存在しない。そのため、コイルLで発生した磁束は、矢印Φ1に示すように、ビアホール導体b1~b4よりy軸方向の外側において磁性体を通過していない。そのため、コイルLで発生した磁束には、漏れが発生し易い。以上より、電子部品10aでは、積層コイル部品200に比べて、磁気飽和によるインダクタンス値の急激な低下が発生しくいので、電子部品10aは、積層コイル部品200に比べて良好な直流重畳特性を有している。 On the other hand, as shown in FIG. 4A, in the electronic component 10a, there is no magnetic body outside the via-hole conductors b1 to b4 in the y-axis direction. Therefore, the magnetic flux generated in the coil L does not pass through the magnetic body outside the via-hole conductors b1 to b4 in the y-axis direction as indicated by the arrow Φ1. Therefore, the magnetic flux generated in the coil L is likely to leak. As described above, in the electronic component 10a, since the inductance value due to magnetic saturation does not easily decrease compared to the multilayer coil component 200, the electronic component 10a has better DC superposition characteristics than the multilayer coil component 200. is doing.
 更に、電子部品10aによれば、z軸方向において、帯状電極20と帯状電極22との間に位置している層は、磁性体層16d,16e、16fである。更に、磁性体層16dよりもz軸方向の上側に積層されている層、及び、磁性体層16fよりもz軸方向の下側に積層されている層は、非磁性体層16a~16c,16g~16jである。このような構成により、積層体12において、コイルLの内部にのみ、磁性体が存在するようになる。コイルLの内部にのみ磁性体が存在するようになると、電子部品10aは、コイルL'の周囲に磁性体が存在する積層コイル部品200に比べて、更に良好な直流重畳特性を有するようになる。以下に、図面を参照しながら説明する。 Furthermore, according to the electronic component 10a, the layers located between the strip electrode 20 and the strip electrode 22 in the z-axis direction are the magnetic layers 16d, 16e, and 16f. Further, the layers stacked above the magnetic layer 16d in the z-axis direction and the layers stacked below the magnetic layer 16f in the z-axis direction are non-magnetic layers 16a to 16c, 16g to 16j. With such a configuration, the magnetic material is present only in the coil L in the laminated body 12. When the magnetic material is present only inside the coil L, the electronic component 10a has a better DC superposition characteristic than the laminated coil component 200 in which the magnetic material is present around the coil L ′. . Hereinafter, description will be given with reference to the drawings.
 図4(b)に示すように、積層コイル部品200では、コイルL'の周囲に磁性体が存在しているので、コイルL'で発生した磁束は、矢印Φ1',Φ2'に示すように、コイルL'の内部及び外部の両方において磁性体を通過している。そのため、コイルL'で発生した磁束には、漏れが発生しにくく、積層コイル部品200では、比較的小さな直流電流であっても、磁束密度が大きくなりすぎて、磁気飽和が発生してしまう。 As shown in FIG. 4B, in the laminated coil component 200, since a magnetic body exists around the coil L ′, the magnetic flux generated in the coil L ′ is as indicated by arrows Φ1 ′ and Φ2 ′. The magnetic material passes through both inside and outside of the coil L ′. Therefore, the magnetic flux generated in the coil L ′ is less likely to leak, and the laminated coil component 200 has a magnetic flux density that is too large even if the DC current is relatively small, causing magnetic saturation.
 一方、図4(a)に示すように、電子部品10aでは、コイルLの周囲には磁性体が存在しない。より詳細には、コイルLのz軸方向の上下には非磁性体層16a~16c,16g~16jが存在し、コイルLのy軸方向の左右には空気層が存在している。故に、コイルLで発生した磁束は、矢印Φ1,Φ2に示すように、コイルLの内部においてのみ磁性体を通過し、コイルLの外部では磁性体を通過していない。そのため、コイルLで発生した磁束には、漏れが発生し易く、電子部品10aでは、磁束密度が大きくなって磁気飽和が発生してしまうことが抑制される。以上より、電子部品10aでは、積層コイル部品200に比べて、磁気飽和によるインダクタンス値の急激な低下が発生しくいので、電子部品10aは、積層コイル部品200に比べて、更に、良好な直流重畳特性を有している。 On the other hand, as shown in FIG. 4A, in the electronic component 10a, there is no magnetic material around the coil L. More specifically, the non-magnetic layers 16a to 16c and 16g to 16j exist above and below the coil L in the z-axis direction, and air layers exist on the left and right of the coil L in the y-axis direction. Therefore, the magnetic flux generated in the coil L passes through the magnetic body only inside the coil L and does not pass through the magnetic body outside the coil L, as indicated by arrows Φ1 and Φ2. For this reason, the magnetic flux generated in the coil L is likely to leak, and in the electronic component 10a, the magnetic flux density increases and magnetic saturation is suppressed. As described above, in the electronic component 10 a, since the inductance value due to magnetic saturation is less likely to be suddenly reduced than in the laminated coil component 200, the electronic component 10 a is more excellent in direct current superposition than the laminated coil component 200. It has characteristics.
 電子部品10aが奏する効果をより明確にするために、本願発明者は、以下に説明する実験を行った。より詳細には、電子部品10aに相当する第1のモデル、及び、積層コイル部品200に相当する第2のモデルを作製し、これらのモデルの直流重畳特性を調べた。第1のモデル及び第2のモデルの条件は、以下のとおりである。なお、サイドギャップLとは、図4におけるビアホール導体b1,208から積層体12,202の側面までの距離である。また、上下方向外層厚みとは、帯状電極20,22,204,206から積層体12,202の上面又は下面までの距離である。 In order to clarify the effect of the electronic component 10a, the inventor of the present application conducted an experiment described below. More specifically, a first model corresponding to the electronic component 10a and a second model corresponding to the laminated coil component 200 were produced, and the DC superposition characteristics of these models were examined. The conditions of the first model and the second model are as follows. The side gap L is a distance from the via-hole conductors b1 and 208 in FIG. 4 to the side surfaces of the multilayer bodies 12 and 202. The vertical outer layer thickness is the distance from the strip electrodes 20, 22, 204, 206 to the upper surface or the lower surface of the laminate 12, 202.
第1のモデル
 サイズ:2.5mm×2.0mm×0.9mm
 サイドギャップ:0mm
 上下方向外層厚み:0.1mm
 ターン数:10
第2のモデル
 サイズ:2.5mm×2.0mm×0.9mm
 サイドギャップ:0.2mm
 上下方向外層厚み:0.2mm
 ターン数:10
First model Size: 2.5mm x 2.0mm x 0.9mm
Side gap: 0mm
Outer layer thickness in the vertical direction: 0.1 mm
Number of turns: 10
Second model Size: 2.5mm x 2.0mm x 0.9mm
Side gap: 0.2mm
Outer layer thickness in the vertical direction: 0.2 mm
Number of turns: 10
 図5は、第1のモデル及び第2のモデルの直流重畳特性を示したグラフである。縦軸は、インダクタンス値を示し、横軸は、直流電流値を示している。図5によれば、第2のモデルでは、比較的に小さな直流電流が流れただけで、インダクタンス値が急激に低下しているのに対して、第1のモデルでは、比較的に大きな電流が流れても、あまりインダクタンス値が低下していない。したがって、本実験により、電子部品10aの方が、積層コイル部品200よりも良好な直流重畳特性を有していることが理解できる。 FIG. 5 is a graph showing the DC superposition characteristics of the first model and the second model. The vertical axis represents the inductance value, and the horizontal axis represents the direct current value. According to FIG. 5, in the second model, only a relatively small DC current flows and the inductance value decreases rapidly, whereas in the first model, a relatively large current flows. Even if it flows, the inductance value does not decrease so much. Therefore, it can be understood from this experiment that the electronic component 10a has better direct current superimposition characteristics than the laminated coil component 200.
 更に、電子部品10aでは、図4(a)に示すように、ビアホール導体b1~b4は、磁性体層16d~16fの側面においてz軸方向に延びるように形成されている。一方、積層コイル部品200では、図4(b)に示すように、ビアホール導体208は、積層体202の内部において形成されている。したがって、ビアホール導体b1~b4は、ビアホール導体208に比べて、積層体12のy軸方向の外側に位置するようになる。これにより、電子部品10aのコイルLの内径が、積層コイル部品200のコイルL'の内径よりも大きくなり、電子部品10aは、積層コイル部品200よりも大きなインダクタンス値を得やすくなる。 Furthermore, in the electronic component 10a, as shown in FIG. 4A, the via-hole conductors b1 to b4 are formed to extend in the z-axis direction on the side surfaces of the magnetic layers 16d to 16f. On the other hand, in the multilayer coil component 200, as shown in FIG. 4B, the via-hole conductor 208 is formed inside the multilayer body 202. Therefore, the via-hole conductors b1 to b4 are positioned on the outer side in the y-axis direction of the multilayer body 12 as compared with the via-hole conductor 208. Thereby, the inner diameter of the coil L of the electronic component 10 a becomes larger than the inner diameter of the coil L ′ of the multilayer coil component 200, and the electronic component 10 a can easily obtain an inductance value larger than that of the multilayer coil component 200.
(電子部品の製造方法)
 以下に、電子部品10aの製造方法について図面を参照しながら説明する。図6は、電子部品10aの製造に用いられるセラミックグリーンシート116a~セラミックグリーンシート116jを示した斜視図である。セラミックグリーンシート116a~116jはそれぞれ、非磁性体層16a~16c、磁性体層16d~16f、非磁性体層16g~16jの焼成前かつ切断前の状態のシートである。
(Method for manufacturing electronic parts)
Below, the manufacturing method of the electronic component 10a is demonstrated, referring drawings. FIG. 6 is a perspective view showing the ceramic green sheets 116a to 116j used for manufacturing the electronic component 10a. The ceramic green sheets 116a to 116j are sheets before firing and cutting of the nonmagnetic layers 16a to 16c, the magnetic layers 16d to 16f, and the nonmagnetic layers 16g to 16j, respectively.
 磁性体層16d~16fとなるセラミックグリーンシート116d~116fを、以下の工程により作製する。酸化第二鉄(Fe23)、酸化亜鉛(ZnO)、酸化ニッケル(NiO)、及び、酸化銅(CuO)を所定の比率で秤量し、それぞれの材料を原材料としてボールミルに投入し、湿式調合を行う。得られた混合物を乾燥してから粉砕し、得られた粉末を750℃で1時間仮焼する。得られた仮焼粉末をボールミルにて湿式粉砕した後、乾燥してから解砕して、フェライトセラミック粉末を得る。 Ceramic green sheets 116d to 116f to be the magnetic layers 16d to 16f are produced by the following steps. Ferric oxide (Fe 2 O 3 ), zinc oxide (ZnO), nickel oxide (NiO), and copper oxide (CuO) are weighed at a predetermined ratio, and each material is put into a ball mill as a raw material. Mix. The obtained mixture is dried and then pulverized, and the obtained powder is calcined at 750 ° C. for 1 hour. The obtained calcined powder is wet pulverized by a ball mill, dried and then crushed to obtain a ferrite ceramic powder.
 このフェライトセラミック粉末に対して結合剤(酢酸ビニル、水溶性アクリル等)と可塑剤、湿潤材、分散剤を加えてボールミルで混合を行い、その後、減圧により脱泡を行う。得られたセラミックスラリーをドクターブレード法により、シート状に形成して乾燥させ、セラミックグリーンシート116d~116fを作製する。 To this ferrite ceramic powder, a binder (vinyl acetate, water-soluble acrylic, etc.), a plasticizer, a wetting material, and a dispersing agent are added and mixed with a ball mill, and then defoamed under reduced pressure. The obtained ceramic slurry is formed into a sheet by the doctor blade method and dried to produce ceramic green sheets 116d to 116f.
 次に、非磁性体層16a~16c,16g~16jとなるセラミックグリーンシート116a~116c,116g~116jを、以下の工程により作製する。酸化第二鉄(Fe23)、酸化亜鉛(ZnO)、及び、酸化銅(CuO)を所定の比率で秤量し、それぞれの材料を原材料としてボールミルに投入し、湿式調合を行う。得られた混合物を乾燥してから粉砕し、得られた粉末を750℃で1時間仮焼する。得られた仮焼粉末をボールミルにて湿式粉砕した後、乾燥してから解砕して、フェライトセラミック粉末を得る。 Next, ceramic green sheets 116a to 116c and 116g to 116j to be the nonmagnetic layers 16a to 16c and 16g to 16j are manufactured by the following steps. Ferric oxide (Fe 2 O 3 ), zinc oxide (ZnO), and copper oxide (CuO) are weighed at a predetermined ratio, and the respective materials are put into a ball mill as raw materials, and wet blending is performed. The obtained mixture is dried and then pulverized, and the obtained powder is calcined at 750 ° C. for 1 hour. The obtained calcined powder is wet pulverized by a ball mill, dried and then crushed to obtain a ferrite ceramic powder.
 このフェライトセラミック粉末に対して結合剤(酢酸ビニル、水溶性アクリル等)と可塑剤、湿潤材、分散剤を加えてボールミルで混合を行い、その後、減圧により脱泡を行う。得られたセラミックスラリーをドクターブレード法により、シート状に形成して乾燥させ、セラミックグリーンシート116a~116c,116g~116jを作製する。 To this ferrite ceramic powder, a binder (vinyl acetate, water-soluble acrylic, etc.), a plasticizer, a wetting material, and a dispersing agent are added and mixed with a ball mill, and then defoamed under reduced pressure. The obtained ceramic slurry is formed into a sheet by a doctor blade method and dried to produce ceramic green sheets 116a to 116c and 116g to 116j.
 次に、セラミックグリーンシート116e,116fのそれぞれに、ビアホール導体B1を形成する。具体的には、図6に示すように、セラミックグリーンシート116e,116fには、磁性体層16e,16fの一枚分に相当する領域E1が規定されている。該領域E1は、セラミックグリーンシート116e,116fにおいてマトリクス状に並んでいる。図6に示すように、各領域E1の境界にレーザビームを照射してビアホールを形成する。次に、このビアホールに対して、Ag,Pd,Cu,Auやこれらの合金などの導電性ペーストを印刷塗布などの方法により充填する。 Next, the via-hole conductor B1 is formed in each of the ceramic green sheets 116e and 116f. Specifically, as shown in FIG. 6, the ceramic green sheets 116e and 116f have a region E1 corresponding to one of the magnetic layers 16e and 16f. The region E1 is arranged in a matrix in the ceramic green sheets 116e and 116f. As shown in FIG. 6, a via hole is formed by irradiating the boundary of each region E1 with a laser beam. Next, the via hole is filled with a conductive paste such as Ag, Pd, Cu, Au or an alloy thereof by a method such as printing.
 次に、セラミックグリーンシート116dに、ビアホール導体B2を形成する。具体的には、図6に示すように、セラミックグリーンシート116dには、磁性体層16dの一枚分に相当する領域E2が規定されている。該領域E2は、セラミックグリーンシート116dにおいてマトリクス状に並んでいる。図6に示すように、各領域E2の境界にレーザビームを照射してビアホールを形成する。次に、このビアホールに対して、Ag,Pd,Cu,Auやこれらの合金などの導電性ペーストを印刷塗布などの方法により充填する。 Next, a via-hole conductor B2 is formed on the ceramic green sheet 116d. Specifically, as shown in FIG. 6, the ceramic green sheet 116d has a region E2 corresponding to one magnetic layer 16d. The region E2 is arranged in a matrix in the ceramic green sheet 116d. As shown in FIG. 6, a via hole is formed by irradiating the boundary of each region E2 with a laser beam. Next, the via hole is filled with a conductive paste such as Ag, Pd, Cu, Au or an alloy thereof by a method such as printing.
 次に、セラミックグリーンシート116d上に、Ag,Pd,Cu,Auやこれらの合金などを主成分とする導電性ペーストをスクリーン印刷法やフォトリソグラフィ法などの方法で塗布することにより、帯状電極22を形成する。具体的には、図6に示すように、複数の領域E2のそれぞれに、5本の帯状電極22を形成する。なお、帯状電極22を形成する工程とビアホールに対して導電性ペーストを充填する工程とは、同じ工程において行われてもよい。 Next, a conductive paste mainly composed of Ag, Pd, Cu, Au, or an alloy thereof is applied on the ceramic green sheet 116d by a method such as a screen printing method or a photolithography method, whereby the strip electrode 22 is applied. Form. Specifically, as shown in FIG. 6, five strip electrodes 22 are formed in each of the plurality of regions E2. The step of forming the strip electrode 22 and the step of filling the via hole with the conductive paste may be performed in the same step.
 次に、セラミックグリーンシート116g上に、Ag,Pd,Cu,Auやこれらの合金などを主成分とする導電性ペーストをスクリーン印刷法やフォトリソグラフィ法などの方法で塗布することにより、引き出し電極18a,18b及び帯状電極20を形成する。具体的には、図6に示すように、セラミックグリーンシート116gには、非磁性体層16gの一枚分に相当する領域E3が規定されている。該領域E3は、セラミックグリーンシート116gにおいてマトリクス状に並んでいる。図6に示すように、複数の領域E3のそれぞれに、引き出し電極18a,18b及び4本の帯状電極22を形成する。 Next, a conductive paste mainly composed of Ag, Pd, Cu, Au, or an alloy thereof is applied onto the ceramic green sheet 116g by a method such as a screen printing method or a photolithography method, whereby the extraction electrode 18a. , 18b and the strip electrode 20 are formed. Specifically, as shown in FIG. 6, a region E3 corresponding to one nonmagnetic layer 16g is defined in the ceramic green sheet 116g. The region E3 is arranged in a matrix in the ceramic green sheet 116g. As shown in FIG. 6, lead electrodes 18a and 18b and four strip electrodes 22 are formed in each of the plurality of regions E3.
 次に、図6に示すように、セラミックグリーンシート116a~116jを積層する。セラミックグリーンシート116a~116jは、z軸方向の下側のものから順に上側へと、領域E1~領域E3を一致させて一枚ずつ積層される。より詳細には、セラミックグリーンシート116jを配置する。次に、セラミックグリーンシート116j上に、セラミックグリーンシート116iの配置及び仮圧着を行う。この後、セラミックグリーンシート116h,116g,116f,116e,116d,116c,116b,116aについても同様にこの順番に積層及び仮圧着して、マザー積層体を得る。更に、マザー積層体には、静水圧プレスなどにより1.0~1.2t/cm2の圧力で本圧着が施される。 Next, as shown in FIG. 6, ceramic green sheets 116a to 116j are laminated. The ceramic green sheets 116a to 116j are stacked one by one with the regions E1 to E3 coinciding from the lower side in the z-axis direction to the upper side. More specifically, the ceramic green sheet 116j is disposed. Next, the ceramic green sheet 116i is disposed and temporarily pressed onto the ceramic green sheet 116j. Thereafter, the ceramic green sheets 116h, 116g, 116f, 116e, 116d, 116c, 116b, and 116a are similarly laminated and temporarily pressed in this order to obtain a mother laminated body. Further, the mother laminate is subjected to main pressure bonding by a hydrostatic pressure press or the like at a pressure of 1.0 to 1.2 t / cm 2 .
 次に、マザー積層体をギロチンカットにより2.5mm×2.0mmの寸法の積層体12にカットして、未焼成の積層体12を得る。この際、図6の領域E1に沿ってマザー積層体をカットする。これにより、領域E1,E2のそれぞれの境界上に位置しているビアホール導体B1,B2が半分に分割され、ビアホール導体b1~b4が形成される。この未焼成の積層体12には、脱バインダー処理及び焼成がなされる。脱バインダー処理は、例えば、低酸素雰囲気中において500℃で2時間の条件で行う。焼成は、例えば、1000℃で2時間の条件で行う。 Next, the mother laminate is cut into a laminate 12 having a size of 2.5 mm × 2.0 mm by guillotine cutting to obtain an unfired laminate 12. At this time, the mother laminate is cut along the region E1 of FIG. As a result, the via-hole conductors B1 and B2 located on the respective boundaries of the regions E1 and E2 are divided in half, and the via-hole conductors b1 to b4 are formed. The unfired laminate 12 is subjected to binder removal processing and firing. The binder removal treatment is performed, for example, in a low oxygen atmosphere at 500 ° C. for 2 hours. Firing is performed, for example, at 1000 ° C. for 2 hours.
 以上の工程により、焼成された積層体12が得られる。積層体12には、バレル加工を施して、面取りを行う。その後、積層体12の表面には、例えば、浸漬法等の方法により主成分が銀である電極ペーストを塗布及び焼き付けすることにより、外部電極14a,14bとなるべき銀電極を形成する。銀電極の乾燥は、120℃で10分間行われ、銀電極の焼き付けは、890℃で60分間行われる。更に、銀電極の表面に、Niめっき/Snめっきを施すことにより、外部電極14a,14bを形成する。これにより、作製途中の電子部品10aは、図3(b)に示す構造を有するようになる。 The fired laminated body 12 is obtained through the above steps. The laminated body 12 is chamfered by barrel processing. Thereafter, a silver electrode to be the external electrodes 14a and 14b is formed on the surface of the laminate 12 by applying and baking an electrode paste whose main component is silver by a method such as an immersion method. The silver electrode is dried at 120 ° C. for 10 minutes, and the silver electrode is baked at 890 ° C. for 60 minutes. Furthermore, the external electrodes 14a and 14b are formed by performing Ni plating / Sn plating on the surface of the silver electrode. As a result, the electronic component 10a being manufactured has a structure shown in FIG.
 最後に、ビアホール導体b1~b4上に、比較的低透磁率であり、かつ、絶縁性の高いエポキシ樹脂等の絶縁性材料を塗布する。以上の工程を経て、図1に示すような電子部品10aが完成する。 Finally, an insulating material such as an epoxy resin having a relatively low magnetic permeability and high insulation is applied on the via-hole conductors b1 to b4. Through the above steps, an electronic component 10a as shown in FIG. 1 is completed.
(その他の実施形態)
 なお、電子部品10aは、前記実施形態に示したものに限らない。故に、その要旨の範囲内において変形可能である。例えば、電子部品10aでは、引き出し電極18a,18b及び帯状電極20は、非磁性体層16gに形成されているが、磁性体層上に形成されていてもよい。すなわち、非磁性体層16gは、必ずしも非磁性体材料により作製されている必要はなく、磁性体材料により作製されていてもよい。
(Other embodiments)
The electronic component 10a is not limited to that shown in the embodiment. Therefore, it can be modified within the scope of the gist. For example, in the electronic component 10a, the extraction electrodes 18a and 18b and the strip electrode 20 are formed on the non-magnetic layer 16g, but may be formed on the magnetic layer. That is, the nonmagnetic layer 16g is not necessarily made of a nonmagnetic material and may be made of a magnetic material.
 また、電子部品10aでは、コイル軸がx軸方向と平行であり、積層方向がz軸方向と平行であるが、コイル軸と積層方向との関係はこれに限らない。例えば、コイル軸と積層方向とは平行であってもよい。以下に、図7を参照しながら、その他の実施形態に係る電子部品について説明する。図7は、電子部品10bの断面構造図である。図7において、電子部品10bの積層方向をz軸方向と定義する。電子部品10bのコイルLのコイル軸は、z軸方向と平行である。 In the electronic component 10a, the coil axis is parallel to the x-axis direction and the stacking direction is parallel to the z-axis direction, but the relationship between the coil axis and the stacking direction is not limited to this. For example, the coil axis and the stacking direction may be parallel. Below, the electronic component which concerns on other embodiment is demonstrated, referring FIG. FIG. 7 is a sectional structural view of the electronic component 10b. In FIG. 7, the stacking direction of the electronic component 10b is defined as the z-axis direction. The coil axis of the coil L of the electronic component 10b is parallel to the z-axis direction.
 電子部品10bは、積層体212、外部電極214a,214b及びコイルLを備えている。積層体212は、磁性体層218及び非磁性体層220からなる絶縁層が積層されて構成されている。また、コイルLは、z軸方向に並ぶ複数のコイル電極222が接続されることにより構成されている。 The electronic component 10b includes a laminated body 212, external electrodes 214a and 214b, and a coil L. The laminated body 212 is configured by laminating an insulating layer including a magnetic layer 218 and a nonmagnetic layer 220. The coil L is configured by connecting a plurality of coil electrodes 222 arranged in the z-axis direction.
 電子部品10bでは、電子部品10aと同様に、コイルLの内部にのみ磁性体層218が設けられており、コイルLの外部には非磁性体層220が設けられている。以上のような構成を有する電子部品10bにおいても、電子部品10aと同様に、積層コイル部品200に比べて良好な直流重畳特性を得ることができる。 In the electronic component 10b, similarly to the electronic component 10a, the magnetic layer 218 is provided only inside the coil L, and the non-magnetic layer 220 is provided outside the coil L. Also in the electronic component 10b having the above configuration, a good DC superposition characteristic can be obtained as compared with the laminated coil component 200, similarly to the electronic component 10a.
 本発明は、電子部品及びその製造方法に有用であり、特に、良好な直流重畳特性を有する点において優れている。 The present invention is useful for an electronic component and a manufacturing method thereof, and is particularly excellent in that it has a good direct current superposition characteristic.
 B1,B2,b1~b4 ビアホール導体
 L コイル
 10a,10b 電子部品
 12,24,212 積層体
 14a,14b,214a,214b 外部電極
 16a~16c,16g~16j,220 非磁性体層
 16d~16f,218 磁性体層
 18a,18b 引き出し電極
 20,22 帯状電極
 E1~E3 領域
 116a~116j セラミックグリーンシート
 222 コイル電極
B1, B2, b1 to b4 Via-hole conductor L Coil 10a, 10b Electronic component 12, 24, 212 Laminated body 14a, 14b, 214a, 214b External electrode 16a to 16c, 16g to 16j, 220 Nonmagnetic layer 16d to 16f, 218 Magnetic layer 18a, 18b Lead electrode 20, 22 Strip electrode E1-E3 region 116a-116j Ceramic green sheet 222 Coil electrode

Claims (11)

  1.  絶縁層が積層されてなる積層体と、
     前記積層体に形成されている螺旋状のコイルと、
     を備え、
     前記積層体において、前記コイルの内部にのみ、磁性体が設けられていること、
     を特徴とする電子部品。
    A laminated body in which insulating layers are laminated;
    A helical coil formed in the laminate;
    With
    In the laminated body, a magnetic body is provided only inside the coil,
    Electronic parts characterized by
  2.  前記コイルは、
      相対的に積層方向の上側に配置されている前記絶縁層に形成されている複数の第1の帯状電極と、
      相対的に積層方向の下側に配置されている前記絶縁層に形成されている複数の第2の帯状電極と、
      前記積層体において積層方向に延びるように形成され、前記第1の帯状電極と前記第2の帯状電極とを接続している複数の接続部と、
     を含んでいること、
     を特徴とする請求の範囲第1項に記載の電子部品。
    The coil is
    A plurality of first strip electrodes formed on the insulating layer, which are disposed relatively above the stacking direction;
    A plurality of second strip electrodes formed on the insulating layer relatively below the stacking direction;
    A plurality of connecting portions that are formed so as to extend in the stacking direction in the stacked body and connect the first strip electrode and the second strip electrode;
    Including
    The electronic component according to claim 1, wherein:
  3.  前記コイルのコイル軸は、積層方向に対して直交していること、
     を特徴とする請求の範囲第2項に記載の電子部品。
    The coil axis of the coil is orthogonal to the stacking direction;
    The electronic component according to claim 2, wherein:
  4.  積層方向において、前記第1の帯状電極と前記第2の帯状電極との間に位置している前記絶縁層は、磁性体により構成されており、
     前記接続部は、磁性体により構成されている前記絶縁層の側面に形成されていること、
     を特徴とする請求の範囲第2項又は請求の範囲第3項のいずれかに記載の電子部品。
    In the stacking direction, the insulating layer located between the first strip electrode and the second strip electrode is made of a magnetic material,
    The connecting portion is formed on a side surface of the insulating layer made of a magnetic material;
    The electronic component according to claim 2 or claim 3, wherein:
  5.  前記接続部は、絶縁性材料により覆われていること、
     を特徴とする請求の範囲第4項に記載の電子部品。
    The connecting portion is covered with an insulating material;
    The electronic component according to claim 4, wherein:
  6.  前記第1の帯状電極が形成されている前記絶縁層よりも積層方向の上側に積層されている前記絶縁層、及び、前記第2の帯状電極が形成されている前記絶縁層よりも積層方向の下側に積層されている前記絶縁層は、非磁性体により構成されていること、
     を特徴とする請求の範囲第2項ないし請求の範囲第5項のいずれかに記載の電子部品。
    The insulating layer stacked above the insulating layer in which the first strip electrode is formed, and the insulating layer in the stack direction more than the insulating layer in which the second strip electrode is formed The insulating layer laminated on the lower side is made of a non-magnetic material;
    The electronic component according to any one of claims 2 to 5, characterized by the above-mentioned.
  7.  前記接続部は、ビアホール導体であること、
     を特徴とする請求の範囲第1項ないし請求の範囲第6項のいずれかに記載の電子部品。
    The connecting portion is a via-hole conductor;
    The electronic component according to any one of claims 1 to 6, characterized by the above-mentioned.
  8.  絶縁層が積層されてなる積層体と、
     前記積層体に形成されている螺旋状のコイルと、
     を備え、
     前記コイルは、
      相対的に積層方向の上側に配置されている前記絶縁層に形成されている複数の第1の帯状電極と、
      相対的に積層方向の下側に配置されている前記絶縁層に形成されている複数の第2の帯状電極と、
      前記絶縁層の側面において積層方向に延びるように形成され、前記第1の帯状電極と前記第2の帯状電極とを接続している複数の接続部と、
     を含んでいること、
     を特徴とする電子部品。
    A laminated body in which insulating layers are laminated;
    A helical coil formed in the laminate;
    With
    The coil is
    A plurality of first strip electrodes formed on the insulating layer, which are disposed relatively above the stacking direction;
    A plurality of second strip electrodes formed on the insulating layer relatively below the stacking direction;
    A plurality of connecting portions that are formed on the side surfaces of the insulating layer so as to extend in the laminating direction and connect the first strip electrode and the second strip electrode;
    Including
    Electronic parts characterized by
  9.  積層方向において、前記第1の帯状電極と前記第2の帯状電極との間に位置している前記絶縁層は、磁性体により構成されていること、
     を特徴とする請求の範囲第8項に記載の電子部品。
    The insulating layer located between the first strip electrode and the second strip electrode in the stacking direction is made of a magnetic material;
    The electronic component according to claim 8, wherein:
  10.  前記接続部は、ビアホール導体であること、
     を特徴とする請求の範囲第8項又は請求の範囲第9項のいずれかに記載の電子部品。
    The connecting portion is a via-hole conductor;
    10. The electronic component according to claim 8, wherein the electronic component is any one of claims 8 and 9.
  11.  複数の第1の帯状電極と、複数の第2の帯状電極とが複数のビアホール導体により接続されることにより、積層体において螺旋状のコイルを構成している電子部品の製造方法において、
     第1の絶縁シート上に規定され、かつ、マトリクス状に並んでいる複数の第1の領域のそれぞれに、前記複数の第1の帯状電極を形成する工程と、
     第2の絶縁シート上に規定され、かつ、マトリクス状に並んでいる複数の第2の領域のそれぞれに、前記複数の第2の帯状電極を形成する工程と、
     第3の絶縁シート上に規定され、かつ、マトリクス状に並んでいる複数の第3の領域の境界に、前記複数のビアホール導体を形成する工程と、
     前記第1の領域ないし前記第3の領域を一致させて、前記第1の絶縁シートないし前記第3の絶縁シートを積層して、マザー積層体を得る工程と、
     前記複数の第2の領域の境界に沿って、前記マザー積層体を切断して積層体を得る工程と、
     を備えること、
     を特徴とする電子部品の製造方法。
    In the method of manufacturing an electronic component that forms a spiral coil in a laminate by connecting a plurality of first strip electrodes and a plurality of second strip electrodes by a plurality of via-hole conductors,
    Forming the plurality of first band-shaped electrodes in each of the plurality of first regions defined on the first insulating sheet and arranged in a matrix;
    Forming the plurality of second strip electrodes in each of a plurality of second regions defined on the second insulating sheet and arranged in a matrix;
    Forming the plurality of via-hole conductors at boundaries of a plurality of third regions that are defined on the third insulating sheet and arranged in a matrix;
    Stacking the first insulating sheet or the third insulating sheet so as to match the first region to the third region, and obtaining a mother laminate;
    Cutting the mother laminate along the boundaries of the plurality of second regions to obtain a laminate;
    Providing
    A method of manufacturing an electronic component characterized by the above.
PCT/JP2009/057383 2008-06-06 2009-04-10 Electronic part and method for manufacturing the same WO2009147899A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-149617 2008-06-06
JP2008149617 2008-06-06

Publications (1)

Publication Number Publication Date
WO2009147899A1 true WO2009147899A1 (en) 2009-12-10

Family

ID=41397977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/057383 WO2009147899A1 (en) 2008-06-06 2009-04-10 Electronic part and method for manufacturing the same

Country Status (1)

Country Link
WO (1) WO2009147899A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012124561A1 (en) * 2011-03-16 2012-09-20 株式会社 村田製作所 Electronic part

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1197245A (en) * 1997-09-19 1999-04-09 Tokin Corp Multilayer inductance element
JP2003059722A (en) * 2001-08-10 2003-02-28 Murata Mfg Co Ltd Laminated inductor and its manufacturing method
JP2004193512A (en) * 2002-12-13 2004-07-08 Murata Mfg Co Ltd Laminated chip inductor
JP2004311830A (en) * 2003-04-09 2004-11-04 Mitsubishi Materials Corp Stacked common mode choke coil and its manufacturing method
JP2005167098A (en) * 2003-12-04 2005-06-23 Murata Mfg Co Ltd Laminated ceramic electronic component

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1197245A (en) * 1997-09-19 1999-04-09 Tokin Corp Multilayer inductance element
JP2003059722A (en) * 2001-08-10 2003-02-28 Murata Mfg Co Ltd Laminated inductor and its manufacturing method
JP2004193512A (en) * 2002-12-13 2004-07-08 Murata Mfg Co Ltd Laminated chip inductor
JP2004311830A (en) * 2003-04-09 2004-11-04 Mitsubishi Materials Corp Stacked common mode choke coil and its manufacturing method
JP2005167098A (en) * 2003-12-04 2005-06-23 Murata Mfg Co Ltd Laminated ceramic electronic component

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012124561A1 (en) * 2011-03-16 2012-09-20 株式会社 村田製作所 Electronic part

Similar Documents

Publication Publication Date Title
JP5533673B2 (en) Electronic components
JP4530043B2 (en) Multilayer coil component and manufacturing method thereof
JP5900373B2 (en) Electronic components
KR101156987B1 (en) Electronic component
US9373435B2 (en) Electronic component and method for manufacturing the same
JP5029761B2 (en) Multilayer inductor
JP4780232B2 (en) Multilayer electronic components
JP5181694B2 (en) Electronic components
WO2010084794A1 (en) Electronic component and method for manufacturing same
JP5327231B2 (en) Electronic components
WO2009130935A1 (en) Electronic part
US8143989B2 (en) Multilayer inductor
JP5262813B2 (en) Electronic component and manufacturing method thereof
WO2010010799A1 (en) Electronic component and method for manufacturing same
JP2014078650A (en) Electronic component and manufacturing method of the same
WO2010109936A1 (en) Electronic part and manufacturing method therefor
JP2009176829A (en) Electronic component
WO2009147899A1 (en) Electronic part and method for manufacturing the same
JP5957895B2 (en) Manufacturing method of electronic parts
JP5402077B2 (en) Electronic components
JP2009170446A (en) Electronic component and method of manufacturing the same
WO2010061679A1 (en) Electronic part
JP2010034175A (en) Electronic component and method for manufacturing the same
JP2011091221A (en) Electronic component
JP2010067758A (en) Electronic part

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09758166

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09758166

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP