WO2010064503A1 - 混合カートリッジおよび検体検査装置 - Google Patents

混合カートリッジおよび検体検査装置 Download PDF

Info

Publication number
WO2010064503A1
WO2010064503A1 PCT/JP2009/068194 JP2009068194W WO2010064503A1 WO 2010064503 A1 WO2010064503 A1 WO 2010064503A1 JP 2009068194 W JP2009068194 W JP 2009068194W WO 2010064503 A1 WO2010064503 A1 WO 2010064503A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
flow path
sample
mixed solution
reagent
Prior art date
Application number
PCT/JP2009/068194
Other languages
English (en)
French (fr)
Inventor
浩久 宮本
健 金原
善昭 中村
Original Assignee
株式会社東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝 filed Critical 株式会社東芝
Publication of WO2010064503A1 publication Critical patent/WO2010064503A1/ja
Priority to US13/150,658 priority Critical patent/US20110274585A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1095Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices for supplying the samples to flow-through analysers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • B01F35/712Feed mechanisms for feeding fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • B01F35/714Feed mechanisms for feeding predetermined amounts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • B01F35/717Feed mechanisms characterised by the means for feeding the components to the mixer
    • B01F35/7172Feed mechanisms characterised by the means for feeding the components to the mixer using capillary forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • B01F35/717Feed mechanisms characterised by the means for feeding the components to the mixer
    • B01F35/7176Feed mechanisms characterised by the means for feeding the components to the mixer using pumps
    • B01F35/717613Piston pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/80Forming a predetermined ratio of the substances to be mixed
    • B01F35/83Forming a predetermined ratio of the substances to be mixed by controlling the ratio of two or more flows, e.g. using flow sensing or flow controlling devices
    • B01F35/831Forming a predetermined ratio of the substances to be mixed by controlling the ratio of two or more flows, e.g. using flow sensing or flow controlling devices using one or more pump or other dispensing mechanisms for feeding the flows in predetermined proportion, e.g. one of the pumps being driven by one of the flows
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0093Microreactors, e.g. miniaturised or microfabricated reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502715Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/30Micromixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00851Additional features
    • B01J2219/00858Aspects relating to the size of the reactor
    • B01J2219/0086Dimensions of the flow channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00851Additional features
    • B01J2219/00871Modular assembly
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00889Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00891Feeding or evacuation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/02Adapting objects or devices to another
    • B01L2200/028Modular arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0867Multiple inlets and one sample wells, e.g. mixing, dilution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0874Three dimensional network
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/16Surface properties and coatings
    • B01L2300/161Control and use of surface tension forces, e.g. hydrophobic, hydrophilic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0475Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
    • B01L2400/0478Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure pistons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00029Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor provided with flat sample substrates, e.g. slides
    • G01N2035/00099Characterised by type of test elements
    • G01N2035/00158Elements containing microarrays, i.e. "biochip"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N2035/1027General features of the devices
    • G01N2035/1034Transferring microquantities of liquid

Definitions

  • the present invention relates to a mixing cartridge that mixes a sample and a reaction reagent, and a sample testing apparatus that optically tests a sample using a mixed solution mixed by the mixing cartridge.
  • sample testing apparatus for measuring various biological substances such as ions, gas components and biochemical components contained in a sample using biological fluid such as blood and urine as a sample.
  • Conventional specimen testing apparatuses which are installed in blood centers such as large hospitals, are relatively large and capable of measuring up to several hundred items.
  • Patent Document 1 when two reagents are mixed by a Y-shaped channel, even if each reagent is fed simultaneously, the mixing ratio is not stable at the beginning of the mixed solution. It is described that it is desirable to send the mixed solution to the next step after the ratio is stabilized.
  • Patent Document 1 does not describe a specific method for discarding the leading portion of the liquid mixture (portion where the mixing ratio is not stable), and high-accuracy testing cannot be performed with a very small amount of sample. There is a problem.
  • the present invention has been made in view of the above, and an object of the present invention is to provide a mixing cartridge and a sample testing apparatus capable of performing high-precision testing with a very small amount of sample and reaction reagent.
  • the present invention is a mixing cartridge that mixes a first solution containing a specimen and a second solution corresponding to a measurement item that is an item to be examined of the specimen.
  • a member that forms a channel through which a solution containing at least one of the first solution and the second solution flows, a first liquid feeding section that supplies the first solution to the channel, and the second A second liquid feeding section that supplies the solution to the flow path; and a separation section that communicates with the flow path and separates a part of the solution from the solution flowing through the flow path by capillary action. It is characterized by.
  • the present invention also provides a sample testing apparatus for testing the sample using a mixed solution in which a first solution containing a sample and a second solution corresponding to a measurement item that is an item to be tested of the sample are mixed.
  • a member that forms a channel through which a solution containing at least one of the first solution and the second solution flows, a first liquid feeding section that supplies the first solution to the channel, and the measurement item
  • a selection unit that selects the second solution, a second liquid feeding unit that supplies the second solution to the flow path, and a part of the solution from the solution that communicates with the flow path and flows through the flow path by capillary action.
  • a separation unit that separates the sample, and a test unit that inspects the specimen by irradiating light to the mixed solution from which a part of the solution in the flow path is separated.
  • the present invention also provides a sample for testing the sample using a first mixed solution in which a first solution containing the sample and a second solution corresponding to a first measurement item that is an item to be tested for the sample are mixed.
  • An inspection apparatus a member forming a flow path through which a solution containing at least one of the first solution and the second solution flows, and a first liquid feeding section that supplies the first solution to the flow path
  • a selection unit that selects the first measurement item, a second liquid feeding unit that supplies the second solution to the flow path, and a position where the first solution and the second solution merge in the flow path.
  • a small amount of sample and reaction reagent can be accurately obtained by separating a part of an appropriate amount of solution from the solution flowing through the flow path by capillary action corresponding to the measurement item to be examined of the sample.
  • the effect is that high inspection is possible.
  • FIG. 1 is a block diagram schematically showing a configuration of a sample testing apparatus 500 according to a first embodiment.
  • FIG. 2 is a schematic diagram illustrating a configuration of a mixing cartridge 200 according to the first embodiment. It is a figure showing an example of the operation performance of a syringe pump. It is a figure showing an example of the operation performance of a syringe pump. It is explanatory drawing of the state just before a sample and a 1st reagent are mixed.
  • FIG. 3 is an explanatory diagram showing a state where the indefinite mixed solution ⁇ has started to flow through the fine channel 1.
  • FIG. 3 is an explanatory diagram of a state in which a mixed solution ⁇ with a stable mixing ratio is circulating in the fine channel 1.
  • 3 is a block diagram illustrating a functional configuration of a control unit 400.
  • FIG. 5 is a schematic diagram illustrating a configuration of a mixing cartridge 201 according to a second embodiment. It is explanatory drawing which shows the detail of the 1st fine disposal flow path.
  • FIG. 6 is a schematic diagram illustrating a configuration of a mixing cartridge 202 according to a third embodiment.
  • the amount of the unstable and uncertain mixed solution part before obtaining a stable mixed solution varies depending on the measurement item or the mixing ratio of the solution.
  • the mixed solution portion will also be different. Therefore, in the following embodiments, an appropriate amount of an uncertain mixed solution part (a part of the mixed solution) can be separated from the mixed solution in accordance with the measurement item.
  • FIG. 1 is a block diagram schematically showing the configuration of the sample testing apparatus 500 according to the first embodiment.
  • the sample inspection apparatus 500 includes a mixing cartridge 200 that mixes the sample and the reaction reagent, an optical inspection unit 300 that optically inspects the mixed solution mixed by the mixing cartridge 200, and operations of the mixing cartridge 200 and the optical inspection unit 300. And a control unit 400 for controlling the above.
  • a usage pattern in which the mixing cartridge 200 is disposable for each sample to be tested can be considered. This is to prevent the safety and health from being hindered by the leakage of the specimen or the like from the waste portion corresponding to the medical waste.
  • FIG. 2 is a schematic diagram illustrating the configuration of the mixing cartridge 200 according to the first embodiment.
  • the mixing cartridge 200 is partially provided with a first photometric cell 11 and a second photometric cell 21 for performing an optical inspection, and a micro flow channel 1 is formed therein.
  • a first reagent tank 4, a specimen tank 5, an oil tank 7, a second reagent tank 24, a first fine waste flow path 6, and a second fine waste flow path 16 communicate with the fine flow path 1. is doing.
  • Each tank communicates with the fine flow path 1 through a fine flow path 1a, a fine flow path 1b, a fine flow path 1c, and a fine flow path 1e, which are part of the fine flow path 1.
  • the fine flow path 1, the first fine waste flow path 6, and the second fine waste flow path 16 are formed in the mixing cartridge 200.
  • the mixing cartridge 200 the first reagent sent from the first reagent tank 4 and the sample sent from the sample tank 5 are mixed, and the mixed solution flows toward the first photometric cell 11. To go. Then, in the first photometric cell 11, the specimen is inspected with a mixed solution of the first reagent and the specimen. Thereafter, the second reagent is further mixed with the mixed solution of the first reagent and the specimen, and the mixed solution is circulated toward the second photometric cell 21. Then, in the second photometric cell 21, the specimen is inspected with a mixed solution of the first reagent, the specimen, and the second reagent.
  • the side outlet is wide.
  • a first reagent pump 14 is disposed in the first reagent tank 4, a sample pump 15 is disposed in the sample tank 5, an oil pump 17 is disposed in the oil tank 7, and a second reagent pump 34 is disposed in the second reagent tank 24.
  • the first reagent pump 14, the specimen pump 15, the oil pump 17, and the second reagent pump 34 are syringe-type pumps that send out liquid by pushing out the solution stored in the corresponding tank, and are fine channels. 1 is supplied.
  • the fine flow path 1 b communicating with the first reagent tank 4, the fine flow path 1 a communicating with the sample tank 5, and the fine flow path 1 c communicating with the oil tank 7 are the junction point that is the same point of the fine flow path 1.
  • the first reagent, the specimen, and the oil are joined to the fine channel 1 at the joining point 41.
  • the micro flow path 1 which is a downstream position of the solution flow from the first reagent, the specimen and the oil joining point 41 and which is an upstream position of the solution flow from the arrangement position of the first magnet 19 which will be described later.
  • the first fine waste flow path 6 is branched and communicated in the vicinity of an intermediate position between the point 41 and the arrangement position of the first magnet 19.
  • the first fine disposal channel 6 is formed to have a diameter smaller than the diameter of the fine channel 1, and the mixed solution is formed from a mixed solution obtained by mixing the specimen flowing through the fine channel 1 and the first reagent. A part of the mixed solution is separated from the mixed solution by sucking a part into the first fine disposal channel 6 by capillary action.
  • the solution is stirred.
  • the 1st magnet 19 which is a stirring member which performs is arranged.
  • a first agitation control unit 18 is disposed around the first magnet 19 outside the fine channel 1.
  • the first agitation control unit 18 is composed of a pair of electromagnets, and alternately turns on / off the current flowing through the electromagnets to vibrate the first magnets 19 in the fine flow path 1 so that the specimen, the first reagent, Stir the mixed solution.
  • a magnet (first magnet 19) is disposed as a stirring member to stir the solution.
  • the present invention is not limited to this, and other members may be used as long as they are ferromagnetic materials. It may be arranged. The same applies to the second magnet 29 described later.
  • the first photometric cell 11 that performs optical inspection by irradiating light is provided downstream of the first magnet 19.
  • the first photometric cell 11 is preferably made of a material having a high light transmittance so as not to cause an inspection error.
  • the mixed solution that has reached the first photometric cell 11 is inspected by an optical inspection unit 300 (see FIG. 1) incorporated in the sample inspection apparatus.
  • a second reagent tank 24 is provided downstream from the first photometric cell 11 so as to merge with the fine channel 1, and the second reagent tank 24 and the fine channel 1 are connected in the same manner as in the case of the first reagent.
  • the second fine disposal is located in the vicinity of the intermediate position between the confluence point 42 and the second magnet 29 in the fine channel 1 that is downstream of the confluence point 42 and upstream of the arrangement position of the second magnet 29 described later.
  • the flow path 16 is branched and communicated.
  • a second magnet 29 for mixing the solution is disposed in the microchannel 1 downstream of the branch point 52 between the second microdisposal channel 16 and the microchannel 1.
  • a second agitation control unit 28 that operates the second magnet 29 by a mechanism similar to that of the first agitation control unit 18 is disposed around the second magnet 29 outside the fine channel 1.
  • a second photometric cell 21 that performs optical inspection by irradiating light is provided downstream of the second magnet 29.
  • the second photometric cell 21 is preferably made of a material having a high light transmittance so as not to cause an inspection error like the first photometric cell 11.
  • the mixed solution that has reached the second photometric cell 21 is inspected by an optical inspection unit 300 (see FIG. 1) incorporated in the sample inspection apparatus.
  • the mixing cartridge 200 of the present embodiment refers to the one configured from all the elements shown in FIG. 2 except the stirring control units 18 and 28.
  • the mixing cartridge 200 of the present embodiment includes a fine flow path 1 (including fine flow paths 1a, 1b, 1c, and 1e), a first photometric cell 11, a second photometric cell 21, and a first reagent tank. 4, a specimen tank 5, an oil tank 7, a second reagent tank 24, a first fine disposal channel 6, and a second fine disposal channel 16.
  • each tank (first reagent tank 4, specimen tank 5, oil tank 7, and second tank) filled with specimens, reagents, and oil, which are constituent elements of the mixing cartridge 200, is used.
  • the reagent tank 24 does not necessarily have to be integrated with the mixing cartridge 200. In actual use, these tanks and other components other than the tank are combined to function as a mixing cartridge. Also good.
  • a specimen which is a biological fluid such as blood or urine
  • the specimen tank 5 selectively holds a first reagent (reaction reagent) corresponding to a measurement item which is an item to be examined for the specimen
  • the first reagent pump 14 supplies the first reagent tank 14 to the fine channel 1.
  • the liquid is sent. Since two reaction reagents may be required depending on the measurement item, a second reagent different from the first reagent is held in the second reagent tank 24 and is stored in the microchannel 1 by the second reagent pump 34.
  • Can be fed to The first reagent and the specimen are fed so as to be simultaneously supplied at the joining point 41 in the microchannel 1, and when the first reagent and the specimen join at the joining point 41, a mixed solution thereof is obtained.
  • the drive operation of pumps such as the specimen pump 15 and the first reagent pump 14 has a time difference from the receipt of the operation signal to the steady operation that gives a predetermined flow rate.
  • the time difference varies depending on a predetermined flow rate to be given by the pump.
  • FIG. 3A is a graph showing an example of the operation performance of the pump when the rated flow rate of the syringe pump is 10 ⁇ L / min.
  • FIG. 3-2 is a graph showing an example of the operation performance of the pump when the rated flow rate of the syringe pump is 100 ⁇ L / min.
  • the horizontal axis represents the elapsed time since the pump received the drive electric signal, and the vertical axis represents the flow rate given to the fluid by the pump.
  • the rated flow rates of the sample pump 15 and the first reagent pump 14 are determined so as to satisfy a predetermined mixing ratio.
  • the time at which the pump tries to give a certain rated flow and reaches steady operation and the amount of solution delivered up to that time has a specific value depending on the pump. Therefore, in the method of mixing the sample and the reaction reagent at a constant ratio by continuous liquid feeding using the fine flow path 1 as in the present embodiment, both the sample pump 15 and the first reagent pump 14 reach a steady operation.
  • the previously mixed solution portion and the solution portion mixed before the second reagent pump 34 reaches a steady operation have an uncertain mixing ratio and cannot be used for measurement, and therefore must be separated from the fine channel 1. .
  • an uncertain mixed solution (hereinafter referred to as an “indeterminate mixed solution”) until the mixing ratio is stabilized due to the driving operation characteristics of the sample pump 15, the first reagent pump 14, and the second reagent pump 34. Depends on the measurement item.
  • FIGS. 4-1, 4-2, and 4-3 are explanatory diagrams when the uncertain mixed solution flows through the fine channel 1.
  • FIG. 4A is an explanatory diagram of a state immediately before the sample and the first reagent are mixed.
  • FIG. 4B is an explanatory diagram of a state in which the specimen and the first reagent are mixed and the indefinite mixed solution ⁇ starts to flow through the microchannel 1.
  • 4C is an explanatory diagram of a state in which the sample and the first reagent are mixed and the mixed solution ⁇ having a stable mixing ratio after the indeterminate mixed solution ⁇ circulates in the microchannel 1.
  • the specimen sent from the specimen tank 5 in the A direction is supplied to the fine flow path 1a, and the fine flow path 1b is fed from the first reagent tank 4 in the B direction.
  • a first reagent is supplied.
  • the specimen and the first reagent merge at the merge point 41.
  • oil is fed from the oil tank 7 in the direction C after the sample and the first reagent are mixed into the fine channel 1c.
  • the mixed solution ⁇ having a desired mixing ratio flows through the fine channel 1 after the uncertain mixed solution ⁇ . That is, when the mixed solution ⁇ of the specimen and the first reagent flows to the first photometric cell 11 with the uncertain mixed solution ⁇ on the leading side in the traveling direction of the mixed solution ⁇ , the uncertain mixed solution ⁇ is also subject to inspection. End up.
  • the indeterminate mixed solution sent before both the specimen pump 15 and the first reagent pump 14 reach steady operation cannot be used for measurement because the mixing ratio is not stable. Therefore, it is necessary to separate the uncertain mixed solution from the fine channel 1.
  • the mixing cartridge 200 of the present embodiment introduces this uncertain mixed solution into the first fine disposal flow path 6 and separates it from the fine flow path 1. That is, in the mixing cartridge 200, when the uncertain mixed solution reaches the branching point 51 between the fine flow path 1 and the first fine waste flow path 6, the uncertain mixed solution is introduced into the first fine waste flow path 6 by capillary action. Sucked up.
  • FIGS. 5-1, 5-2, and 5-3 are explanatory diagrams when the uncertain mixed solution is absorbed into the first fine disposal channel 6.
  • FIG. 5A is an explanatory diagram of a state in which the sample and the first reagent are mixed, and the indefinite mixed solution ⁇ circulates in the microchannel 1 and reaches the branch point 51.
  • FIG. 5B is an explanatory diagram of a state in which the indeterminate mixed solution ⁇ is absorbed by the first fine disposal channel 6.
  • 5-3 is an explanatory diagram of a state in which the mixed solution ⁇ having a stable mixing ratio flows through the fine channel 1 after the uncertain mixed solution ⁇ is absorbed by the first fine disposal channel 6. .
  • the uncertain mixed solution ⁇ having an uncertain mixing ratio flows through the fine channel 1 and reaches the branch point 51.
  • the uncertain mixed solution ⁇ is finely flowed by being sucked into the first fine waste flow path 6.
  • the mixed solution ⁇ branched (separated) from the path 1 and mixed at a desired mixing ratio flows after the uncertain mixed solution ⁇ .
  • the first fine disposal channel 6 needs to be designed in advance to have a capacity capable of sufficiently sucking the indefinite mixed solution.
  • the capacity of the first fine disposal channel 6 can be designed according to the mixing ratio of the reaction reagent.
  • the design value of the fine disposal channel is not particularly limited, and the structure and size are not particularly limited as long as the uncertain mixed solution can be sucked up by capillary action. Further, in order to utilize the capillary phenomenon more positively, a treatment such as a hydrophilic treatment may be performed in the fine disposal channel.
  • the uncertain mixed solution having an uncertain mixing ratio is introduced into the first fine waste flow path 6, so that it can be branched or separated from the fine flow path 1.
  • the mixed solution of the specimen and the first reagent from which the uncertain mixed solution is removed is transported to the first magnet 19 in the fine channel 1.
  • the first magnet 19 performs a slight motion by the first stirring control unit 18 to stir the specimen and the first reagent and promote the reaction.
  • the sample pump 15 and the first reagent pump 14 stop the liquid feeding when the driving operation is performed for a predetermined time. Thereafter, the oil in the oil tank 7 (not particularly limited as long as it is a solution that is not mixed with water) is fed into the fine channel 1 by the oil pump 17, thereby conveying the mixed solution.
  • the first photometric cell 11 provided in the fine flow path 1 is conveyed by oil feeding by driving the oil pump 17 until the mixed solution fills.
  • the oil pump 17 is again driven to convey the mixed solution.
  • the second reagent pump 34 starts feeding the second reagent.
  • a mixed solution indeterminate mixed solution in which the mixing ratio of the mixed solution obtained by mixing the sample and the first reagent and the second reagent is uncertain is output from the microchannel 1.
  • the mixed solution is stirred by the second magnet 29 and the second stirring control unit 28 to promote mixing.
  • the optical inspection unit 300 is again inspected by an optical technique.
  • the syringe pump used the pump which performs liquid feeding, if it is a pump which can send a solution with a plunger system, a piezoelectric system, and others, it will not specifically limit.
  • sample tank 5 the first fine disposal flow path 6, the second fine disposal flow path 16, the first magnet 19, the second magnet 29, and the part that contacts the specimen such as the mixing cartridge 200 that forms the fine flow path 1.
  • a form of replacement for each specimen is conceivable.
  • the reagent tanks 4 and 24 and the oil tank 7 may also be replaced for each sample.
  • the first magnet 19, the second magnet 29, the first stirring control unit 18, and the second stirring control unit 28 are used for stirring for mixing the mixed solution. Good. Moreover, although the mixed solution was conveyed with the oil pump 17, the effect of this Embodiment can be acquired even if it uses another method.
  • the first magnet 19 that stirs the solution is arranged on the downstream side of the branch point 51 of the first fine disposal flow path 6, but the first magnet 19 is disposed in the first fine disposal flow path 6. It does not matter whether it is arranged downstream or upstream of the branch point 51. However, when a solution with an uncertain mixing ratio reaches a certain portion of the first magnet 19 that performs stirring, a slight error occurs in the mixing ratio of the mixed solution used for the inspection, leading to a decrease in inspection accuracy. It is desirable to have a configuration in which a branch point 51 with the first fine disposal channel 6 is located upstream of the first fine disposal channel 6. The same applies to the configuration when mixing the second reagent.
  • FIG. 6 is a block diagram illustrating a functional configuration of the control unit 400.
  • symbol is attached
  • the control unit 400 includes a measurement item selection unit 100, a measurement item database (hereinafter referred to as “DB”) 2 that is a storage unit, and an operation control unit 3.
  • DB measurement item database
  • the measurement item selection unit 100 functions as a selection unit.
  • the measurement item selection unit 100 receives which item of the sample is to be examined from, for example, a keyboard and outputs the signal to the operation control unit 3.
  • the measurement item DB 2 includes the first reagent pump 14, the sample pump 15, and the second flow rate that are specified so that the sample, the first reagent, and the second reagent are mixed at a mixing ratio corresponding to the measurement item, and liquid feeding. It is a recording medium such as a memory in which the driving time of the reagent pump 34 is stored.
  • the operation control unit 3 calls various parameters stored in the measurement item DB 2 and controls the operation time and timing of the liquid feeding pump and the stirring control unit according to the parameters.
  • the signal is output to the operation control unit 3.
  • the operation control unit 3 transmits an operation signal so that the first reagent pump 14 and the sample pump 15 perform the liquid feeding operation to the fine channel 1 for the rated flow rate and time corresponding to the input measurement item.
  • the first reagent pump 14 and the sample pump 15 start the liquid feeding operation so that the sample and the first reagent merge at the merge point 41 at the same time, and perform control so that the rated flow rate is obtained.
  • the first reagent and the specimen are mixed at the confluence point 41 in the fine channel 1 to become a mixed solution.
  • the mixing ratio of the mixed solution sent before the driving operation of both the first reagent pump 14 and the specimen pump 15 becomes constant is indefinite, It is necessary to separate from the channel 1. Further, the amount of the indeterminate mixed solution until the mixing ratio is stabilized depends on the measurement item. Therefore, it is necessary to design the first fine disposal channel 6 corresponding to the measurement item. By introducing an indeterminate mixed solution having a waste volume corresponding to the measurement item into the first fine waste channel 6, the uncertain mixed solution can be efficiently separated from the fine channel 1.
  • the operation control unit 3 drives the first agitation control unit 18 at a timing when the solution having a constant mixing ratio reaches the first magnet 19 part that performs agitation, and the specimen and the first reagent are vibrated by the vibration of the first magnet 19. And promote agitation.
  • the operation control unit 3 controls the first reagent pump 14 and the sample pump 15 to stop the liquid supply operation when a sufficient amount of the sample and the first reagent necessary for the subsequent examination are supplied.
  • the operation control unit 3 sends a drive operation signal to the oil pump 17 for conveyance.
  • the mixed solution of the first reagent and the sample is conveyed by oil until the first photometric cell 11 is filled.
  • the first agitation control unit 18 continues the agitation by the vibration operation of the first magnet 19 until the leading end of the conveying oil reaches a position where the first magnet 19 is located. When reaching a certain position, the first magnet 19 is controlled to stop the vibration. By performing the stirring operation corresponding to the measurement item, it is possible to prevent the oil and the mixed solution from being unnecessarily mixed.
  • the oil pump 17 stops the conveyance by the oil, and the optical inspection unit 300 performs an optical inspection.
  • the oil pump 17 starts to send oil to the fine flow path 1 again.
  • the mixed solution of the first reagent and the specimen is transported, and the operation control unit 3 operates so that the second reagent pump 34 performs the liquid feeding operation to the fine channel 1 for the rated flow rate and time corresponding to the input measurement item. Send a signal.
  • the second reagent pump 34 starts the liquid feeding operation so that the mixed solution of the first reagent and the sample and the second reagent are simultaneously merged at the merge point 42, and controls the flow rate to become the rated flow rate.
  • the mixed solution of the first reagent and the specimen and the second reagent are mixed at the joining point 42 in the microchannel 1 to become a mixed solution.
  • the oil pump 17 has reached a steady operation that gives a rated flow rate when the second reagent pump 34 starts the liquid feeding operation.
  • the second reagent pump 34 generates a time difference corresponding to the rated flow rate from the time when the operation start signal is received until the steady operation in which the rated flow rate is given. Therefore, the mixing ratio of the mixed solution of the first reagent, the sample, and the second reagent sent until the second reagent pump 34 reaches the steady operation is indeterminate.
  • the oil pump 17 and the second reagent pump 34 continue the liquid feeding operation.
  • the second reagent pump 34 stops feeding and the oil pump 17 continues the driving operation.
  • the oil pump 17 stops driving and the optical inspection unit 300 performs an optical inspection.
  • the photometry is finished, the examination by the sample examination apparatus 500 according to the present embodiment is finished.
  • the pump operation timings for all measurement items are all stored in the measurement item DB 2 in the apparatus, and the mechanism for driving various pumps according to the operation timings has been described.
  • the mixing cartridge 200 in the sample testing apparatus 500 by providing the first fine waste flow path 6 and the second fine waste flow path 16, an amount corresponding to the measurement item can be obtained.
  • the indeterminate mixed solution can be efficiently separated from the mixed solution flowing through the fine channel 1, and a highly accurate specimen can be inspected with a smaller amount of specimen and reaction reagent.
  • the fine disposal flow path communicating with the fine flow path is configured to separate the indefinite mixed solution flowing through the fine flow path.
  • the mixing cartridge of the second embodiment below separates an indeterminate mixed solution flowing through a fine channel by filling a fine waste channel communicating with the fine channel with a wick material that absorbs liquid. .
  • FIG. 7 is a schematic diagram illustrating a configuration of the mixing cartridge 201 according to the second embodiment.
  • the mixing cartridge 201 shown in FIG. 7 instead of the first fine waste flow path 6 and the second fine waste flow path 16 in the mixing cartridge 200 of the first embodiment, the first fine waste flow path 26 and the second fine waste flow Since the path 36 is arranged and the other configuration is the same as that of the first embodiment, the description thereof is omitted.
  • the first fine disposal channel 26 is branched and communicated to a downstream position from the junction 41 of the first reagent, the sample, and the oil in the fine channel 1.
  • FIG. 8 is an explanatory diagram showing details of the first fine disposal channel 26. As shown in FIG. 8, the first fine disposal channel 26 is formed to have a diameter smaller than the diameter of the microchannel 1, and further, a wick such as a nonwoven fabric is formed inside the first fine disposal channel 26. The wick material 261 having performance is filled, and one end of the wick material 261 is installed so as to be in contact with the fine flow path 1.
  • the fine flow path 1 is circulated.
  • the uncertain mixed solution (a part of the mixed solution) is absorbed by the wick material 261 by capillary action from the mixed solution, so that the uncertain mixed solution is separated from the mixed solution as in the first embodiment.
  • the first fine disposal channel 26 and the wick material 261 need to be designed in advance so that the uncertain mixed solution can be sufficiently sucked up, but as illustrated in FIGS.
  • the first fine disposal channel 26 and the wick material 261 can be designed according to the operation performance of the pump and the mixing ratio of the reaction reagents.
  • the wick material 261 need not be particularly limited except that it has wick performance.
  • the second fine disposal channel 36 has the same configuration and is filled with a wick material 361.
  • the operation of the specimen testing apparatus 500 including the mixing cartridge 201 of the present embodiment is the same as that of the first embodiment.
  • the first fine waste flow channel 26 and the second fine waste flow channel 36 in the present embodiment are formed to have a diameter smaller than the diameter of the fine flow channel 1, but FIG. In FIG. 1, the scales of the first and second fine waste flow paths 26 and 36 and the fine path 1 are shown differently from the actual scale.
  • the first fine disposal flow path 26 filled with the wick material 261 and the second fine disposal flow path 36 filled with the wick material 361 are provided.
  • an indeterminate mixed solution in an amount corresponding to the measurement item can be efficiently separated from the mixed solution flowing through the fine channel 1, and a more accurate sample can be obtained with a smaller amount of sample and reaction reagent. Can be inspected.
  • the mixing cartridge of the second embodiment has a configuration in which the fine waste flow path filled with the wick material is provided at a position downstream of the joining point of the specimen and the reaction reagent in the fine flow path.
  • a fine waste flow path filled with a wick material is provided at a position upstream of the joining point of the specimen and the reaction reagent in the fine flow path.
  • FIG. 9 is a schematic diagram illustrating a configuration of the mixing cartridge 202 according to the third embodiment.
  • the first fine disposal flow path 6 and the second fine disposal flow path 16 are not arranged in the mixing cartridge 200 of the first embodiment, but the first fine disposal flow path 46 and the second fine disposal flow path 16 are arranged. Since the fine waste flow path 56 and the third fine waste flow path 66 are arranged, and other configurations are the same as those in the first embodiment, the description thereof is omitted.
  • the first fine disposal channel 46 is located upstream from the junction 41 of the first reagent, the sample, and the oil in the microchannel 1, and the fine flow through which the first reagent sent from the first reagent tank 4 circulates. It branches and communicates with the vicinity of the 1st reagent tank 4 in the path
  • the first fine disposal channel 46 is formed to have a diameter smaller than the diameter of the fine channel 1b, and further, a wick material 461 having a wicking performance such as a nonwoven fabric is provided inside the first fine disposal channel 46.
  • the wick material 461 is filled so that one end of the wick material 461 is in contact with the fine channel 1b.
  • the first reagent flowing from the fine channel 1b is indeterminate.
  • the uncertain first reagent is separated from the first reagent.
  • the indeterminate first reagent is a part of the first reagent mixed at a ratio different from the mixing ratio of the specimen and the first reagent determined as the measurement item to be tested, and the first reagent pump 14 Is the first reagent fed from the first reagent tank 4 until the steady operation is reached.
  • the second fine disposal channel 56 is located upstream from the junction 41 of the first reagent, the sample, and the oil in the microchannel 1, and the sample in the microchannel 1a through which the sample sent from the sample tank 5 flows. It branches and communicates with the vicinity of the tank 5. Similar to the first fine waste flow path 46, the second fine waste flow path 56 is formed to have a diameter smaller than the diameter of the fine flow path 1a, and further inside the second fine waste flow path 56.
  • the wick material 561 is filled, and one end of the wick material 561 is installed in contact with the fine flow path 1a.
  • the sample flowing from the fine flow path 1a is changed to an indeterminate sample (one sample). Part) is absorbed by the wick material 561 by capillary action to separate the indeterminate sample from the sample.
  • the indeterminate sample is a part of the sample mixed at a ratio different from the mixing ratio of the sample and the first reagent specified in the measurement item to be tested, and until the sample pump 15 reaches a steady operation. The sample is fed from the sample tank 5.
  • the third fine disposal channel 66 is located upstream from the junction 42 of the first reagent and specimen mixed solution of the fine channel 1 and the third reagent, and is supplied from the second reagent tank 24.
  • the two reagents are branched and communicated with each other in the vicinity of the second reagent tank 24 in the fine flow path 1e.
  • the third fine disposal channel 66 is formed to have a diameter smaller than the diameter of the fine channel 1 e, similarly to the first fine disposal channel 46, and further inside the third fine disposal channel 66.
  • the wick material 661 is filled and installed so that one end of the wick material 661 is in contact with the fine flow path 1e.
  • the second reagent flowing from the fine flow path 1e is indeterminate.
  • the indefinite second reagent is separated from the second reagent.
  • the indeterminate second reagent is a part of the second reagent mixed at a ratio different from the mixing ratio of the sample and the mixed solution of the first reagent and the second reagent specified in the measurement item to be examined.
  • the second reagent is fed from the second reagent tank 24 until the second reagent pump 34 reaches a steady operation.
  • the sample holding in the sample tank 5 is sent to the fine channel 1 by the sample pump 15. Further, the first reagent held in the first reagent tank 4 is sent to the fine channel 1 by the first reagent pump 14. Further, the second reagent held in the second reagent tank 24 is sent to the fine flow path 1 by the second reagent pump 34.
  • the first reagent and the specimen are fed so as to be simultaneously supplied at the joining point 41 in the microchannel 1, and when the first reagent and the specimen are joined and mixed at the joining point 41, the mixed solution is changed. can get.
  • the mixing ratio Can not be used for measurement because it becomes a mixed solution that is not stable. Therefore, it is necessary to separate the uncertain sample and the uncertain first reagent from the microchannel 1.
  • the mixing cartridge 202 introduces an uncertain first reagent into the first fine disposal channel 46 and separates it from the microchannel 1b, and introduces an uncertain sample into the second fine disposal channel 56. It introduce
  • the first fine waste flow channel 46 and the second fine waste flow channel 56 need to be designed in advance to have a capacity capable of sufficiently sucking the uncertain first reagent and the uncertain specimen, respectively.
  • the capacities of the first fine waste flow channel 46 and the second fine waste flow channel 56 can be designed according to the operation performance of the pump and the mixing ratio of the reaction reagents.
  • the uncertain first reagent and the uncertain sample can be branched or separated from the micro flow channel 1 before reaching the confluence 41, so that the first mixing ratio at the confluence 41 is obtained.
  • One reagent and the sample are mixed, and a stable mixed solution can be obtained.
  • the mixed solution of the specimen and the first reagent from which the uncertain first reagent and the uncertain specimen have been removed is transported to the first magnet 19 in the microchannel 1.
  • the stirring operation of the specimen and the first reagent and the inspection by the first photometric cell 11 are the same as in the first embodiment.
  • the second reagent (the uncertain second reagent) in which the mixing ratio of the mixed solution obtained by mixing the specimen and the first reagent and the second reagent is uncertain is the fine flow.
  • a mixed solution mixed solution in which the specimen and the first reagent are mixed
  • stirred by the second magnet 29 and the second stirring control unit 28 to promote mixing. Is done.
  • the optical inspection unit 300 (see FIG. 1) using an optical technique is again used. Inspection is performed.
  • the mixing cartridge 202 in the sample testing apparatus 500 according to the third embodiment, the first fine waste flow path 46 filled with the wick material 461 and the second fine waste flow path 56 filled with the wick material 561. And the third fine disposal channel 66 filled with the wick material 661, the amount of the uncertain first reagent, sample, and second reagent according to the measurement item is circulated through the fine channel 1.
  • the sample can be efficiently separated from the solution, and the sample can be more accurately tested with a smaller amount of sample and reaction reagent.
  • the fine waste flow path is provided in the fine flow path.
  • the fine waste flow path filled with the wick material is provided in the fine flow path.
  • the present invention is not limited to this. There is nothing. In other words, since it is sufficient to ensure the same performance, any structure can be used as long as the waste flow part for separating the uncertain mixed solution and the uncertain solution before mixing is provided in the fine flow path using the capillary phenomenon. The structure of may be sufficient.
  • the first fine disposal channels 6 and 26 communicate with the fine path 1 near the intermediate position between the joining point 41 and the arrangement position of the first magnet 19.
  • the fine flow path 1 may be in communication with any position as long as it is located downstream from the joining point 41 and upstream from the arrangement position of the first magnet 19.
  • the second fine disposal channels 16 and 36 communicate with the fine path 1 in the vicinity of the intermediate position between the junction point 42 and the position where the second magnet 29 is disposed, but the present invention is not limited to this. Absent. In other words, any fine channel 1 that is downstream of the junction point 42 and upstream of the position where the second magnet 29 is disposed may be communicated with any of them.
  • the first fine disposal flow path 46 is arranged in the vicinity of the first reagent tank 4 in the fine flow path 1b, but is not limited to this, and is located upstream of the junction 41. Any position in the fine channel 1b may be communicated.
  • the second fine disposal flow path 56 is arranged in the vicinity of the sample tank 5 in the fine flow path 1a. However, the present invention is not limited to this, and the fine flow path 1a at the upstream position of the junction 41 is used. You may communicate with any position in.
  • the third fine disposal channel 66 is arranged in the vicinity of the second reagent tank 24 in the fine channel 1e. However, the present invention is not limited to this, and the fine flow at the upstream position of the joining point 42 is not limited thereto. You may communicate with any position in the path 1e.
  • the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage.
  • various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the above embodiments. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, constituent elements over different embodiments may be appropriately combined.
  • the mixing cartridge and the sample testing apparatus are useful for testing a sample using a mixed solution in which the sample and the reaction reagent are mixed, and are particularly suitable for mixing the sample and the reaction reagent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

 検体と検体の検査すべき項目である測定項目に対応する第1試薬とを混合する混合カートリッジ200であって、検体および第1試薬のうち少なくとも一方を含む溶液が流通する微細流路1を形成する部材と、検体を微細流路1に供給する検体タンク5および検体ポンプ15と、第1試薬を微細流路1に供給する第1試薬タンク4および第1試薬ポンプ14と、微細流路1に連通し、微細流路1を流通する溶液から溶液の一部を毛細管現象により分離する第1微細廃棄流路6とを備えた。

Description

混合カートリッジおよび検体検査装置
 本発明は、検体と反応試薬を混合する混合カートリッジ、および該混合カートリッジで混合された混合溶液を用いて光学的に検体を検査する検体検査装置に関する。
 血液や尿などの生体液中を検体とし、検体中に含まれるイオン、ガス成分および生化学成分などの種々の生体関連物質を測定するための検体検査装置がある。従来の検体検査装置は、大病院などの血液センターに設置され最大数百種類の項目を測定できる比較的大型のものが主流である。
 近年、小型の検体検査装置の開発要求が高まり、極少量の検体から生体関連物質を高感度に検出する機構の開発が求められている。
 このような技術の一つとして、微細流路に検体と試薬を混合した混合溶液を供給し、光学的に検体を測定する技術が開示されている(例えば、特許文献1参照)。
 特許文献1には、2つの試薬をY字流路により混合する場合、各試薬を同時に送液したとしても、混合液の先頭部分では混合比率が安定しないため、この先頭部分を切り捨てて、混合比率が安定してから混合溶液を次工程へ送液するようにすることが望ましい旨が記載されている。
特開2006-217818号公報
 しかしながら、上記特許文献1には、混合液の先頭部分(混合比率が安定しない部分)をどのように切り捨てるのかについての具体的な手法の記載はなく、ごく少量の検体で高精度の検査ができないという問題がある。
 本発明は、上記に鑑みてなされたものであって、ごく少量の検体および反応試薬で高精度の検査が可能な混合カートリッジおよび検体検査装置を提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明は、検体を含む第1溶液と前記検体の検査すべき項目である測定項目に対応する第2溶液とを混合する混合カートリッジであって、前記第1溶液および前記第2溶液のうち少なくとも一方を含む溶液が流通する流路を形成する部材と、前記第1溶液を前記流路に供給する第1送液部と、前記第2溶液を前記流路に供給する第2送液部と、前記流路に連通し、前記流路を流通する前記溶液から前記溶液の一部を毛細管現象により分離する分離部と、を備えたことを特徴とする。
 また、本発明は、検体を含む第1溶液と前記検体の検査すべき項目である測定項目に対応する第2溶液とを混合した混合溶液を用いて前記検体の検査を行う検体検査装置であって、前記第1溶液および前記第2溶液のうち少なくとも一方を含む溶液が流通する流路を形成する部材と、前記第1溶液を前記流路に供給する第1送液部と、前記測定項目を選択する選択部と、前記第2溶液を前記流路に供給する第2送液部と、前記流路に連通し、前記流路を流通する前記溶液から前記溶液の一部を毛細管現象により分離する分離部と、前記流路内の前記溶液の一部が分離された混合溶液に光を照射して前記検体の検査を行う検査部と、を備えたことを特徴とする。
 また、本発明は、検体を含む第1溶液と前記検体の検査すべき項目である第1測定項目に対応する第2溶液とを混合した第1混合溶液を用いて前記検体の検査を行う検体検査装置であって、前記第1溶液および前記第2溶液のうち少なくとも一方を含む溶液が流通する流路を形成する部材と、前記第1溶液を前記流路に供給する第1送液部と、前記第1測定項目を選択する選択部と、前記第2溶液を前記流路に供給する第2送液部と、前記流路における前記第1溶液と前記第2溶液とが合流する位置である第1合流位置より下流位置に連通し、前記第1合流位置で混合された前記第1混合溶液から、前記第1測定項目に定められた前記第1溶液と前記第2溶液の混合比率と異なる比率で混合された前記第1混合溶液の一部の溶液である第1不確定混合溶液を、毛細管現象により分離する分離部と、前記流路内の前記第1不確定混合溶液が分離された第1混合溶液に光を照射して前記検体の検査を行う検査部と、を備えたことを特徴とする。
 本発明によれば、検体の検査すべき測定項目に対応して、流路を流通する溶液から適切な量の溶液の一部を毛細管現象により分離することによって、少量の検体及び反応試薬で精度の高い検査が可能となるという効果を奏する。
実施の形態1にかかる検体検査装置500の構成を概略的に示すブロック図である。 実施の形態1にかかる混合カートリッジ200の構成を示した模式図である。 シリンジポンプの動作性能の一例を表す図である。 シリンジポンプの動作性能の一例を表す図である。 検体と第1試薬とが混合される直前の状態の説明図である。 不確定混合溶液αが微細流路1内に流通し始めた状態の説明図である。 不確定混合溶液αの後から混合比率が安定した混合溶液βが微細流路1内に流通している状態の説明図である。 不確定混合溶液αが微細流路1内に流通し分岐地点51に達した状態の説明図である。 不確定混合溶液αが第1微細廃棄流路6に吸収された状態の説明図である。 混合比率が安定した混合溶液βが微細流路1内に流通している状態の説明図である。 制御部400の機能構成を示すブロック図である。 実施の形態2にかかる混合カートリッジ201の構成を示した模式図である。 第1微細廃棄流路26の詳細を示す説明図である。 実施の形態3にかかる混合カートリッジ202の構成を示した模式図である。
 以下に添付図面を参照して、本発明にかかる混合カートリッジおよび検体検査装置の最良な実施の形態を詳細に説明する。
(実施の形態1)
 ごく少量の検体と反応試薬を混合する混合カートリッジ、および該混合カートリッジを用いて検体を検査する検体検査装置においては、溶液が流通する微細流路内で検体と反応試薬との安定した混合溶液を得ることが重要になる。しかしながら、検体といろいろな反応試薬とを混合した混合溶液を得ようとすると、微細流路内で混合溶液が均一に混合されて安定化するまでに、測定項目(測定に使用する反応試薬またはその混合比率、あるいは試薬などを供給するポンプの動作遅れなど)に応じて大きな差が生じてしまう。すなわち、測定項目ごとに、安定した混合溶液を得る前の不安定で不確定な混合溶液部分の量が、測定項目に応じてあるいは溶液の混合比率に応じて異なるため、それぞれに応じて不確定な混合溶液部分も異なることになる。従って、以下の実施の形態では、測定項目に対応させて、混合溶液から適切な量の不確定な混合溶液部分(混合溶液の一部)を分離可能とした。
 図1は、実施の形態1にかかる検体検査装置500の構成を概略的に示すブロック図である。検体検査装置500は、検体と反応試薬とを混合させる混合カートリッジ200と、混合カートリッジ200により混合された混合溶液を光学的に検査する光学検査部300と、混合カートリッジ200および光学検査部300の動作を制御する制御部400と、を備えている。なお、本実施の形態にかかる検体検査装置500では、検査を行う検体ごとに混合カートリッジ200を使い捨てる使用形態が考えられる。これは、医療廃棄物に該当する廃棄部分から検体等が外に漏れることで、安全衛生に支障を生じないようにするためである。
 図2は、実施の形態1にかかる混合カートリッジ200の構成を示した模式図である。図2に示すように、混合カートリッジ200は一部に光学的な検査を行うための第1測光セル11および第2測光セル21を具備し、その内部に微細流路1が形成されている。微細流路1には、第1試薬タンク4と、検体タンク5と、オイルタンク7と、第2試薬タンク24と、第1微細廃棄流路6と、第2微細廃棄流路16とが連通している。各タンクは、微細流路1の一部である微細流路1a、微細流路1b、微細流路1c、および微細流路1eにより微細流路1に連通している。また、微細流路1、第1微細廃棄流路6、および第2微細廃棄流路16は、混合カートリッジ200に形成されている。
 混合カートリッジ200では、第1試薬タンク4から送液された第1試薬と検体タンク5から送液された検体とが混合され、その混合された混合溶液が第1測光セル11に向かって流通していく。そして、第1測光セル11において、第1試薬と検体との混合溶液により検体の検査が行われる。その後さらに、第1試薬と検体との混合溶液に第2試薬が混合され、その混合された混合溶液が第2測光セル21に向かって流通していく。そして、第2測光セル21において、第1試薬と検体と第2試薬との混合溶液により検体の検査が行われる。ここで、本実施の形態の混合カートリッジ200の微細流路1では、各タンクにより検体や反応試薬等の溶液が送液される送液口付近より、混合溶液が排出される第2測光セル21側の排出口が広くなっている。
 それぞれ、第1試薬タンク4には第1試薬ポンプ14が、検体タンク5には検体ポンプ15が、オイルタンク7にはオイルポンプ17が、第2試薬タンク24には第2試薬ポンプ34が配置されている。第1試薬ポンプ14、検体ポンプ15、オイルポンプ17、および第2試薬ポンプ34は、シリンジタイプのポンプであって、対応するタンクに貯蔵してある溶液を押し出すことで送液して微細流路1へ供給する。
 第1試薬タンク4に連通する微細流路1bと、検体タンク5に連通する微細流路1aと、オイルタンク7に連通する微細流路1cとは、微細流路1の同じ地点である合流地点41で合流するように配置されており、その合流地点41で第1試薬と検体とオイルが微細流路1に合流するようになっている。そして、第1試薬と検体とオイルの合流地点41より溶液の流れの下流位置であって、後述する第1磁石19の配置位置より溶液の流れの上流位置である微細流路1のうち、合流地点41と第1磁石19の配置位置との中間位置付近に第1微細廃棄流路6が分岐して連通している。第1微細廃棄流路6は、微細流路1の径より小さい径を有して形成されており、微細流路1を流通する検体と第1試薬とを混合した混合溶液から該混合溶液の一部を毛細管現象により第1微細廃棄流路6内へ吸い上げることで、混合溶液から該混合溶液の一部を分離する。
 検体の検査が行われる第1測光セル11より上流側であって、第1微細廃棄流路6と微細流路1との分岐地点51より下流側の微細流路1内には、溶液の攪拌を行う攪拌部材である第1磁石19が配置されている。そして、微細流路1の外側の第1磁石19の周辺には第1攪拌制御部18が配置されている。この第1攪拌制御部18は1対の電磁石からなり、交互に電磁石に流す電流をON/OFFにさせることにより微細流路1内の第1磁石19を振動させて、検体と第1試薬との混合溶液を攪拌する。なお、本実施の形態では、攪拌部材として磁石(第1磁石19)を配して溶液を攪拌しているが、これに限定されることなく、強磁性を有する物質であれば他の部材を配してもよい。また、後述する第2磁石29についても同様である。
 第1磁石19より下流側には、光を照射して光学的な検査を行う第1測光セル11が設けられている。第1測光セル11は、特に検査誤差を引き起こさないように光の透過率の高い材質等を使用することが好ましい。第1測光セル11に達した混合溶液は、検体検査装置に組み込まれた光学検査部300(図1参照)によって検査される。
 第1測光セル11より下流側に、微細流路1へ合流するように連通した第2試薬タンク24が設けられ、第1試薬の場合と同様に第2試薬タンク24と微細流路1との合流地点42より下流位置であって、後述する第2磁石29の配置位置より上流位置である微細流路1のうち、合流地点42と第2磁石29との中間位置付近に、第2微細廃棄流路16が分岐して連通している。
 そして、第2微細廃棄流路16と微細流路1との分岐地点52より下流位置の微細流路1内には溶液の混合を行う第2磁石29が配置されている。微細流路1の外側の第2磁石29の周辺には、第1攪拌制御部18と同様の機構で第2磁石29を動作させる第2攪拌制御部28が配置されている。
 第2磁石29より下流側には、光を照射して光学的な検査を行う第2測光セル21が設けられている。第2測光セル21は、第1測光セル11同様に検査誤差を引き起こさないように光の透過率の高い材質等を使用することが好ましい。第2測光セル21に達した混合溶液は、検体検査装置に組み込まれた光学検査部300(図1参照)によって検査される。
 なお、本実施の形態の混合カートリッジ200とは、図2に示す各要素のうち、攪拌制御部18、28を除くすべての要素から構成されているものをいう。具体的には、本実施の形態の混合カートリッジ200は、微細流路1(微細流路1a、1b、1c、1eを含む)、第1測光セル11、第2測光セル21、第1試薬タンク4、検体タンク5、オイルタンク7、第2試薬タンク24、第1微細廃棄流路6、第2微細廃棄流路16で構成されている。また、必要に応じて、攪拌に必要な第1磁石19および第2磁石29を、混合カートリッジ200内の構成要素として含めてもよい。
 また、検体検査装置500の仕様の関係上、混合カートリッジ200の構成要素である検体、試薬およびオイルが充填されている各タンク(第1試薬タンク4、検体タンク5、オイルタンク7、および第2試薬タンク24)が混合カートリッジ200と必ずしも一体となった構成とすることなく、実際に使用する際にこれらタンクとタンク以外の他の構成要素とを組み合わせ、混合カートリッジとして機能するように構成させてもよい。
 次に、本実施の形態にかかる混合カートリッジ200を備えた検体検査装置500の動作について説明する。検体タンク5内には、血液や尿などの生体液である検体を保持し、検体ポンプ15によって検体を押し出すことで微細流路1へと送液する。また、第1試薬タンク4内には検体の検査すべき項目である測定項目に対応した第1試薬(反応試薬)が選択的に保持されており第1試薬ポンプ14によって微細流路1へと送液される。測定項目に応じて反応試薬が2つ必要となる場合もあるため、第1試薬とは別の第2試薬が第2試薬タンク24内に保持され、第2試薬ポンプ34によって微細流路1内に送液することができる。第1試薬と検体とは微細流路1内の合流地点41で同時に供給されるように送液され、合流地点41で第1試薬と検体とが合流するとそれらの混合溶液が得られる。
 ところが、検体ポンプ15や第1試薬ポンプ14などのポンプの駆動動作は、動作信号を受け取ってから所定の流速を与える定常動作に達するまでに時間差が生じる。また、その時間差は、ポンプが与えようとする所定流速によってばらつきがある。
 ここで、ポンプの動作性能について説明する。図3-1は、シリンジポンプの定格流量を10μL/minとした場合のポンプの動作性能の一例を示すグラフである。また、図3-2は、シリンジポンプの定格流量を100μL/minとした場合のポンプの動作性能の一例を示すグラフである。横軸は駆動電気信号をポンプが受けてからの経過時間であり、縦軸はポンプが流体に与える流量を示したものである。
 送液ポンプはどのような種類であっても、駆動電気信号を受け取ってから動作が開始する時間あるいは動作し定格流量に達するまでに多少の時間差を生じる。ポンプが定格流量を与える定常動作に達するまでの時間は、その定格流量によって異なり、例えば、図3-1では約2秒であり、図3-2では約0.4秒となっている。従って、ポンプが定常動作に達するまでに送液された溶液流量の定量性を確保することはできない。
 検体を検査すべき測定項目が決まると、検体ポンプ15および第1試薬ポンプ14の定格流量を、所定の混合比率を満たすよう決定する。ポンプが、ある定格流量を与えようとし、定常動作に達するまでの時間およびそれまでに送液する溶液の量は、ポンプによって固有の値を有している。従って、本実施の形態のように、微細流路1を用いた連続送液により一定比率で検体と反応試薬を混合する方式では、検体ポンプ15および第1試薬ポンプ14の双方が定常動作に達する前に混合された溶液部分、および第2試薬ポンプ34が定常動作に達する前に混合された溶液部分は混合比率が不確定であり、測定に使用できないため微細流路1から分離する必要がある。なお、検体ポンプ15、第1試薬ポンプ14および第2試薬ポンプ34の駆動動作特性による、混合比率が安定化するまでの不確定な混合溶液(以下、「不確定混合溶液」という。)の量は測定項目によって決まる。
 ここで、検体と第1試薬とが合流して混合された不確定混合溶液が微細流路1を流通していく場合について、図を参照して説明する。図4-1、4-2、4-3は、不確定混合溶液が微細流路1内を流通していく場合の説明図である。図4-1は、検体と第1試薬とが混合される直前の状態の説明図である。図4-2は、検体と第1試薬とが混合され、不確定混合溶液αが微細流路1内に流通し始めた状態の説明図である。図4-3は、検体と第1試薬とが混合され、不確定混合溶液αの後から混合比率が安定した混合溶液βが微細流路1内に流通している状態の説明図である。図4-1に示すように、微細流路1aには検体タンク5からA方向に送液された検体が供給され、微細流路1bには第1試薬タンク4からB方向に送液された第1試薬が供給される。そして、検体と第1試薬とは合流地点41で合流する。なお、微細流路1cには検体と第1試薬を混合した後に、オイルタンク7からC方向にオイルが送液されることになる。
 そして、検体と第1試薬が合流し混合溶液となる場合、まずは、検体ポンプ15が定常動作に達するまでに送液された検体と、第1試薬ポンプ14が定常動作に達するまでに送液された第1試薬とが合流するため、図4-2に示すように、混合比率が不確定な不確定混合溶液αが微細流路1を流通していく。
 さらに、検体ポンプ15が定常動作に達した後に送液された検体と、第1試薬ポンプ14が定常動作に達した後に送液された第1試薬とが合流するため、図4-3に示すように、不確定混合溶液αの後に所望の混合比率の混合溶液βが微細流路1を流通していく。つまり、混合溶液βの進行方向の先頭側に不確定混合溶液αがある状態で検体と第1試薬との混合溶液βが第1測光セル11まで流通すると、不確定混合溶液αも検査の対象となってしまう。
 しかしながら、上述したように、検体ポンプ15および第1試薬ポンプ14双方が定常動作に至るまでに送液された不確定混合溶液は、混合割合が安定しないため測定に使用することができない。従って、不確定混合溶液を微細流路1から分離する必要がある。
 そこで、本実施の形態の混合カートリッジ200は、第1微細廃棄流路6内にこの不確定混合溶液を導入して微細流路1から分離する。すなわち、混合カートリッジ200では、不確定混合溶液が微細流路1と第1微細廃棄流路6との分岐地点51へ達すると、毛細管現象により第1微細廃棄流路6へと不確定混合溶液が吸い上げられる。
 ここで、検体と第1試薬とが合流した不確定混合溶液が分離される場合について、図を参照して説明する。図5-1、5-2、5-3は、不確定混合溶液が第1微細廃棄流路6に吸収されていく場合の説明図である。図5-1は、検体と第1試薬とが混合され、不確定混合溶液αが微細流路1内に流通し分岐地点51に達した状態の説明図である。図5-2は、不確定混合溶液αが第1微細廃棄流路6に吸収された状態の説明図である。図5-3は、不確定混合溶液αが第1微細廃棄流路6に吸収された後に、混合比率が安定した混合溶液βが微細流路1内に流通している状態の説明図である。図5-1では、図4-2と同様に、混合比率が不確定な不確定混合溶液αが微細流路1を流通していき、分岐地点51に達した状態である。この後、本実施の形態の混合カートリッジ200では、図5-2に示すように、不確定混合溶液αが第1微細廃棄流路6に吸い上げられていくことで不確定混合溶液αが微細流路1から分岐(分離)され、不確定混合溶液αの後からは所望の混合比率で混合された混合溶液βが流通してくる。
 そして、図5-3に示すように、不確定混合溶液αが第1微細廃棄流路6に保持されると、その後ろから流通してきた混合溶液βのみが微細流路1を流通していく。つまり、混合溶液βの進行方向の先頭側に不確定混合溶液αがない状態で検体と第1試薬との混合溶液βが第1測光セル11まで流通するため、不確定混合溶液αが検査の対象となってしまうことはない。
 この場合、第1微細廃棄流路6は不確定混合溶液を充分吸い上げられる容量に事前に設計しておく必要があるが、図3-1、3-2に例示したようにポンプの動作性能および反応試薬の混合比率により第1微細廃棄流路6の容量は設計可能である。なお、微細廃棄流路の設計値は特に限定されるものではなく、毛細管現象により不確定混合溶液を吸い上げ得るサイズであれば、その構造およびサイズは特に限定されるものではない。また、毛細管現象をより積極的に利用するために、微細廃棄流路内に親水処理などの処理を行ってもよい。このように、混合カートリッジ200では、不確定な混合比率の不確定混合溶液が第1微細廃棄流路6内へ導入されるため、微細流路1から分岐あるいは分離することが可能となる。
 図2に戻り、不確定混合溶液を取り除いた検体と第1試薬の混合溶液は、微細流路1内にある第1磁石19まで搬送される。第1磁石19は、第1攪拌制御部18によって微小運動することによって、検体と第1試薬とを攪拌し反応を促進させる。検体ポンプ15および第1試薬ポンプ14は所定の時間だけ駆動動作を行うと送液を止める。その後、オイルタンク7内のオイル(水と混合しない溶液であれば特に限定はされない)をオイルポンプ17によって微細流路1内に送液することで混合溶液を搬送する。微細流路1内に設けられた第1測光セル11を混合溶液が満たすまでオイルポンプ17の駆動によるオイル送液により搬送が行われる。
 光学的な手法による検査が終了すると、再びオイルポンプ17を駆動させ混合溶液を搬送させる。混合溶液が第2試薬タンク24まで達すると、第2試薬ポンプ34は第2試薬の送液を開始する。
 検体と第1試薬との混合時と同様に、検体と第1試薬とを混合した混合溶液と第2試薬との混合比率が不確定な混合溶液(不確定混合溶液)は微細流路1から第2微細廃棄流路16へと分離した後、第2磁石29および第2攪拌制御部28によって混合溶液を攪拌し混合を促進する。その後、微細流路1内に設けられた第2測光セル21を混合溶液が満たすと、再び光学的な手法による光学検査部300(図1参照)の検査が行われる。
 なお、測定項目によっては、第1試薬のみで検体検査が行われるものもあるため、第2試薬の混合に係る構成を具備していなくとも構わない。また、送液を行うポンプはシリンジポンプを使用したが、プランジャー方式、圧電方式、その他溶液を送液できるポンプであれば特に限定はされない。
 また、検体タンク5、第1微細廃棄流路6、第2微細廃棄流路16、第1磁石19、第2磁石29、および微細流路1を形成する混合カートリッジ200等の検体に接触する部分は特に、他の検体の混入による検査誤差を軽減するために、検体毎に入れ替える形態が考えられる。試薬タンク4、24およびオイルタンク7も検体毎に入れ替える構成にしてもよい。
 さらに、本実施の形態では混合溶液の混合を行う攪拌に第1磁石19、第2磁石29、第1攪拌制御部18、第2攪拌制御部28を使用したが、その他の機構であってもよい。また、オイルポンプ17によって混合溶液を搬送したが、他の方法を用いても本実施の形態の効果を得ることができる。
 また、図2では、溶液を攪拌する第1磁石19を第1微細廃棄流路6の分岐地点51よりも下流側に配しているが、第1磁石19を第1微細廃棄流路6の分岐地点51よりも下流に配するか上流に配するかはどちらでも構わない。しかし、混合比率が不確定な溶液が攪拌を行う第1磁石19のある部分に達すると、検査に用いる混合溶液の混合比率に多少の誤差が生じ検査精度の低下につながるので、第1磁石19の上流に第1微細廃棄流路6との分岐地点51がある構成の方が望ましい。また、第2試薬を混合する際の構成に関しても同様である。
 図6は、制御部400の機能構成を示すブロック図である。なお、図2に対応する部分に同じ符号を付し、重複説明は一部省略する。図6に示すように、制御部400は、測定項目選択部100と、記憶部である測定項目データベース(以下、「DB」と記載)2と、動作制御部3とを備えている。
 測定項目選択部100は、選択部として機能するものであって、例えばキーボードなどから、検体のどの項目を検査するかを入力され、その信号を動作制御部3に出力する。測定項目DB2は、検体、第1試薬、第2試薬が測定項目に対応した混合比率で混合されるよう規定された定格流量、および送液を行う第1試薬ポンプ14と検体ポンプ15と第2試薬ポンプ34の駆動時間などが記憶されたメモリ等の記録媒体である。動作制御部3は、測定項目DB2に記憶された各種パラメータを呼び出し、そのパラメータに応じて送液ポンプおよび攪拌制御部の動作時間やタイミングなどの制御を行うものである。
 以下に、図6を参照して、送液ポンプの駆動動作の詳細について説明する。測定項目選択部100に測定項目が入力されると、動作制御部3にその信号が出力される。動作制御部3は、入力された測定項目に対応した定格流量および時間だけ第1試薬ポンプ14と検体ポンプ15が微細流路1への送液動作をするよう動作信号を送信する。第1試薬ポンプ14と検体ポンプ15は、合流地点41において検体および第1試薬が同時に合流するよう送液動作を開始し、それぞれ定格流量となるように制御する。第1試薬と検体とは微細流路1内の合流地点41で混合され混合溶液となる。
 図3-1、3-2で説明したように、第1試薬ポンプ14と検体ポンプ15の双方の駆動動作が一定となる前に送液された混合溶液の混合比率は不確定であり、微細流路1から分離する必要がある。また、混合比率が安定化するまでの不確定混合溶液の量は測定項目によって決まる。従って、測定項目に対応して第1微細廃棄流路6を設計する必要がある。測定項目に対応した廃棄容量の不確定混合溶液を第1微細廃棄流路6に導入することで、不確定混合溶液を効率的に微細流路1から分離することができる。不確定混合溶液が微細流路1からの第1微細廃棄流路6へ分離されると、第1試薬ポンプ14および検体ポンプ15の動作が定常状態になり、混合比率が一定となり測定が可能となる。動作制御部3は、混合比率が一定となった溶液が攪拌を行う第1磁石19部分まで達するタイミングで、第1攪拌制御部18を駆動させ、第1磁石19の振動により検体と第1試薬との攪拌を促進する。
 その後の検査に必要となる十分な量だけ検体および第1試薬が送液されると、第1試薬ポンプ14および検体ポンプ15が送液動作を止めるように、動作制御部3が制御する。第1試薬ポンプ14および検体ポンプ15の送液動作が止まると、動作制御部3は搬送用のオイルポンプ17に駆動動作信号を送る。オイルによって第1試薬と検体の混合溶液が第1測光セル11を満たすまで搬送される。
 第1攪拌制御部18は、搬送用のオイルの先端部が第1磁石19のある位置に達するまで第1磁石19の振動動作による攪拌を続け、搬送用オイルの先端部が第1磁石19のある位置に達すると、第1磁石19が振動を止めるよう制御する。測定項目に対応した攪拌動作を行うことによって、オイルと混合溶液とが不必要に混合されることを防ぐことができる。
 混合溶液の送液が終了し、第1測光セル11が混合溶液で満たされると、オイルポンプ17はオイルによる搬送を停止し、光学検査部300によって光学的な検査を行う。検査が終了すると、再びオイルポンプ17は微細流路1へのオイルの送液を開始する。
 第1試薬と検体の混合溶液が搬送され、動作制御部3は、入力された測定項目に対応した定格流量および時間だけ第2試薬ポンプ34が微細流路1へ送液動作をするように動作信号を送信する。第2試薬ポンプ34は合流地点42において、第1試薬と検体との混合溶液と第2試薬とが同時に合流するように送液動作を開始し、定格流量となるように制御する。第1試薬および検体の混合溶液と第2試薬とは微細流路1内の合流地点42で混合し混合溶液となる。
 オイルポンプ17は、第2試薬ポンプ34が送液動作を開始するときには定格流量を与える定常動作に達している。また、第2試薬ポンプ34は動作開始信号を受けてから定格流量を与える定常動作に達するまでに、その定格流量に応じた時間差を生じる。従って、第2試薬ポンプ34が定常動作に達するまでに送液された第1試薬と検体と第2試薬の混合溶液の混合比率は不確定である。測定項目に対応した廃棄容量の不確定混合溶液を第2微細廃棄流路16に導入することで、不確定混合溶液を効率的に微細流路1から分離することができる。
 第2試薬ポンプ34が定格動作に達すると、オイルポンプ17および第2試薬ポンプ34は送液動作を続ける。その後の検査に必要となる十分な量だけ検体および第2試薬が送液されると第2試薬ポンプ34は送液を止め、オイルポンプ17は駆動動作を続ける。第2攪拌制御部28により攪拌された混合溶液が第2測光セル21を満たすと、オイルポンプ17は駆動動作を止め、光学検査部300によって光学式の検査が行われる。測光が終了すると、本実施の形態にかかる検体検査装置500による検査は終了する。
 すべての測定項目に対するポンプの動作タイミングはすべて装置内の測定項目DB2に記憶されており、その動作タイミングに応じて各種ポンプを駆動動作させる機構について説明した。
 このように、実施の形態1にかかる検体検査装置500における混合カートリッジ200によれば、第1微細廃棄流路6および第2微細廃棄流路16を設けたことにより、測定項目に応じた量の不確定混合溶液を、微細流路1を流通する混合溶液から効率的に分離することができ、より少量の検体と反応試薬で高精度の検体の検査を行うことができる。
(実施の形態2)
 実施の形態1の混合カートリッジでは、微細流路に連通した微細廃棄流路が微細流路に流通する不確定混合溶液を分離する構成となっていた。以下の実施の形態2の混合カートリッジは、微細流路に連通した微細廃棄流路に、さらに液体を吸収するウィック材を充填させて微細流路に流通する不確定混合溶液を分離するものである。
 まず、検体検査装置の構成は実施の形態1と同様であるため説明を省略する(図1参照)。図7は、実施の形態2にかかる混合カートリッジ201の構成を示した模式図である。図7に示す混合カートリッジ201では、実施の形態1の混合カートリッジ200における第1微細廃棄流路6および第2微細廃棄流路16の代わりに、第1微細廃棄流路26および第2微細廃棄流路36を配置したものであり、その他の構成は実施の形態1と同様であるため説明を省略する。
 第1微細廃棄流路26は、微細流路1の第1試薬と検体とオイルの合流地点41より下流位置に分岐して連通している。図8は、第1微細廃棄流路26の詳細を示す説明図である。図8に示すように、第1微細廃棄流路26は、微細流路1の径より小さい径を有して形成されており、さらに、第1微細廃棄流路26の内部に不織布などのウィック性能を有するウィック材261を充填させ、ウィック材261の一端が微細流路1に接するように設置されている。
 これにより、検体と第1試薬とを混合した混合溶液が微細流路1とウィック材261を充填した第1微細廃棄流路26との分岐地点51を通過する際、微細流路1を流通する混合溶液から不確定混合溶液(混合溶液の一部)を毛細管現象によりウィック材261で吸収することで、実施の形態1と同様に、混合溶液から不確定混合溶液を分離する。なお、この場合、第1微細廃棄流路26およびウィック材261は不確定混合溶液を充分吸い上げられるように事前に設計しておく必要があるが、図3-1、3-2に例示したようにポンプの動作性能および反応試薬の混合比率により第1微細廃棄流路26およびウィック材261の設計は可能である。また、ウィック材261は、ウィック性能を有すること以外は特に限定される必要はない。
 第2微細廃棄流路36についても同様の構成となっており、ウィック材361が充填されている。また、本実施の形態の混合カートリッジ201を備えた検体検査装置500の動作については、実施の形態1と同様である。また、本実施の形態における第1微細廃棄流路26および第2微細廃棄流路36は、上述したように、微細流路1の径より小さい径を有して形成されているが、図7においては、第1微細廃棄流路26および第2微細廃棄流路36と微細経路1との縮尺は実際とは異なって表記されている。
 このように、実施の形態2にかかる検体検査装置500における混合カートリッジ201によれば、ウィック材261を充填した第1微細廃棄流路26およびウィック材361を充填した第2微細廃棄流路36を設けたことにより、測定項目に応じた量の不確定混合溶液を、微細流路1を流通する混合溶液から効率的に分離することができ、より少量の検体と反応試薬でより高精度の検体の検査を行うことができる。
(実施の形態3)
 実施の形態2の混合カートリッジでは、ウィック材を充填した微細廃棄流路を、微細流路における検体と反応試薬の合流地点よりも下流位置に設けた構成となっていた。以下の実施の形態3の混合カートリッジは、ウィック材を充填した微細廃棄流路を、微細流路における検体と反応試薬の合流地点よりも上流位置に設けたものである。
 まず、検体検査装置の構成は実施の形態1と同様であるため説明を省略する(図1参照)。図9は、実施の形態3にかかる混合カートリッジ202の構成を示した模式図である。図9に示す混合カートリッジ202では、実施の形態1の混合カートリッジ200において第1微細廃棄流路6および第2微細廃棄流路16を配置したものではなく、第1微細廃棄流路46、第2微細廃棄流路56、および第3微細廃棄流路66を配置したものであり、その他の構成は実施の形態1と同様であるため説明を省略する。
 第1微細廃棄流路46は、微細流路1の第1試薬と検体とオイルの合流地点41より上流位置であって、第1試薬タンク4から送液された第1試薬が流通する微細流路1bにおける第1試薬タンク4の近傍に分岐して連通している。第1微細廃棄流路46は、微細流路1bの径より小さい径を有して形成されており、さらに、第1微細廃棄流路46の内部に不織布などのウィック性能を有するウィック材461を充填させ、ウィック材461の一端が微細流路1bに接するように設置されている。
 これにより、第1試薬が微細流路1bとウィック材461を充填した第1微細廃棄流路46との分岐地点を通過する際、微細流路1bを流通する第1試薬から不確定第1試薬(第1試薬の一部)を毛細管現象によりウィック材461で吸収することで、第1試薬から不確定第1試薬を分離する。ここで、不確定第1試薬とは、検査を行う測定項目に定められた検体と第1試薬の混合比率と異なる比率で混合される第1試薬の一部であって、第1試薬ポンプ14が定常動作に達するまでに第1試薬タンク4から送液される第1試薬である。
 第2微細廃棄流路56は、微細流路1の第1試薬と検体とオイルの合流地点41より上流位置であって、検体タンク5から送液された検体が流通する微細流路1aにおける検体タンク5の近傍に分岐して連通している。第2微細廃棄流路56は、第1微細廃棄流路46と同様に、微細流路1aの径より小さい径を有して形成されており、さらに、第2微細廃棄流路56の内部にウィック材561を充填させ、ウィック材561の一端が微細流路1aに接するように設置されている。
 これにより、第2試薬が微細流路1aとウィック材561を充填した第2微細廃棄流路56との分岐地点を通過する際、微細流路1aを流通する検体から不確定検体(検体の一部)を毛細管現象によりウィック材561で吸収することで、検体から不確定検体を分離する。ここで、不確定検体とは、検査を行う測定項目に定められた検体と第1試薬の混合比率と異なる比率で混合される検体の一部であって、検体ポンプ15が定常動作に達するまでに検体タンク5から送液される検体である。
 さらに、第3微細廃棄流路66は、微細流路1の第1試薬および検体の混合溶液と第3試薬の合流地点42より上流位置であって、第2試薬タンク24から送液された第2試薬が流通する微細流路1eにおける第2試薬タンク24の近傍に分岐して連通している。第3微細廃棄流路66は、第1微細廃棄流路46と同様に、微細流路1eの径より小さい径を有して形成されており、さらに、第3微細廃棄流路66の内部にウィック材661を充填させ、ウィック材661の一端が微細流路1eに接するように設置されている。
 これにより、第2試薬が微細流路1eとウィック材661を充填した第3微細廃棄流路66との分岐地点を通過する際、微細流路1eを流通する第2試薬から不確定第2試薬(第2試薬の一部)を毛細管現象によりウィック材661で吸収することで、第2試薬から不確定第2試薬を分離する。ここで、不確定第2試薬とは、検査を行う測定項目に定められた検体および第1試薬の混合溶液と第2試薬との混合比率と異なる比率で混合される第2試薬の一部であって、第2試薬ポンプ34が定常動作に達するまでに第2試薬タンク24から送液される第2試薬である。
 次に、本実施の形態にかかる混合カートリッジ202を備えた検体検査装置500の動作について説明する。実施の形態1と同様に、検体タンク5内に保持された検体は、検体ポンプ15によって微細流路1へ送液される。また、第1試薬タンク4内に保持された第1試薬は、第1試薬ポンプ14によって微細流路1へと送液される。また、第2試薬タンク24内に保持された第2試薬は、第2試薬ポンプ34によって微細流路1に送液される。第1試薬と検体とは微細流路1内の合流地点41で同時に供給されるように送液され、合流地点41において第1試薬と検体とが合流して混合されるとそれらの混合溶液が得られる。
 しかしながら、検体ポンプ15が定常動作に至るまでに送液された不確定検体、および第1試薬ポンプ14が定常動作に至るまでに送液された不確定第1試薬を混合しても、混合割合が安定しない混合溶液となるため測定に使用することができない。従って、不確定検体および不確定第1試薬を微細流路1から分離する必要がある。
 そこで、本実施の形態の混合カートリッジ202は、第1微細廃棄流路46内に不確定第1試薬を導入して微細流路1bから分離し、第2微細廃棄流路56に不確定検体を導入して微細流路1aから分離する。すなわち、混合カートリッジ202では、不確定第1試薬が微細流路1bと第1微細廃棄流路46との分岐地点へ達すると、毛細管現象により第1微細廃棄流路46へと不確定第1試薬が吸い上げられる。また、不確定検体が微細流路1aと第2微細廃棄流路56との分岐地点へ達すると、毛細管現象により第2微細廃棄流路56へと不確定検体が吸い上げられる。
 この場合、第1微細廃棄流路46および第2微細廃棄流路56は、それぞれ不確定第1試薬、不確定検体を充分吸い上げられる容量に事前に設計しておく必要があるが、実施の形態1における図3-1、3-2に例示したようにポンプの動作性能および反応試薬の混合比率により第1微細廃棄流路46および第2微細廃棄流路56の容量は設計可能である。このように、混合カートリッジ202では、合流地点41に至る前に微細流路1から不確定第1試薬および不確定検体を分岐あるいは分離することができるため、合流地点41において所望の混合比率の第1試薬と検体が混合され、安定した混合溶液を得ることができる。
 不確定第1試薬と不確定検体とを取り除いた検体と第1試薬の混合溶液は、微細流路1内にある第1磁石19まで搬送される。ここで、検体と第1試薬の攪拌動作、および第1測光セル11による検査については、実施の形態1と同様である。
 検体と第1試薬との混合時と同様に、検体と第1試薬とを混合した混合溶液と第2試薬との混合比率が不確定な第2試薬(不確定第2試薬)は、微細流路1eから第3微細廃棄流路66へと分離した後に混合溶液(検体と第1試薬を混合した混合溶液)と混合され、第2磁石29および第2攪拌制御部28によって攪拌され混合が促進される。その後、微細流路1内に設けられた第2測光セル21を検体と第1試薬と第2試薬を混合した混合溶液が満たすと、再び光学的な手法による光学検査部300(図1参照)の検査が行われる。
 このように、実施の形態3にかかる検体検査装置500における混合カートリッジ202によれば、ウィック材461を充填した第1微細廃棄流路46と、ウィック材561を充填した第2微細廃棄流路56と、ウィック材661を充填した第3微細廃棄流路66とを設けたことにより、測定項目に応じた量の不確定な第1試薬、検体、第2試薬を、微細流路1を流通する溶液から効率的に分離することができ、より少量の検体と反応試薬でより確実に高精度の検体の検査を行うことができる。
 なお、上述した実施の形態1では微細廃棄流路を微細流路に設け、実施の形態2、3ではウィック材を充填した微細廃棄流路を微細流路に設けていたがこれに限定されることはない。すなわち、同様の性能を確保していればよいため、毛細管現象を利用して不確定混合溶液や混合前の不確定溶液を分離する廃棄部分が微細流路に設けられている構造であればいずれの構成でもよい。
 また、実施の形態1、2では、第1微細廃棄流路6、26は、合流地点41と第1磁石19の配置位置との中間位置付近の微細経路1に連通しているが、これに限定されることはない。すなわち、合流地点41より下流位置であって、第1磁石19の配置位置より上流位置である微細流路1であればいずれに連通していてもよい。また、同様に、第2微細廃棄流路16、36は、合流地点42と第2磁石29の配置位置との中間位置付近の微細経路1に連通しているが、これに限定されることはない。すなわち、合流地点42より下流位置であって、第2磁石29の配置位置より上流位置である微細流路1であればいずれに連通していてもよい。
 また、実施の形態3では、第1微細廃棄流路46は、微細流路1bにおける第1試薬タンク4の近傍に配置されているが、これに限定されることなく、合流地点41の上流位置の微細流路1bにおけるいずれの位置に連通してもよい。また、同様に、第2微細廃棄流路56は、微細流路1aにおける検体タンク5の近傍に配置されているが、これに限定されることなく、合流地点41の上流位置の微細流路1aにおけるいずれの位置に連通してもよい。また、同様に、第3微細廃棄流路66は、微細流路1eにおける第2試薬タンク24の近傍に配置されているが、これに限定されることなく、合流地点42の上流位置の微細流路1eにおけるいずれの位置に連通してもよい。
 なお、本発明は、上記実施の形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化することができる。また、上記実施の形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成することができる。例えば、実施の形態に示される全構成要素からいくつかの構成要素を削除してもよい。さらに、異なる実施の形態にわたる構成要素を適宜組み合わせても良い。
 以上のように、本発明にかかる混合カートリッジおよび検体検査装置は、検体と反応試薬を混合した混合溶液を用いた検体の検査に有用であり、特に、検体と反応試薬の混合に適している。
 1 微細流路
 3 動作制御部
 4 第1試薬タンク
 5 検体タンク
 6、26、46 第1微細廃棄流路
 7 オイルタンク
 11 第1測光セル
 14 第1試薬ポンプ
 15 検体ポンプ
 16、36、56 第2微細廃棄流路
 17 オイルポンプ
 18 第1攪拌制御部
 19 第1磁石
 21 第2測光セル
 24 第2試薬タンク
 28 第2攪拌制御部
 29 第2磁石
 34 第2試薬ポンプ
 41、42 合流地点
 51、52 分岐地点
 100 測定項目選択部
 200、201、202 混合カートリッジ
 261、361、461、561、661 ウィック材
 300 光学検査部
 400 制御部
 500 検体検査装置

Claims (12)

  1.  検体を含む第1溶液と前記検体の検査すべき項目である測定項目に対応する第2溶液とを混合する混合カートリッジであって、
     前記第1溶液および前記第2溶液のうち少なくとも一方を含む溶液が流通する流路を形成する部材と、
     前記第1溶液を前記流路に供給する第1送液部と、
     前記第2溶液を前記流路に供給する第2送液部と、
     前記流路に連通し、前記流路を流通する前記溶液から前記溶液の一部を毛細管現象により分離する分離部と、
     を備えたことを特徴とする混合カートリッジ。
  2.  前記分離部は、前記流路における前記第1溶液と前記第2溶液とが合流する位置である合流位置より下流位置に連通し、前記第1溶液と前記第2溶液とが前記合流位置で混合された混合溶液から、前記混合溶液の一部を毛細管現象により分離することを特徴とする請求項1に記載の混合カートリッジ。
  3.  前記分離部は、前記流路を流通する前記混合溶液から、前記混合溶液の一部であって、前記測定項目に定められた前記第1溶液と前記第2溶液の混合比率と異なる比率で混合された不確定混合溶液を、毛細管現象により分離することを特徴とする請求項2に記載の混合カートリッジ。
  4.  前記分離部は、前記流路における前記第1溶液と前記第2溶液とが合流する位置である合流位置より上流位置に連通し、前記流路を流通する混合前の前記溶液から、前記溶液の一部を毛細管現象により分離することを特徴とする請求項1に記載の混合カートリッジ。
  5.  前記分離部は、前記流路の径より小さい径を有し、前記流路から分岐した流路である微細廃棄流路を含むことを特徴とする請求項1に記載の混合カートリッジ。
  6.  前記分離部は、さらに、前記微細廃棄流路内に充填された、液体を吸収するウィック材を含むことを特徴とする請求項5に記載の混合カートリッジ。
  7.  前記第1送液部は、
     前記第1溶液を保持する第1タンクと、
     前記第1タンク内の圧力を制御する第1圧力制御部と、
    を備え、
     前記圧力を変化させることで前記第1溶液を前記流路に供給し、
     前記第2送液部は、
     前記第2溶液を保持する第2タンクと、
     前記第2タンク内の圧力を制御する第2圧力制御部と、
    を備え、
     前記圧力を変化させることで前記第2溶液を前記流路に供給することを特徴とする請求項1に記載の混合カートリッジ。
  8.  前記第1圧力制御部および前記第2圧力制御部は、シリンジポンプであることを特徴とする請求項7に記載の混合カートリッジ。
  9.  前記検体の検査を行う前に、前記第1溶液と前記第2溶液とを混合した混合溶液を攪拌する攪拌部材をさらに備えたことを特徴とする請求項1に記載の混合カートリッジ。
  10.  検体を含む第1溶液と前記検体の検査すべき項目である測定項目に対応する第2溶液とを混合した混合溶液を用いて前記検体の検査を行う検体検査装置であって、
     前記第1溶液および前記第2溶液のうち少なくとも一方を含む溶液が流通する流路を形成する部材と、
     前記第1溶液を前記流路に供給する第1送液部と、
     前記測定項目を選択する選択部と、
     前記第2溶液を前記流路に供給する第2送液部と、
     前記流路に連通し、前記流路を流通する前記溶液から前記溶液の一部を毛細管現象により分離する分離部と、
     前記流路内の前記溶液の一部が分離された混合溶液に光を照射して前記検体の検査を行う検査部と、
     を備えたことを特徴とする検体検査装置。
  11.  検体を含む第1溶液と前記検体の検査すべき項目である第1測定項目に対応する第2溶液とを混合した第1混合溶液を用いて前記検体の検査を行う検体検査装置であって、
     前記第1溶液および前記第2溶液のうち少なくとも一方を含む溶液が流通する流路を形成する部材と、
     前記第1溶液を前記流路に供給する第1送液部と、
     前記第1測定項目を選択する選択部と、
     前記第2溶液を前記流路に供給する第2送液部と、
     前記流路における前記第1溶液と前記第2溶液とが合流する位置である第1合流位置より下流位置に連通し、前記第1合流位置で混合された前記第1混合溶液から、前記第1測定項目に定められた前記第1溶液と前記第2溶液の混合比率と異なる比率で混合された前記第1混合溶液の一部の溶液である第1不確定混合溶液を、毛細管現象により分離する分離部と、
     前記流路内の前記第1不確定混合溶液が分離された第1混合溶液に光を照射して前記検体の検査を行う検査部と、
     を備えたことを特徴とする検体検査装置。
  12.  前記検体検査装置は、前記第1混合溶液と前記検体の検査すべき項目である第2測定項目に対応する第3溶液とを混合した第2混合溶液を用いて前記検体の検査を行い、
     前記部材は、さらに、前記第3溶液および前記第1混合溶液の少なくとも一方を含む前記溶液が流通する前記流路を形成し、
     前記第3溶液を前記流路に供給する第3送液部をさらに備え、
     前記選択部は、さらに、前記第2測定項目を選択し、
     前記分離部は、さらに、前記流路における前記第1混合溶液と前記第3溶液とが合流する位置である第2合流位置より下流位置に連通し、前記第2合流位置で混合された第2混合溶液から、前記第2測定項目に定められた前記第1混合溶液と前記第3溶液の混合比率と異なる比率で混合された前記第2混合溶液の一部の溶液である第2不確定混合溶液を、毛細管現象により分離し、
     前記検査部は、前記流路内の前記第2不確定混合溶液が分離された第2混合溶液に光を照射して前記検体の検査を行うことを特徴とする請求項11に記載の検体検査装置。
PCT/JP2009/068194 2008-12-01 2009-10-22 混合カートリッジおよび検体検査装置 WO2010064503A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/150,658 US20110274585A1 (en) 2008-12-01 2011-06-01 Mixing cartridge and sample testing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-306564 2008-12-01
JP2008306564A JP2010127905A (ja) 2008-12-01 2008-12-01 混合カートリッジおよび検体検査装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/150,658 Continuation US20110274585A1 (en) 2008-12-01 2011-06-01 Mixing cartridge and sample testing device

Publications (1)

Publication Number Publication Date
WO2010064503A1 true WO2010064503A1 (ja) 2010-06-10

Family

ID=42233157

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/068194 WO2010064503A1 (ja) 2008-12-01 2009-10-22 混合カートリッジおよび検体検査装置

Country Status (3)

Country Link
US (1) US20110274585A1 (ja)
JP (1) JP2010127905A (ja)
WO (1) WO2010064503A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012084615A1 (de) * 2010-12-20 2012-06-28 Boehringer Ingelheim Microparts Gmbh Verfahren zum mischen wenigstens einer probenlösung mit wenigstens einem reagenz und vorrichtung

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001252897A (ja) * 2000-03-10 2001-09-18 Ritsumeikan マイクロ分析チップ、及びその製造方法
JP2006284322A (ja) * 2005-03-31 2006-10-19 Konica Minolta Medical & Graphic Inc マイクロ総合分析システム
JP2007083190A (ja) * 2005-09-22 2007-04-05 Konica Minolta Medical & Graphic Inc マイクロリアクタ

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6416642B1 (en) * 1999-01-21 2002-07-09 Caliper Technologies Corp. Method and apparatus for continuous liquid flow in microscale channels using pressure injection, wicking, and electrokinetic injection
JP2005007226A (ja) * 2003-06-17 2005-01-13 Yaskawa Electric Corp 試料混合方法及びその装置
EP1746158A4 (en) * 2004-05-07 2009-11-25 Konica Minolta Med & Graphic MICROREACTOR FOR TESTING, GENETIC TEST EQUIPMENT AND GENETIC TEST PROCEDURE

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001252897A (ja) * 2000-03-10 2001-09-18 Ritsumeikan マイクロ分析チップ、及びその製造方法
JP2006284322A (ja) * 2005-03-31 2006-10-19 Konica Minolta Medical & Graphic Inc マイクロ総合分析システム
JP2007083190A (ja) * 2005-09-22 2007-04-05 Konica Minolta Medical & Graphic Inc マイクロリアクタ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012084615A1 (de) * 2010-12-20 2012-06-28 Boehringer Ingelheim Microparts Gmbh Verfahren zum mischen wenigstens einer probenlösung mit wenigstens einem reagenz und vorrichtung
US9289764B2 (en) 2010-12-20 2016-03-22 Boehringer Ingelheim Microparts Gmbh Method for mixing at least one sample solution having at least one reagent, and device

Also Published As

Publication number Publication date
US20110274585A1 (en) 2011-11-10
JP2010127905A (ja) 2010-06-10

Similar Documents

Publication Publication Date Title
JP4593451B2 (ja) マイクロリアクターシステム及び送液方法
KR101103088B1 (ko) 마이크로 화학분석장치, 그 측정방법 및 피검시료 채취기구
US8114351B2 (en) Analysis system and method for the analysis of a body fluid sample for an analyte contained therein
WO2010010858A1 (ja) キャピラリー電気泳動法による分析装置
EP2612154B1 (en) Pressure monitoring of whole blood aspirations to determine completeness of whole blood mixing
JP2003190751A (ja) 混合方法、混合装置、及び該混合装置を用いた検査装置
WO2010064503A1 (ja) 混合カートリッジおよび検体検査装置
JP5489283B2 (ja) 自動分析装置
CN211978707U (zh) 特定蛋白分析仪
JP5553705B2 (ja) 試薬調製装置
CN111819449A (zh) 自动分析装置
JPH06130072A (ja) 自動分析装置
US20210387190A1 (en) Microfluidic sample preparation device offering high repeatability
JP3418329B2 (ja) 試料分注方法及び自動分析装置
RU2730922C2 (ru) Устройство и способ для высокоточного отбора проб жидкостей в автоматическом анализаторе проб
JP2016173330A (ja) 検査デバイス
JP6783674B2 (ja) 自動分析装置、自動分析装置における廃液方法、及び、三方電磁弁
CN108449963B (zh) 单次注射竞争分析
JP5044462B2 (ja) 検体検査装置
CN112485251A (zh) 特定蛋白分析仪及混匀方法
JP2006266925A (ja) マイクロ総合分析システム
JP5348220B2 (ja) 自動分析装置
JP4917491B2 (ja) 希釈装置、希釈装置を備えた電解質分析装置または生化学分析装置、希釈液充填方法、および希釈液充填プログラム
WO2021241357A1 (ja) 自動分析装置の制御方法
US20230044702A1 (en) Electrolyte analysis apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09830271

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09830271

Country of ref document: EP

Kind code of ref document: A1