WO2010064466A1 - ボイラ構造 - Google Patents
ボイラ構造 Download PDFInfo
- Publication number
- WO2010064466A1 WO2010064466A1 PCT/JP2009/062123 JP2009062123W WO2010064466A1 WO 2010064466 A1 WO2010064466 A1 WO 2010064466A1 JP 2009062123 W JP2009062123 W JP 2009062123W WO 2010064466 A1 WO2010064466 A1 WO 2010064466A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- furnace
- pressure loss
- wall
- boiler
- flow rate
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B21/00—Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically
- F22B21/02—Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically built-up from substantially straight water tubes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B35/00—Control systems for steam boilers
- F22B35/06—Control systems for steam boilers for steam boilers of forced-flow type
- F22B35/10—Control systems for steam boilers for steam boilers of forced-flow type of once-through type
- F22B35/108—Control systems for steam generators having multiple flow paths
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B35/00—Control systems for steam boilers
- F22B35/06—Control systems for steam boilers for steam boilers of forced-flow type
- F22B35/10—Control systems for steam boilers for steam boilers of forced-flow type of once-through type
- F22B35/12—Control systems for steam boilers for steam boilers of forced-flow type of once-through type operating at critical or supercritical pressure
Definitions
- the present invention relates to a boiler structure in which the flow rate distribution of a boiler evaporation pipe (furnace water cooling wall) is made appropriate.
- the internal fluid at the furnace inlet is in the state of water, so the pressure loss that occurs when the internal fluid passes through the orifice (hereinafter also referred to as “pressure loss”) is proportional to the square of the internal fluid flow rate. Will be.
- pressure loss the pressure loss that occurs when the internal fluid passes through the orifice
- the orifice effect is reduced at the partial load with a low flow rate, and the optimal flow rate distribution is not achieved.
- the orifice effect (pressure loss) becomes excessive at the rated load, and the flow distribution is not optimal.
- Patent Documents 1 and 2 require a control mechanism that adjusts the opening of the flow rate adjustment valve in accordance with the fluid outlet temperature of the furnace wall.
- the present invention has been made in view of the above circumstances, and in a furnace heat load in a wide range from a partial load to a rated load, an appropriate flow distribution to each furnace wall becomes possible with a simple configuration without moving parts.
- the purpose is to provide a boiler structure.
- the present invention employs the following means.
- a large number of boiler evaporation pipes arranged on a wall surface of a furnace form a furnace water cooling wall, and when the water pumped to the boiler evaporation pipe flows through the inside of the furnace,
- a pressure loss adjusting unit for the internal fluid is provided in an outlet connecting pipe connecting the outlet side of each water cooling wall in which the furnace water cooling wall is divided into a plurality.
- the outlet fluid connection pipe connecting the outlet side of each water cooling wall divided into a plurality of furnace water cooling walls is provided with an internal fluid pressure loss adjustment unit, the internal state almost in the state of steam The flow rate can be adjusted in the region where the fluid flows. That is, the internal fluid almost in the vapor state has almost the same volume weight at the rated load of high pressure / high weight flow rate and partial load at low pressure / low weight flow rate, and therefore the pressure loss of the furnace outlet connecting pipe Is linearly proportional to the weight of the internal fluid, and flow rate adjustment for each of the furnace walls divided into a plurality of parts becomes easy.
- the pressure adjusting unit includes individual adjustment of pressure loss generated in the outlet connecting pipe, a thick short pipe part having the same outer diameter inserted into the outlet connecting pipe, and a fixed orifice inserted into the outlet connecting pipe. It is desirable that it is configured by one or a plurality of combinations.
- the pressure loss can be adjusted by changing at least one of the inner diameter, the number, and the flow path length of the tube material constituting the outlet connecting pipe.
- the thick short tube portion having the same outer diameter inserted into the outlet connecting pipe is a pipe material whose inner diameter is reduced by increasing the wall thickness, and the pressure loss can be adjusted by changing the inner diameter and length.
- the fixed orifice inserted in the outlet connecting pipe can adjust the pressure loss by changing the orifice diameter.
- each furnace wall has a boiler structure capable of appropriately maintaining the steam temperature and the metal temperature of the boiler evaporator tube over a wide load range. That is, it is possible to provide a boiler structure capable of distributing an appropriate flow rate to each furnace wall with a simple configuration without moving parts in a wide range of furnace thermal loads from partial load to rated load.
- FIG. 1 is a system diagram showing a first embodiment as an embodiment of a boiler structure according to the present invention. It is a perspective view which shows the outline
- the boiler 1 includes a large number of boiler evaporating tubes 3 arranged on the wall surface of the furnace 2, forming a water cooling wall 4, and the water pumped to the boiler evaporating tube 3 is piped.
- It is a supercritical transformer once-through boiler configured such that when flowing inside, water is heated inside the furnace 2 to generate steam.
- the horizontal cross section of the furnace 2 is rectangular, and a furnace water cooling wall 4 divided into four front, rear, left and right surfaces is formed.
- each furnace water cooling wall 4 is connected to the outlet. It is connected to the ceiling water cooling wall 5 through a pipe 10.
- the furnace water cooling wall 4 is divided into a left side wall 4A, a front wall 4B, and a right side wall 4C.
- the above-mentioned furnace wall 4 is supplied with water for generating steam from the economizer.
- the water supplied from the economizer is distributed to the header 21 provided for each of the four furnace water cooling walls 4 divided through the inlet connecting pipe 20.
- a number of boiler steam pipes 3 extending in the vertical direction and forming the furnace wall 4 are connected to the header 21.
- the outlet communication pipe 10 of the furnace water cooling wall 4 is provided with an internal fluid pressure loss adjusting section.
- the pressure loss adjusting unit shown in FIG. 1 individually adjusts the pressure loss generated in the outlet connecting pipe 10. That is, the pressure loss of each furnace water cooling wall 4 is individually adjusted by changing at least one of the inner diameter, the number, and the flow path length of the pipe material constituting the outlet connecting pipe 10.
- the inner diameter of the outlet communication pipe 10 may be, for example, pipe materials having the same outer diameter and different wall thicknesses, or pipe materials having different outer diameters and wall thicknesses.
- the pipe material with a larger road cross-sectional area has a lower pressure loss.
- the number of the outlet communication pipes 10 is to adjust the pressure loss by changing the cross-sectional area of the flow path, similarly to the above-described inner diameter. Specifically, when the outlet connecting pipe 10 is made of two pipe materials, the cross-sectional area of the flow path is doubled and the pressure loss is reduced.
- the channel length of the outlet connecting pipe 10 is adjusted by utilizing the fact that the pressure loss is proportional to the channel length. In this case, the flow path length is the equivalent pipe length, and the pressure loss increases as the equivalent pipe length increases.
- any one of the above-described inner diameter, number and flow path length may be changed, or a plurality of them may be combined.
- Good That is, in the configuration example shown in FIG. 1, the inner diameters of the tube material (portion indicated by a thick line) 11 connected to the left side wall 4A and the right side wall 4C and the tube material (portion indicated by a thin line) 12 connected to the front wall 4B.
- the pressure loss of the side wall side and the front and rear wall side is adjusted by changing the flow path length, but it is not limited to this.
- an appropriate pipe inner diameter, number, etc. may be set in consideration of the total flow rate of the internal fluid.
- the internal fluid flowing through the communication outlet pipe 10 described above is overheated with water supplied from the economizer to form a two-phase flow, and most of the fluid is in a steam state. For this reason, the volume flow rate of the steam is substantially the same at the rated load of high pressure / high weight flow rate and at the partial load of low pressure / low weight flow rate. Accordingly, the pressure loss at the outlet liaison 10 of the furnace 4 is linearly proportional to the internal fluid weight flow rate, and appropriate flow rate distribution to each furnace water cooling wall 4 is achieved over a wide load range from partial load to rated load. It can be easily realized. As a result, each furnace water cooling wall 4 can be maintained at an appropriate steam temperature and a metal temperature of the boiler evaporator tube 3 in a wide load range.
- the pressure loss adjustment unit is provided in a region (flow path) where the pressure loss is linearly proportional to the weight flow rate of the internal fluid. Therefore, the pressure loss can be easily and reliably adjusted, and even if there are no moving parts such as a control mechanism and a flow rate adjusting valve, for example, as shown in FIG. Appropriate flow distribution can be implemented for each. In other words, by providing the pressure loss adjusting unit of the present invention, the flow rate distribution for each of the furnace water cooling walls 4 becomes stable with almost no fluctuation in the wide load range of the boiler 1.
- the outlet connecting pipe 10A is formed by inserting a thick short pipe section 14 having the same outer diameter into the pipe material 13, and each furnace water cooling is caused by a pressure loss caused when the internal fluid passes through the thick short pipe section 14.
- the flow distribution to the wall 4 is optimally adjusted.
- the thick short tube portion 14 has the same outer diameter as that of the tube material 13, and a tube material whose inner diameter is reduced by increasing the wall thickness is used. That is, the pressure loss can be adjusted by changing the inner diameter and the length of the thick-walled short tube portion 14.
- the internal fluid flows in a two-phase flow or vapor state with a high steam ratio
- the pressure loss adjustment unit is in a region (flow path) where the pressure loss is linearly proportional to the weight flow rate of the internal fluid. Since the thick short tube portion 14 is provided, the pressure loss can be easily and reliably adjusted, and an appropriate flow rate for each furnace water cooling wall 4 over a wide load range of the boiler 1 without a control mechanism or a flow rate adjusting valve. Allocation can be implemented.
- the outlet connecting pipe 10B is formed by inserting the orifice 15 into the pipe material 13, and the flow distribution to each furnace water cooling wall 4 is optimally adjusted by the pressure loss generated when the internal fluid passes through the orifice 15. .
- the orifice 15 in this case, a fixed orifice fixed to a predetermined orifice diameter is used. That is, the pressure loss can be adjusted by changing the diameter of the orifice opening in the orifice 15.
- the internal fluid flows in a two-phase flow or vapor state with a high steam ratio
- the pressure loss adjustment unit is in a region (flow path) where the pressure loss is linearly proportional to the weight flow rate of the internal fluid. Since the orifice 15 is provided, the pressure loss can be easily and reliably adjusted, and an appropriate flow rate distribution for each furnace water cooling wall 4 can be performed over a wide load range of the boiler 1 without a control mechanism or a flow rate adjusting valve. be able to.
- the pressure adjusting unit described above includes the individual adjustment of the pressure loss generated in the outlet connecting pipe 10, the thick short pipe part 14 having the same outer diameter inserted into the outlet connecting pipe 10A, and the fixed orifice 15 inserted into the outlet connecting pipe 10B. It is also possible to configure one or a plurality of combinations. For example, the pressure loss can be adjusted more finely and the adjustment range can be expanded by making an optimal combination according to various conditions.
- the pressure loss is adjusted by providing the outlet communication members 30 and 31 with the pressure loss adjusting portion of the internal fluid.
- individual adjustment of pressure loss generated in the outlet communication pipes 30 and 31 in which the internal fluid is almost steam is adopted as the pressure loss adjustment unit of the outlet communication officers 30 and 31. That is, the pressure loss is adjusted by changing at least one of the inner diameter, the number, and the flow path length of the pipe material constituting the outlet communication pipes 30 and 31.
- the thick short tube section 14 is provided in the middle of the outlet communication pipes 30A and 31A in which the internal fluid is almost steam as the pressure loss adjusting section of the outlet communication officers 30A and 31A. Is inserted. That is, in the middle of the tube material constituting the outlet connecting pipes 30A and 31A, the thick short pipe portion 14 having the same outer diameter is inserted by increasing the wall thickness, and the inner diameter and length thereof are changed. The pressure loss is adjusted.
- the orifice 15 is inserted in the middle of the outlet communication pipes 30B and 31B in which the internal fluid is almost steam as the pressure loss adjusting section of the outlet communication officers 30B and 31B. Yes.
- the orifice 15 is inserted in the middle of the pipe material constituting the outlet communication pipes 30B and 31B, and the pressure loss is adjusted by changing the orifice diameter.
- the pressure adjusting unit shown in FIGS. 6 to 8 only adopts any one of the individual adjustment of the pressure loss at the outlet liaison officers 30, 31 and the like, the insertion of the thick short tube portion 14, and the insertion of the orifice 15. Alternatively, a plurality of them may be combined.
- the internal fluid flows in a two-phase flow or steam state with a high steam ratio, and the pressure loss is linearly proportional to the weight flow rate of the internal fluid. Since the pressure loss adjusting section is provided in the (flow path), the pressure loss can be easily and reliably adjusted, and the additional water cooling wall 6 can be provided over a wide load range of the boiler 1 without a control mechanism or a flow rate adjusting valve. Appropriate flow distribution can be implemented.
- the modification shown in FIGS. 9 to 11 shows a configuration example combined with the above-described first embodiment. That is, the third modification shown in FIG. 9 is a combination of FIGS. 1 and 6, the fourth modification shown in FIG. 10 is a combination of FIGS. 4 and 7, and the fifth modification shown in FIG. 5 and FIG.
- the combination of the first embodiment and the second embodiment is not limited to the combination shown in FIGS. 9 to 11, and may be changed as appropriate, for example, the combination of FIG. 1 and FIG. it can.
- the flow rate is adjusted by the outlet connecting pipe through which the internal fluid almost in the state of steam flows. Therefore, in the outlet connecting pipe of the furnace water cooling wall, the pressure loss is linearly proportional to the internal fluid weight.
- the flow rate adjustment for each furnace wall divided into a plurality is facilitated. For this reason, it becomes a boiler structure that can distribute the flow rate appropriately to each furnace wall over a wide load range from partial load to rated load. As a result, each furnace wall has a steam temperature and a metal temperature of the boiler evaporator tube over a wide load range. Can be held properly.
- the present invention is not limited to the above-described embodiment, and can be changed as appropriate without departing from the scope of the invention.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Control Of Steam Boilers And Waste-Gas Boilers (AREA)
Abstract
Description
すなわち、各火炉壁(前壁/後壁/左右側壁)へ流す内部流体の流量調整に関し、それぞれの壁面の吸熱量に応じて、部分負荷から定格負荷まで適正な流量配分とする必要がある。このため、従来のボイラ構造においては、上述した内部流体の流量調整をおこなうため、火炉入口にオリフィスが設けられている。
このため、火炉入口のオリフィス径を定格負荷に合わせて各壁面間の流量配分を最適に調整すると、流量の少ない部分負荷時にはオリフィス効果(圧損)が減少し、最適な流量配分とはならない。一方、火炉入口のオリフィス径を部分負荷に合わせて各壁間の流量配分を最適に調整すると、定格負荷ではオリフィス効果(圧損)が過大となり、やはり最適な流量配分とはならない。
従って、上述した火炉入口のオリフィスによる各壁間の流量調整では、部分負荷から定格負荷まで広い流量範囲にわたって内部流体を最適に流量配分することは困難である。このため、いずれかの火炉壁においては、内部流体配分量のアンバランスにより、出口蒸発温度もしくは蒸発管メタル温度が他の壁面より大幅に高くなることが懸念され、全ての負荷で蒸発管メタル温度を許容値以下に抑えるためには、流量配分の調整に細心の注意を払う必要があった。
本発明は、上記の事情に鑑みてなされたものであり、部分負荷から定格負荷まで広い範囲の火炉熱負荷において、可動部のない簡単な構成で各火炉壁に対する適正な流量配分が可能になるボイラ構造の提供を目的としている。
本発明の一態様に係るボイラ構造は、火炉の壁面に配設された多数のボイラ蒸発管が火炉水冷壁を形成し、前記ボイラ蒸発管に圧送された水が管内部を流れる際に前記火炉内で加熱されて蒸気を生成するボイラ構造において、前記火炉水冷壁が複数に分割された各水冷壁の出口側を接続する出口連絡管に内部流体の圧力損失調整部を設けたものである。
ここで、出口連絡管に生じる圧力損失の個別調整は、出口連絡管を構成する管素材の内径、本数及び流路長さについて、少なくともひとつを変化させて圧力損失を調整することができる。
出口連絡管に挿入した同外径の厚肉短管部は、肉厚を増すことで内径を小さくした管素材であり、その内径や長さを変化させて圧力損失を調整することができる。
出口連絡管に挿入した固定オリフィスは、オリフィス径を変化させて圧力損失を調整することができる。
<第1の実施形態>
図1及び図2に示す実施形態において、ボイラ1は、火炉2の壁面に配設された多数のボイラ蒸発管3が火炉水冷壁4を形成し、ボイラ蒸発管3に圧送された水が管内部を流れる際、火炉2の内部で水が加熱されて蒸気を生成するように構成された超臨界変圧貫流ボイラである。図示のボイラ1は、火炉2の水平断面が矩形状とされ、前後左右の4面に分割された火炉水冷壁4が形成され、たとえば図1に示すように、各火炉水冷壁4が出口連絡管10を介して天井水冷壁5に接続されている。
なお、図1において、火炉水冷壁4は、左側壁4A、前壁4B、右側壁4Cに分割されている。
出口連絡管10の本数は、上述した内径と同様に、流路断面積を変化させて圧力損失の調整を行うものである。具体的には、出口連絡管10を2本の管素材により構成すると、流路断面積が倍増して圧力損失は小さくなる。
出口連絡管10の流路長さは、圧力損失が流路長さに比例することを利用して調整を行うものである。この場合の流路長さは相当管長のことであり、相当管長が長くなると圧力損失は大きくなる。
この結果、各火炉水冷壁4では、広い負荷範囲で適正な蒸気温度及びボイラ蒸発管3のメタル温度に保持することが可能となる。
この変形例では、管素材13に同外径の厚肉短管部14を挿入した出口連絡管10Aとされ、内部流体が厚肉短管部14を通過して生じる圧力損失により、各火炉水冷壁4に対する流量配分を最適に調整している。この場合の厚肉短管部14は、管素材13と同外径を有し、肉厚を増すことで内径を小さくした管素材が使用される。すなわち、厚肉短管部14の内径や長さを変化させることにより、圧力損失を調整することができる。
この変形例では、管素材13にオリフィス15を挿入した出口連絡管10Bとされ、内部流体がオリフィス15を通過して生じる圧力損失により、各火炉水冷壁4に対する流量配分を最適に調整している。この場合のオリフィス15は、所定のオリフィス径に固定された固定オリフィスが使用される。すなわち、オリフィス15に開口するオリフィス径を変化させることにより、圧力損失を調整することができる。
図6から図11に示す実施形態においては、4分割された左側壁4A、前壁4B、右側壁4Cに加えて、さらに、後壁6を3分割した火炉水冷壁6A,6B,6Cが設けられている。
節炭器から後壁6に供給された水は、火炉水冷壁4と同様に加熱を受けて二相流または蒸気の内部流体となる。この内部流体は、後壁6と天井水冷壁5の下流とを連結する出口連絡官30を通り、途中の副側壁管7を経由して火炉水冷壁4で生成された蒸気に合流する流路系統と、後壁6と天井水冷壁5の下流とを連結する出口連絡官31を通り、途中の後壁吊下管8を経由して火炉水冷壁4で生成された蒸気に合流する流路系統とに分かれている。
図6に示す実施形態は、出口連絡官30,31の圧力損失調整部として、内部流体がほとんど蒸気である出口連絡管30,31に生じる圧力損失の個別調整が採用されている。すなわち、出口連絡管30,31を構成する管素材の内径、本数及び流路長さについて、少なくともひとつを変化させて圧力損失を調整している。
図8に示す本実施形態の第2変形例は、出口連絡官30B,31Bの圧力損失調整部として、内部流体がほとんど蒸気である出口連絡管30B,31Bの途中に、オリフィス15を挿入している。すなわち、出口連絡管30B,31Bを構成する管素材の途中にオリフィス15を挿入し、そのオリフィス径を変化させて圧力損失を調整している。
図6から図8に示す圧力調整部は、出口連絡官30,31等における圧力損失の個別調整、厚肉短管部14の挿入及びオリフィス15の挿入について、いずれか1つを単独採用するだけでなく、複数を組み合せてもよい。
第1の実施形態と第2の実施形態との組み合せについては、図9から図11に示した組み合せに限定されることはなく、たとえば図1と図7との組み合せなど、適宜変更することができる。
本発明は上述した実施形態に限定されることはなく、その要旨を逸脱しない範囲内において適宜変更することができる。
2 火炉
3 ボイラ蒸発管
4 火炉水冷壁
5 天井水冷壁
6 後壁(火炉水冷壁)
10,10A,10B 出口連絡官
14 厚肉短管部
15 オリフィス
20 入口連結管
21 ヘッダ
Claims (2)
- 火炉の壁面に配設された多数のボイラ蒸発管が火炉水冷壁を形成し、前記ボイラ蒸発管に圧送された水が管内部を流れる際に前記火炉内で加熱されて蒸気を生成するボイラ構造において、
前記火炉水冷壁が複数に分割された各水冷壁の出口側を接続する出口連絡管に内部流体の圧力損失調整部を設けたボイラ構造。 - 前記圧力調整部は、前記出口連絡管に生じる圧力損失の個別調整、前記出口連絡管に挿入した同外径の厚肉短管部、及び前記出口連絡管に挿入した固定オリフィスを一または複数組み合せて構成されている請求項1に記載のボイラ構造。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009801317567A CN102124267B (zh) | 2008-12-03 | 2009-07-02 | 锅炉结构 |
EP09830235.9A EP2357406B1 (en) | 2008-12-03 | 2009-07-02 | Boiler structure |
US13/056,219 US9291343B2 (en) | 2008-12-03 | 2009-07-02 | Boiler structure |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008-308470 | 2008-12-03 | ||
JP2008308470A JP5193006B2 (ja) | 2008-12-03 | 2008-12-03 | ボイラ構造 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010064466A1 true WO2010064466A1 (ja) | 2010-06-10 |
Family
ID=42233123
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/062123 WO2010064466A1 (ja) | 2008-12-03 | 2009-07-02 | ボイラ構造 |
Country Status (5)
Country | Link |
---|---|
US (1) | US9291343B2 (ja) |
EP (1) | EP2357406B1 (ja) |
JP (1) | JP5193006B2 (ja) |
CN (1) | CN102124267B (ja) |
WO (1) | WO2010064466A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012016749A3 (de) * | 2010-08-04 | 2013-02-07 | Siemens Aktiengesellschaft | Zwangdurchlaufdampferzeuger |
CN106152170A (zh) * | 2016-08-20 | 2016-11-23 | 江苏太湖锅炉股份有限公司 | 一种圆形组合式炉膛受热单元结构及其组成的炉膛 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5843308A (ja) * | 1981-09-07 | 1983-03-14 | 三菱重工業株式会社 | ボイラ |
JPS5984001A (ja) | 1982-11-08 | 1984-05-15 | バブコツク日立株式会社 | ボイラ装置 |
JPS5986802A (ja) | 1982-11-09 | 1984-05-19 | バブコツク日立株式会社 | ボイラ装置 |
JPS59129306A (ja) * | 1983-01-13 | 1984-07-25 | 三菱重工業株式会社 | 流量分配装置 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB279178A (en) * | 1926-07-24 | 1927-10-24 | Ernst Voelcker | Improvements in vertical water tube boilers |
GB490459A (en) | 1935-12-18 | 1938-08-16 | Babcock & Wilcox Ltd | Improvements in forced-flow steam and other vapour generators |
CH378908A (de) | 1960-06-21 | 1964-06-30 | Sulzer Ag | Verfahren zum Betrieb eines Zwangdurchlaufdampferzeugers und Zwangdurchlaufdampferzeuger zum Durchführen des Verfahrens |
US3399656A (en) * | 1967-01-19 | 1968-09-03 | Electrodyne Res Corp | Circulation system for a steam generator |
US3872836A (en) * | 1973-09-18 | 1975-03-25 | Foster Wheeler Corp | Coal-fired generator of medium to large capacity |
US4300481A (en) * | 1979-12-12 | 1981-11-17 | General Electric Company | Shell and tube moisture separator reheater with outlet orificing |
CN87101263A (zh) | 1987-12-22 | 1988-07-27 | 梁丰新 | 热水锅炉 |
US5713311A (en) * | 1996-02-15 | 1998-02-03 | Foster Wheeler Energy International, Inc. | Hybrid steam generating system and method |
US6445880B1 (en) * | 2001-06-01 | 2002-09-03 | Aerco International, Inc. | Water heating system with automatic temperature control |
US6817319B1 (en) * | 2003-11-25 | 2004-11-16 | Precision Boilers, Inc. | Boiler |
-
2008
- 2008-12-03 JP JP2008308470A patent/JP5193006B2/ja active Active
-
2009
- 2009-07-02 WO PCT/JP2009/062123 patent/WO2010064466A1/ja active Application Filing
- 2009-07-02 EP EP09830235.9A patent/EP2357406B1/en active Active
- 2009-07-02 US US13/056,219 patent/US9291343B2/en active Active
- 2009-07-02 CN CN2009801317567A patent/CN102124267B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5843308A (ja) * | 1981-09-07 | 1983-03-14 | 三菱重工業株式会社 | ボイラ |
JPS5984001A (ja) | 1982-11-08 | 1984-05-15 | バブコツク日立株式会社 | ボイラ装置 |
JPS5986802A (ja) | 1982-11-09 | 1984-05-19 | バブコツク日立株式会社 | ボイラ装置 |
JPS59129306A (ja) * | 1983-01-13 | 1984-07-25 | 三菱重工業株式会社 | 流量分配装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2357406A4 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012016749A3 (de) * | 2010-08-04 | 2013-02-07 | Siemens Aktiengesellschaft | Zwangdurchlaufdampferzeuger |
CN103154611A (zh) * | 2010-08-04 | 2013-06-12 | 西门子公司 | 强制直流锅炉 |
AU2011287835B2 (en) * | 2010-08-04 | 2014-03-20 | Siemens Aktiengesellschaft | Forced-flow steam generator |
CN103154611B (zh) * | 2010-08-04 | 2016-03-16 | 西门子公司 | 强制直流锅炉 |
US9291344B2 (en) | 2010-08-04 | 2016-03-22 | Siemens Aktiengesellschaft | Forced-flow steam generator |
CN106152170A (zh) * | 2016-08-20 | 2016-11-23 | 江苏太湖锅炉股份有限公司 | 一种圆形组合式炉膛受热单元结构及其组成的炉膛 |
Also Published As
Publication number | Publication date |
---|---|
EP2357406A1 (en) | 2011-08-17 |
US20110126781A1 (en) | 2011-06-02 |
EP2357406A4 (en) | 2016-02-24 |
EP2357406B1 (en) | 2017-04-12 |
JP2010133595A (ja) | 2010-06-17 |
CN102124267B (zh) | 2013-11-06 |
CN102124267A (zh) | 2011-07-13 |
JP5193006B2 (ja) | 2013-05-08 |
US9291343B2 (en) | 2016-03-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100591469B1 (ko) | 증기 발생기 | |
US6957630B1 (en) | Flexible assembly of once-through evaporation for horizontal heat recovery steam generator | |
US20100095688A1 (en) | Refrigerant distribution improvement in parallell flow heat exchanger manifolds | |
KR20140007242A (ko) | 증발기 및 공기 조절방법 | |
JP5193006B2 (ja) | ボイラ構造 | |
WO2010064462A1 (ja) | ボイラ構造 | |
CA2715989A1 (en) | Continuous steam generator with equalizing chamber | |
JP7470909B2 (ja) | マイクロチャネル熱交換器および空気調和機 | |
WO2010064465A1 (ja) | ボイラ構造 | |
US20120145246A1 (en) | System and method for distribution of refrigerant to a plurality of heat exchanger evaporator coil circuits | |
CN101180506A (zh) | 具有液体捕集器以提供更好流动分布的平行流蒸发器 | |
KR101663850B1 (ko) | 연속 흐름식 증발기 | |
CN1853072A (zh) | 直流式蒸汽发生器及其运行方法 | |
NL2017593A (en) | Gas vaporizer | |
JP2010223464A (ja) | エバポレータ | |
JP2008185297A (ja) | 給湯用熱交換器 | |
JP2012132574A (ja) | 低温液体の気化装置 | |
JP6286548B2 (ja) | 貫流式蒸気発生器 | |
JP2004226030A (ja) | 車両用熱交換器 | |
JP7427761B2 (ja) | 熱交換器及びそれを備えたボイラ、並びに熱交換方法 | |
JP2964274B2 (ja) | 加熱炉とその運転方法 | |
JP2008057826A (ja) | 冷凍サイクル装置 | |
WO2020170430A1 (ja) | 冷却装置 | |
JP6732647B2 (ja) | 熱交換器 | |
JPH11230505A (ja) | ボイラ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980131756.7 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09830235 Country of ref document: EP Kind code of ref document: A1 |
|
REEP | Request for entry into the european phase |
Ref document number: 2009830235 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009830235 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13056219 Country of ref document: US Ref document number: 558/CHENP/2011 Country of ref document: IN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |