WO2010064462A1 - ボイラ構造 - Google Patents

ボイラ構造 Download PDF

Info

Publication number
WO2010064462A1
WO2010064462A1 PCT/JP2009/060228 JP2009060228W WO2010064462A1 WO 2010064462 A1 WO2010064462 A1 WO 2010064462A1 JP 2009060228 W JP2009060228 W JP 2009060228W WO 2010064462 A1 WO2010064462 A1 WO 2010064462A1
Authority
WO
WIPO (PCT)
Prior art keywords
boiler
furnace
pipe
heat load
tube
Prior art date
Application number
PCT/JP2009/060228
Other languages
English (en)
French (fr)
Inventor
和宏 堂本
博 菅沼
裕一 金巻
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to EP09830232.6A priority Critical patent/EP2357405B1/en
Priority to US13/058,443 priority patent/US9134021B2/en
Priority to CN200980133580.9A priority patent/CN102132094B/zh
Publication of WO2010064462A1 publication Critical patent/WO2010064462A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/10Water tubes; Accessories therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/10Water tubes; Accessories therefor
    • F22B37/12Forms of water tubes, e.g. of varying cross-section

Definitions

  • the present invention relates to a boiler structure equipped with a boiler evaporation tube (furnace water cooling wall), for example, a supercritical transformer once-through boiler.
  • a boiler evaporation tube for example, a supercritical transformer once-through boiler.
  • a supercritical transformer once-through boiler water is caused to flow inside a boiler evaporator tube arranged on the wall of the furnace, and the water is heated by heat in the furnace to generate steam.
  • the boiler evaporation pipe in this case is arranged in the vertical direction in the furnace so that the water pushed in from one of the boiler evaporation pipes flows in one direction without being circulated and changes into steam. That is, the water pushed from the bottom of the furnace changes into steam in the process of flowing upward to the upper part of the furnace wall.
  • the above-described boiler evaporation pipes have a pipe inner diameter selected in a region where the heat load in the furnace is most severe. Specifically, for example, as shown in FIG. 1, the inner diameter of the pipe is selected in accordance with the heat load in the region where the burner 3 for introducing fuel and air into the furnace 2 of the boiler 1 is installed.
  • the inner diameter of the boiler evaporator tube is reduced to ensure heat transfer characteristics, and the internal fluid flow rate is increased to increase the flow rate of the internal fluid, and the pressure loss (hereinafter also referred to as “pressure loss”) of the furnace is increased to increase the internal diameter.
  • the fluid flow rate should be reduced.
  • the flow rate and the flow rate are sufficient to withstand even the severest heat load (large heat load) region.
  • the pipe wall thickness is determined, and the pipe inner diameter of the entire boiler evaporation pipe is determined to be the same by the flow velocity and the pipe wall thickness. Therefore, as far as the pressure loss generated in the boiler evaporator tube of the furnace 2 is concerned, it is difficult to set an appropriate tube inner diameter, and it has been impossible to adjust to a desired value.
  • auxiliary power such as feed water pump power is increased by increasing the pressure loss of the boiler evaporation pipe.
  • Such an increase in the power of the auxiliary equipment causes an increase in the size of the boiler device, and further increases the running cost and the like, leaving room for improvement.
  • it is difficult to optimize the inner diameter of the boiler evaporation tube and to manage the pressure loss when the water in the tube expands due to the temperature rise, the flow rate increases and the friction loss component of the pressure loss increases. Such an increase in the friction loss component deteriorates the flow stability, leaving room for improvement.
  • the pipe inner diameter is set uniformly large and the overall flow rate is kept low, the friction loss component of the pressure loss is reduced, which is effective for improving flow stability and natural circulation characteristics.
  • the pipe inner diameter is selected in a region where the heat load in the furnace is most severe.
  • the present invention has been made in view of the above circumstances, and selects a pipe wall thickness corresponding to a different heat load depending on the boiler height direction distance, while maintaining the soundness of the boiler evaporation pipe.
  • the purpose is to provide a boiler structure that reduces the pressure loss of the evaporation pipe (furnace water cooling wall), and improves the flow stability and natural circulation characteristics in addition to reducing the power of auxiliary equipment such as feed water pumps.
  • the present invention employs the following means.
  • a large number of boiler evaporation pipes arranged on a wall surface of a furnace form a furnace water cooling wall, and when the water pumped to the boiler evaporation pipe flows through the inside of the furnace,
  • the pipe wall thickness is adjusted according to the furnace heat load, and a plurality of types with a smaller pipe inner diameter are connected in a region where the furnace heat load is larger. Yes.
  • the boiler evaporator tube forming the furnace water cooling wall is connected to a plurality of types in which the tube wall thickness is adjusted according to the furnace heat load, and the region where the furnace heat load is larger is smaller in tube inner diameter. Therefore, the inner diameter of the tube can be optimized according to the heat load. For this reason, the inner diameter of the tube is increased in a region where the furnace heat load is small, and the pressure loss from the inlet to the outlet of the boiler evaporation tube can be reduced.
  • the boiler evaporation pipe is selectively used by using a rifle pipe in a region where the furnace heat load is large and using a smooth pipe in a region where the furnace heat load is small.
  • the pressure loss of the pipe can be reduced more effectively.
  • the pipe inner diameter is changed stepwise by adjusting the pipe wall thickness of the boiler evaporation pipe that forms the furnace water cooling wall, corresponding to different heat loads depending on the boiler height direction distance. Therefore, in a region where the heat load is small, the pressure loss can be reduced by expanding the inner diameter of the pipe, and the power of auxiliary equipment such as a feed water pump can be reduced. Moreover, the remarkable effect that the flow stability and natural circulation characteristic of the water which flows through a furnace water cooling wall improves by the reduction of the pressure loss mentioned above is acquired.
  • the boiler 1 includes a large number of boiler evaporating pipes 10 arranged on the wall surface of the furnace 2, forming a water cooling wall 4, and the water pumped to the boiler evaporating pipe 10 is piped. It is a supercritical transformer once-through boiler configured such that when flowing inside, water is heated inside the furnace 2 to generate steam.
  • the horizontal cross section of the furnace 2 has a rectangular shape, and the furnace water cooling walls 4 are formed on four front, rear, left and right surfaces.
  • the intermediate header 5 shown in FIG. 1 once collects the boiler evaporator tube 10 outside the non-heated furnace above the burner portion where the burner 3 is disposed, and redistributes it toward the ceiling wall side in the upper part of the furnace. Part. Therefore, the water supplied from the outside of the furnace 2 to the boiler evaporation pipe 10 forming the furnace water cooling wall 4 of the boiler 1 flows from the outside of the boiler evaporation pipe 10 to the upward from the lower side of the furnace 2, and this rise In the process, it turns into steam upon heating.
  • the steam once flows out of the furnace 2 above the burner part, is collected in the intermediate header 5 from each boiler evaporation pipe 10, and is then dispersed again and flows out toward the ceiling wall in the upper part of the furnace. The steam thus led to the ceiling wall is further heated to increase the degree of superheat.
  • the water described above is pumped by a feed water pump (not shown) and pushed into the boiler evaporation pipe 10 from below in the furnace 2.
  • the above-described boiler evaporation pipe 10 is connected to a plurality of types in which the pipe wall thickness is adjusted according to the furnace heat load, and the inner diameter of the furnace is reduced in the region where the furnace heat load is larger. That is, in the furnace 2 of the boiler 1, for example, as shown in FIG. 1, the heat load in the furnace 2 changes according to the distance in the boiler height direction. The pipe wall thickness is adjusted, and the pipe inner diameter is changed in multiple stages. At this time, when determining the inner diameter of the boiler evaporation tube 10, it is necessary to consider securing a necessary flow rate without excessively expanding the tube inner diameter in order to ensure necessary heat transfer characteristics.
  • the boiler evaporation pipe 10 is formed as a single long pipe having a required length by connecting a plurality of pipe materials having the same outer diameter with different inner diameters (thicknesses) by welding.
  • the inner tube thickness of the boiler evaporator tube 10 is set to be the largest, and as a result, the tube material having the smallest tube inner diameter is used. .
  • the tube thickness in this case is a value determined so that the boiler evaporator tube 10 can sufficiently withstand a predetermined operation time without being damaged by the furnace heat load. Therefore, the minimum tube thickness t required for pressure resistance is set. It becomes a larger value. In other words, if the conditions regarding the boiler 1 are the same, in the region where the tube thickness is maximum, the value is the same as the conventional tube thickness tm.
  • the tube thickness t2 is set slightly smaller than the largest tube thickness tm.
  • This pipe wall thickness t2 is a value obtained by reducing the wall thickness by the reduction of the furnace heat load, and is also a value larger than the minimum pipe wall thickness t necessary for pressure resistance.
  • the pipe wall thickness is set to be gradually reduced in order of tm, t2, t1 as the furnace heat load is spaced apart from the highest region, and finally the minimum tube wall thickness t required for pressure resistance is set. To do.
  • the tube wall thickness of the boiler evaporation pipe 10 increases in order of t, t1, t2, and tm from the bottom of the furnace 2, and then decreases in the order of t2, t1, and t.
  • the inner diameter of the boiler evaporation pipe 10 gradually decreases from the bottom of the furnace 2 to the burner part in a stepwise manner, and then increases stepwise from the smallest diameter burner part.
  • FIG. 2 is a cross-sectional view showing an example of a connection structure of a boiler evaporation pipe 10 having pipe materials having equal outer diameters and different pipe inner diameters.
  • the illustrated boiler evaporation pipe 10 shows a structure in which two pipe materials having the same outer diameter are connected by welding. That is, the pipe material 11 having a large inner diameter (small wall thickness) and the tube material 12 having a small inner diameter (large wall thickness) are processed by processing the inner surface of the end of the pipe material 12 having a small inner diameter (large wall thickness).
  • the inner diameter and the wall thickness are the same as those of the tube material 11, and thereafter, lap welding is performed at the welded portion 13.
  • the tube material connects the smooth tubes, but this connection structure can also be applied to the connection with the rifle tube 20 described later.
  • this connection structure can also be applied to the connection with the rifle tube 20 described later.
  • the boiler evaporation pipe 10 connected in this way, there is almost no step difference that hinders the flow at the connection portion between the tube materials 11 and 12 having different tube inner diameters, and the inner diameter difference between the tube materials 11 and 12 is small. Since it is as small as several millimeters, the pressure loss of the furnace water cooling wall 4 is hardly adversely affected.
  • the boiler evaporating tube 10 forming the furnace water cooling wall 4 adjusts the tube thickness according to the furnace heat load, and gradually decreases the tube inner diameter in a region where the furnace heat load is larger. Since multiple types are connected, the inner diameter of the tube can be optimized according to the heat load. For this reason, the inner diameter of the pipe can be increased in a region where the furnace heat load is small, and therefore the pressure loss from the inlet to the outlet of the boiler evaporation pipe 10 can be reduced, and the power of auxiliary equipment such as a feed water pump can be reduced. become.
  • the boiler evaporation pipe 10 has an increased area (the length of the pipe) with a larger inner diameter as compared with the conventional structure in which the inner diameter is uniform over the entire length, so that the flow stability of water and steam flowing in the pipe is improved. . That is, even if the furnace heat load increases and the fluid expands due to a temperature rise, the change in the flow velocity is small because the pipe inner diameter average value of the boiler evaporation pipe 10 is large, and therefore the fluctuation range of the friction loss component in the pressure loss is small. Stable and stable flow can be formed.
  • the increase in the region having a large inner diameter (tube length) in the boiler evaporation tube 10 improves the natural circulation characteristics of water and steam in the boiler evaporation tube 10. be able to. That is, since the average value of the inner diameter of the boiler evaporation pipe 10 is large, the ratio of the friction loss component to the pressure loss is small, and the flow rate change is small even if the furnace heat load increases. For this reason, the fluctuation range of the friction loss component is suppressed, and further, since the static component of the pressure loss is also reduced by the expansion of the fluid, the total pressure loss itself, which is the total value of these two components, is also reduced. Accordingly, since the flow rate of the fluid flowing through the boiler evaporation pipe 10 increases as the pressure loss decreases, the natural circulation characteristics are improved.
  • a rifle pipe 20 is used in a region where the furnace heat load is large, and a smooth tube having a normal inner wall surface in a region where the furnace heat load is small. You may use properly using. That is, for the region near the burner portion in the furnace 2 where the furnace heat load is large, the rifle pipe 20 having a spiral groove formed on the inner peripheral surface of the pipe is used.
  • the rifle 20 is advantageous in terms of heat transfer characteristics, but has a characteristic that friction loss is large.
  • the rifle pipe 20 arranged in the region having the highest furnace heat load efficiently absorbs heat to the fluid flowing through the pipe by using the rifle pipe 20 connected to the smooth pipe.
  • the smooth pipe with a small friction loss arranged in another region can reduce the entire pressure loss. Even if it does in this way, since the pressure loss of the furnace water cooling wall 4 becomes small, it not only can reduce auxiliary machine power, such as a feed water pump, but it is effective also in improvement of flow stability and a natural circulation characteristic.
  • auxiliary machine power such as a feed water pump
  • the pipe inner diameter is adjusted by adjusting the pipe wall thickness of the boiler evaporation pipe 10 that forms the furnace water cooling wall 4 corresponding to different heat loads depending on the distance in the boiler height direction.
  • the pressure loss is reduced by expanding the inner diameter of the pipe in the area where the heat load is small, and the auxiliary equipment such as the water pump is reduced in size. Auxiliary power required for the operation can be reduced. Therefore, it is possible to reduce the size of the boiler device and reduce the running cost.
  • the flow stability and natural circulation characteristic of the water which flows through a furnace water cooling wall can also be improved by reduction of the pressure loss mentioned above.
  • the rifle 20 is partially combined and used in a region where the furnace heat load is high, the pressure loss of the furnace 2 can be reduced and the same effect can be obtained.
  • this invention is not limited to embodiment mentioned above, In the range which does not deviate from the summary, it can change suitably.

Abstract

ボイラ高さ方向距離に応じて異なる熱負荷に対応してボイラ蒸発管の圧力損失を低減し、給水ポンプ等の補器動力低減に加えて、流動安定性や自然循環特性の向上を可能にしたボイラ構造を提供する。火炉(2)の壁面に配設された多数のボイラ蒸発管が火炉水冷壁(4)を形成し、ボイラ蒸発管に圧送された水が管内部を流れる際に火炉(2)内で加熱されて蒸気を生成するボイラ構造において、ボイラ蒸発管は、管肉厚を火炉熱負荷に応じて調整し、火炉熱負荷の大きい領域ほど管内径を小さくした複数種が接続されている。

Description

ボイラ構造
 本発明は、たとえば超臨界変圧貫流ボイラのように、ボイラ蒸発管(火炉水冷壁)を備えているボイラ構造に関する。
 従来、超臨界変圧貫流ボイラにおいては、火炉の壁面に多数配設されたボイラ蒸発管の内部に水を流し、この水を火炉内の熱により加熱して蒸気を生成している。この場合のボイラ蒸発管は、ボイラ蒸発管の一方から押し込まれた水が循環することなく一方向に流れて蒸気に変化するように、火炉内の上下方向に配管されている。すなわち、火炉の下方から押し込まれた水は、火炉壁の上部へ上向きに流れる過程で蒸気に変化する。
 上述したボイラ蒸発管は、火炉内の熱負荷が最も厳しい領域に揃えて管内径が選定されている。具体的には、たとえば図1に示すように、ボイラ1の火炉2内へ燃料及び空気を投入するバーナ3が設置されている領域の熱負荷に合わせて管内径が選定されている。
 一方、ボイラ蒸発管の内径は、伝熱特性を確保する上では小径にして内部流体の流速を上げ、火炉の圧力損失(以下、「圧損」とも言う)を低減する上では大径にして内部流体の流速を遅くするべきものである。
 しかし、現状のボイラ構造においては、火炉2内に熱負荷の大小が生じているにもかかわらず、火炉内の熱負荷が最も厳しい(熱負荷が大きい)領域でも十分に耐えられるように流速及び管肉厚を定め、この流速及び管肉厚によりボイラ蒸発管全体の管内径が同一となるように決めるのが一般的である。従って、火炉2のボイラ蒸発管で生じる圧力損失に関してのみ言えば、適切な管内径の設定が困難であるから、所望の値に調整できず成り行きとならざるを得なかった。
 また、上述したボイラ蒸発管においては、管内径を一律に大きく設定して全体の流速を低く抑えると、圧力損失の摩擦損失成分が小さくなり、流動安定性や自然循環特性の向上に有効であることが知られている。(たとえば、非特許文献1参照)
Evaporator Designs for BensonBoilers, State of the Art and Latest Development Trends, By J.Franke, W.Kohlerand E.Wittchow (VGB Kraftwerkstechnik 73(1993), Number 4)
 ところで、上述した従来技術は、ボイラ蒸発管の管内径最適化や圧損管理が困難であるため、ボイラ蒸発管の圧損増大により給水ポンプ動力等の補器動力を増大させる。このような補器動力の増大は、ボイラ装置を大型化させる原因となり、さらに、ランニングコスト等を上昇させる原因ともなるため改善の余地が残されている。
 また、ボイラ蒸発管の管内径最適化や圧損管理が困難であるため、昇温により管内の水が膨張すると、流速が上昇して圧力損失の摩擦損失成分を増大させる。このような摩擦損失成分の増大は、流動安定性を悪化させるため改善の余地が残されている。
 さらに、管内径を一律に大きく設定して全体の流速を低く抑える場合、圧力損失の摩擦損失成分が小さくなって流動安定性や自然循環特性の向上に有効となるが、ボイラ高さ方向距離に応じて熱負荷が異なるという超臨界圧貫流ボイラ等の現実を考慮すると、管内径を一律に大きくすることには自ずと限界が生じてくる。すなわち、上述した従来技術のように、火炉内の熱負荷が最も厳しい領域に揃えて管内径を選定することとなる。
 本発明は、上記の事情に鑑みてなされたものであり、ボイラ高さ方向距離に応じて異なる熱負荷に対応して管肉厚を選定して、ボイラ蒸発管の健全性を保ったままボイラ蒸発管(火炉水冷壁)の圧力損失を低減し、給水ポンプ等の補器動力低減に加えて、流動安定性や自然循環特性の向上を可能にしたボイラ構造の提供を目的としている。
 本発明は、上記の課題を解決するため、下記の手段を採用した。
 本発明の一態様に係るボイラ構造は、火炉の壁面に配設された多数のボイラ蒸発管が火炉水冷壁を形成し、前記ボイラ蒸発管に圧送された水が管内部を流れる際に前記火炉内で加熱されて蒸気を生成するボイラ構造において、前記ボイラ蒸発管は、管肉厚を火炉熱負荷に応じて調整し、火炉熱負荷の大きい領域ほど管内径を小さくした複数種が接続されている。
 このようなボイラ構造によれば、火炉水冷壁を形成するボイラ蒸発管は、管肉厚を火炉熱負荷に応じて調整し、火炉熱負荷の大きい領域ほど管内径を小さくした複数種が接続されているので、管内径を熱負荷に応じて最適化することができる。このため、火炉熱負荷の小さい領域では管内径が大きくなり、ボイラ蒸発管の入口から出口までの圧力損失を低減することができる。
 上記の態様において、前記ボイラ蒸発管は、火炉熱負荷の大きい領域にライフル管を使用し、火炉熱負荷の小さい領域にスムース管を使用して使い分けされていることが好ましく、これにより、ボイラ蒸発管の圧力損失をより効果的に低減することができる。
 上述した本発明によれば、ボイラ高さ方向距離に応じて異なる熱負荷に対応し、火炉水冷壁を形成するボイラ蒸発管の管肉厚を調整して管内径を段階的に変化させているので、熱負荷の小さい領域では管内径の拡大により圧力損失を低減し、給水ポンプ等の補器動力を低減することができる。また、上述した圧力損失の低減により、火炉水冷壁を流れる水の流動安定性や自然循環特性が向上するという顕著な効果が得られる。
本発明に係るボイラ構造の一実施形態を示す説明図である。 内径が異なる同外径の管素材を接続した接続構造例を示す断面図である。 本発明に係るボイラ構造の変形例としてライフル管を示す図である。
 以下、本発明に係るボイラ構造の一実施形態を図面に基づいて説明する。
 図1から図3に示す実施形態において、ボイラ1は、火炉2の壁面に配設された多数のボイラ蒸発管10が火炉水冷壁4を形成し、ボイラ蒸発管10に圧送された水が管内部を流れる際、火炉2の内部で水が加熱されて蒸気を生成するように構成された超臨界変圧貫流ボイラである。図示のボイラ1は、火炉2の水平断面が矩形状とされ、前後左右の4面に火炉水冷壁4が形成されている。
 図1に示す中間ヘッダ5は、バーナ3が配設されたバーナ部の上方でボイラ蒸発管10をいったん非加熱の火炉外へ出して集め、炉内上部の天井壁側へ向けて再度分散させる部分である。
 従って、ボイラ1の火炉水冷壁4を形成するボイラ蒸発管10に火炉2の外部から給水された水は、ボイラ蒸発管10の内部を流れて火炉2の下方から上方へ上向きに流れ、この上昇過程で加熱を受けて蒸気に変化する。この蒸気は、バーナ部の上方でいったん火炉2の外部へ流出し、各ボイラ蒸発管10から中間ヘッダ5に集められた後、再度分散して炉内上部の天井壁へ向けて流出する。こうして天井壁へ導かれた蒸気は、さらに加熱されることにより過熱度がつけられる。なお、上述した水は、図示しない給水ポンプにより圧送され、火炉2内の下方からボイラ蒸発管10の内部に押し込まれる。
 上述したボイラ蒸発管10は、管肉厚を火炉熱負荷に応じて調整し、火炉熱負荷の大きい領域ほど管内径を小さくした複数種が接続されている。すなわち、ボイラ1の火炉2内は、たとえば図1に示すように、ボイラ高さ方向距離に応じて火炉2内の熱負荷が変化するので、火炉熱負荷の大小に応じてボイラ蒸発管10の管肉厚を調整し、管内径を複数段階に変化させている。このとき、ボイラ蒸発管10の内径を決める際には、必要伝熱特性を確保するため、管内径を広げすぎないようにして必要な流速を確保することも考慮する必要がある。
 なお、この場合のボイラ蒸発管10は、内径(肉厚)が異なる同外径の管素材を溶接により複数本接続し、必要長さを有する1本の長尺管とされる。
 具体的に説明すると、火炉熱負荷が最も高いボイラ部と略同レベルの領域では、ボイラ蒸発管10の管内厚が最も大きく設定され、結果として、管内径が最も小さい管素材を使用している。この場合の管肉厚は、所定の運転時間において、ボイラ蒸発管10が火炉熱負荷により破損することなく十分耐えられるように定めた値であり、従って、耐圧上必要な最小の管肉厚tよりも大きな値となる。換言すれば、ボイラ1に関する諸条件が同じであれば、管肉厚が最大となる領域では、従来の管肉厚tmと同様の値になる。
 次に、火炉熱負荷が最も高い領域の上下に隣接する領域では、最も大きな管肉厚tmよりやや小さい管肉厚t2に設定される。この管肉厚t2は、火炉熱負荷の減少分だけ肉厚を低減した値であり、やはり耐圧上必要な最小の管肉厚tよりも大きな値となる。
 同様に、火炉熱負荷が最も高い領域から上下に離間するにつれて、tm、t2、t1の順に管肉厚を段階的に小さく設定し、最終的には耐圧上必要な最小の管肉厚tとする。すなわち、図示の構成例では、ボイラ蒸発管10の管肉厚は、火炉2の下方から順に、t、t1、t2、tmと大きくなった後、t2、t1、tの順に小さくなる。換言すれば、ボイラ蒸発管10の管内径は、火炉2の下方から順にバーナ部まで段階的に小さくなった後、最も小径のバーナ部から段階的に大きくなる。
 ところで、上述した実施形態では、4段階の管肉厚t、t1、t2、tmを有する同外径の管素材を接続しているが、ボイラ1の諸条件に応じて5段階以上にしてもよいし、あるいは、3段階以下にすることも可能である。また、上述した実施形態では、火炉熱負荷を受ける火炉2の内部でボイラ蒸気管10の肉厚を段階的に変化させているが、非加熱部分についても同様に肉厚を変化させて薄くしてもよい。
 図2は、等しい外径を有して管内径が異なる管素材を接続したボイラ蒸発管10について、その接続構造例を示す断面図である。
 図示のボイラ蒸発管10は、外径が等しい2本の管素材を付け合わせ溶接により接続した構造を示している。すなわち、内径大(肉厚小)の管素材11と内径小(肉厚大)の管素材12とは、内径小(肉厚大)となる管素材12側の端部内面を加工することにより、管素材11と同じ内径及び肉厚とされ、この後、溶接部13において付け合わせ溶接がなされている。なお、この場合の管素材はスムース管どうしを接続しているが、この接続構造は、後述するライフル管20との接続にも適用可能である。
 このようにして接続されたボイラ蒸発管10は、管内径が異なる管素材11,12間の接続部に流れの妨げとなるような段差はほとんどなく、しかも、管素材11,12間の内径差も数ミリ程度と小さいため、火炉水冷壁4の圧力損失等に対して悪影響を与えることはほとんどない。
 このようなボイラ構造によれば、火炉水冷壁4を形成するボイラ蒸発管10は、管肉厚を火炉熱負荷に応じて調整し、火炉熱負荷の大きい領域ほど管内径を段階的に小さくした複数種が接続されているので、管内径を熱負荷に応じて最適化することができる。このため、火炉熱負荷の小さい領域では管内径を大きくすることができ、従って、ボイラ蒸発管10の入口から出口までの圧力損失を低減することができ、給水ポンプ等の補機動力低減が可能になる。
 この結果、ボイラ蒸発管10は、内径が全長にわたって均一な従来構造と比較して、内径の大きい領域(管の長さ)が増大したので、管内を流れる水及び蒸気の流動安定性が向上する。すなわち、火炉熱負荷が増して温度上昇により流体が膨張しても、ボイラ蒸発管10の管内径平均値が大きいために流速の変化は小さく、従って、圧力損失に占める摩擦損失成分の変動幅を抑制して安定した流れを形成することができる。
 また、ボイラ蒸発管10に内径の大きい領域(管の長さ)が増大することは、上述した流動安定性の向上に加えて、ボイラ蒸発管10内における水や蒸気の自然循環特性を向上させることができる。
 すなわち、ボイラ蒸発管10の管内径平均値が大きいため、圧力損失に占める摩擦損失成分の割合は小さく、火炉熱負荷が増しても流速変化は小さい。このため、摩擦損失成分の変動幅が抑制され、さらに、流体の膨張により圧力損失のスタティック成分も低減されるので、これら両成分の合計値である全体の圧力損失自体も小さくなる。従って、圧力損失の低下に応じてボイラ蒸発管10内を流れる流体の流量が増加するので、自然循環特性は向上したことになる。
 また、上述したボイラ蒸発管10の変形例として、たとえば図3に示すように、火炉熱負荷の大きい領域にライフル管20を使用し、火炉熱負荷の小さい領域に通常の内壁面を有するスムース管を使用して使い分けしてもよい。
 すなわち、火炉熱負荷の大きい火炉2内のバーナ部近傍領域については、管内周面に螺旋溝が形成されたライフル管20を使用する。このライフル管20は、伝熱特性の面では有利になる反面、摩擦損失が大きいという特性を有している。
 従って、この変形例のボイラ蒸発管10Aは、ライフル管20をスムース管と接続して使用することにより、最も火炉熱負荷の高い領域に配置したライフル管20が管内を流れる流体に効率よく吸熱し、他の領域に配置した摩擦損失の小さいスムース管が全体の圧力損失を低減させることができる。このようにしても、火炉水冷壁4の圧力損失が小さくなるので、給水ポンプ等の補機動力を低減できるだけでなく、流動安定性や自然循環特性の向上にも有効である。
 また、このようなライフル管20は、管肉厚を大きくしたライフル管20を最も火炉熱負荷の大きい領域に配置するなど、上述した実施形態との組合せが可能であることは言うまでもない。
 上述したように、本発明のボイラ構造によれば、ボイラ高さ方向距離に応じて異なる熱負荷に対応し、火炉水冷壁4を形成するボイラ蒸発管10の管肉厚を調整して管内径を段階的に変化させているので、必要伝熱特性を確保するとともに、熱負荷の小さい領域では管内径の拡大により圧力損失を低減し、給水ポンプ等の補機類を小型化し、補機類の運転に要する補器動力を低減することができる。従って、ボイラ装置の小型化や、ランニングコストの低減が可能となる。
 また、上述した圧力損失の低減により、火炉水冷壁を流れる水の流動安定性や自然循環特性を向上させることもできる。
 また、火炉熱負荷の高い領域に対し、部分的にライフル管20を組み合わせて使用すれば、火炉2の圧力損失を低減して同様の作用効果を得ることができる。
 なお、本発明は上述した実施形態に限定されることはなく、その要旨を逸脱しない範囲内において適宜変更することができる。
  1  ボイラ
  2  火炉
  3  バーナ
  4  火炉水冷壁
  5  中間ヘッダ
 10、10A  ボイラ蒸発管
 20  ライフル管

Claims (2)

  1.  火炉の壁面に配設された多数のボイラ蒸発管が火炉水冷壁を形成し、前記ボイラ蒸発管に圧送された水が管内部を流れる際に前記火炉内で加熱されて蒸気を生成するボイラ構造において、
     前記ボイラ蒸発管は、管肉厚を火炉熱負荷に応じて調整し、火炉熱負荷の大きい領域ほど管内径を小さくした複数種が接続されているボイラ構造。
  2.  前記ボイラ蒸発管は、火炉熱負荷の大きい領域にライフル管を使用し、火炉熱負荷の小さい領域にスムース管を使用して使い分けされている請求項1に記載のボイラ構造。
PCT/JP2009/060228 2008-12-03 2009-06-04 ボイラ構造 WO2010064462A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP09830232.6A EP2357405B1 (en) 2008-12-03 2009-06-04 Boiler structure
US13/058,443 US9134021B2 (en) 2008-12-03 2009-06-04 Boiler structure
CN200980133580.9A CN102132094B (zh) 2008-12-03 2009-06-04 锅炉结构

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008308471A JP5193007B2 (ja) 2008-12-03 2008-12-03 ボイラ構造
JP2008-308471 2008-12-03

Publications (1)

Publication Number Publication Date
WO2010064462A1 true WO2010064462A1 (ja) 2010-06-10

Family

ID=42233119

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/060228 WO2010064462A1 (ja) 2008-12-03 2009-06-04 ボイラ構造

Country Status (5)

Country Link
US (1) US9134021B2 (ja)
EP (1) EP2357405B1 (ja)
JP (1) JP5193007B2 (ja)
CN (1) CN102132094B (ja)
WO (1) WO2010064462A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012028512A3 (de) * 2010-09-03 2012-06-21 Siemens Aktiengesellschaft Solarthermischer durchlaufdampferzeuger für die direktverdampfung insbesondere in einem solarturm-kraftwerk
WO2011091885A3 (de) * 2010-02-01 2012-06-28 Siemens Aktiengesellschaft Vermeidung statischer und dynamischer instabilitäten in zwangdurchlauf-dampferzeugern in solarthermischen anlagen durch aufweitung der heizflächenrohre

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103353104A (zh) * 2012-10-10 2013-10-16 北京巴布科克·威尔科克斯有限公司 对冲燃烧锅炉低质量流速水循环系统设计方法
RU2641765C1 (ru) 2013-12-27 2018-01-22 Мицубиси Хитачи Пауэр Системз, Лтд. Теплообменная труба, котел и паротурбинное устройство
JP5720916B1 (ja) * 2014-11-07 2015-05-20 三菱日立パワーシステムズ株式会社 伝熱管、ボイラ及び蒸気タービン設備
CN114413276B (zh) * 2022-03-10 2023-05-26 华北电力大学 一种与非均匀热负荷匹配的超临界二氧化碳锅炉冷却壁

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4728304U (ja) * 1971-04-19 1972-11-30
JPS6270204U (ja) * 1985-10-16 1987-05-02
JPH06137501A (ja) * 1992-10-23 1994-05-17 Mitsubishi Heavy Ind Ltd 超臨界圧変圧運転蒸気発生装置
JPH08500426A (ja) * 1992-08-19 1996-01-16 シーメンス アクチエンゲゼルシヤフト 蒸気発生器

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3511217A (en) * 1968-09-18 1970-05-12 Foster Wheeler Corp Dual circulation vapor generator
US3556059A (en) * 1969-01-28 1971-01-19 Foster Wheeler Corp Two-pass furnace circuit arrangement for once-through vapor generator
US3662716A (en) * 1970-12-14 1972-05-16 Foster Wheeler Corp Furnance enclosure for natural circulation generator
US4191133A (en) * 1977-11-07 1980-03-04 Foster Wheeler Energy Corporation Vapor generating system utilizing integral separators and angularly arranged furnace boundary wall fluid flow tubes having rifled bores
US4257358A (en) * 1979-06-25 1981-03-24 Ebara Corporation Boiler
US4368694A (en) * 1981-05-21 1983-01-18 Combustion Engineering, Inc. Leak detection system for a steam generator
US5390631A (en) * 1994-05-25 1995-02-21 The Babcock & Wilcox Company Use of single-lead and multi-lead ribbed tubing for sliding pressure once-through boilers
US5755188A (en) * 1995-05-04 1998-05-26 The Babcock & Wilcox Company Variable pressure once-through steam generator furnace having all welded spiral to vertical tube transition with non-split flow circuitry
DE19645748C1 (de) 1996-11-06 1998-03-12 Siemens Ag Verfahren zum Betreiben eines Durchlaufdampferzeugers und Durchlaufdampferzeuger zur Durchführung des Verfahrens
US6007325A (en) * 1998-02-09 1999-12-28 Gas Research Institute Ultra low emissions burner
DE19914760C1 (de) * 1999-03-31 2000-04-13 Siemens Ag Fossilbeheizter Durchlaufdampferzeuger
EP1533565A1 (de) * 2003-11-19 2005-05-25 Siemens Aktiengesellschaft Durchlaufdampferzeuger

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4728304U (ja) * 1971-04-19 1972-11-30
JPS6270204U (ja) * 1985-10-16 1987-05-02
JPH08500426A (ja) * 1992-08-19 1996-01-16 シーメンス アクチエンゲゼルシヤフト 蒸気発生器
JPH06137501A (ja) * 1992-10-23 1994-05-17 Mitsubishi Heavy Ind Ltd 超臨界圧変圧運転蒸気発生装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
J. FRANKE; W. KOHLER; E. WITTCHOW, EVAPORATOR DESIGNS FOR BENSON BOILERS, STATE OF THE ART AND LATEST DEVELOPMENT TRENDS, vol. 73, no. 4, 1993
See also references of EP2357405A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011091885A3 (de) * 2010-02-01 2012-06-28 Siemens Aktiengesellschaft Vermeidung statischer und dynamischer instabilitäten in zwangdurchlauf-dampferzeugern in solarthermischen anlagen durch aufweitung der heizflächenrohre
WO2012028512A3 (de) * 2010-09-03 2012-06-21 Siemens Aktiengesellschaft Solarthermischer durchlaufdampferzeuger für die direktverdampfung insbesondere in einem solarturm-kraftwerk

Also Published As

Publication number Publication date
CN102132094B (zh) 2015-03-25
CN102132094A (zh) 2011-07-20
US20110132281A1 (en) 2011-06-09
US9134021B2 (en) 2015-09-15
JP2010133596A (ja) 2010-06-17
EP2357405A1 (en) 2011-08-17
JP5193007B2 (ja) 2013-05-08
EP2357405A4 (en) 2016-01-13
EP2357405B1 (en) 2017-05-03

Similar Documents

Publication Publication Date Title
JP5193007B2 (ja) ボイラ構造
CN108895424B (zh) 一种倾斜的多管式蒸汽锅炉的设计方法
JP4549868B2 (ja) 廃熱ボイラ
JP3241382B2 (ja) 化石燃料燃焼形貫流ボイラ
JP4443216B2 (ja) ボイラ
JP3046890U (ja) 貫流ボイラ
KR0163641B1 (ko) 단일 및 다중리드 튜브를 갖춘 일회관통형 스팀발생기
JP2013024543A (ja) 熱交換器及びそれを用いたヒートポンプ式加熱装置
KR101663850B1 (ko) 연속 흐름식 증발기
KR101165297B1 (ko) 유동층 반응기의 보일러 물 사이클과 이러한 보일러 물 사이클을 갖는 유동층 반응기
KR20120027021A (ko) 연속 흐름식 증발기
JP5790973B2 (ja) 温水装置
JP5345217B2 (ja) 貫流ボイラ
US20110203536A1 (en) Continuous steam generator
JP6203958B2 (ja) ツーパスボイラ構造を備える連続流動蒸気発生器
KR101662348B1 (ko) 연속 흐름식 증발기
JP5812844B2 (ja) 舶用ボイラ
JP5193006B2 (ja) ボイラ構造
KR20140003372A (ko) 강제 관류 증기 발생기
JP2012132574A (ja) 低温液体の気化装置
AU2011287836B2 (en) Forced-flow steam generator
JP4463825B2 (ja) 貫流ボイラ
JP2009168383A (ja) 熱交換器及びそれを用いたヒートポンプ式給湯機
KR200345118Y1 (ko) 관류형 보일러
JPH08210603A (ja) 貫流ボイラ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980133580.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09830232

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2009830232

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009830232

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13058443

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1087/CHENP/2011

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE