WO2010064318A1 - 同期機起動装置 - Google Patents

同期機起動装置 Download PDF

Info

Publication number
WO2010064318A1
WO2010064318A1 PCT/JP2008/072143 JP2008072143W WO2010064318A1 WO 2010064318 A1 WO2010064318 A1 WO 2010064318A1 JP 2008072143 W JP2008072143 W JP 2008072143W WO 2010064318 A1 WO2010064318 A1 WO 2010064318A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
output terminal
synchronous machine
power line
output
Prior art date
Application number
PCT/JP2008/072143
Other languages
English (en)
French (fr)
Inventor
伸三 玉井
藤井 洋介
彰修 安藤
靖彦 細川
Original Assignee
東芝三菱電機産業システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝三菱電機産業システム株式会社 filed Critical 東芝三菱電機産業システム株式会社
Priority to PCT/JP2008/072143 priority Critical patent/WO2010064318A1/ja
Priority to EP08878578.7A priority patent/EP2357723B1/en
Priority to JP2010541177A priority patent/JP5427189B2/ja
Priority to US13/132,792 priority patent/US8362730B2/en
Priority to ES08878578.7T priority patent/ES2551895T3/es
Publication of WO2010064318A1 publication Critical patent/WO2010064318A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P1/00Arrangements for starting electric motors or dynamo-electric converters
    • H02P1/16Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters
    • H02P1/46Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting an individual synchronous motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements
    • H02P6/182Circuit arrangements for detecting position without separate position detecting elements using back-emf in windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/009Circuit arrangements for detecting rotor position
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P9/00Arrangements for controlling electric generators for the purpose of obtaining a desired output
    • H02P9/08Control of generator circuit during starting or stopping of driving means, e.g. for initiating excitation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2203/00Indexing scheme relating to controlling arrangements characterised by the means for detecting the position of the rotor
    • H02P2203/01Motor rotor position determination based on the detected or calculated phase inductance, e.g. for a Switched Reluctance Motor

Definitions

  • the present invention relates to a synchronous machine starting device, and more particularly to a synchronous machine starting device that detects a rotor position of the synchronous machine.
  • Synchronous machine starting devices for starting synchronous machines such as generators and motors have been developed.
  • a mechanical distributor that detects the position of the rotor of the synchronous machine with a proximity switch or the like is used.
  • mechanical distributors are fragile and are susceptible to noise due to the large number of wires.
  • the synchronous generator starting device includes a separately-excited converter including a separately-excited element such as a thyristor, and a separately-excited inverter including a separately-excited element such as a thyristor that converts DC power obtained by the converter into AC power. Start the synchronous generator with AC power obtained by the inverter.
  • this synchronous generator starting device includes an AC voltage detector for detecting the voltage of the armature terminal of the synchronous generator, an AC current detector for detecting an inverter output current flowing from the inverter to the armature of the synchronous generator, From the detected AC current value of the inverter from the output current detector and the estimated value of the first synchronous generator rotation speed, the induced voltage induced in the armature winding of the synchronous generator by the field current of the synchronous generator , An induced voltage calculation circuit that calculates an in-phase component and a quadrature component with respect to the first reference phase, and a second reference phase that sets the quadrature component of the first reference phase of the induced voltage from the induced voltage calculation circuit to zero.
  • a PLL circuit that outputs a second synchronous generator rotational speed estimated value.
  • this synchronous generator starting device produces
  • the second synchronous generator rotational speed estimated value is input to the first synchronous generator rotational speed estimated value of the induced voltage calculation circuit.
  • an object of the present invention is to provide a synchronous machine starting device capable of stably starting a synchronous machine.
  • a synchronous machine starting device converts a supplied power into an AC power and supplies the AC to an armature of the synchronous machine, and supplies the AC power from the power converter to the synchronous machine.
  • a power conversion control unit that controls the power conversion unit based on the detected rotor position, and the AC voltage detection unit has a first output end and a second output end that are insulated from the power line.
  • a voltage obtained by transforming an alternating voltage supplied through the power line at a first ratio is output from the first output terminal, and an alternating voltage supplied through the power line is transformed at a second ratio, and a positive predetermined voltage value. Less than or equal to negative negative voltage Detection from the second output terminal only, and further selecting either the voltage received from the first output terminal or the voltage received from the second output terminal and outputting to the rotor position detector A voltage selection unit is provided.
  • the AC voltage detection unit has a first output terminal and a second output terminal that are insulated from the power line, and outputs a voltage obtained by stepping down the AC voltage supplied through the power line at a first ratio.
  • the AC voltage that is output from the end and supplied through the power line is stepped down at a second ratio, further limited to a positive predetermined voltage value or lower and a negative predetermined voltage value or higher, and output from the second output end.
  • the AC voltage detection unit includes a voltage transformer including a primary coil coupled to the power line, a secondary coil coupled to the detection voltage selection unit as a first output terminal, and an input terminal coupled to the power line. And a second output terminal that is insulated from the input terminal and coupled to the detection voltage selection unit, transforms the voltage at the input terminal, and further limits it to a positive predetermined voltage value or less and a negative predetermined voltage value or more. And a voltage conversion circuit that outputs from the second output terminal.
  • the AC voltage detection unit includes a primary voltage coupled to the power line, a first voltage transformer including a secondary coil, a primary coil coupled to the secondary coil of the first voltage transformer, A second voltage transformer including a secondary coil coupled to the detection voltage selector as the first output terminal, and a second voltage transformer coupled to the secondary coil of the first voltage transformer and coupled to the detection voltage selector. And a clamp circuit that limits the voltage of the secondary coil to a positive predetermined voltage value or less and a negative predetermined voltage value or more and outputs from the second output terminal.
  • the synchronous machine can be started stably.
  • Inverter control unit power conversion control unit
  • 51 detection voltage selection unit 51 detection voltage selection unit
  • 61, 62 DCVT 71 power conversion unit
  • 101, 102 synchronous machine starter CB control board
  • LN power line VT1, VT2 voltage transformer
  • L1, L3 L5, L7 primary coil
  • L2, L4, L6, L8 secondary coil CP1, CP2 clamp circuit
  • R1, R2, R3, R4, R5, R6 resistors ZD1, ZD2, ZD3, ZD4 Zener diode.
  • FIG. 1 is a diagram showing the configuration of the synchronous machine starting device according to the first embodiment of the present invention.
  • a synchronous machine starting device 101 includes a power conversion unit 71, an AC voltage detector 8, an AC current detector 9, a rotor position detection unit 11, an inverter control unit (power conversion control unit). 19).
  • the power conversion unit 71 includes a converter 1, an inverter 2, and a DC reactor 3.
  • the inverter control unit 19 includes a reference sine wave calculator 12, a gate pulse generator 13, and a ⁇ command circuit 14.
  • the synchronous machine 4 and the motor M are connected via an axis SH.
  • the synchronous machine 4 is a synchronous generator or a synchronous motor, for example, and has an armature and a rotor.
  • the motor M rotates at a predetermined speed when the synchronous machine 4 is on standby. This rotational speed is low, for example several rpm. On the other hand, the normal rotation speed is 3000 rpm to 3600 rpm. For this reason, the voltage applied to the armature of the synchronous machine 4 at the time of start-up is very small as 1/1000 of the steady state as described above, and the detection voltage by the AC voltage detector 8 is often distorted. It is difficult to detect accurately.
  • Converter 1 is composed of an element such as a thyristor, and converts AC power from AC power supply e1 into DC power.
  • the inverter 2 is composed of an element such as a thyristor, and drives the synchronous machine 4 by converting DC power obtained by the converter 1 into AC power and supplying it to the armature of the synchronous machine 4.
  • the converter 1 and the inverter 2 are connected via a DC reactor 3.
  • the AC side of the inverter 2 is connected to the armature of the generator 4.
  • the AC voltage detector 8 detects a three-phase AC voltage supplied to the armature of the generator 4 and outputs voltage detection values V1, V2, and V3 to the rotor position detection unit 11.
  • the alternating current detector 9 detects a three-phase alternating current supplied to the armature of the generator 4 and outputs current detection values I1, I2, and I3 to the rotor position detection unit 11.
  • the rotor position detector 11 detects the rotor position (phase) of the generator 4 based on the detection values received from the AC voltage detector 8 and the AC current detector 9, and the rotor position of the generator 4. Is output to the inverter control unit 19.
  • the inverter control unit 19 controls the inverter 2 based on the rotor position signal POS received from the rotor position detection unit 11.
  • the reference sine wave calculator 12 outputs a reference sine wave sin ⁇ based on the position signal POS received from the rotor position detection unit 11.
  • the ⁇ command circuit 14 calculates the control advance angle command value ⁇ and outputs it to the gate pulse generator 13.
  • Gate pulse generator 13 outputs a gate pulse to the elements in inverter 2 based on reference sine wave sin ⁇ received from reference sine wave calculator 12 and control advance angle command value ⁇ received from ⁇ command circuit 14. .
  • FIG. 2 is a diagram showing in detail the configuration of the AC voltage detector 8 and its peripheral circuits.
  • synchronous machine starting device 101 further includes a detection voltage selection unit 51, a control board CB, and a power line LN.
  • the detection voltage selection unit 51 and the rotor position detection unit 11 are mounted on the control board CB.
  • the AC voltage detector 8 includes voltage transformers VT1 and VT2 and DCVT (DC voltage transform) 61 and 62.
  • Voltage transformer VT1 includes primary coils L1, L3 and secondary coils L2, L4.
  • Voltage transformer VT2 includes primary coils L5 and L7 and secondary coils L6 and L8.
  • the AC voltage transformer VT1 among the three-phase AC voltages supplied to the armature of the generator 4, the AC voltage obtained by transforming the AC voltage between the U phase and the V phase and the AC voltage between the V phase and the W phase at a predetermined transformation ratio. Is induced in the secondary coils L2 and L4.
  • an AC voltage obtained by transforming the AC voltage induced in the voltage transformer VT1 with a predetermined transformation ratio is induced in the secondary coils L6 and L8, and this induced voltage is given to the detection voltage selection unit 51.
  • a 3.6 kV AC voltage is applied to the primary side of the voltage transformer VT1, that is, the power line LN, and the AC voltage of 3.6 kV is stepped down from the secondary side of the voltage transformer VT1.
  • AC voltage is output, and an AC voltage of several volts obtained by stepping down the AC voltage of 100 V is output from the secondary side of the voltage transformer VT2.
  • the rotor position detector 11 can correctly recognize that the voltage is supplied to the armature of the generator 4.
  • the DCVT 61 has an input end connected to the power line LN, and an output end that is insulated from the input end and connected to the detection voltage selection unit 51, and insulates the voltage at the input end. After appropriately transforming the voltage, the voltage is limited to a positive predetermined voltage value or less and a negative predetermined voltage value or more, and output from the output terminal to the detection voltage selection unit 51. More specifically, the DCVT 61 is a transformer insulation circuit (not shown) that transmits the AC voltage between the U-phase and the V-phase from the primary side to the secondary side among the three-phase AC voltages supplied to the armature of the generator 4. And a clamp circuit (not shown) for limiting the AC voltage transmitted by the transformer insulation circuit to a positive predetermined voltage value or less and a negative predetermined voltage value or more.
  • the DCVT 62 has an input end connected to the power line LN, and an output end that is insulated from the input end and connected to the detection voltage selection unit 51, and insulates the voltage at the input end. After appropriately transforming the voltage, the voltage is limited to a positive predetermined voltage value or less and a negative predetermined voltage value or more, and output from the output terminal to the detection voltage selection unit 51. More specifically, the DCVT 62 is a transformer (not shown) that transmits the AC voltage between the V phase and the W phase from the primary side coil to the secondary side coil among the three phase AC voltages supplied to the armature of the generator 4. An insulation circuit and a clamp circuit (not shown) for limiting the AC voltage transmitted by the transformer insulation circuit to a positive predetermined voltage value or less and a negative predetermined voltage value or more are included.
  • DCVTs 61 and 62 include a clamp circuit that clamps an output voltage greater than 10V to 10V.
  • an AC voltage of several V to several hundreds V is applied to the input ends of the DCVTs 61 and 62, that is, the power line LN, and an AC voltage of several volts or less is output from the output ends of the DCVTs 61 and 62. Is done.
  • an AC voltage of several kV is applied to the input ends of the DCVTs 61 and 62, ie, the power line LN, and an AC voltage of several kV is stepped down from the output ends of the DCVTs 61 and 62.
  • an alternating voltage obtained by clamping a voltage exceeding ⁇ 10 V is output.
  • the voltage at the time of starting the generator 4 is transmitted to the rotor position detector 11 at a level as large as possible within the voltage range handled in the control board CB.
  • the accuracy is improved, and the detection accuracy of the rotor position detector 11 can be improved.
  • the voltage supplied to the armature of the generator 4 increases beyond the voltage range handled in the control board CB.
  • the circuit can prevent each circuit in the control board CB from being damaged due to an excessive voltage applied.
  • the detection voltage selection unit 51 selects one of the voltage received from the voltage transformer VT2 and the voltage received from the DCVTs 61 and 62, and outputs the selected voltage to the rotor position detection unit 11. More specifically, the detection voltage selection unit 51 is activated when the generator 4 is started, for example, when the rotational speed of the rotor of the generator 4 is less than a predetermined value or the terminal voltage of the generator 4 is less than a predetermined value. In this case, the voltage received from DCVTs 61 and 62 is selected and output to rotor position detection unit 11.
  • the detection voltage selection unit 51 is, for example, when the terminal voltage of the generator 4 becomes a predetermined value or more due to acceleration of the generator 4, or when the rotational speed of the rotor of the generator 4 is a predetermined value or more.
  • the voltage received from the voltage transformer VT2 is selected and output to the rotor position detector 11.
  • the AC voltage of a large level is appropriately stepped down by the voltage transformers VT1 and VT2 and transmitted to the rotor position detector 11. be able to. Further, by clamping a large level AC voltage by the DCVTs 61 and 62 and transmitting the clamped voltage to the rotor position detector 11, it is possible to prevent an excessive voltage from being applied to each circuit mounted on the control board CB. .
  • the voltage supplied to the armature of the generator 4 at the time of starting is detected with high accuracy, and the position of the rotor of the generator 4 is accurately determined. Therefore, the generator 4 can be started stably.
  • AC voltage detector 8 is configured to include voltage transformers VT1 and VT2 and DCVTs 61 and 62.
  • the AC voltage detection unit 8 has a first output terminal and a second output terminal insulated from the power line LN, and outputs a voltage obtained by transforming an AC voltage supplied through the power line LN at a predetermined transformation ratio.
  • the AC voltage output from the end to the detection voltage selection unit 51 and supplied through the power line LN is transformed at a predetermined transformation ratio, further limited to a positive predetermined voltage value or lower and a negative predetermined voltage value or higher to be the second Any circuit may be adopted as long as it is configured to output from the output terminal to the detection voltage selection unit 51.
  • the power converter 71 was the structure containing the converter 1, the inverter 2, and the direct current
  • the power conversion unit 71 may include a circuit such as a matrix converter that converts the supplied power into AC power and supplies it to the armature of the synchronous machine 4 instead of the converter 1, the inverter 2, and the DC reactor 3. That's fine.
  • the present embodiment relates to a synchronous machine starting device in which a high voltage circuit is reduced as compared with the synchronous machine starting device according to the first embodiment.
  • the contents other than those described below are the same as those of the synchronous machine starting device according to the first embodiment.
  • FIG. 3 is a diagram showing the configuration of the synchronous machine starting device according to the second embodiment of the present invention.
  • synchronous machine starting device 102 includes AC voltage detector 58 instead of AC voltage detector 8 as compared with the synchronous machine starting device according to the first embodiment of the present invention.
  • AC voltage detector 58 includes voltage transformers VT1 and VT2 and clamp circuits CP1 and CP2.
  • Clamp circuit CP1 includes resistors R1, R2, and R3 and Zener diodes ZD1 and ZD2.
  • Clamp circuit CP2 includes resistors R4, R5, R6 and Zener diodes ZD3, ZD4.
  • the resistor R1 includes a first end connected to the first end of the secondary coil L2 and the first end of the primary coil L5, the first end of the resistor R2, the cathode of the Zener diode ZD1, and the detection voltage. And a second end connected to the selector 51.
  • the resistor R3 is connected to the first end connected to the second end of the secondary coil L2 and the second end of the primary coil L5, the second end of the resistor R2, the cathode of the Zener diode ZD2, and the detection voltage selection unit 51. And a second end.
  • the anode of the Zener diode ZD1 and the anode of the Zener diode ZD2 are connected.
  • the resistor R4 includes a first end connected to the first end of the secondary coil L4 and the first end of the primary coil L7, the first end of the resistor R5, the cathode of the Zener diode ZD3, and the detection voltage. And a second end connected to the selector 51.
  • the resistor R6 is connected to the first end connected to the second end of the secondary coil L4 and the second end of the primary coil L7, the second end of the resistor R5, the cathode of the Zener diode ZD4, and the detection voltage selection unit 51. And a second end.
  • the anode of the Zener diode ZD3 and the anode of the Zener diode ZD4 are connected.
  • the clamp circuit CP1 restricts the alternating voltage induced in the secondary coil L2 to a positive predetermined voltage value or less and a negative predetermined voltage value or more, and outputs it to the detection voltage selection unit 51.
  • the Zener diode ZD1 or ZD2 performs a constant voltage clamping operation, and the AC voltage induced in the secondary coil L2 is a positive predetermined voltage. It is clamped to an AC voltage that is equal to or less than a negative negative voltage value, for example, +10 V or less and ⁇ 10 V or more. Further, the AC voltage induced in the secondary coil L2 is divided by the resistors R1, R2, and R3, thereby preventing an excessive current from flowing through the Zener diodes ZD1 and ZD2 when the amplitude of the AC voltage is large. Further, even when the amplitude of the AC voltage induced in the secondary coil L2 is small by the resistors R1, R2, and R3, the AC voltage induced in the secondary coil L2 can be transmitted to the detection voltage selection unit 51.
  • the clamp circuit CP2 limits the AC voltage induced in the secondary coil L4 to a positive predetermined voltage value or less and a negative predetermined voltage value or more, and outputs it to the detection voltage selection unit 51.
  • the Zener diode ZD3 or ZD4 performs a constant voltage clamping operation, and the AC voltage induced in the secondary coil L4 is a positive predetermined voltage. It is clamped to an AC voltage that is equal to or less than a negative negative voltage value, for example, +10 V or less and ⁇ 10 V or more. Further, the AC voltage induced in the secondary coil L4 is divided by the resistors R4, R5, and R6, thereby preventing an excessive current from flowing through the Zener diodes ZD3 and ZD4 when the amplitude of the AC voltage is large. Further, even when the amplitude of the AC voltage induced in the secondary coil L4 is small by the resistors R4, R5, and R6, the AC voltage induced in the secondary coil L4 can be transmitted to the detection voltage selection unit 51.
  • a 3.6 kV AC voltage is applied to the primary side of the voltage transformer VT1, that is, the power line LN, and the AC voltage of 3.6 kV is stepped down from the secondary side of the voltage transformer VT1.
  • AC voltage is output.
  • an AC voltage of 100V is applied to the input ends of the clamp circuits CP1 and CP2, and the AC voltage of 100V is divided by a resistor from the output ends of the clamp circuits CP1 and CP2, and a voltage exceeding ⁇ 10V is further clamped.
  • AC voltage is output.
  • the detection voltage selection unit 51 selects one of the voltage received from the voltage transformer VT2 and the voltage received from the clamp circuits CP1 and CP2, and outputs the selected voltage to the rotor position detection unit 11. More specifically, the detection voltage selection unit 51 is activated when the generator 4 is started, for example, when the rotational speed of the rotor of the generator 4 is less than a predetermined value, or the terminal voltage of the generator 4 is less than a predetermined value. In this case, the voltage received from the clamp circuits CP1 and CP2 is selected and output to the rotor position detector 11.
  • the detection voltage selection unit 51 selects the voltage received from the voltage transformer VT2 during steady operation of the generator 4, for example, when the rotational speed of the rotor of the generator 4 is equal to or higher than a predetermined value, Output to the detector 11.
  • the rotors are clamped by the clamp circuits CP1 and CP2 without stepping down the low level AC voltage by the voltage transformer VT2. It can be transmitted to the position detector 11.
  • the high-level AC voltage is appropriately stepped down to the voltage range handled in the control board CB by the voltage transformers VT1 and VT2. Then, it can be transmitted to the rotor position detector 11.
  • a large level voltage induced in the secondary coils L2 and L4 is clamped by the clamp circuits CP1 and CP2 and transmitted to the rotor position detection unit 11, so that each circuit mounted on the control board CB is excessively large. It is possible to prevent voltage from being applied.
  • the voltage supplied to the armature of the generator 4 at the time of starting is detected with high accuracy, and the position of the rotor of the generator 4 is accurately determined. Therefore, the generator 4 can be started stably.

Abstract

 同期機起動装置において、交流電圧検出部(8)は、電力変換部(71)から電力線(LN)を通して同期機(4)の電機子に供給される交流電圧を検出する。交流電圧検出部(8)は、電力線(LN)と絶縁された第1の出力端および第2の出力端を有し、電力線(LN)を通して供給される交流電圧を第1の比率で変圧した電圧を第1の出力端から出力し、かつ電力線(LN)を通して供給される交流電圧を第2の比率で変圧し、さらに正の所定電圧値以下かつ負の所定電圧値以上に制限して第2の出力端から出力する。そして、検出電圧選択部(51)は、第1の出力端から受けた電圧および第2の出力端から受けた電圧のいずれか一方を選択して回転子位置検出部(11)へ出力する。回転子位置検出部(11)は、検出電圧選択部(51)から受けた電圧に基づいて、同期機(4)の回転子位置を検出する。電力変換制御部(19)は、検出された回転子位置に基づいて、電力変換部(71)を制御する。

Description

同期機起動装置
 本発明は、同期機起動装置に関し、特に、同期機の回転子位置を検出する同期機起動装置に関する。
 発電機および電動機等の同期機を起動するための同期機起動装置が開発されている。従来、同期機起動装置では、同期機の回転子の位置を近接スイッチ等により検出する機械式分配器が用いられている。しかしながら、機械式分配器は壊れやすく、また、配線が多いためにノイズの影響を受けやすい。
 このような機械式分配器を不要とするための同期機起動装置の一例が特開2006-271038号公報(特許文献1)に開示されている。すなわち、この同期発電機起動装置は、サイリスタなどの他励素子からなる他励式コンバータと、コンバータにより得られる直流電力を交流電力に変換するサイリスタなどの他励素子からなる他励式インバータとを備え、インバータにより得られる交流電力による同期発電機を起動する。そして、この同期発電機起動装置は、同期発電機の電機子端子の電圧を検出する交流電圧検出器と、インバータから同期発電機の電機子に流し込まれるインバータ出力電流を検出する交流電流検出器と、出力電流検出器からのインバータの交流電流検出値と、第一の同期発電機回転速度推定値から、同期発電機の界磁電流により同期発電機の電機子巻線に誘起される誘起電圧の、第一の基準位相に対する同相成分と直交成分を演算する誘起電圧演算回路と、誘起電圧演算回路からの誘起電圧の第一の基準位相の直交成分をゼロとするような第二の基準位相と第二の同期発電機回転速度推定値を出力するPLL回路とを備える。そして、この同期発電機起動装置は、PLL回路の出力である第二の基準位相に基づき、所定の制御進み角のインバータのゲートパルスを生成するとともに、第二の基準位相を、誘起電圧演算回路の第一の基準位相に入力し、第二の同期発電機回転速度推定値を誘起電圧演算回路の第一の同期発電機回転速度推定値に入力する。
特開2006-271038号公報
 起動時において同期機の電機子に供給される電圧は、定常時の定格電圧と比べてたとえば1/1000と非常に小さい。このため、特許文献1記載の構成では、起動時において同期機の電機子に供給される電圧を高精度で検出し、回転子の位置を正確に検出することが困難であることから、同期機を安定して起動することができない場合がある。
 それゆえに、本発明の目的は、同期機を安定して起動することが可能な同期機起動装置を提供することである。
 この発明のある局面に係わる同期機起動装置は、供給された電力を交流電力に変換して同期機の電機子に供給する電力変換部と、電力変換部から同期機へ交流電力を供給するための電力線と、電力線を通して同期機の電機子に供給される交流電圧を検出する交流電圧検出部と、検出された交流電圧に基づいて、同期機の回転子位置を検出する回転子位置検出部と、検出された回転子位置に基づいて、電力変換部を制御する電力変換制御部とを備え、交流電圧検出部は、電力線と絶縁された第1の出力端および第2の出力端を有し、電力線を通して供給される交流電圧を第1の比率で変圧した電圧を第1の出力端から出力し、かつ電力線を通して供給される交流電圧を第2の比率で変圧し、かつ正の所定電圧値以下かつ負の所定電圧値以上に制限して第2の出力端から出力し、さらに、第1の出力端から受けた電圧および第2の出力端から受けた電圧のいずれか一方を選択して回転子位置検出部へ出力する検出電圧選択部を備える。
 好ましくは、交流電圧検出部は、電力線と絶縁された第1の出力端および第2の出力端を有し、電力線を通して供給される交流電圧を第1の比率で降圧した電圧を第1の出力端から出力し、かつ電力線を通して供給される交流電圧を第2の比率で降圧し、さらに正の所定電圧値以下かつ負の所定電圧値以上に制限して第2の出力端から出力する。
 好ましくは、交流電圧検出部は、電力線に結合された1次コイルと、第1の出力端として検出電圧選択部に結合された2次コイルとを含む電圧トランスと、電力線に結合された入力端と、入力端と絶縁されかつ検出電圧選択部に結合された第2の出力端とを有し、入力端の電圧を変圧し、さらに正の所定電圧値以下かつ負の所定電圧値以上に制限して第2の出力端から出力する電圧変換回路とを含む。
 好ましくは、交流電圧検出部は、電力線に結合された1次コイルと、2次コイルとを含む第1の電圧トランスと、第1の電圧トランスの2次コイルに結合された1次コイルと、第1の出力端として検出電圧選択部に結合された2次コイルとを含む第2の電圧トランスと、第1の電圧トランスの2次コイルに結合され、検出電圧選択部に結合された第2の出力端を有し、2次コイルの電圧を正の所定電圧値以下かつ負の所定電圧値以上に制限して第2の出力端から出力するクランプ回路とを含む。
 本発明によれば、同期機を安定して起動することができる。
本発明の第1の実施の形態に係る同期機起動装置の構成を示す図である。 交流電圧検出器8およびその周辺回路の構成を詳細に示す図である。 本発明の第2の実施の形態に係る同期機起動装置の構成を示す図である。
符号の説明
 1 コンバータ、2 インバータ、3 直流リアクトル、8,58 交流電圧検出器、9 交流電流検出器、11 回転子位置検出部、12 基準正弦波演算器、13 ゲートパルス発生器、14 β指令回路、19 インバータ制御部(電力変換制御部)、51 検出電圧選択部、61,62 DCVT、71 電力変換部、101,102 同期機起動装置、CB 制御基板、LN 電力線、VT1,VT2 電圧トランス、L1,L3,L5,L7 1次コイル、L2,L4,L6,L8 2次コイル、CP1,CP2 クランプ回路、R1,R2,R3,R4,R5,R6 抵抗、ZD1,ZD2,ZD3,ZD4 ツェナーダイオード。
 以下、本発明の実施の形態について図面を用いて説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。
 <第1の実施の形態>
 図1は、本発明の第1の実施の形態に係る同期機起動装置の構成を示す図である。
 図1を参照して、同期機起動装置101は、電力変換部71と、交流電圧検出器8と、交流電流検出器9と、回転子位置検出部11と、インバータ制御部(電力変換制御部)19とを備える。電力変換部71は、コンバータ1と、インバータ2と、直流リアクトル3とを含む。インバータ制御部19は、基準正弦波演算器12と、ゲートパルス発生器13と、β指令回路14とを含む。
 同期機4およびモータMは、軸SHを介して接続されている。同期機4はたとえば同期発電機または同期電動機であり、電機子および回転子を有する。モータMは、同期機4の待機時、所定速度で回転する。この回転速度は低速であり、たとえば数rpmである。これに対して、通常時の回転速度は3000rpm~3600rpmである。このため、起動時に同期機4の電機子に印加される電圧は、前述のように定常時の1/1000と非常に小さく、交流電圧検出器8による検出電圧は歪んでいる場合も多いことから、正確に検出することは困難である。
 コンバータ1は、サイリスタなどの素子からなり、交流電源e1からの交流電力を直流電力に変換する。
 インバータ2は、サイリスタなどの素子からなり、コンバータ1により得られる直流電力を交流電力に変換して同期機4の電機子に供給することにより、同期機4を駆動する。
 コンバータ1およびインバータ2は、直流リアクトル3を介して接続されている。インバータ2の交流側は発電機4の電機子に接続されている。
 交流電圧検出器8は、発電機4の電機子に供給される三相交流電圧を検出し、電圧検出値V1,V2,V3を回転子位置検出部11へ出力する。
 交流電流検出器9は、発電機4の電機子に供給される三相交流電流を検出し、電流検出値I1,I2,I3を回転子位置検出部11へ出力する。
 回転子位置検出部11は、交流電圧検出器8および交流電流検出器9から受けた各検出値に基づいて、発電機4の回転子位置(位相)を検出し、発電機4の回転子位置を示す回転子位置信号POSをインバータ制御部19へ出力する。
 インバータ制御部19は、回転子位置検出部11から受けた回転子位置信号POSに基づいてインバータ2を制御する。
 インバータ制御部19において、基準正弦波演算器12は、回転子位置検出部11から受けた位置信号POSに基づいて、基準正弦波sinφを出力する。
 β指令回路14は、制御進み角指令値βを演算し、ゲートパルス発生器13へ出力する。
 ゲートパルス発生器13は、基準正弦波演算器12から受けた基準正弦波sinφと、β指令回路14から受けた制御進み角指令値βとに基づいて、インバータ2における素子へゲートパルスを出力する。
 図2は、交流電圧検出器8およびその周辺回路の構成を詳細に示す図である。
 図2を参照して、同期機起動装置101は、さらに、検出電圧選択部51と、制御基板CBと、電力線LNとを備える。検出電圧選択部51および回転子位置検出部11が制御基板CBに実装されている。交流電圧検出器8は、電圧トランスVT1,VT2と、DCVT(直流ボルテージトランスフォーム)61,62とを含む。電圧トランスVT1は、1次コイルL1,L3と、2次コイルL2,L4とを含む。電圧トランスVT2は、1次コイルL5,L7と、2次コイルL6,L8とを含む。
 電圧トランスVT1において、発電機4の電機子に供給される三相の交流電圧のうち、U相-V相間の交流電圧およびV相-W相間の交流電圧を所定の変圧比で変圧した交流電圧が2次コイルL2,L4に誘起される。
 電圧トランスVT2において、電圧トランスVT1に誘起された交流電圧を所定の変圧比で変圧した交流電圧が2次コイルL6,L8に誘起され、この誘起電圧が検出電圧選択部51へ与えられる。
 たとえば、発電機4の定常運転時、電圧トランスVT1の1次側すなわち電力線LNには3.6kVの交流電圧が印加され、電圧トランスVT1の2次側から3.6kVの交流電圧を降圧した100Vの交流電圧が出力され、電圧トランスVT2の2次側から100Vの交流電圧を降圧した数Vの交流電圧が出力される。
 このため、制御基板CB内で扱われる電圧の範囲がたとえば±10Vである場合、発電機4の電機子に供給されるを回転子位置検出部11が正しく認識することが可能となる。
 また、DCVT61は、電力線LNに接続された入力端と、この入力端と絶縁されかつ検出電圧選択部51に接続された出力端とを有し、入力端の電圧を絶縁し、さらに入力端の電圧を適切に変圧した上で、正の所定電圧値以下かつ負の所定電圧値以上に制限して出力端から検出電圧選択部51へ出力する。より詳細には、DCVT61は、発電機4の電機子に供給される三相の交流電圧のうち、U相-V相間の交流電圧を1次側から2次側へ伝達する図示しない変圧絶縁回路と、この変圧絶縁回路によって伝達された交流電圧を正の所定電圧値以下かつ負の所定電圧値以上に制限する図示しないクランプ回路とを含む。
 また、DCVT62は、電力線LNに接続された入力端と、この入力端と絶縁されかつ検出電圧選択部51に接続された出力端とを有し、入力端の電圧を絶縁し、さらに入力端の電圧を適切に変圧した上で、正の所定電圧値以下かつ負の所定電圧値以上に制限して出力端から検出電圧選択部51へ出力する。より詳細には、DCVT62は、発電機4の電機子に供給される三相の交流電圧のうち、V相-W相間の交流電圧を1次側コイルから2次側コイルへ伝達する図示しない変圧絶縁回路と、この変圧絶縁回路によって伝達された交流電圧を正の所定電圧値以下かつ負の所定電圧値以上に制限する図示しないクランプ回路とを含む。
 たとえば、DCVT61および62は、10Vより大きい出力電圧を10Vにクランプするクランプ回路を含む。発電機4の起動時、DCVT61および62の入力端すなわち電力線LNには数V~数百Vの交流電圧が印加され、DCVT61および62の出力端からは降圧された数V以下の交流電圧が出力される。また、発電機4の加速中、更に定常運転時、DCVT61および62の入力端すなわち電力線LNには数kVの交流電圧が印加され、DCVT61および62の出力端からは数kVの交流電圧を降圧し、更に±10Vを超える電圧をクランプした交流電圧が出力される。
 これにより、発電機4の起動時の電圧は、制御基板CB内で扱われる電圧の範囲内のできるだけ大きいレベルで回転子位置検出部11へ伝達されるため、発電機4の起動時の電圧検出精度が良くなり、回転子位置検出部11の検出精度を向上させることができる。さらに、発電機4の起動が完了した加速時および定常運転時は、発電機4の電機子に供給される電圧は制御基板CB内で扱われる電圧の範囲を超えて大きくなるが、DCVTのクランプ回路により、過大電圧が印加されて制御基板CBにおける各回路が故障することを防止することができる。
 検出電圧選択部51は、電圧トランスVT2から受けた電圧と、DCVT61および62から受けた電圧とのいずれか一方を選択して回転子位置検出部11へ出力する。より詳細には、検出電圧選択部51は、発電機4の起動時、たとえば発電機4の回転子の回転速度が所定値未満の場合あるいは発電機4の端子電圧の大きさが所定値未満の場合には、DCVT61および62から受けた電圧を選択して回転子位置検出部11へ出力する。一方、検出電圧選択部51は、たとえば発電機4の加速によって発電機4の端子電圧の大きさが所定値以上になった場合、あるいは発電機4の回転子の回転速度が所定値以上の場合には、電圧トランスVT2から受けた電圧を選択して回転子位置検出部11へ出力する。
 このような構成により、発電機4の電機子へ供給される交流電圧のレベルが非常に小さい起動時において、小レベルの交流電圧を過度に降圧して検出精度を悪化させることなくDCVT61および62によって回転子位置検出部11へ伝達することができる。
 また、発電機4の電機子へ供給される交流電圧のレベルが大きくなる定常運転時において、電圧トランスVT1およびVT2によって大レベルの交流電圧を適切に降圧して回転子位置検出部11へ伝達することができる。また、DCVT61および62によって大レベルの交流電圧をクランプして回転子位置検出部11へ伝達することにより、制御基板CBに実装された各回路に過大な電圧が印加されることを防ぐことができる。
 したがって、本発明の第1の実施の形態に係る同期機起動装置では、起動時において発電機4の電機子に供給される電圧を高精度で検出し、発電機4の回転子の位置を正確に検出することができるため、発電機4を安定して起動することができる。
 なお、本発明の第1の実施の形態に係る同期機起動装置では、交流電圧検出部8は、電圧トランスVT1およびVT2ならびにDCVT61および62を含む構成であるとしたが、これに限定するものではない。交流電圧検出部8が、電力線LNと絶縁された第1の出力端および第2の出力端を有し、電力線LNを通して供給される交流電圧を所定の変圧比で変圧した電圧を第1の出力端から検出電圧選択部51へ出力し、かつ電力線LNを通して供給される交流電圧を所定の変圧比で変圧し、さらに正の所定電圧値以下かつ負の所定電圧値以上に制限して第2の出力端から検出電圧選択部51へ出力する構成であればどのような回路を採用してもよい。
 また、図2に示す交流電圧検出部8は、発電機4の電機子に供給される三相の交流電圧のうち、U相-V相間の交流電圧およびV相-W相間の交流電圧を検出する構成であるとしたが、これら二相の交流電圧を検出すれば、W相-U相間の交流電圧は計算により求めることが可能である。
 また、本発明の第1の実施の形態に係る同期機起動装置では、電力変換部71は、コンバータ1と、インバータ2と、直流リアクトル3とを含む構成であるとしたが、これに限定するものではない。電力変換部71は、コンバータ1、インバータ2および直流リアクトル3の代わりに、マトリックスコンバータ等、供給された電力を交流電力に変換して同期機4の電機子に供給する何らかの回路を含む構成であればよい。
 次に、本発明の他の実施の形態について図面を用いて説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。
 <第2の実施の形態>
 本実施の形態は、第1の実施の形態に係る同期機起動装置と比べて高圧回路を削減した同期機起動装置に関する。以下で説明する内容以外は第1の実施の形態に係る同期機起動装置と同様である。
 図3は、本発明の第2の実施の形態に係る同期機起動装置の構成を示す図である。
 図3を参照して、同期機起動装置102は、本発明の第1の実施の形態に係る同期機起動装置と比べて、交流電圧検出器8の代わりに交流電圧検出器58を備える。
 交流電圧検出器58は、電圧トランスVT1,VT2と、クランプ回路CP1,CP2とを含む。クランプ回路CP1は、抵抗R1,R2,R3と、ツェナーダイオードZD1,ZD2とを含む。クランプ回路CP2は、抵抗R4,R5,R6と、ツェナーダイオードZD3,ZD4とを含む。
 クランプ回路CP1において、抵抗R1は、2次コイルL2の第1端および1次コイルL5の第1端に接続された第1端と、抵抗R2の第1端、ツェナーダイオードZD1のカソードおよび検出電圧選択部51に接続された第2端とを有する。抵抗R3は、2次コイルL2の第2端および1次コイルL5の第2端に接続された第1端と、抵抗R2の第2端、ツェナーダイオードZD2のカソードおよび検出電圧選択部51に接続された第2端とを有する。ツェナーダイオードZD1のアノードとツェナーダイオードZD2のアノードとが接続されている。
 クランプ回路CP2において、抵抗R4は、2次コイルL4の第1端および1次コイルL7の第1端に接続された第1端と、抵抗R5の第1端、ツェナーダイオードZD3のカソードおよび検出電圧選択部51に接続された第2端とを有する。抵抗R6は、2次コイルL4の第2端および1次コイルL7の第2端に接続された第1端と、抵抗R5の第2端、ツェナーダイオードZD4のカソードおよび検出電圧選択部51に接続された第2端とを有する。ツェナーダイオードZD3のアノードとツェナーダイオードZD4のアノードとが接続されている。
 クランプ回路CP1は、2次コイルL2に誘起された交流電圧を正の所定電圧値以下かつ負の所定電圧値以上に制限して検出電圧選択部51へ出力する。
 より詳細には、2次コイルL2に誘起された交流電圧の振幅が大きい場合には、ツェナーダイオードZD1またはZD2が定電圧クランプ動作し、2次コイルL2に誘起された交流電圧は正の所定電圧値以下かつ負の所定電圧値以上たとえば+10V以下かつ-10V以上の交流電圧にクランプされる。また、2次コイルL2に誘起された交流電圧を抵抗R1,R2,R3で分圧することにより、交流電圧の振幅が大きいときに、ツェナーダイオードZD1,ZD2を通して過大な電流が流れることを防ぐ。また、抵抗R1,R2,R3により、2次コイルL2に誘起された交流電圧の振幅が小さい場合でも、2次コイルL2に誘起された交流電圧を検出電圧選択部51へ伝達することができる。
 また、クランプ回路CP2は、2次コイルL4に誘起された交流電圧を正の所定電圧値以下かつ負の所定電圧値以上に制限して検出電圧選択部51へ出力する。
 より詳細には、2次コイルL4に誘起された交流電圧の振幅が大きい場合には、ツェナーダイオードZD3またはZD4が定電圧クランプ動作し、2次コイルL4に誘起された交流電圧は正の所定電圧値以下かつ負の所定電圧値以上たとえば+10V以下かつ-10V以上の交流電圧にクランプされる。また、2次コイルL4に誘起された交流電圧を抵抗R4,R5,R6で分圧することにより、交流電圧の振幅が大きいときに、ツェナーダイオードZD3,ZD4を通して過大な電流が流れることを防ぐ。また、抵抗R4,R5,R6により、2次コイルL4に誘起された交流電圧の振幅が小さい場合でも、2次コイルL4に誘起された交流電圧を検出電圧選択部51へ伝達することができる。
 たとえば、発電機4の定常運転時、電圧トランスVT1の1次側すなわち電力線LNには3.6kVの交流電圧が印加され、電圧トランスVT1の2次側から3.6kVの交流電圧を降圧した100Vの交流電圧が出力される。このとき、クランプ回路CP1,CP2の入力端には100Vの交流電圧が印加され、クランプ回路CP1,CP2の出力端からは100Vの交流電圧を抵抗で分圧し、さらに±10Vを超える電圧をクランプした交流電圧が出力される。また、発電機4の起動時、クランプ回路CP1,CP2の入力端には数V以下の交流電圧が印加され、クランプ回路CP1,CP2の出力端からは抵抗で分圧した交流電圧がそのまま出力される。
 検出電圧選択部51は、電圧トランスVT2から受けた電圧と、クランプ回路CP1およびCP2から受けた電圧とのいずれか一方を選択して回転子位置検出部11へ出力する。より詳細には、検出電圧選択部51は、発電機4の起動時、たとえば発電機4の回転子の回転速度が所定値未満の場合、あるいは発電機4の端子電圧の大きさが所定値未満の場合には、クランプ回路CP1およびCP2から受けた電圧を選択して回転子位置検出部11へ出力する。一方、検出電圧選択部51は、発電機4の定常運転時、たとえば発電機4の回転子の回転速度が所定値以上の場合には、電圧トランスVT2から受けた電圧を選択して回転子位置検出部11へ出力する。
 その他の構成および動作は第1の実施の形態に係る同期機起動装置と同様であるため、ここでは詳細な説明を繰り返さない。
 このような構成により、発電機4の電機子へ供給される交流電圧のレベルが非常に小さい起動時において、小レベルの交流電圧を電圧トランスVT2によって降圧することなくクランプ回路CP1およびCP2によって回転子位置検出部11へ伝達することができる。
 また、発電機4の電機子へ供給される交流電圧のレベルが大きくなる定常運転時において、電圧トランスVT1およびVT2によって大レベルの交流電圧を制御基板CB内で扱われる電圧の範囲に適切に降圧して回転子位置検出部11へ伝達することができる。また、2次コイルL2およびL4に誘起された大レベルの電圧をクランプ回路CP1およびCP2によってクランプして回転子位置検出部11へ伝達することにより、制御基板CBに実装された各回路に過大な電圧が印加されることを防ぐことができる。
 したがって、本発明の第2の実施の形態に係る同期機起動装置では、起動時において発電機4の電機子に供給される電圧を高精度で検出し、発電機4の回転子の位置を正確に検出することができるため、発電機4を安定して起動することができる。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。

Claims (4)

  1.  供給された電力を交流電力に変換して同期機(4)の電機子に供給する電力変換部(71)と、
     前記電力変換部(71)から前記同期機(4)へ前記交流電力を供給するための電力線(LN)と、
     前記電力線(LN)を通して前記同期機(4)の電機子に供給される交流電圧を検出する交流電圧検出部(8,58)と、
     前記検出された交流電圧に基づいて、前記同期機(4)の回転子位置を検出する回転子位置検出部(11)と、
     前記検出された回転子位置に基づいて、前記電力変換部(71)を制御する電力変換制御部(19)とを備え、
     前記交流電圧検出部(8,58)は、前記電力線(LN)と絶縁された第1の出力端および第2の出力端を有し、前記電力線(LN)を通して供給される交流電圧を第1の比率で変圧した電圧を前記第1の出力端から出力し、かつ前記電力線(LN)を通して供給される交流電圧を第2の比率で変圧し、さらに正の所定電圧値以下かつ負の所定電圧値以上に制限して前記第2の出力端から出力し、
     さらに、
     前記第1の出力端から受けた電圧および前記第2の出力端から受けた電圧のいずれか一方を選択して前記回転子位置検出部(11)へ出力する検出電圧選択部(51)を備える同期機起動装置。
  2.  前記交流電圧検出部(8,58)は、前記電力線(LN)と絶縁された第1の出力端および第2の出力端を有し、前記電力線(LN)を通して供給される交流電圧を第1の比率で降圧した電圧を前記第1の出力端から出力し、かつ前記電力線(LN)を通して供給される交流電圧を第2の比率で降圧し、さらに正の所定電圧値以下かつ負の所定電圧値以上に制限して前記第2の出力端から出力する請求の範囲第1項に記載の同期機起動装置。
  3.  前記交流電圧検出部(8)は、
     前記電力線(LN)に結合された1次コイルと、前記第1の出力端として前記検出電圧選択部(51)に結合された2次コイルとを含む電圧トランス(VT1,VT2)と、
     前記電力線(LN)に結合された入力端と、前記入力端と絶縁されかつ前記検出電圧選択部(51)に結合された前記第2の出力端とを有し、前記入力端の電圧を変圧し、さらに正の所定電圧値以下かつ負の所定電圧値以上に制限して前記第2の出力端から出力する電圧変換回路(61,62)とを含む請求の範囲第1項に記載の同期機起動装置。
  4.  前記交流電圧検出部(58)は、
     前記電力線(LN)に結合された1次コイルと、2次コイルとを含む第1の電圧トランス(VT1)と、
     前記第1の電圧トランス(VT1)の2次コイルに結合された1次コイルと、前記第1の出力端として前記検出電圧選択部(51)に結合された2次コイルとを含む第2の電圧トランス(VT2)と、
     前記第1の電圧トランス(VT1)の2次コイルに結合され、前記検出電圧選択部(51)に結合された前記第2の出力端を有し、前記2次コイルの電圧を正の所定電圧値以下かつ負の所定電圧値以上に制限して前記第2の出力端から出力するクランプ回路(CP1,CP2)とを含む請求の範囲第1項に記載の同期機起動装置。
PCT/JP2008/072143 2008-12-05 2008-12-05 同期機起動装置 WO2010064318A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2008/072143 WO2010064318A1 (ja) 2008-12-05 2008-12-05 同期機起動装置
EP08878578.7A EP2357723B1 (en) 2008-12-05 2008-12-05 Synchronous machine startup device
JP2010541177A JP5427189B2 (ja) 2008-12-05 2008-12-05 同期機起動装置
US13/132,792 US8362730B2 (en) 2008-12-05 2008-12-05 Synchronous machine starting device
ES08878578.7T ES2551895T3 (es) 2008-12-05 2008-12-05 Dispositivo de arranque de máquina síncrona

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/072143 WO2010064318A1 (ja) 2008-12-05 2008-12-05 同期機起動装置

Publications (1)

Publication Number Publication Date
WO2010064318A1 true WO2010064318A1 (ja) 2010-06-10

Family

ID=42232982

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/072143 WO2010064318A1 (ja) 2008-12-05 2008-12-05 同期機起動装置

Country Status (5)

Country Link
US (1) US8362730B2 (ja)
EP (1) EP2357723B1 (ja)
JP (1) JP5427189B2 (ja)
ES (1) ES2551895T3 (ja)
WO (1) WO2010064318A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120249034A1 (en) * 2011-03-30 2012-10-04 Pratt & Whitney Canada Corp. Position sensing circuit for brushless motors
CN104991188A (zh) * 2015-07-16 2015-10-21 周海波 一种无刷电机缺相检测装置及方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2472713B1 (en) 2009-08-24 2018-03-07 Toshiba Mitsubishi-Electric Industrial Systems Corporation Synchronous machine starting device
JP5548777B2 (ja) 2010-10-15 2014-07-16 東芝三菱電機産業システム株式会社 同期機起動装置
US9157406B2 (en) * 2014-02-05 2015-10-13 General Electric Company Systems and methods for initializing a generator
GB201808798D0 (en) * 2018-05-30 2018-07-11 Rolls Royce Plc Angle determination for a generator
US11677230B2 (en) * 2019-08-30 2023-06-13 Eaton Intelligent Power Limited Motor protection relay interface using magnetometer-based sensors
CN111766515B (zh) * 2020-07-08 2022-11-04 贵州航天林泉电机有限公司 一种高温高速起动发电机系统测试系统及其测试方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58186397A (ja) * 1982-04-23 1983-10-31 Toshiba Corp ヒステリシス電動機の電圧制御方法
JPH01206894A (ja) * 1988-02-12 1989-08-21 Toshiba Corp 交流可変速電動機制御装置
JP2001054295A (ja) * 1999-08-05 2001-02-23 Sharp Corp モータ起動制御装置
JP2002281795A (ja) * 2001-03-23 2002-09-27 Sumitomo Heavy Ind Ltd 同期モータの再給電制御方法及び同期モータの制御装置
JP2006271038A (ja) 2005-03-22 2006-10-05 Toshiba Mitsubishi-Electric Industrial System Corp 同期発電機起動装置の制御装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5497332A (en) * 1993-10-01 1996-03-05 Automatic Terminal Information Systems, Inc. Method and apparatus for metering and monitoring AC generators
DE10037972B4 (de) 1999-08-05 2005-09-15 Sharp K.K. Vorrichtung und Verfahren zur Elektromotorsteuerung
CN1998130B (zh) * 2003-10-01 2011-11-23 J.L.贝哈梅尔公司 用于同步机控制的相位角控制设备
US7184927B2 (en) * 2004-03-26 2007-02-27 Honeywell International Inc. Adaptive position sensing method and apparatus for synchronous motor generator system
JP4789647B2 (ja) * 2006-02-20 2011-10-12 パナソニック株式会社 モータ駆動装置
WO2010038282A1 (ja) 2008-10-01 2010-04-08 東芝三菱電機産業システム株式会社 同期機起動装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58186397A (ja) * 1982-04-23 1983-10-31 Toshiba Corp ヒステリシス電動機の電圧制御方法
JPH01206894A (ja) * 1988-02-12 1989-08-21 Toshiba Corp 交流可変速電動機制御装置
JP2001054295A (ja) * 1999-08-05 2001-02-23 Sharp Corp モータ起動制御装置
JP2002281795A (ja) * 2001-03-23 2002-09-27 Sumitomo Heavy Ind Ltd 同期モータの再給電制御方法及び同期モータの制御装置
JP2006271038A (ja) 2005-03-22 2006-10-05 Toshiba Mitsubishi-Electric Industrial System Corp 同期発電機起動装置の制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2357723A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120249034A1 (en) * 2011-03-30 2012-10-04 Pratt & Whitney Canada Corp. Position sensing circuit for brushless motors
CN104991188A (zh) * 2015-07-16 2015-10-21 周海波 一种无刷电机缺相检测装置及方法

Also Published As

Publication number Publication date
JP5427189B2 (ja) 2014-02-26
US20110298406A1 (en) 2011-12-08
US8362730B2 (en) 2013-01-29
ES2551895T3 (es) 2015-11-24
EP2357723B1 (en) 2015-10-07
EP2357723A4 (en) 2014-07-02
JPWO2010064318A1 (ja) 2012-05-10
EP2357723A1 (en) 2011-08-17

Similar Documents

Publication Publication Date Title
JP5427189B2 (ja) 同期機起動装置
EP1510691B1 (en) Control apparatus for a starter/generator system
US10050573B2 (en) Wind power generation system including doubly-fed generator and stator-connected auxiliary converter
US10608565B2 (en) Systems and methods for rotating a crankshaft to start an engine
US8872466B2 (en) Synchronous-machine starting device
EP2337212B1 (en) Synchronous machine starting device
CN110785921B (zh) 晶闸管起动装置
JP2016019294A (ja) マトリクスコンバータ、発電システムおよび力率制御方法
JP5876846B2 (ja) 電動機駆動装置
JP6016712B2 (ja) 交流ブラシレス励磁装置および発電システム
EP3562028B1 (en) Externally modulated independent speed variable frequency generator
JP5337242B2 (ja) 同期機起動装置
JP6781343B2 (ja) サイリスタ起動装置
JP5662782B2 (ja) インバータ発電装置
CN110771031B (zh) 晶闸管起动装置
JP2943563B2 (ja) 巻線形誘導発電電動機の始動制御装置
JP6006677B2 (ja) サイリスタ起動装置
CN104953912B (zh) 基于矩阵变换器的电力推进船舶变频调速系统
JP4018262B2 (ja) 周波数変換装置
JPH0690597A (ja) 誘導発電機の制御装置
JPH0538150A (ja) 誘導発電機の制御装置
CN111742485A (zh) 电动机控制装置
JP2020065352A (ja) 電力変換装置
JPH1052047A (ja) 電源装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08878578

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010541177

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008878578

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13132792

Country of ref document: US