WO2010061894A1 - カプセル型医療装置誘導システム - Google Patents

カプセル型医療装置誘導システム Download PDF

Info

Publication number
WO2010061894A1
WO2010061894A1 PCT/JP2009/069961 JP2009069961W WO2010061894A1 WO 2010061894 A1 WO2010061894 A1 WO 2010061894A1 JP 2009069961 W JP2009069961 W JP 2009069961W WO 2010061894 A1 WO2010061894 A1 WO 2010061894A1
Authority
WO
WIPO (PCT)
Prior art keywords
capsule body
magnetic field
capsule
permanent magnet
magnetic
Prior art date
Application number
PCT/JP2009/069961
Other languages
English (en)
French (fr)
Inventor
河野 宏尚
ヨハネス ラインシュケ
ウォルフガング シュミット
Original Assignee
オリンパスメディカルシステムズ株式会社
シーメンス アクチエンゲゼルシヤフト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパスメディカルシステムズ株式会社, シーメンス アクチエンゲゼルシヤフト filed Critical オリンパスメディカルシステムズ株式会社
Priority to CN2009801476972A priority Critical patent/CN102227187A/zh
Priority to EP09829139.6A priority patent/EP2353489A4/en
Priority to JP2010540510A priority patent/JP4903899B2/ja
Publication of WO2010061894A1 publication Critical patent/WO2010061894A1/ja
Priority to US13/052,509 priority patent/US8821398B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/041Capsule endoscopes for imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00147Holding or positioning arrangements
    • A61B1/00158Holding or positioning arrangements using magnetic field
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/73Manipulators for magnetic surgery
    • A61B2034/731Arrangement of the coils or magnets
    • A61B2034/732Arrangement of the coils or magnets arranged around the patient, e.g. in a gantry

Definitions

  • the present invention relates to a capsule medical device guidance system for magnetically guiding a capsule medical device introduced into a subject.
  • capsule-type in-subject introduction apparatuses for example, capsule-type endoscopes
  • an imaging function and a wireless communication function have been proposed.
  • Intra-subject introduction systems have been developed that acquire images inside the subject.
  • a capsule endoscope is swallowed from the subject's mouth and then spontaneously discharged, and then inside the body cavity, for example, inside an organ such as the stomach or small intestine. Is moved according to the peristaltic motion, and functions to capture images in the subject at intervals of 0.5 seconds, for example.
  • an image captured by the capsule endoscope is received by an external image display device via an antenna placed on the body surface of the subject.
  • This image display device has a wireless communication function and an image memory function for the capsule endoscope, and sequentially stores images received from the capsule endoscope in the subject in the memory.
  • the doctor or nurse can observe (examine) the inside of the subject and make a diagnosis by displaying the image accumulated in the image display device, that is, the image in the digestive tract of the subject on the display.
  • Patent Document 1 describes that a capsule endoscope is guided in a liquid using a magnetic field.
  • the capsule endoscope is described so that the density of the capsule endoscope is equal to or less than that of the liquid.
  • the present invention has been made in view of the above, and can realize downsizing or energy saving of a magnetic field generator that generates a magnetic field necessary for guiding a capsule medical device such as a capsule endoscope.
  • An object of the present invention is to provide a capsule medical device guidance system.
  • a capsule medical device guidance system is introduced into a subject and includes a permanent magnet, and the examination or treatment in the subject is performed in the fluid.
  • a capsule body that is provided outside the subject, generates a magnetic attractive force with respect to the permanent magnet, and guides the capsule body, and a mass of the capsule body excluding the permanent magnet includes:
  • the magnetic field generator is smaller than the product of the volume of the capsule body and the density of the fluid, and the magnetic field generator is configured to generate a maximum value of a magnetic attractive force generated vertically upward on the capsule body and a magnetic force generated vertically downward.
  • the maximum value of the attractive force is made equal, and the maximum value of the magnetic attractive force generated in the vertical vertical direction is made smaller than the value obtained by multiplying the mass of the permanent magnet by the gravitational acceleration to induce the capsule body. Characterized in that it.
  • a capsule medical device guidance system includes a capsule body that is introduced into the subject and includes a permanent magnet for performing inspection or treatment in the subject within the fluid, and outside the subject.
  • a magnetic field generator for generating a magnetic attractive force to the permanent magnet and guiding the capsule body; and a mass of the capsule body excluding the permanent magnet is defined by a volume of the capsule body and a density of the fluid.
  • the magnetic field generator sets the maximum value of the magnetic attractive force generated vertically upward by the magnetic field generator to the maximum value of the magnetic attractive force generated vertically downward, and The maximum value of the magnetic attractive force generated in the direction is set to be equal to or larger than a value obtained by multiplying the mass of the permanent magnet by gravitational acceleration, and the capsule body is guided.
  • the capsule medical device guidance system according to the present invention is characterized in that, in the above-described invention, the specific gravity of the capsule body with respect to the fluid is approximately 1.
  • the capsule medical device guidance system according to the present invention is characterized in that, in the above-described invention, the specific gravity of the capsule body with respect to the fluid is greater than 1.
  • the magnetic field generator determines the maximum value of the force generated in the capsule body in the vertically upward direction, the mass of the capsule body, and the capsule The capsule body is guided to a value equal to or less than twice the difference between the product of the volume of the body and the density of the fluid multiplied by gravitational acceleration.
  • the capsule body is orally ingested in the subject, and is orally ingested and temporarily stored in the stomach. It is induced by a magnetic field generated by the magnetic field generator.
  • the capsule medical device guidance system is the above-described invention, wherein the capsule body is introduced into the subject through the anus, taken orally or through the anus, and temporarily stored in the large intestine. It is induced by a magnetic field generated by the magnetic field generator in a fluid.
  • the capsule body in the invention described above, is orally ingested into the subject and is in any of the esophagus, stomach pylorus, duodenum, small intestine, and large intestine. It is induced by a magnetic field generated by the magnetic field generator.
  • the capsule body is introduced transanally into a subject and guided by a magnetic field generated by the magnetic field generator in the large intestine. It is characterized by that.
  • a capsule medical device guidance system includes a capsule body that is introduced into the subject and includes a permanent magnet for performing inspection or treatment in the subject within the fluid, and outside the subject.
  • a magnetic field generator for generating a magnetic attractive force to the permanent magnet and guiding the capsule body; and a mass of the capsule body excluding the permanent magnet is defined by a volume of the capsule body and a density of the fluid.
  • the capsule body is composed of a plurality of types of capsule bodies different in any of the size of the permanent magnet, the volume of the capsule body, and the shape of the capsule body.
  • the magnetic field generator includes an input unit for inputting, and the magnetic field generator generates a maximum magnetism generated in the capsule body according to a type of the capsule body input by the input unit. Characterized by comprising a magnetic field generation control unit that changes the force.
  • the magnetic field generation control unit includes a maximum value of a magnetic attractive force generated in the vertically upward direction and a maximum value of the magnetic attractive force generated in the vertically downward direction.
  • the maximum value of the magnetic attractive force generated in the vertical vertical direction is set and controlled so that the maximum value of the magnetic attractive force is smaller than the value obtained by multiplying the mass of the permanent magnet by the gravitational acceleration.
  • the magnetic field generation control unit is configured such that the maximum value of the magnetic attraction generated vertically upward is equal to or greater than the maximum value of the magnetic attractive force generated vertically downward.
  • the maximum value of the magnetic attractive force is set and controlled so that the maximum value of the magnetic attractive force generated in the vertical vertical direction is equal to or greater than the value obtained by multiplying the mass of the permanent magnet by gravitational acceleration. .
  • the magnetic field generation control unit is configured so that the maximum value of the force generated in the vertically upward direction is the type of capsule body that is input to the input unit.
  • Set and control the maximum value of magnetic attraction so that it is less than or equal to twice the difference between the mass of the capsule body and the product of the volume of the capsule body and the density of the fluid multiplied by the gravitational acceleration. It is characterized by that.
  • the mass of the capsule body excluding the permanent magnet is smaller than the product of the volume of the capsule body and the density of the fluid, and the magnetic field generator is generated vertically upward in the capsule body.
  • the maximum value of the magnetic attractive force generated in the vertical downward direction is made equal to the maximum value of the magnetic attractive force generated in the vertical downward direction, and the maximum value of the magnetic attractive force generated in the vertical vertical direction is obtained by multiplying the mass of the permanent magnet by the gravitational acceleration.
  • the size of the magnetic field generator can be reduced because the capsule body is guided by reducing the size of the magnetic field generator.
  • the mass of the capsule body excluding the permanent magnet is smaller than the product of the volume of the capsule body and the density of the fluid, and the magnetic field generator is arranged vertically upward with respect to the capsule body.
  • the maximum value of the magnetic attractive force generated in the vertical direction is equal to or greater than the maximum value of the magnetic attractive force generated in the vertical direction, and the maximum value of the magnetic attractive force generated in the vertical direction is multiplied by the gravitational acceleration. Since the capsule main body is guided as described above, the size of the magnetic field generator can be reduced.
  • the mass of the capsule body excluding the permanent magnet is smaller than the product of the volume of the capsule body and the density of the fluid, and each capsule body has a size of the permanent magnet and a volume of the capsule body.
  • the capsule body is composed of a plurality of types of capsule bodies having different shapes, and the magnetic field generator has a maximum magnetic attraction generated in the capsule body according to the type of the capsule body input by the input unit. Since the change is made, the size of the magnetic field generator can be reduced and the energy can be saved.
  • FIG. 1 is a schematic diagram showing the relationship between a capsule body to be guided and a magnetic generator.
  • FIG. 2 is a schematic diagram showing a schematic configuration of the capsule body.
  • FIG. 3 is a schematic diagram showing the state of the capsule body introduced into the subject.
  • FIG. 4 is a schematic diagram illustrating a state where a drag force is generated in the vertical direction.
  • FIG. 5A is a schematic diagram illustrating a relationship between the maximum installation size of the permanent magnets in the capsule body and the size of the permanent magnets to be installed.
  • FIG. 5B is a diagram illustrating a relationship between the size of the permanent magnet and the size of the magnetic field generator in the case of condition 1.
  • FIG. 1 is a schematic diagram showing the relationship between a capsule body to be guided and a magnetic generator.
  • FIG. 2 is a schematic diagram showing a schematic configuration of the capsule body.
  • FIG. 3 is a schematic diagram showing the state of the capsule body introduced into the subject.
  • FIG. 4 is a schematic diagram illustrating
  • FIG. 5C is a diagram illustrating a relationship between the size of the permanent magnet and the size of the magnetic field generator in the case of condition 2.
  • FIG. 5-4 is a diagram illustrating a relationship between the size of the permanent magnet and the size of the magnetic field generator in the case of condition 3.
  • FIG. 6 is a diagram showing a change in the size of the magnetic field generator with respect to the size of the permanent magnet when the permanent magnet having a size exceeding the maximum volume in which the permanent magnet is arranged is arranged and the size of the capsule body is increased.
  • FIG. 7 is a diagram for explaining the optimum size determination of the permanent magnet when the magnetic field generator is provided vertically below the capsule body and the capsule body has a variation in density.
  • FIG. 8 is a diagram for explaining the determination of the optimum size of the permanent magnet when the magnetic field generator is provided vertically above the capsule body and the capsule body has a variation in density.
  • FIG. 9 is a schematic diagram illustrating a state where the drag force is generated only vertically upward.
  • FIG. 10 is a diagram illustrating a change in the size of the magnetic field generator with respect to the size of the permanent magnet when the drag is generated only vertically upward.
  • FIG. 11A is a diagram illustrating a relationship between the size of the permanent magnet and the size of the magnetic field generator in the case of Condition 1 of Consideration 5.
  • FIG. 11B is a diagram illustrating a relationship between the size of the permanent magnet and the size of the magnetic field generator in the case of Condition 2 of Consideration 5.
  • FIG. 11C is a diagram illustrating a relationship between the size of the permanent magnet and the size of the magnetic field generator in the case of Condition 3 of Consideration 5.
  • FIG. 12 is a schematic diagram showing a configuration of a capsule medical device guidance system according to an embodiment of the present invention.
  • the size of the magnetic field generator 20 that generates a magnetic attractive force for guiding the capsule main body 2 that is a capsule type medical device applied to the capsule medical device guidance system and the size of the permanent magnet 24 in the capsule main body 2.
  • the capsule body 2 is surrounded by a magnetic field generator 20, and a magnetic attractive force is generated in the permanent magnet 24 in the capsule body 2 by the magnetic field generated by the magnetic field generator 20, and the capsule main body is generated by this magnetic attractive force. 2 is induced.
  • the magnetic field generator 20 only needs to generate a magnetic attractive force in the vertical direction with respect to at least the capsule body 2.
  • the capsule body 2 includes the above-described permanent magnet 24, the imaging unit 21 that images the outside of the capsule body 2, a control circuit 22 that controls the entire capsule body 2, and the entire capsule body 2.
  • An image captured by the image capturing unit 21 having a power source 23 that supplies power is transmitted to the outside of the capsule body 2 via a wireless unit (not shown).
  • the capsule body 2 is enclosed in a so-called capsule-type liquid-tight housing having a substantially cylindrical shape and both end portions having a dome shape.
  • the capsule body 2 used here is assumed to have a diameter of 5 to 15 mm and a length of about 10 to 40 mm in the case of oral, and in the case of transanal, a capsule body 2 having a diameter of 5 to 20 mm and a length of about 10 to 40 mm.
  • the diameter of the esophagus is less than 20 mm
  • the diameter of the small intestine is about 30 mm
  • the diameter of the large intestine is about 30 to 50 mm. That is, the transanal capsule body 2 can have a larger diameter than the oral capsule body 2, and a capsule body 2 having a larger volume can be realized.
  • the liquid 40 is previously ingested into the stomach, for example, and the liquid 40 is ingested into the stomach,
  • the capsule body 2 is orally introduced into the stomach, and the inside of the stomach is observed or examined.
  • the subject 1 is arranged in the magnetic field generator 20 shown in FIG. 1 so that the capsule body 2 is within a guiding range in which the capsule body 2 can be guided, and the capsule body 2 is guided in the liquid 40.
  • Observation such as obtaining a desired in-vivo image and examination such as cell collection are performed.
  • the liquid to be ingested is an optically transparent liquid that can be imaged, and preferably contains water as a main component.
  • the liquid 40 is water, slightly hot water of about 40 ° C. is desirable in order not to lower the body temperature of the subject 1, but it may be 30 ° C. to 45 ° C. Density of water at this time, at 30 ° C., was 0.995 g / cm 3, at 40 ° C., was 0.992g / cm 3, at 45 ° C., is 0.990 g / cm 3.
  • the density can be adjusted to about 1.0 to 1.1 g / cm 3 by mixing a solute such as sugar in water.
  • Increasing the density of the liquid 40 is preferable because the permanent magnet 24 in the capsule body 2 can be increased, and the magnetic field generator 20 can be reduced in size.
  • Mcap is the mass of the capsule body 2
  • Vcap is the volume of the capsule body 2
  • ⁇ liq is the density of the liquid 40 in the stomach 1a
  • G is the gravitational acceleration
  • Fdis is The drag does not depend on the guiding direction of the capsule body 2.
  • the cause of the drag Fdis is the resistance of the liquid 40, the density variation due to the design variation of the capsule body 2, the shaking of the liquid 40 in the body at the time of position change, the shaking of the liquid 40 due to heartbeat or breathing, the gastrointestinal tract. Peristaltic movement, pressure from the gastrointestinal wall, etc.
  • Mmag is the mass of the permanent magnet 24 in the capsule body 2. That is, equation (4) shows that the size SM of the magnetic field generator 20 has a correlation with the magnitude of the mass Mmag of the permanent magnet 24.
  • SMup K ⁇
  • the size Vmag of the permanent magnet 24 can be determined from the mass Mmag of the permanent magnet 24.
  • the capsule body 2 excluding the permanent magnet 24 is required to float on the liquid 40. That is, the capsule body 2 is Vcap ⁇ ⁇ liq> Mcap-Mmag (7) Shall be satisfied.
  • the size (mass) in which the permanent magnet 24 is stored is a constant, and is secured in advance up to the maximum volume Vmaxmag (maximum mass Mmaxmag) corresponding to the maximum region 25.
  • the mass (Mcap-Mmag) of the capsule body 2 excluding the permanent magnet 24 becomes a constant as described above, and this constant is set as Mcap-mag.
  • SMdown K ⁇
  • / Mmag K ⁇
  • SMdown is inversely proportional to Mmag
  • SMup is inversely proportional to Mmag, and the sign of the coefficient of K / Mmag changes with Fdis. Therefore, the SMup graph changes depending on the value of Fdis.
  • the graph is obtained after processing (inverting the region of SMup ⁇ 0 to the region of SMup> 0).
  • the size SM of the magnetic field generator 20 when the mass Mmag (size Vmag) of the permanent magnet 24 is changed is the larger of SMdown and SMup.
  • the boundary condition of the above conditions 1 to 3 (Vcap ⁇ ⁇ liq ⁇ Mcap-mag) is the product of the volume of the capsule body 2 and the density of the liquid 40 (buoyancy generated in the capsule body 2) and the permanent magnet. The difference with the mass of the capsule main body 2 except 24 is shown.
  • FIGS. 5-2 to 5-4 show changes in the size SM of the magnetic field generator 20 with respect to the size Vmag of the permanent magnet 24.
  • the results for each of the above conditions 1 to 3 as parameters are shown in the curves L1 to Shown as L3.
  • Vcap ⁇ ⁇ liq Mcap
  • the size SM of the magnetic field generator 20 increases gently and monotonously in the case of condition 1, does not change in the case of condition 2, and decreases monotonously in the case of condition 3.
  • the size SM of the magnetic field generator 20 can be minimized.
  • the size SM of the magnetic field generator 20 can be minimized.
  • the magnetic generator 20 may be set so that the magnetic attractive force of Fdis is generated in the capsule body 2.
  • the size SM of the magnetic field generator 20 can be reduced by setting the size Vmag (Mmag) of the permanent magnet 24 so that Vcap ⁇ ⁇ liq ⁇ Mcap.
  • the size of the magnetic field generator 20 is increased by making Mcap as large as possible in comparison with Vcap ⁇ ⁇ liq within the maximum volume Vmaxmag. SM can be reduced. That is, the size Vmag of the permanent magnet 24 may be set to Vmaxmag.
  • the size Vmag (Mmag) of the permanent magnet 24 may be set so that the absolute value of SMdown in Expression (8) is 0 or less. At this time, even when the capsule body 2 is guided in the vertically downward direction, a force in the vertically upward direction is generated, so that it is not necessary to generate a magnetic attractive force in the vertically downward direction. This eliminates the need for an electromagnet for generating a magnetic attractive force in the vertically downward direction, thereby further reducing the size of the magnetic field generator 20. In this case, the size Vmag (Mmag) of the permanent magnet 24 is set so as to satisfy the following condition.
  • the force generated by the magnetic field generator 20 in the capsule body 2 in the vertically upward direction is the product of the mass of the capsule body 2 and the volume of the capsule body 2 and the density of the liquid 40 (buoyancy generated in the capsule body 2). It is desirable to set the size of the permanent magnet 24 so as to be equal to or less than the value obtained by multiplying the difference between the two by gravity acceleration.
  • the size SM of the magnetic field generator 20 can be reduced by increasing the size Vcap of the capsule body 2 and increasing the size Vmag of the permanent magnet 24.
  • the large-sized capsule body 2 can be applied, and the magnetic field generator 20 used in this case can be downsized.
  • Condition 1 means that the resistance in the liquid is small with respect to the difference between the buoyancy of the capsule body 2 and the gravity of the capsule body 2 when the permanent magnet 24 is removed.
  • the magnitude of the drag Fdis that guides the capsule body 2 under such conditions is relatively small.
  • the drag Fd generated by the resistance of the liquid, the dispersion of the density of the capsule body, the shaking of the liquid in the body position change, the shaking due to heartbeat / respiration, and the like.
  • the magnetic field generator 20 can be downsized. Further, by suppressing the density error of the capsule body 2 to about ⁇ 1%, the force F required for guidance can be reduced to about 1/3, and the magnetic field generator 20 can be downsized. However, in consideration of the safety factor of operation, a magnetic field generator capable of generating a force about 1.1 to 2 times the force F necessary for guidance may be used.
  • the following inspection can be cited.
  • 1) Oral examination of the cardia and stomach, and if necessary, the duodenum, small intestine, and large intestine In this case, first swallow the capsule body 2 in the lateral position, and temporarily present the capsule body 2 at the cardia Get the cardia image. Thereafter, the capsule body 2 is dropped onto the stomach. Then, ingest water and foaming agent to expand the stomach. The ingestion of the foaming agent may be performed before the capsule body 2 is swallowed. Thereafter, the capsule body 2 is guided in the gastric fluid and the subject's body position is changed, and the entire stomach is observed by the capsule body 2.
  • the capsule body 2 is guided to the vicinity of the pylorus, and the capsule body 2 is delivered to the duodenum by the peristaltic movement of the pylorus. Thereafter, an image of the intestine after the duodenum is acquired using peristaltic movement.
  • a peristalsis inhibitor that suppresses peristaltic movement of the large intestine by oral or transanal first.
  • the capsule body 2 and the liquid are introduced through the transanus.
  • liquids such as isotonic fluid may be introduced orally in advance.
  • the capsule body 2 is guided in the large intestine expanded in the liquid, and the body position is changed, and the large intestine is observed by the capsule body 2.
  • transduced by a transanal is a size of diameter 20mm x length 40mm or less. That is, it is preferable that it has a diameter that can easily pass through the large intestine and a length that can return to the anus.
  • the drag Fdis in the liquid is equal to or larger than the difference between the buoyancy of the capsule body 2 and the gravity of the capsule body 2 excluding the permanent magnet 24.
  • the size Vmag of the permanent magnet 24 of the capsule body 2 is set so as to satisfy Vcap ⁇ ⁇ liq ⁇ Mcap, and the permanent magnet 24 having the largest possible size is installed in the capsule body 2.
  • the size SM of the magnetic field generator 20 does not change, but considering the forces generated in other directions, for example, the horizontal direction, The size Vmag is preferably larger.
  • the conditions 2 and 3 are when a very large drag is generated in the body.
  • this drag Fd is, the drag generated by the peristaltic motion of the gastrointestinal tract and the pressure from the gastrointestinal wall can be considered.
  • a force generated by the peristaltic movement of the gastrointestinal tract a force necessary for passing through the pyloric part can be mentioned.
  • the force necessary for passing through the pylorus is about 100 mN. In this case, Condition 1 cannot be realized with a capsule body that can be introduced into the subject 1.
  • Examples of the inspection required to guide the capsule body 2 under the conditions 2 and 3 include the following cases. That is, 1) When introduced orally and observing the esophagus by induction 2) When introduced orally and observing the stomach and then passing through the pylorus 3) When introduced orally and observing the small intestine by induction 4) Oral 5) When the large intestine is observed by induction 5) When introduced by the transanus and the large intestine is observed by induction.
  • the liquid 40 is preferably taken orally when the capsule body 2 is introduced orally, and is preferably introduced into the subject 1 transanally when introduced via the anus. Even when the capsule body 2 is introduced orally, when the capsule body 2 is guided in the large intestine, the liquid 40 may be introduced into the subject 1 through the anus. Furthermore, when the capsule body 2 is introduced into the subject 1 via the transanus, the size Vmag of the capsule body 2 can be increased to a maximum of about ⁇ 20 mm ⁇ 40 mm. In this case, since the permanent magnet 24 that can be installed in the capsule body 2 can be further increased, the magnetic field generator 20 can be reduced in size.
  • ⁇ Mmag ... (17) SMup K ⁇
  • the relationship between the size SM of the magnetic field generator 20 with respect to the size Vmag (mass Mmag) of the permanent magnet 24 is, as shown in FIG. 10, a curve L21 when guiding vertically upward and a curve L22 when guiding vertically downward.
  • the characteristic curve is different depending on the direction of induction.
  • the condition for minimizing the size SM of the magnetic field generator 20 can be obtained as the intersection of the curves L21 and L22. That is, K ⁇
  • ⁇ Mmag K ⁇
  • ⁇ Mmag (19) From this, Fdis 2 (Mcap ⁇ Vcap ⁇ ⁇ liq) ⁇ G can be obtained. Therefore, the size Vmag of the permanent magnet 24 of the capsule body 2 is set so that twice the difference between gravity and buoyancy applied to the capsule body 2 is equal to the drag generated by the magnetic field generator vertically in the capsule body 2.
  • the size SM of the magnetic field generator 20 can be minimized.
  • the minimum value can be obtained for the combined curve of the curved line portion having the large size SM of the magnetic field generator 20 of the curve L21 and the curve L22.
  • the optimum size of the permanent magnet 24 at this time is the size V3 shown in FIG. 10, which is the value of the intersection of the curve L21 and the curve L22.
  • the vertical force generated by the magnetic field generator 20 in the capsule body 2 is the mass of the capsule body 2 and the product of the volume of the capsule body 2 and the density of the liquid 40 (buoyancy acting on the capsule body 2). It makes a difference.
  • the capsule body 2 is guided in the gastric fluid and the subject's body position is changed, and the entire stomach is observed by the capsule body 2. Thereafter, the capsule body 2 is guided to the vicinity of the pylorus, and the capsule body 2 is delivered to the duodenum by the peristaltic movement of the pylorus. Thereafter, an image of the intestine after the duodenum is acquired using peristaltic movement.
  • the capsule body 2 When the capsule body 2 is guided from the liquid surface into the liquid during observation of the stomach, a surface tension of 0.7 mN to 3.0 mN of water (liquid) is generated as a drag force.
  • the capsule body 2 whose exterior is made of resin (polycarbonate) is sunk so that the major axis is downward, the surface tension of water (liquid) generated in the capsule body 2 is 5 mm in diameter of the capsule body 2 Is 0.7 mN, ⁇ 11 mm is 1.6 mN, and ⁇ 15 mm is 2.3 mN. That is, the surface tension is proportional to the diameter of the capsule body 2.
  • the position of the pylorus is lowered to the right position when passing through the pylorus. Actively passes through the pylorus by generating the force required for passage.
  • the force required to pass this pylorus is about 100 mN.
  • the capsule body 2 can be reliably introduced into the duodenum in a shorter time than when the pylorus is passed through by peristaltic movement. In addition, this makes it possible to observe more intestinal tracts after the duodenum after gastric observation within the battery life of the capsule body 2.
  • ) ⁇ Mmag (20) SMup K ⁇
  • the condition for minimizing the size SM of the magnetic field generator 20 is the same as in Consideration 4.
  • ⁇ Mmag K ⁇
  • ⁇ Mmag From Fdis2 2 (Mcap ⁇ Vcap ⁇ ⁇ liq) ⁇ G ... (22) Can be requested. Therefore, the size Vmag of the permanent magnet 24 of the capsule body 2 is set so that twice the difference between gravity and buoyancy applied to the capsule body 2 is equal to the drag generated by the magnetic field generator 20 in the vertically upward direction on the capsule body 2.
  • the size SM of the magnetic field generator 20 can be minimized. That is, the minimum value can be obtained for the combined curve L30 of the curve portion where the size SM of the magnetic field generator 20 of the curves L31 and L32 is large.
  • the optimum size of the permanent magnet 24 at this time is the size V4 shown in FIG. 11A, which is the value of the intersection of the curve L31 and the curve L32.
  • the magnetic field generator 20 at this time has a maximum value of the force in the vertically upward direction generated in the capsule body 2 equal to the maximum value of the force in the vertically downward direction, and the value satisfies the following condition.
  • Mmag x G ... (23) Accordingly, the vertical vertical force is set to be smaller than the product of the mass of the permanent magnet 24 and the gravitational acceleration.
  • the size SM of the magnetic field generator 20 is constant (see curve L40) if SMup (curve L41) ⁇ SMdown (curve L42). Therefore, K ⁇
  • the maximum value of the vertical upward force generated by the magnetic field generator 20 on the capsule body 2 is larger than the maximum value of the vertical downward force, and the value is expressed by the following equation.
  • Fup Mmag ⁇ G ... (25) Therefore, the vertical vertical force is set so that the product of the mass of the permanent magnet 24 and the gravitational acceleration is equal.
  • the condition for minimizing the size SM of the magnetic field generator 20 is preferably a permanent magnet having a size as large as possible in the capsule body 2 as in Condition 3 of Consideration 1.
  • the curve in this case is the combined curve L50 of the curve portion of the curve L51 and the curve L52 having a large size SM, and does not have an extreme value, and the size SM of the magnetic field generator 20 increases as the size Vmag of the permanent magnet 24 increases. Becomes smaller.
  • the size Vmag (Mmag) of the permanent magnet 24 may be set so that the absolute value of SMdown is 0 or less. At this time, even when the capsule body 2 is guided in the vertically downward direction, a force in the vertically upward direction is generated, so that it is not necessary to generate a magnetic attractive force in the vertically downward direction. This eliminates the need for an electromagnet for generating a magnetic attractive force in the vertically downward direction, thereby further reducing the size of the magnetic field generator 20. In this case, the size Vmag (Mmag) of the permanent magnet is set so as to satisfy the following condition.
  • the force generated vertically upward satisfies the following equation.
  • Fup
  • the force that the magnetic field generator 20 generates in the capsule body 2 vertically upward is the product of the mass of the capsule body 2 and the volume of the capsule body 2 and the density of the liquid 40 (buoyancy generated in the capsule body 2). It is desirable to set the size of the permanent magnet 24 so as to be equal to or less than a value obtained by multiplying the difference between the two by gravity acceleration.
  • FIG. 12 is a schematic diagram illustrating a configuration of a capsule medical device guidance system that guides a capsule body that is optimized in accordance with an examination.
  • the capsule medical device guidance system 11 introduces a capsule medical device (capsule body) 2 inside the subject 1 and acquires an in-vivo image while guiding the capsule body 2 inside the subject 1.
  • the body tissue is collected.
  • This system includes a communication unit 3 that performs wireless communication with a capsule body 2 inside a subject 1 via a plurality of antennas 3 a arranged on the body surface of the subject 1, and the subject 1 imaged by the capsule body 2.
  • a display unit 4 that displays various information such as in-vivo images, a magnetic field generator 5 that generates a magnetic field for guiding the capsule body 2 inside the subject 1, and a power supply unit 6 that supplies power to the magnetic field generator 5
  • a moving unit 7 that moves the magnetic field generating unit 5
  • an input unit 8 that inputs various types of information such as the type of the capsule body 2 to be introduced
  • a storage unit 9 that stores various types of information such as in-vivo images of the subject 1.
  • a position detection device 12 that detects the position of the capsule body 2 inside the subject 1, a drive unit 13 that drives a magnetic field used by the position detection device 12, and a control unit 10 that controls each of the components. .
  • the magnetic field generation unit 5 is realized using a plurality of electromagnets, and generates a three-dimensional external magnetic field such as a rotating magnetic field or a gradient magnetic field by the electric power supplied from the power supply unit 6.
  • the magnetic field generator 5 can generate a gradient magnetic field at least in the vertical direction.
  • the magnetic field generator 5 applies an external magnetic field to the capsule body 2 inside the subject 1 placed on the bed 32, and generates a magnetic attractive force with respect to the permanent magnet inside the subject 1 by the action of the external magnetic field. Then, the capsule body 2 is guided to a desired body part.
  • the moving unit 7 is for moving the magnetic field generating unit 5 relative to the subject 1 so that an external magnetic field from the magnetic field generating unit 5 is applied to the capsule body 2 inside the subject 1. More specifically, an XY plane that is substantially parallel to the placement surface of the bed 32 on which the subject 1 is placed is set, and the moving unit 7 coordinates on the XY plane based on the control of the control unit 10. The magnetic field generator 5 is moved to the position. In this case, the moving unit 7 moves the magnetic field generating unit 5 so that the capsule body 2 inside the subject 1 is located in a three-dimensional space where an external magnetic field is generated by the magnetic field generating unit 5.
  • the input unit 8 is realized by using an input device such as a keyboard, a mouse, and a joystick, and inputs various information to the control unit 10 in accordance with an input operation by a user such as a doctor or a nurse.
  • the input unit 8 also functions as an operation unit that operates the control of the control unit 10 based on the display result of the display unit 4.
  • the various information input to the control unit 10 by the input unit 8 includes, for example, instruction information to be instructed to the control unit 10, patient information on the subject, examination information on the subject, and the like. Information such as size and density is entered.
  • the control unit 10 includes an image processing unit 10 a that generates an in-vivo image of the subject 1, a position calculation unit 10 b that calculates the position of the capsule medical device 2 inside the subject 1, and a power supply unit 6 for the magnetic field generation unit 5.
  • the magnetic field generation control unit 10c controls the magnetic field intensity generated by the magnetic field generation unit 5 by controlling the energization amount.
  • the image processing unit 10a acquires the image signal demodulated from the radio signal from the capsule medical device 2 from the communication unit 3, performs predetermined image processing on the acquired image signal, and handles this image signal.
  • Image information that is, an in-vivo image of the subject 1 is generated.
  • the in-vivo image group generated by the image processing unit 10 a is displayed on the display unit 4 and stored in the storage unit 9.
  • the position calculation unit 10b detects the position of the capsule body 2 based on a signal output from the position detection device 12 that detects a detection magnetic field generated from an LC marker or the like in the capsule body 2 by the magnetic field generated by the drive unit 13. .
  • the position detection result is displayed on the display unit 4 and stored in the storage unit 9. Based on the position of the capsule body 2 displayed on the display unit 4, the operator performs guidance control by inputting guidance instruction information for guiding the capsule body 2 via the input unit 8 to the control unit 10.
  • the magnetic field generation control unit 10 c controls the magnetic field intensity generated by the magnetic field generation unit 5 based on the input guidance instruction information and performs guidance control of the capsule body 2.
  • the magnetic field generation control unit 10c includes a control table 10d.
  • the control table 10d includes the optimum maximum generated magnetic field, the type information of the capsule body 2 input from the input unit 8, and the inspection information (inspection contents). Is a correspondence table in which The magnetic field generation control unit 10c refers to the control table 10d based on the type information of the capsule body 2 and the inspection information, and performs magnetic field generation control for limiting the optimum maximum generated magnetic field.
  • the capsule body 2 is based on the premise that the size Vmag of the internal permanent magnet 24 is optimized by the above-described consideration. Then, as described above, the magnetic field generation control unit 10c is necessary for guidance within the range of the optimum maximum generated magnetic field based on the type information of the capsule body 2 introduced into the subject 1 and the examination information. Energization control to generate a magnetic field is performed. Thereby, energy saving can be achieved according to the type and inspection content of each capsule body 2. In addition, when the capsule medical device guidance system 11 is a system in which the type of the capsule body 2 and the examination content are specified, the size SM of the magnetic field generator 20 can be minimized, and the size can be reduced. Can be promoted.
  • the maximum magnetic field is set according to the capsule type and the inspection content.
  • C-1 to C-5 are described.
  • Capsule type Density greater than about 1 g / cm 3 , size (small) Inspection contents: Observation of all digestive tracts (guidance) Maximum magnetic field (magnetic field generator size): Large C-
  • the size of the magnetic field generator is determined by C-3 or C-5 that requires the largest maximum magnetic field.
  • the maximum magnetic field may be set in more detail by the induction direction or a combination of induction directions.
  • the size SM of the magnetic field generator 20 may be determined in more detail by the induction direction or a combination of the induction directions.
  • the description has been made on the assumption that the permanent magnet in the capsule body 2 generates a magnetic attractive force by the generation of the magnetic gradient, but for example, the outer surface of the capsule body 2 has a spiral structure, and the magnetization direction of the permanent magnet
  • the capsule body 2 may be guided by being arranged so as to be perpendicular to the central axis of the spiral, and the magnetic field generator 20 generates a rotating magnetic field.
  • the capsule body is made more efficient by the rotating spiral method using the contact state with the intestinal wall. Therefore, it is possible to promote downsizing of the magnetic field generator.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Endoscopes (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

 被検体1内に導入される流体と、被検体1内に導入され、永久磁石を備えて前記流体内で被検体1内の検査または処置を行うカプセル本体2と、被検体1外に設けられ、前記永久磁石に対して磁気引力を発生し、カプセル本体2を誘導する磁界発生装置20と、を備えたカプセル型医療装置誘導システム11において、前記永久磁石を除くカプセル本体2の質量が、カプセル本体2の体積と前記流体の密度との積よりも小さく、磁界発生装置20は、磁界発生装置20がカプセル本体2に鉛直上方向に発生する磁気引力の最大値と鉛直下方向に発生する磁気引力の最大値とを等しくし、前記鉛直上下方向に発生する磁気引力の最大値を、前記永久磁石の質量に重力加速度を乗算した値よりも小さくしてカプセル本体2を誘導する。

Description

カプセル型医療装置誘導システム
 本発明は、被検体内に導入されるカプセル型医療装置を磁気誘導するカプセル型医療装置誘導システムに関する。
 近年、内視鏡分野においては、撮像機能と無線通信機能とを設けたカプセル型の被検体内導入装置(例えばカプセル型内視鏡)が提案され、このカプセル型内視鏡を用いて被検体内の画像を取得する被検体内導入システムが開発されている。カプセル型内視鏡は、被検体内を観察(検査)するために、例えば被検体の口から飲込まれ、その後、自然排出されるまでの間、体腔内たとえば胃、小腸等の臓器の内部をその蠕動運動に従って移動するとともに、例えば0.5秒間隔で被検体内の画像を撮像するように機能する。
 カプセル型内視鏡が被検体内を移動する間、このカプセル型内視鏡によって撮像された画像は、被検体の体表面に配置したアンテナを介して外部の画像表示装置に受信される。この画像表示装置は、カプセル型内視鏡に対する無線通信機能と画像のメモリ機能とを有し、被検体内のカプセル型内視鏡から受信した画像をメモリに順次格納する。医師または看護師は、かかる画像表示装置に蓄積された画像、すなわち被検体の消化管内の画像をディスプレイに表示することによって、被検体内を観察(検査)し、診断することができる。
 ここで、特許文献1には、液体中で、磁界を用いてカプセル型内視鏡を誘導するものが記載されている。特に、カプセル型内視鏡を液体中で誘導する場合、カプセル型内視鏡の密度を液体の密度と同程度またはそれ未満とするものが記載されている。
特開2007-195961号公報
 しかしながら、上述した特許文献1に記載されたシステムを用いて磁界を発生させてカプセル型内視鏡を誘導する場合、カプセル型内視鏡内の永久磁石のサイズによって発生すべき最適な磁界の大きさが異なり、各種のカプセル型内視鏡に対しても常に誘導できるようにするためには、磁界を発生させる磁界発生装置が大型化し、重量も大きくなってしまい、さらには無駄な電力消費を伴うという問題点があった。
 この発明は、上記に鑑みてなされたものであって、カプセル型内視鏡などのカプセル型医療装置の誘導に必要な磁界を発生させる磁界発生装置の小型化あるいは省エネルギー化を実現することができるカプセル型医療装置誘導システムを提供することを目的とする。
 上述した課題を解決し、目的を達成するために、この発明にかかるカプセル型医療装置誘導システムは、被検体内に導入され、永久磁石を備えて前記流体内で前記被検体内の検査または処置を行うカプセル本体と、前記被検体外に設けられ、前記永久磁石に対して磁気引力を発生し、前記カプセル本体を誘導する磁界発生装置と、前記永久磁石を除く前記カプセル本体の質量が、前記カプセル本体の体積と前記流体の密度との積よりも小さく、前記磁界発生装置は、該磁界発生装置が前記カプセル本体に鉛直上方向に発生する磁気引力の最大値と鉛直下方向に発生する磁気引力の最大値とを等しくし、前記鉛直上下方向に発生する磁気引力の最大値を、前記永久磁石の質量に重力加速度を乗算した値よりも小さくして前記カプセル本体を誘導することを特徴とする。
 また、この発明にかかるカプセル型医療装置誘導システムは、前記被検体内に導入され、永久磁石を備えて前記流体内で前記被検体内の検査または処置を行うカプセル本体と、前記被検体外に設けられ、前記永久磁石に対して磁気引力を発生し、前記カプセル本体を誘導する磁界発生装置と、前記永久磁石を除く前記カプセル本体の質量が、前記カプセル本体の体積と前記流体の密度との積よりも小さく、前記磁界発生装置は、該磁界発生装置が前記カプセル本体に鉛直上方向に発生する磁気引力の最大値を、鉛直下方向に発生する磁気引力の最大値以上にし、前記鉛直上下方向に発生する磁気引力の最大値を、前記永久磁石の質量に重力加速度を乗算した値以上にして前記カプセル本体を誘導することを特徴とする。
 また、この発明にかかるカプセル型医療装置誘導システムは、上述した発明において、前記カプセル本体の前記流体に対する比重が略1であることを特徴とする。
 また、この発明にかかるカプセル型医療装置誘導システムは、上述した発明において、前記カプセル本体の前記流体に対する比重が1より大きいことを特徴とする。
 また、この発明にかかるカプセル型医療装置誘導システムは、上述した発明において、前記磁界発生装置は、前記カプセル本体に鉛直上方向に発生する力の最大値を、前記カプセル本体の質量と、前記カプセル本体の体積と前記流体の密度との積との差の2倍に重力加速度を乗算した値以下にして前記カプセル本体を誘導することを特徴とする。
 また、この発明にかかるカプセル型医療装置誘導システムは、上述した発明において、前記カプセル本体は、被検体内に経口で摂取され、経口で摂取され一時的に胃に溜められた前記流体の中で前記磁界発生装置が発生する磁界によって誘導されることを特徴とする。
 また、この発明にかかるカプセル型医療装置誘導システムは、上述した発明において、前記カプセル本体は、被検体内に経肛門で導入され、経口もしくは経肛門で摂取され一時的に大腸に溜められた前記流体の中で前記磁界発生装置が発生する磁界によって誘導されることを特徴とする。
 また、この発明にかかるカプセル型医療装置誘導システムは、上述した発明において、前記カプセル本体は、被検体内に経口で摂取され、食道、胃幽門部、十二指腸、小腸、大腸のいずれかの中で前記磁界発生装置が発生する磁界によって誘導されることを特徴とする。
 また、この発明にかかるカプセル型医療装置誘導システムは、上述した発明において、前記カプセル本体は、被検体内に経肛門で導入され、大腸の中で前記磁界発生装置が発生する磁界によって誘導されることを特徴とする。
 また、この発明にかかるカプセル型医療装置誘導システムは、前記被検体内に導入され、永久磁石を備えて前記流体内で前記被検体内の検査または処置を行うカプセル本体と、前記被検体外に設けられ、前記永久磁石に対して磁気引力を発生し、前記カプセル本体を誘導する磁界発生装置と、前記永久磁石を除く前記カプセル本体の質量が、前記カプセル本体の体積と前記流体の密度との積よりも小さく、前記カプセル本体は、前記永久磁石の大きさ、前記カプセル本体の体積、前記カプセル本体の形状のいずれかが異なる複数の種類の複数のカプセル本体からなり、前記カプセル本体の種類を入力する入力部を備え、前記磁界発生装置は、前記入力部によって入力されたカプセル本体の種類に応じて前記カプセル本体に発生する最大磁気引力を変更する磁界発生制御部を備えたことを特徴とする。
 また、この発明にかかるカプセル型医療装置誘導システムは、上述した発明において、前記磁界発生制御部は、鉛直上方向に発生する磁気引力の最大値と鉛直下方向に発生する磁気引力の最大値とを等しくし、前記鉛直上下方向に発生する磁気引力の最大値が、前記永久磁石の質量に重力加速度を乗算した値よりも小さくなるように、磁気引力の最大値を設定して制御することを特徴とする。
 また、この発明にかかるカプセル型医療装置誘導システムは、上述した発明において、前記磁界発生制御部は、鉛直上方向に発生する磁気引力の最大値を鉛直下方向に発生する磁気引力の最大値以上にし、前記鉛直上下方向に発生する磁気引力の最大値が、前記永久磁石の質量に重力加速度を乗算した値以上となるように、磁気引力の最大値を設定して制御することを特徴とする。
 また、この発明にかかるカプセル型医療装置誘導システムは、上述した発明において、前記磁界発生制御部は、鉛直上方向に発生する力の最大値が、前記入力部に入力されたカプセル本体の種類の該カプセル本体の質量と、該カプセル本体の体積と前記流体の密度との積との差の2倍に重力加速度を乗算した値以下となるように、磁気引力の最大値を設定して制御することを特徴とする。
 この発明によれば、永久磁石を除くカプセル本体の質量が、カプセル本体の体積と流体の密度との積よりも小さく、磁界発生装置が、該磁界発生装置が前記カプセル本体に鉛直上方向に発生する磁気引力の最大値と鉛直下方向に発生する磁気引力の最大値とを等しくし、前記鉛直上下方向に発生する磁気引力の最大値を、前記永久磁石の質量に重力加速度を乗算した値よりも小さくして前記カプセル本体を誘導するようにしているので、磁界発生装置のサイズの小型化を実現することができる。
 また、この発明によれば、永久磁石を除くカプセル本体の質量が、カプセル本体の体積と流体の密度との積よりも小さく、磁界発生装置が、該磁界発生装置が前記カプセル本体に鉛直上方向に発生する磁気引力の最大値を、鉛直下方向に発生する磁気引力の最大値以上にし、前記鉛直上下方向に発生する磁気引力の最大値を、前記永久磁石の質量に重力加速度を乗算した値以上にして前記カプセル本体を誘導するようにしているので、磁界発生装置のサイズの小型化を実現することができる。
 また、この発明によれば、永久磁石を除くカプセル本体の質量が、カプセル本体の体積と流体の密度との積よりも小さく、各カプセル本体は、前記永久磁石の大きさ、前記カプセル本体の体積、前記カプセル本体の形状のいずれかが異なる複数の種類の複数のカプセル本体からなり、磁界発生装置が、入力部によって入力されたカプセル本体の種類に応じて前記カプセル本体に発生する最大磁気引力を変更するようにしているので、磁界発生装置のサイズの小型化および省エネルギー化を実現することができる。
図1は、誘導対象のカプセル本体と磁気発生装置との関係を示す模式図である。 図2は、カプセル本体の概要構成を示す模式図である。 図3は、被検体に導入されたカプセル本体の状態を示す模式図である。 図4は、鉛直方向に抗力が発生する場合の状態を示す模式図である。 図5-1は、カプセル本体内の永久磁石の最大設置サイズと設置される永久磁石のサイズとの関係を示す模式図である。 図5-2は、条件1の場合における永久磁石のサイズと磁界発生装置のサイズとの関係を示す図である。 図5-3は、条件2の場合における永久磁石のサイズと磁界発生装置のサイズとの関係を示す図である。 図5-4は、条件3の場合における永久磁石のサイズと磁界発生装置のサイズとの関係を示す図である。 図6は、永久磁石が配置される最大容積を超えるサイズの永久磁石を配置するとともにカプセル本体のサイズを大きくした場合の永久磁石のサイズに対する磁界発生装置のサイズの変化を示す図である。 図7は、磁界発生装置をカプセル本体の鉛直下方に設けた場合であってカプセル本体に密度のばらつきがある場合の永久磁石の最適サイズ決定を説明する図である。 図8は、磁界発生装置をカプセル本体の鉛直上方に設けた場合であってカプセル本体に密度のばらつきがある場合の永久磁石の最適サイズ決定を説明する図である。 図9は、抗力が鉛直上方にのみ発生する場合の状態を示す模式図である。 図10は、抗力が鉛直上方にのみ発生する場合の永久磁石のサイズに対する磁界発生装置のサイズの変化を示す図である。 図11-1は、考察5の条件1の場合における永久磁石のサイズと磁界発生装置のサイズとの関係を示す図である。 図11-2は、考察5の条件2の場合における永久磁石のサイズと磁界発生装置のサイズとの関係を示す図である。 図11-3は、考察5の条件3の場合における永久磁石のサイズと磁界発生装置のサイズとの関係を示す図である。 図12は、この発明の実施の形態であるカプセル型医療装置誘導システムの構成を示す模式図である。
 以下、図面を参照して、この発明にかかるカプセル型医療装置誘導システムの好適な実施の形態を詳細に説明する。なお、この実施の形態によってこの発明が限定されるものではない。
 まず、このカプセル型医療装置誘導システムに適用されるカプセル型医療装置であるカプセル本体2を誘導するための磁気引力を発生させる磁界発生装置20のサイズと、カプセル本体2内の永久磁石24のサイズとの関係について考える。
 カプセル本体2は、図1に示すように、磁界発生装置20に囲まれ、磁界発生装置20が発生する磁界によってカプセル本体2内の永久磁石24に磁気引力が発生し、この磁気引力によってカプセル本体2が誘導される。なお、磁界発生装置20は、少なくともカプセル本体2に対して鉛直方向の磁気引力を発生させることができればよい。
 カプセル本体2は、図2に示すように、上述した永久磁石24を有し、その他、カプセル本体2外部を撮像する撮像部21、カプセル本体2全体を制御する制御回路22、カプセル本体2全体の電源を供給する電源23を有し、撮像部21で撮像された画像は、図示しない無線部などを介してカプセル本体2外部に送信される。なお、カプセル本体2は、略円筒形状をなし、両端部がドーム形状をなす、いわゆるカプセル型の液密な筐体に包まれる。また、ここで用いるカプセル本体2は、経口の場合、直径5~15mmで長さ10~40mm程度のものを想定し、経肛門の場合、直径5~20mmで長さ10~40mm程度のものを想定している。ここで、食道の直径は、20mm未満であり、小腸の直径は、30mm程度であり、大腸の直径は、30~50mm程度である。すなわち、経肛門のカプセル本体2の方が、経口のカプセル本体2に比して直径を大きくすることができ、容積の大きなカプセル本体2を実現できる。
 カプセル本体2を用いて被検体1内の観察や検査等を行う場合、図3に示すように、液体40を、例えば胃などに予め摂取し、この液体40が胃に摂取された状態で、カプセル本体2を経口して胃に導入し、胃の内部を観察あるいは検査する。この際、被検体1は、図1に示した磁界発生装置20内であってカプセル本体2が誘導可能な誘導範囲内となるように配置され、この液体40中で、カプセル本体2が誘導され、所望の被検体内画像を取得する観察や、細胞の採取などの検査を行う。
 摂取される液体は、撮像な可能なように、光学的に透明な液体で、水を主成分とするものが好ましい。液体40が水の場合、被検体1の体温を下げないために、40℃程度の微温湯が望ましいが、30℃~45℃であってもよい。このときの水の密度は、30℃で、0.995g/cmであり、40℃で、0.992g/cmであり、45℃で、0.990g/cmである。なお、密度は、水に砂糖などの溶質を混ぜて、1.0~1.1g/cm程度に調整することができる。この液体40の密度を大きくすることは、カプセル本体2内の永久磁石24を大きくすることができるため好ましく、磁界発生装置20の小型化を促進することができる。
 ここで、被検体1内に導入された液体40内で、鉛直方向に誘導する場合、カプセル本体の自重、浮力以外に、抗力が発生する。この抗力が、発生する方向に方向性がない場合、誘導に必要な力Fは、
 F=|Mcap-Vcap×ρliq|×G+Fdis               …(1)
で示される。なお、鉛直下方向誘導時に誘導に必要な力Fdownと、鉛直上方向に必要な力Fupとに分けることができ、各力Fdown,Fupは、
 Fdown=|(Vcap×ρliq-Mcap)×G+Fdis|           …(2)
 Fup =|(Mcap-Vcap×ρliq)×G+Fdis|           …(3)
で示される(図4参照)。ここで、Mcapは、カプセル本体2の質量であり、Vcapは、カプセル本体2の体積であり、ρliqは、胃1a内の液体40の密度であり、Gは、重力加速度であり、Fdisは、カプセル本体2の誘導方向に依存しない抗力である。
 なお、抗力Fdisの発生原因としては、液体40の抵抗、カプセル本体2の設計ばらつきによる密度のばらつき、体位変換時の体内での液体40の揺れ、心拍や呼吸などによる液体40の揺れ、胃腸管の蠕動運動、胃腸壁からの圧力、などがある。
 ここで、カプセル本体2を誘導するために必要な磁界発生装置20のサイズSMは、
 SM=K×F/Mmag                        …(4)
で示される。なお、Mmagは、カプセル本体2内の永久磁石24の質量である。すなわち、式(4)から、磁界発生装置20のサイズSMは、永久磁石24の質量Mmagの大きさに相関があることを示している。ここで、磁界発生装置20のサイズSMは、鉛直下方向誘導時のサイズSMdownと、鉛直上方向誘導時のサイズSMupとに分けることができ、
 SMdown=K×|(Vcap×ρliq-Mcap)×G+Fdis|/Mmag    …(5)
 SMup =K×|(Mcap-Vcap×ρliq)×G+Fdis|/Mmag    …(6)
と表すことができる。そこで、磁界発生装置20のサイズSMdown,SMupと、永久磁石24のサイズVmagとの関係について考察する。サイズVmagは、永久磁石24の密度をρmagとすると、
 Vmag=Mmag/ρmag
と表すことができる。したがって、永久磁石24のサイズVmagは、永久磁石24の質量Mmagから決定することができる。また、永久磁石24を除いたカプセル本体2が液体40に浮くことを条件とする。すなわち、カプセル本体2は、
 Vcap×ρliq>Mcap-Mmag                     …(7)
を満足するものとする。
(考察1)
 まず、図4に示すように液体40内でのカプセル本体2にかかる鉛直方向の力関係をもとに、永久磁石24の質量Mmag(体積Vmag、以下「サイズVmag」と記載する。)と磁界発生装置20のサイズSMdown,SMupとを変数とし、永久磁石24のサイズVmagを除くカプセル本体2の質量(Mcap+Mmag)、カプセル本体2の体積Vcap、液体40の密度ρliqを定数として考察した。なお、永久磁石24のサイズVmag(質量Mmag)は、図5-1に示すように、カプセル本体2内で増大することができる。ただし、永久磁石24が格納されるサイズ(質量)は、定数であり、予め最大領域25に相当する最大容積Vmaxmag(最大質量Mmaxmag)まで確保される。この場合、永久磁石24を除くカプセル本体2の質量(Mcap-Mmag)は、上述したように定数となり、この定数をMcap-magとおく。このとき、
 SMdown=K×|(Vcap×ρliq-(Mcap-mag+Mmag))×G+Fdis|/Mmag
     =K×|-G+((Vcap×ρliq-Mcap-mag)×G+Fdis)/Mmag|
                                   …(8)
 SMup =K×|((Mcap-mag+Mmag)-Vcap×ρliq)×G+Fdis|/Mmag
     =K×|G+((Mcap-mag-Vcap×ρliq)×G+Fdis)/Mmag|
                                   …(9)
と表せる。
 ここで、SMdownは、Mmagに反比例し、K/Mmagとする係数が次式を満たす。
 (K/Mmagの係数)=(Vcap×ρliq-Mcap-mag)×G+Fdis>0 
…(10)
 したがって、SMdown=f(Mmag)のグラフは、図5-2~図5-4に示すように、第1象限、第3象限の反比例のグラフに対して、SMdown軸方向に-KG平行移動したものに絶対値の処理を行った(SMdown<0の領域を、SMdown>0の領域に反転する)グラフとなる。
 一方、SMupは、Mmagに反比例し、FdisによってK/Mmagの係数の正負が変化する。したがって、Fdisの値によってSMupのグラフが変化する。
 条件1:(Vcap×ρliq-Mcap-mag)×G>Fdisのとき
 (K/Mmagの係数)=(Mcap-mag-Vcap×ρliq)×G+Fdis<0 
…(11)
 このとき、SMup=f(Mmag)のグラフは、図5-2に示すように、第2象限、第4象限の反比例のグラフに対してSMup軸方向にKG平行移動したものに絶対値の処理を行った(SMup<0の領域をSMup>0の領域に反転する)グラフとなる。
 条件2:(Vcap×ρliq-Mcap-mag)×G=Fdisのとき
 (K/Mmagの係数)=(Mcap-mag-Vcap×ρliq)×G+Fdis=0 
…(12)
 このとき、SMup=KGとなり、そのグラフは、図5-3に示すようになる。
 条件3:(Vcap×ρliq-Mcap-mag)×G<Fdisのとき
 (K/Mmagの係数)=(Mcap-mag-Vcap×ρliq)×G+Fdis>0 
…(13)
 このとき、SMup=f(Mmag)のグラフは、図5-4に示すように、第1象限、第3象限の反比例のグラフに対して、SMup軸方向にKG平行移動したものに絶対値の処理を行った(SMup<0の領域をSMup>0の領域に反転する)グラフとなる。
 ここで、図5-2~図5-4に示すように、永久磁石24の質量Mmag(サイズVmag)を変化させたときの磁界発生装置20のサイズSMは、SMdownとSMupの大きい方の値をとる。なお、上記の条件1~3の境界条件となる(Vcap×ρliq-Mcap-mag)は、カプセル本体2の体積と液体40の密度との積(カプセル本体2に発生する浮力)と、永久磁石24を除くカプセル本体2の質量との差を示している。
 図5-2~図5-4は、永久磁石24のサイズVmagに対する磁界発生装置20のサイズSMの変化を示しており、パラメータとしての上述した条件1~3のそれぞれに対する結果を、曲線L1~L3として示している。図5-2~図5-4に示すように、永久磁石のサイズVmag(Mmag)を大きくしていき、カプセル本体2の浮力がカプセル本体2の重力と等しくなる(Vcap×ρliq=Mcap)までは、条件1~3のすべてに対して磁界発生装置20のサイズSMが、急激かつ単調減少するが、永久磁石24のサイズVmag(Mmag)がさらに大きくなると、すなわちVcap×ρliq=Mcapを超えてVcap×ρliq<Mcapとなると、磁界発生装置20のサイズSMは、条件1の場合、緩やかに単調増加し、条件2の場合、変化せず、条件3の場合、緩やかに単調減少する。
 換言すれば、条件1の場合、永久磁石24のサイズVmagを、Vcap×ρliq=Mcap(=Voptmag)とするように設定すれば、磁界発生装置20のサイズSMを最小化することができる。また、条件2の場合、永久磁石24のサイズVmagを、Vcap×ρliq≦Mcapとなるように設定すれば、磁界発生装置20のサイズSMを最小化することができる。この条件1,2の場合、Fdisの磁気引力がカプセル本体2に発生するように磁気発生装置20を設定すればよい。また、条件3の場合、Vcap×ρliq<Mcapとなるように永久磁石24のサイズVmag(Mmag)を設定することで、磁界発生装置20のサイズSMを小型化できる。この場合、カプセル本体2内には、可能な限り大きな永久磁石24を設置することが望ましい。すなわち、Vcap×ρliq<Mcapの条件下では、曲線L3が緩やかに単調減少するため、最大容積Vmaxmag内で、McapがVcap×ρliqに比して可能な限り大きくすることによって磁界発生装置20のサイズSMを小さくすることができる。すなわち、永久磁石24のサイズVmagをVmaxmagとすればよい。
 さらに、式(8)のSMdownの絶対値内が0以下となるように、永久磁石24のサイズVmag(Mmag)を設定してもよい。このとき、カプセル本体2を鉛直下方向に誘導する場合にも、鉛直上方向の力を発生させることになるため、鉛直下方向に磁気引力を発生させる必要がなくなる。これにより、鉛直下方向に磁気引力を発生するための電磁石が必要なくなるため、磁界発生装置20をさらに小型化することができる。この場合、永久磁石24のサイズVmag(Mmag)は、下記の条件を満たすように設定される。
 (SMdownの絶対値内)
  =-G+((Vcap×ρliq-Mcap-mag)×G+Fdis)/Mmag
  ≦0
  ((Vcap×ρliq-Mcap-mag)×G+Fdis)≦Mmag×G
  Fdis≦(Mmag+Mcap-mag-Vcap×ρliq)×G
  Fdis≦(Mcap-Vcap×ρliq)×G
したがって、鉛直上方向に発生する力が次式を満たすことになる。
 Fup =|(Mcap-Vcap×ρliq)×G+Fdis|
    ≦2×(Mcap-Vcap×ρliq)×G             
…(14)
よって、磁界発生装置20がカプセル本体2に鉛直上方向に発生する力が、カプセル本体2の質量と、カプセル本体2の体積と液体40の密度との積(カプセル本体2に発生する浮力)との差の2倍に重力加速度を乗算した値以下となるように、永久磁石24のサイズを設定することが望ましい。
(考察2)
 ここで、永久磁石24が領域26(容積Va>Vmaxmag)を占めるように永久磁石24のサイズVmagが永久磁石24の最大容積Vmaxmagを超えて設置する場合、図6に示すように、永久磁石24のサイズVmagを大きくするに従って、カプセル本体2の体積Vcapを大きくすることが好ましい。この場合、各条件1~3のいずれも、体積Vcapを大きくすることによって、最大容積Vmaxmagを超えると、曲線L1,L2,L3から曲線L1a,L2a,L3aのように、磁界発生装置20のサイズSMを小さくすることができる。このように、カプセル本体2のサイズVcapを大きくし、永久磁石24のサイズVmagを大きくすることによって、磁界発生装置20のサイズSMを小さくすることができる。特に、カプセル本体2を経肛門で大腸を検査する場合、大きなサイズのカプセル本体2を適用することができ、この場合に用いる磁界発生装置20を小型化することができる。
(条件1の適用例)
 ここで、条件1の場合とは、カプセル本体2の浮力と、永久磁石24を除いた場合のカプセル本体2の重力との差に対して、液体中での抵抗が小さい場合を意味する。このような条件下でカプセル本体2を誘導する抗力Fdisの大きさは、比較的小さい。たとえば、液体の抵抗、カプセル本体の密度のばらつき、体位変換での液体の揺れ、心拍・呼吸などによる揺れなどによって発生する抗力Fdisである。
 実際に水のような低粘度の液体を摂取することで、液体の抵抗は十分に無視することができる。また、体位変換での液体の揺れや心拍・呼吸などによって発生する液体の揺れは、主に水面の横方向の揺れであり、鉛直方向に与える影響は少ない。したがって、抗力Fdisのなかで、誘導に影響を与えるものは、カプセル本体2の密度のばらつきである。ここで、体内に導入可能なサイズのカプセル本体2の密度の誤差を、3%程度に抑えた場合、
 F=Fdis=0.03×Vcap×ρliq×G
となる。ここで、液体の密度が約1g/cm(0.9~1.1g/cm)で、経口導入のカプセル本体2の場合、
 F<0.03×(0.75×3.14×4.00)×1.10×9.81
  =2.3(mN)
となり、非常に小さな力Fで、カプセル本体2を誘導できるため、磁界発生装置20を小型化できる。さらに、カプセル本体2の密度の誤差を±1%程度に抑えることで、誘導に必要な力Fを1/3程度に小さくし、磁界発生装置20を小型化することができる。ただし、動作の安全率を考慮し、誘導に必要な力Fの1.1~2倍程度の力が発生できる磁界発生装置にしてもよい。
 このような条件1の比較的小さな抗力Fdis下で、カプセル本体2を誘導できるアプリケーションとしては、次のような検査が挙げられる。
1)経口して噴門部と胃と必要に応じて十二指腸、小腸、大腸とを検査する場合
 この場合、まず側臥位でカプセル本体2を嚥下し、噴門部で一時的にカプセル本体2を呈しさせ、噴門部の画像を取得する。その後、カプセル本体2を胃に落下させる。その後、水、発泡剤を摂取して胃を拡張させる。なお、発泡剤の摂取は、カプセル本体2の嚥下前に行ってもよい。その後、カプセル本体2に対する胃内の液中での誘導と被検体の体位変換とを行って、カプセル本体2によって胃全体を観察する。その後、カプセル本体2を幽門部近傍に誘導し、幽門部の蠕動運動によってカプセル本体2を十二指腸に送出する。その後、蠕動運動を用いて、十二指腸以降の腸管の画像を取得する。
2)経肛門で大腸を検査する場合
 この場合、まず、経口あるいは経肛門によって大腸の蠕動運動を抑制させる蠕動抑制剤を投与しておくことが好ましい。その後、経肛門でカプセル本体2と液体とを導入する。なお、等腸液などの液体は、事前に経口で導入しておいてもよい。その後、カプセル本体2を液中で拡張された大腸内を誘導し、さらに体位変換を行って、カプセル本体2によって大腸の観察を行う。なお、経肛門で導入されるカプセル本体2は、直径20mm×長さ40mm以下のサイズであることが好ましい。すなわち、大腸を容易に通過できる直径で、肛門に戻ることができる長さであることが好ましい。
(条件2,3の適用例)
 一方、条件2,3の場合、カプセル本体2の浮力と、永久磁石24を除いたカプセル本体2の重力との差に対して、液中での抗力Fdisが等しいか大きい場合である。この場合、カプセル本体2の永久磁石24のサイズVmagを、Vcap×ρliq<Mcapを満足するように設定し、カプセル本体2内に、できるかぎり大きなサイズの永久磁石24を設置することが好ましい。特に、条件2の場合、永久磁石24のサイズVmagを大きくしても、磁界発生装置20のサイズSMは変わらないが、他の方向、たとえば水平方向に発生する力を考慮すると、永久磁石24のサイズVmagは、大きい方が好ましい。
 この条件2,3の状態とは、体内で非常に大きな抗力が発生する場合である。この抗力Fdisとしては、胃腸管の蠕動運動や胃腸壁からの圧力によって発生する抗力が考えられる。たとえば、胃腸管の蠕動運動で発生する力として、幽門部を通過する場合に必要な力が挙げられる。幽門部の通過に必要な力は、100mN程度が必要であり、この場合、被検体1に導入可能なサイズのカプセル本体で、条件1を実現することはできない。
 条件1のカプセル本体2にするためには、カプセル本体2内に、10g(=100mN/(9.8m/s))以上の永久磁石を設置できる必要がある。すなわち、液体40の密度がほぼ1であるため、少なくとも、カプセル本体2のサイズVmagを、10cm以上にする必要がある。しかし、経口投与の場合、カプセル本体2の最大サイズが、φ15mm×40mmであり、すなわちカプセル本体2の最大サイズが約7.0cmであり、実現できない。
 さらに、カプセル本体2を、小腸や大腸内を誘導する場合、カプセル本体2の誘導速度が、1mm/s程度であっても、腸壁からの圧力に対抗して誘導するのに必要な力は、実験により、200mN以上である。したがって、この場合も、条件1を実現することができない。その他、食道で発生する蠕動運動についても、同様な結果の予測を容易に求めることができる。
 このような条件2,3の下で、カプセル本体2を誘導することが求められる検査としては、次のような場合が挙げられる。すなわち、
1)経口で導入され、食道を誘導で観察する場合
2)経口で導入され、胃を観察後、幽門を誘導で通過させる場合
3)経口で導入され、小腸を誘導で観察する場合
4)経口で導入され、大腸を誘導で観察する場合
5)経肛門で導入され、大腸を誘導で観察する場合
である。
 なお、液体40の摂取は、経口でカプセル本体2が導入される場合は経口摂取で行い、経肛門で導入される場合は経肛門で被検体1内に導入されることが好ましい。また、経口でカプセル本体2が導入される場合でも、カプセル本体2を大腸で誘導する場合には、経肛門で液体40を被検体1内に導入するようにしてもよい。さらに、経肛門でカプセル本体2を被検体1内に導入する場合、カプセル本体2のサイズVmagを、最大φ20mm×40mm程度まで大きくすることができる。この場合、カプセル本体2内に設置できる永久磁石24をさらに大きくすることができるため、磁界発生装置20を小型化することができる。
(考察3)
 なお、磁界発生装置20の磁界発生部を被検体1の下部にのみ配置し、被検査者を磁界発生装置20で覆わないようにすると、被検査者の閉塞感を取り除くとともに、検査者が被検査者にアプローチし易くなる。
 しかし、このような磁界発生装置では、磁気引力が下方にしか発生できないため、カプセル本体2を液体40に浮かせる必要がある。この場合、カプセル本体2の密度のばらつきは、図7に示すように、曲線L11のVcap×ρliq=Mcapの点からVcap×ρliq>Mcapの領域側、すなわち、永久磁石24のサイズVmagが小さい領域側に発生し、密度のばらつき幅σの中心を、永久磁石24の最適サイズV1として決定するとよい。
 一方、磁界発生装置の磁気発生部をアームに取り付けて、被検体1の上部にのみ設置する場合、図8に示すように、曲線L12のVcap×ρliq=Mcapの点からVcap×ρliq<Mcapの領域側、すなわち、永久磁石24のサイズVmagが大きい領域側に発生し、密度のばらつき幅σの中心を、永久磁石24の最適サイズV2として決定するとよい。
(考察4)
 つぎに、カプセル本体2を、被検体1に導入した液体40内で、鉛直方向に誘導する場合、カプセル本体2の自重、浮力以外にも抗力が発生するが、この抗力が鉛直上方向のみに発生する場合を考える。この場合に、誘導に必要な力Fは、図9を参照して、鉛直下方向誘導時に誘導に必要な力Fdownと、鉛直上方向に必要な力Fupとに分けることができ、
 Fdown=|(Vcap×ρliq-Mcap)×G+Fdis|          
…(15)
 Fup =|(Mcap-Vcap×ρliq)×G|             
…(16)
と表すことができる。なお、この鉛直上方向に発生する抗力としては、液面での表面張力や、幽門を下にした体位での幽門通過時の力などがある。
 この場合、カプセル本体2を誘導するために必要な磁界発生装置20のサイズSMは、鉛直下方向誘導時のサイズSMdownと、鉛直上方向誘導時のサイズSMupとに分けることができ、
 SMdown=K×|(Vcap×ρliq-Mcap)×G+Fdis|÷Mmag   
…(17)
 SMup =K×|(Mcap-Vcap×ρliq)×G|÷Mmag      
…(18)
と表すことができる。なお、この場合も、永久磁石24を除いたカプセル本体2が液体40に浮くことを条件とする、式(7)を満足するものとする。この場合における永久磁石24のサイズVmag(質量Mmag)に対する磁界発生装置20のサイズSMの関係は、図10に示すように、鉛直上方向誘導時の曲線L21と鉛直下方向誘導時の曲線L22とによって示され、誘導の方向性によって異なった特性曲線を示す。
 この場合において、磁界発生装置20のサイズSMを最小にする条件は、各曲線L21,L22の交点として求めることができる。すなわち、
 K×|(Vcap×ρliq-Mcap)×G+Fdis|÷Mmag
 =K×|(Mcap-Vcap×ρliq)×G|÷Mmag           …(19)
から、Fdis=2(Mcap-Vcap×ρliq)×G を求めることができる。したがって、カプセル本体2にかかる重力と浮力との差の2倍が、磁界発生装置がカプセル本体2に鉛直上方向に発生する抗力と等しくなるように、カプセル本体2の永久磁石24のサイズVmagを設定することによって、磁界発生装置20のサイズSMを最小化することができる。すなわち、曲線L21と曲線L22の磁界発生装置20のサイズSMが大きい曲線部分の合成曲線に対して最小値を求めることができる。このときの永久磁石24の最適サイズは、図10に示したサイズV3であり、曲線L21と曲線L22との交点の値である。また、磁界発生装置20がカプセル本体2に発生する鉛直上下方向の力は、カプセル本体2の質量と、カプセル本体2の体積と液体40の密度との積(カプセル本体2に働く浮力)との差となる。
(考察4に対応する適用例)
 ここで、鉛直上方向にのみ発生する抗力下で、カプセル本体2を誘導できるアプリケーションとしては、つぎのような検査が挙げられる。
1)抗力が液体の表面張力の場合であって、噴門部と胃と必要に応じて十二指腸,小腸,大腸とを検査する場合
 この場合、まず側臥位でカプセル本体2を嚥下し、噴門部で一時的にカプセル本体2を呈しさせ、噴門部の画像を取得する。その後、カプセル本体2を胃に落下させる。その後、水、発泡剤を摂取して胃を拡張させる。なお、発泡剤の摂取は、カプセル本体2の嚥下前に行ってもよい。その後、カプセル本体2に対する胃内の液中での誘導と被検体の体位変換とを行って、カプセル本体2によって胃全体を観察する。その後、カプセル本体2を幽門部近傍に誘導し、幽門部の蠕動運動によってカプセル本体2を十二指腸に送出する。その後、蠕動運動を用いて、十二指腸以降の腸管の画像を取得する。
 なお、胃の観察時に、カプセル本体2を液面から液中に誘導する場合、水(液体)の表面張力0.7mN~3.0mNが抗力として発生する。また、外装が樹脂(ポリカーボネード)で形成されているカプセル本体2を長軸が下方向になるようにして沈める場合、カプセル本体2に発生する水(液体)の表面張力は、カプセル本体2がφ5mmの場合、0.7mNであり、φ11mmの場合、1.6mNであり、φ15mmの場合、2.3mNである。すなわち、表面張力は、カプセル本体2の直径に比例する。
2)抗力が幽門通過時の反力の場合であって、食道と胃と十二指腸と小腸と大腸とを検査する場合
 この検査で、幽門通過時に、体位を右側臥位にし、下方向に幽門の通過に必要な力を発生させることで、能動的に幽門を通過する。この幽門の通過に必要な力は、100mN程度である。この場合、蠕動運動で幽門部を通過させる場合よりも、短時間で確実にカプセル本体2を十二指腸に導入することができる。また、これによって、カプセル本体2の電池寿命内に、胃観察後の十二指腸以降の腸管を一層多く観察することができる。
(考察5)
 つぎに、カプセル本体2の鉛直方向誘導時に、発生する方向に方向性がない抗力Fdis1と、鉛直上方向にのみ働く抗力Fdis2とが共存する場合に、カプセル本体2を誘導するために必要な磁界発生装置20のサイズSMは、鉛直下方向誘導時のサイズSMdownと、鉛直上方向誘導時のサイズSMupとに分けることができ、
 SMdown=K×(|(Vcap×ρliq-Mcap)×G+Fdis1+Fdis2|)÷Mmag                                    …(20)
 SMup =K×|(Mcap-Vcap×ρliq)×G+Fdis1|÷Mmag                                          …(21)
と表すことができる。なお、この場合も、永久磁石24を除いたカプセル本体2が液体40に浮くことを条件とする、式(7)を満足するものとする。
 この場合における永久磁石24のサイズVmag(質量Mmag)に対する磁界発生装置20のサイズSMの関係は、考察1と同様に、SMupを下記の条件1,条件2と条件3によって場合分けすることができる。すなわち、
 条件1:(Vcap×ρliq-Mcap-mag)×G>Fdis1
 条件2:(Vcap×ρliq-Mcap-mag)×G=Fdis1
 条件3:(Vcap×ρliq-Mcap-mag)×G<Fdis1
に場合分けされる。この結果、図11-1~図11-3に示すような結果になる。
 すなわち、条件1の場合、磁界発生装置20のサイズSMを最小にする条件は、考察4と同様に、
 K×|(Vcap×ρliq-Mcap)×G+Fdis2|÷Mmag
 =K×|(Mcap-Vcap×ρliq)×G|÷Mmag
から、
 Fdis2=2(Mcap-Vcap×ρliq)×G              
…(22)
を求めることができる。したがって、カプセル本体2にかかる重力と浮力との差の2倍が、磁界発生装置20がカプセル本体2に鉛直上方向に発生する抗力と等しくなるように、カプセル本体2の永久磁石24のサイズVmagを設定することによって、磁界発生装置20のサイズSMを最小化することができる。すなわち、曲線L31と曲線L32の磁界発生装置20のサイズSMが大きい曲線部分の合成曲線L30に対して最小値を求めることができる。このときの永久磁石24の最適サイズは、図11-1に示したサイズV4であり、曲線L31と曲線L32との交点の値である。
 なお、このときの磁界発生装置20は、カプセル本体2に発生する鉛直上方向の力の最大値と、鉛直下方向の力の最大値とは等しくなり、その値は、下記の条件を満たす。
 Fdown=Fup
    =|(Mcap-Vcap×ρliq)×G+Fdis1|
    <|(Mcap-Vcap×ρliq)×G+(Vcap×ρliq-Mcap-mag)×G|
    =Mmag×G                        
…(23)
 よって、鉛直上下方向の力が、永久磁石24の質量と重力加速度との積よりも小さくなるように設定される。
 一方、条件2の場合、SMup(曲線L41)≧SMdown(曲線L42)の範囲であれば、磁界発生装置20のサイズSMは一定となる(曲線L40参照)。したがって、
 K×|(Vcap×ρliq-Mcap)×G+Fdis2|÷Mmag
 ≦K×|(Mcap-Vcap×ρliq)×G|÷Mmag
から、
 Fdis2≦2(Mcap-Vcap×ρliq)×G              
…(24)
であれば、磁界発生装置20のサイズSMを小さくすることができる。このとき、磁界発生装置20がカプセル本体2に発生する鉛直上方向の力の最大値は、鉛直下方向の力の最大値よりも大きくなり、その値は、下記の式で表される。
 Fup=Mmag×G                         
…(25)
よって、鉛直上下方向の力が、永久磁石24の質量と重力加速度との積が等しくなるように設定される。
 さらに、条件3の場合、磁界発生装置20のサイズSMを最小にする条件は、考察1の条件3と同様に、カプセル本体2内に、できる限り大きなサイズの永久磁石を設置することが好ましい。この場合の曲線は、曲線L51と曲線L52のうちのサイズSMが大きい曲線部分の合成曲線L50となり、極値をもたずに、永久磁石24のサイズVmagの増大とともに磁界発生装置20のサイズSMが小さくなる。
 なお、鉛直上方向の力Fupと、鉛直下方向の力Fdownとが釣り合うとき(曲線L51と曲線L52との交点に相当)の永久磁石24のサイズVmag(Mmag)よりも大きなサイズの永久磁石を設置することが望ましい。これは、曲線L51上では、磁界発生装置20のサイズSMは、永久磁石24のサイズVmag(Mmag)の増大によって、急激に小さくなる。そのため、曲線L51と曲線L52との交点よりも永久磁石24のサイズVmag(Mmag)を大きくすることによって、永久磁石24のサイズVmag(Mmag)を増大させる場合の小型化の効果を確実に得ることができる(SMup≧SMdownの範囲)。したがって、条件2と同様に、
 Fdis2≦2(Mcap-Vcap×ρliq)×G              
…(26)
となるように、永久磁石24が設定される。このとき、磁界発生装置20がカプセル本体2に発生する鉛直上方向の力の最大値は、鉛直下方向の力の最大値よりも大きくなり、その値は、下記の式を満たす。
 Fup≧Mmag×G                         
…(27)
よって、鉛直上下方向の力が、永久磁石24の質量と重力加速度との積以上になるように設定される。
 また、考察1と同様に、さらにSMdownの絶対値内が0以下となるように、永久磁石24のサイズVmag(Mmag)を設定してもよい。このとき、カプセル本体2を鉛直下方向に誘導する場合にも、鉛直上方向の力を発生させることになるため、鉛直下方向に磁気引力を発生させる必要がなくなる。これにより、鉛直下方向に磁気引力を発生させるための電磁石が必要なくなるため、磁界発生装置20をさらに小型化することができる。この場合、永久磁石のサイズVmag(Mmag)は、下記の条件を満たすように設定される。
 (SMdownの絶対値内)
  =-G+((Vcap×ρliq-Mcap-mag)×G+Fdis1+Fdis2)/Mmag
  ≦0
  ((Vcap×ρliq-Mcap-mag)×G+Fdis1+Fdis2)≦Mmag×G
  Fdis1+Fdis2≦(Mmag+Mcap-mag-Vcap×ρliq)×G
  Fdis1+Fdis2≦(Mcap-Vcap×ρliq)×G
  ここで、Fdis2>0 より、
  Fdis1≦(Mcap-Vcap×ρliq)×G              
…(28)
したがって、鉛直上方向に発生する力が次式を満たすことになる。
 Fup =|(Mcap-Vcap×ρliq)×G+Fdis1|
    ≦|(Mcap-Vcap×ρliq)×G+(Mcap-Vcap×ρliq)×G|
    ≦2×(Mcap-Vcap×ρliq)×G             
…(29)
よって、磁界発生装置20がカプセル本体2に鉛直上方向に発生する力が、カプセル本体2の質量と、カプセル本体2の体積と液体40の密度との積(カプセル本体2に発生する浮力)との差の2倍に重力加速度を乗算した値以下となるように、永久磁石24のサイズを設定することが望ましい。
(システム適用例:カプセル型医療装置誘導システム)
 図12は、検査に対応して最適化されたカプセル本体の誘導を行うカプセル型医療装置誘導システムの構成を示す模式図である。このカプセル型医療装置誘導システム11は、被検体1の内部にカプセル型医療装置(カプセル本体)2を導入し、この被検体1内部のカプセル本体2を誘導しつつ、体内画像を取得し、あるいは体内組織などを採取するものである。このシステムは、被検体1の体表上に配置した複数のアンテナ3aを介して被検体1内部のカプセル本体2と無線通信を行う通信部3と、カプセル本体2によって撮像された被検体1の体内画像等の各種情報を表示する表示部4と、被検体1内部のカプセル本体2を誘導するための磁界を発生する磁界発生部5と、磁界発生部5に電力を供給する電力供給部6と、磁界発生部5を移動させる移動部7と、導入されるカプセル本体2の種別などの各種情報を入力する入力部8と、被検体1の体内画像等の各種情報を記憶する記憶部9と、被検体1内部のカプセル本体2の位置を検出する位置検出装置12と、位置検出装置12が用いる磁界の駆動を行う駆動部13と、上記各構成部を制御する制御部10とを備える。
 磁界発生部5は、複数の電磁石を用いて実現され、電力供給部6から供給される電力によって回転磁界または勾配磁界等の3次元的な外部磁界を発生させる。特に、磁界発生部5は、少なくとも鉛直方向に対する勾配磁界を発生させることができる。この磁界発生部5は、ベッド32に載置された被検体1内部のカプセル本体2に外部磁界を印加し、この外部磁界の作用によって、被検体1内部の永久磁石に対して磁気引力を発生させて、カプセル本体2を所望の体内部位に誘導する。
 移動部7は、被検体1内部のカプセル本体2に磁界発生部5による外部磁界が印加されるように被検体1に対して相対的に磁界発生部5を移動するためのものである。具体的には、被検体1を載置するベッド32の載置面に対して略平行なXY平面が設定され、移動部7は、制御部10の制御に基づいて、このXY平面内の座標位置に磁界発生部5を移動する。この場合、移動部7は、磁界発生部5による外部磁界が形成される3次元空間内に被検体1内部のカプセル本体2が位置するように磁界発生部5を移動する。
 入力部8は、キーボード、マウス、ジョイスティック等の入力デバイスを用いて実現され、医師または看護師等のユーザによる入力操作に応じて制御部10に各種情報を入力する。また、入力部8は、表示部4の表示結果をもとに制御部10の制御を操作する操作手段としても機能する。この入力部8が制御部10に入力する各種情報は、例えば、制御部10に対して指示する指示情報、被検体の患者情報、被検体の検査情報等であり、特にカプセル本体2の種別(サイズ、密度など)情報が入力される。
 制御部10は、被検体1の体内画像を生成する画像処理部10aと、被検体1内部におけるカプセル型医療装置2の位置を算出する位置算出部10bと、磁界発生部5に対する電力供給部6の通電量を制御して磁界発生部5が発生する磁界強度を制御する磁界発生制御部10cを有する。
 画像処理部10aは、カプセル型医療装置2からの無線信号から復調された画像信号を通信部3から取得し、この取得した画像信号に対して所定の画像処理を行って、この画像信号に対応する画像情報すなわち被検体1の体内画像を生成する。画像処理部10aによって生成された体内画像群は、表示部4に表示され、記憶部9に記憶される。
 位置算出部10bは、駆動部13によって発生した磁界によってカプセル本体2内のLCマーカなどから発生した検出磁界を検出する位置検出装置12が出力する信号をもとにカプセル本体2の位置を検出する。この位置検出結果は、表示部4に表示され、記憶部9に記憶される。この表示部4に表示されたカプセル本体2の位置をもとに、操作者は、入力部8を介してカプセル本体2を誘導させる誘導指示情報を制御部10に入力して誘導制御を行う。
 磁界発生制御部10cは、入力された誘導指示情報をもとに磁界発生部5が発生する磁界強度を制御し、カプセル本体2の誘導制御を行う。ここで、磁界発生制御部10cは、制御テーブル10dを有し、制御テーブル10dは、最適な最大発生磁界と、入力部8から入力されるカプセル本体2の種別情報と、検査情報(検査内容)とを関連付けた対応テーブルである。磁界発生制御部10cは、カプセル本体2の種別情報と、検査情報とをもとに、制御テーブル10dを参照して、最適な最大発生磁界を制限する磁界発生制御を行う。
 ここで、カプセル本体2は、上述した考察によって内部の永久磁石24のサイズVmagが最適化されていることを前提としている。そして、磁界発生制御部10cは、上述したように、被検体1に導入されるカプセル本体2の種別情報と、検査情報とをもとに、最適な最大発生磁界の範囲内で誘導に必要な磁界を発生させる通電制御を行う。これによって、各カプセル本体2の種別および検査内容に応じて省エネルギー化を図ることができる。また、このカプセル型医療装置誘導システム11が取り扱うカプセル本体2の種別と検査内容とが特定されているシステムである場合には、磁界発生装置20のサイズSMを最小化することができ、小型化を促進することができる。
 つぎに、制御テーブル10dの内容を、具体例を挙げて説明する。ここでは、カプセル種別と検査内容とによって最大磁界を設定するようにしている。たとえば、以下のC-1~C-5の対応関係が記載されている。
C-1)カプセル種別:密度が約1g/cm,サイズ(小)
    検査内容:食道(噴門部)および胃の観察(幽門部は蠕動運動で通過)
    最大磁界(磁界発生装置サイズ):小
C-2)カプセル種別:密度が約1g/cmよりも大きく、サイズ(小)
    検査内容:食道(噴門部)、胃、十二指腸の観察(幽門部は誘導で通過)
    最大磁界(磁界発生装置サイズ):中
C-3)カプセル種別:密度が約1g/cmよりも大きく、サイズ(小)
    検査内容:全消化管の観察(誘導)
    最大磁界(磁界発生装置サイズ):大
C-4)カプセル種別:サイズ(大)
    検査内容:特定なし
    最大磁界(磁界発生装置サイズ):小
C-5)カプセル種別:サイズ(大)
    検査内容:大腸検査
    最大磁界(磁界発生装置サイズ):大
 この場合、磁界発生装置のサイズは、最も大きな最大磁界を必要とするC-3またはC-5によって決定される。なお、上記考察で述べたように、誘導方向あるいは誘導方向の組み合わせによって最大磁界をさらに詳細に設定してもよい。あるいは、誘導方向あるいは誘導方向の組み合わせによって磁界発生装置20のサイズSMをさらに詳細に決定するようにしてもよい。
 なお、磁気勾配の発生によってカプセル本体2内の永久磁石に磁気引力を発生させて誘導するシステムを前提として説明したが、たとえば、カプセル本体2の外表面に螺旋構造をもたせ、永久磁石の磁化方向が、螺旋の中心軸と垂直になるように配置し、磁界発生装置20が回転磁界を発生させることで、カプセル本体2を誘導できるようにしてもよい。この場合、小腸や大腸内で管腔が十分に拡張されず、腸壁からの圧力が大きい場合であっても、腸壁との接触状態を利用し、回転螺旋方式によってカプセル本体を一層効率的に誘導することができ、磁界発生装置の小型化を促進することができる。
  1 被検体
  2 カプセル本体
  3 通信部
  3a アンテナ
  4 表示部
  5 磁界発生部
  6 電力供給部
  7 移動部
  8 入力部
  9 記憶部
 10 制御部
 10a 画像処理部
 10b 位置算出部
 10c 磁界発生制御部
 10d 制御テーブル
 11 カプセル型医療装置誘導システム
 12 位置検出装置
 13 駆動部
 20 磁界発生装置
 21 撮像部
 22 制御回路
 23 電源
 32 ベッド
 24 永久磁石
 40 液体

Claims (14)

  1.  前記被検体内に導入され、永久磁石を備えて流体内で前記被検体内の検査または処置を行うカプセル本体と、
     前記被検体外に設けられ、前記永久磁石に対して磁気引力を発生し、前記カプセル本体を誘導する磁界発生装置と、
     前記永久磁石を除く前記カプセル本体の質量が、前記カプセル本体の体積と前記流体の密度との積よりも小さく、
     前記磁界発生装置は、該磁界発生装置が前記カプセル本体に鉛直上方向に発生する磁気引力の最大値と鉛直下方向に発生する磁気引力の最大値とを等しくし、前記鉛直上下方向に発生する磁気引力の最大値を、前記永久磁石の質量に重力加速度を乗算した値よりも小さくして前記カプセル本体を誘導することを特徴とするカプセル型医療装置誘導システム。
  2.  前記被検体内に導入され、永久磁石を備えて前記流体内で前記被検体内の検査または処置を行うカプセル本体と、
     前記被検体外に設けられ、前記永久磁石に対して磁気引力を発生し、前記カプセル本体を誘導する磁界発生装置と、
     前記永久磁石を除く前記カプセル本体の質量が、前記カプセル本体の体積と前記流体の密度との積よりも小さく、
     前記磁界発生装置は、該磁界発生装置が前記カプセル本体に鉛直上方向に発生する磁気引力の最大値を、鉛直下方向に発生する磁気引力の最大値以上にし、前記鉛直上下方向に発生する磁気引力の最大値を、前記永久磁石の質量に重力加速度を乗算した値以上にして前記カプセル本体を誘導することを特徴とするカプセル型医療装置誘導システム。
  3.  前記カプセル本体の前記流体に対する比重が略1であることを特徴とする請求項1に記載のカプセル型医療装置誘導システム。
  4.  前記カプセル本体の前記流体に対する比重が1より大きいことを特徴とする請求項1に記載のカプセル型医療装置誘導システム。
  5.  前記カプセル本体の前記流体に対する比重が1より大きいことを特徴とする請求項2に記載のカプセル型医療装置誘導システム。
  6.  前記磁界発生装置は、前記カプセル本体に鉛直上方向に発生する力の最大値を、前記カプセル本体の質量と、前記カプセル本体の体積と前記流体の密度との積との差の2倍に重力加速度を乗算した値以下にして前記カプセル本体を誘導することを特徴とする請求項5に記載のカプセル型医療装置誘導システム。
  7.  前記カプセル本体は、被検体内に経口で摂取され、経口で摂取され一時的に胃に溜められた前記流体の中で前記磁界発生装置が発生する磁界によって誘導されることを特徴とする請求項1に記載のカプセル型医療装置誘導システム。
  8.  前記カプセル本体は、被検体内に経肛門で導入され、経口もしくは経肛門で摂取され一時的に大腸に溜められた前記流体の中で前記磁界発生装置が発生する磁界によって誘導されることを特徴とする請求項1に記載のカプセル型医療装置誘導システム。
  9.  前記カプセル本体は、被検体内に経口で摂取され、食道、胃幽門部、十二指腸、小腸、大腸のいずれかの中で前記磁界発生装置が発生する磁界によって誘導されることを特徴とする請求項2に記載のカプセル型医療装置誘導システム。
  10.  前記カプセル本体は、被検体内に経肛門で導入され、大腸の中で前記磁界発生装置が発生する磁界によって誘導されることを特徴とする請求項2に記載のカプセル型医療装置誘導システム。
  11.  前記被検体内に導入され、永久磁石を備えて前記流体内で前記被検体内の検査または処置を行うカプセル本体と、
     前記被検体外に設けられ、前記永久磁石に対して磁気引力を発生し、前記カプセル本体を誘導する磁界発生装置と、
     前記永久磁石を除く前記カプセル本体の質量が、前記カプセル本体の体積と前記流体の密度との積よりも小さく、
     前記カプセル本体は、前記永久磁石の大きさ、前記カプセル本体の体積、前記カプセル本体の形状のいずれかが異なる複数の種類の複数のカプセル本体からなり、
     前記カプセル本体の種類を入力する入力部を備え、
     前記磁界発生装置は、前記入力部によって入力されたカプセル本体の種類に応じて前記カプセル本体に発生する最大磁気引力を変更する磁界発生制御部を備えたことを特徴とするカプセル型医療装置誘導システム。
  12.  前記磁界発生制御部は、鉛直上方向に発生する磁気引力の最大値と鉛直下方向に発生する磁気引力の最大値とを等しくし、前記鉛直上下方向に発生する磁気引力の最大値が、前記永久磁石の質量に重力加速度を乗算した値よりも小さくなるように、磁気引力の最大値を設定して制御することを特徴とする請求項11に記載のカプセル型医療装置誘導システム。
  13.  前記磁界発生制御部は、鉛直上方向に発生する磁気引力の最大値を鉛直下方向に発生する磁気引力の最大値以上にし、前記鉛直上下方向に発生する磁気引力の最大値が、前記永久磁石の質量に重力加速度を乗算した値以上となるように、磁気引力の最大値を設定して制御することを特徴とする請求項11に記載のカプセル型医療装置誘導システム。
  14.  前記磁界発生制御部は、鉛直上方向に発生する力の最大値が、前記入力部に入力されたカプセル本体の種類の該カプセル本体の質量と、該カプセル本体の体積と前記流体の密度との積との差の2倍に重力加速度を乗算した値以下となるように、磁気引力の最大値を設定して制御することを特徴とする請求項11に記載のカプセル型医療装置誘導システム。
PCT/JP2009/069961 2008-11-28 2009-11-26 カプセル型医療装置誘導システム WO2010061894A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2009801476972A CN102227187A (zh) 2008-11-28 2009-11-26 胶囊型医疗装置引导系统
EP09829139.6A EP2353489A4 (en) 2008-11-28 2009-11-26 SYSTEM FOR LEADING A CAPTURED MEDICAL DEVICE
JP2010540510A JP4903899B2 (ja) 2008-11-28 2009-11-26 カプセル型医療装置誘導システム
US13/052,509 US8821398B2 (en) 2008-11-28 2011-03-21 Capsule medical apparatus guidance system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-305619 2008-11-28
JP2008305619 2008-11-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/052,509 Continuation US8821398B2 (en) 2008-11-28 2011-03-21 Capsule medical apparatus guidance system

Publications (1)

Publication Number Publication Date
WO2010061894A1 true WO2010061894A1 (ja) 2010-06-03

Family

ID=42225765

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/069961 WO2010061894A1 (ja) 2008-11-28 2009-11-26 カプセル型医療装置誘導システム

Country Status (5)

Country Link
US (1) US8821398B2 (ja)
EP (1) EP2353489A4 (ja)
JP (1) JP4903899B2 (ja)
CN (1) CN102227187A (ja)
WO (1) WO2010061894A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101961241A (zh) * 2010-11-02 2011-02-02 重庆金山科技(集团)有限公司 一种检测系统及一种位置控制装置
JPWO2017141499A1 (ja) * 2016-02-19 2018-02-22 オリンパス株式会社 位置検出装置及び位置検出システム
JP2023017745A (ja) * 2021-07-26 2023-02-07 マックス-プランク-ゲゼルシャフト・ツア・フェルデルング・デア・ヴィッセンシャフテン・エー・ファオ 磁気トラップシステムおよび微小装置の誘導方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2848183A4 (en) * 2012-05-07 2016-05-25 Olympus Corp MANAGEMENT DEVICE
CN103222842B (zh) 2013-04-18 2015-09-09 安翰光电技术(武汉)有限公司 一种控制胶囊内窥镜在人体消化道运动的装置及方法
EP3184018A4 (en) * 2014-08-21 2018-07-11 Olympus Corporation Guidance device and capsule medical device guidance system
EP3539456B1 (en) * 2014-09-15 2021-06-23 Ankon Medical Technologies (Shanghai) Co., Ltd Apparatus for controlling the movement of a capsule endoscope in the digestive tract of a human body
JP6049951B2 (ja) * 2014-12-08 2016-12-21 オリンパス株式会社 カプセル型内視鏡システム
WO2017185003A1 (en) 2016-04-21 2017-10-26 Massachusetts Institute Of Technology Origami robots and systems
JP6408742B1 (ja) * 2017-03-16 2018-10-17 オリンパス株式会社 位置検出装置、位置検出システム及び位置検出方法
CN106963327A (zh) * 2017-04-14 2017-07-21 深圳市资福技术有限公司 一种胶囊式内窥镜
CN109589085A (zh) * 2019-01-04 2019-04-09 深圳市资福医疗技术有限公司 一种利用等密度胶囊内窥镜检查全消化道的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004229922A (ja) * 2003-01-30 2004-08-19 Olympus Corp 医療装置
WO2007074888A1 (ja) * 2005-12-27 2007-07-05 Olympus Corporation カプセル型医療装置誘導システム及びその制御方法
WO2007077922A1 (ja) * 2005-12-28 2007-07-12 Olympus Medical Systems Corp. 被検体内導入システムおよび被検体内観察方法
JP2007195961A (ja) 2005-12-28 2007-08-09 Olympus Medical Systems Corp 被検体内導入システム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6951536B2 (en) * 2001-07-30 2005-10-04 Olympus Corporation Capsule-type medical device and medical system
TWI300508B (en) * 2003-01-13 2008-09-01 Toppoly Optoelectronics Corp Liquid crystal display
US20070244388A1 (en) * 2004-12-17 2007-10-18 Ryoji Sato Position Detection System, Guidance System, Position Detection Method, Medical Device, and Medical Magnetic-Induction and Position-Detection System
DE102005032378A1 (de) * 2005-07-08 2007-01-11 Siemens Ag Magnetische navigierbare Endoskopie-Kapsel mit Sensor zur Erfassung einer physiologischen Größe
CN101516249B (zh) * 2006-09-12 2011-06-15 奥林巴斯医疗株式会社 胶囊型内窥镜系统、被检体内信息获取装置以及胶囊型内窥镜
DE102007051861B4 (de) * 2007-10-30 2020-03-12 Olympus Corporation Verfahren zur Führung eines Kapsel-Endoskops und Endoskopsystem
JP4625146B2 (ja) * 2008-10-24 2011-02-02 オリンパスメディカルシステムズ株式会社 カプセル型内視鏡システム
WO2010064662A1 (ja) * 2008-12-04 2010-06-10 オリンパスメディカルシステムズ株式会社 カプセル型推進装置、それを備えた医療システムおよび推進方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004229922A (ja) * 2003-01-30 2004-08-19 Olympus Corp 医療装置
WO2007074888A1 (ja) * 2005-12-27 2007-07-05 Olympus Corporation カプセル型医療装置誘導システム及びその制御方法
WO2007077922A1 (ja) * 2005-12-28 2007-07-12 Olympus Medical Systems Corp. 被検体内導入システムおよび被検体内観察方法
JP2007195961A (ja) 2005-12-28 2007-08-09 Olympus Medical Systems Corp 被検体内導入システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2353489A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101961241A (zh) * 2010-11-02 2011-02-02 重庆金山科技(集团)有限公司 一种检测系统及一种位置控制装置
JPWO2017141499A1 (ja) * 2016-02-19 2018-02-22 オリンパス株式会社 位置検出装置及び位置検出システム
JP2023017745A (ja) * 2021-07-26 2023-02-07 マックス-プランク-ゲゼルシャフト・ツア・フェルデルング・デア・ヴィッセンシャフテン・エー・ファオ 磁気トラップシステムおよび微小装置の誘導方法

Also Published As

Publication number Publication date
CN102227187A (zh) 2011-10-26
EP2353489A4 (en) 2015-11-25
EP2353489A1 (en) 2011-08-10
US20110282165A1 (en) 2011-11-17
US8821398B2 (en) 2014-09-02
JP4903899B2 (ja) 2012-03-28
JPWO2010061894A1 (ja) 2012-04-26

Similar Documents

Publication Publication Date Title
JP4903899B2 (ja) カプセル型医療装置誘導システム
US8449454B2 (en) Capsule endoscope system
US8419618B2 (en) Display device and in-vivo information acquiring system using the same
EP2848185B1 (en) Guidance device and capsule medical device guidance system
US8444550B2 (en) Capsule medical device guidance system and method for guiding capsule medical device
EP1696788B1 (en) Device for in-vivo imaging of a body lumen
JPWO2007077922A1 (ja) 被検体内導入システムおよび被検体内観察方法
CN112089386B (zh) 胶囊内窥镜系统
EP3170442A1 (en) Guiding apparatus and capsulated medical apparatus guiding system
JP5259881B2 (ja) カプセル型医療装置用誘導システムおよび磁界発生装置
CN106455917B (zh) 胶囊型医疗装置引导系统
JP5248911B2 (ja) カプセル型医療装置
KR20080079037A (ko) 내시경 캡슐 및 이를 제어하는 방법
CN105286762A (zh) 一种用于体内微小型设备定位、转向及位移的外用控制器
JP5543684B2 (ja) カプセル型医療装置
WO2022030458A1 (ja) カプセル内視鏡システム
Zhang et al. Feasibility of Novel Magnetically Controlled Cable Capsule Endoscopy System In Vitro Experiments for Gastric Examination
JP2006026205A (ja) 被検体内導入装置および被検体内導入システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980147697.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09829139

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010540510

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2009829139

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009829139

Country of ref document: EP