WO2010060259A1 - 雾态气体的制备及通过雾态气体放电形成新材料的方法及设备 - Google Patents

雾态气体的制备及通过雾态气体放电形成新材料的方法及设备 Download PDF

Info

Publication number
WO2010060259A1
WO2010060259A1 PCT/CN2009/001035 CN2009001035W WO2010060259A1 WO 2010060259 A1 WO2010060259 A1 WO 2010060259A1 CN 2009001035 W CN2009001035 W CN 2009001035W WO 2010060259 A1 WO2010060259 A1 WO 2010060259A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
gas
temperature
pressure
compound
Prior art date
Application number
PCT/CN2009/001035
Other languages
English (en)
French (fr)
Inventor
张弋飞
张昕辉
Original Assignee
北京坚润表面材料研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京坚润表面材料研究所 filed Critical 北京坚润表面材料研究所
Priority to EP09828520.8A priority Critical patent/EP2381007B1/en
Priority to US13/127,342 priority patent/US8795770B2/en
Priority to JP2011533512A priority patent/JP5624048B2/ja
Priority to DE9828520T priority patent/DE9828520T1/de
Publication of WO2010060259A1 publication Critical patent/WO2010060259A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/06Solid state diffusion of only metal elements or silicon into metallic material surfaces using gases
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/48Ion implantation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/36Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/07Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with halogens; with halogen acids or salts thereof; with oxides or oxyacids of halogens or salts thereof
    • D06M11/09Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with halogens; with halogen acids or salts thereof; with oxides or oxyacids of halogens or salts thereof with free halogens or interhalogen compounds
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M14/00Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials
    • D06M14/18Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials using wave energy or particle radiation
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M16/00Biochemical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. enzymatic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32018Glow discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32055Arc discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32458Vessel
    • H01J37/32522Temperature

Definitions

  • the present invention relates to a method of forming a new material by gas discharge, and more particularly to a method for preparing a mist gas and a method for forming a new material by atomic gas discharge, and a mist gas generating device and a power source device.
  • Ion plating technology uses argon gas "Zhang Wei Zhao Yanhui Multi-arc ion plating technology and application [M] Beijing Metallurgical Industry Press 2007”. Plasma fabric modification air, oxygen, nitrogen, fluorine-containing gas, etc. "China Patent Publication No. CN1318664. A”.
  • the discharge medium is a gas, and the present invention is composed of a plurality of substances in comparison with a single gas, and a gas mist is discharged by a mist gas having a wider range of elemental and/or compound selection - a gas discharge of a mist state . This misty gas discharge is applied to form a new material. Summary of the invention
  • the invention provides a method of producing a misty gas.
  • the present invention provides a method of forming a new material by atomic gas discharge.
  • the present invention provides a mist gas generating apparatus, a power source apparatus, and the like, that is, an apparatus for forming a new material by a mist gas discharge.
  • the discharge of the present invention forms a new material in a self-designed device in the form of a mist gas discharge in a mist gas containing a micro-nano solid or a liquid under a certain temperature and pressure.
  • the invention provides a method of producing a gaseous gas.
  • the method includes the steps of:
  • 1) Providing a first container, the pressure and temperature of a particular area of the container or container are configurable.
  • the present invention provides a method of forming a new material by atomic gas discharge.
  • the method includes the steps of:
  • heating or cooling the package in the first container is maintained at -210 ° C ⁇ 1400 ° C.
  • the atomic gas discharge is not limited to a single mist gas discharge, but a plurality of mist gas discharges are performed multiple times, such as:
  • a (m), J (m), D (m) represent different haze gases, respectively.
  • normal gas discharge, PVD, CVD, sputtering, and the like can be alternated with the mist gas discharge method of the present invention.
  • ordinary gas discharge, etc. + J (m) discharge Such as: ordinary gas discharge, etc. + J (m) discharge.
  • a plurality of gaseous gas discharges are performed multiple times with a plurality of common gas discharges, such as:
  • the material to be modified is a simple substance, a compound, and includes but is not limited to a metal and an alloy thereof, ceramic, glass, glass fiber, graphite, diamond, carbon fiber, polyethylene, polyvinyl chloride, poly Polymers such as tetrafluoroethylene; natural fibers such as cotton, hemp, wool, silk, wood; viscose fibers, rayon fibers, etc.; synthetic fibers such as spandex, polyester, aramid, nylon; and coatings of the above materials, Coating, permeable layer, composite layer, etc.
  • the apparatus for carrying out the mist gas discharge method of the present invention mainly comprises the following parts:
  • a first container comprising a pressure system for bringing a specific area of the container or container to a specified pressure
  • second container located inside or outside the first container and containing a simple substance or compound, the second container comprising a second pressure system for bringing the second container to a specified pressure
  • heating or cooling devices respectively, for heating or cooling the temperature of materials, materials or/and compounds, containers or local areas, in order to make materials, elements or/and compounds, containers Or the local area reaches the specified temperature;
  • electrodes or cathodes and anodes in the first container devices to be produced with new materials or materials to be treated placed between the electrodes or electrodes; power sources for generating current and voltage, and voltage and current can be adjusted to supply two The electrodes are discharged to generate a gaseous gas.
  • the power source may be a DC, DC pulse, AC, microwave, RF, high frequency, etc. power source.
  • conventional PVD, CVD, sputtering, ion plating, etc. can be carried out in the apparatus of the present invention.
  • the mist gas may be a mist gas obtained by obtaining two or more simple substances and/or compounds multiple times at different times, that is, may be A (m) +AI 2 ( m) +AI 3 (m) +...etc., where Al ⁇ (m), AI 2 (m), AIs (ra), etc. represent haze gases of different compositions, respectively.
  • Fig. 1 is a schematic view showing an apparatus for carrying out the mist gas discharge method of the present invention. Detailed ways
  • an electrode is provided or a cathode and an anode are provided.
  • the device ( 5 ) is placed on or between the electrodes, in which a new material is formed, or the modified material C is placed therein.
  • heating or cooling device (6) temperature control by material temperature measurement and control system (7) (hereinafter referred to as material temperature system). Material C can be brought to and maintained at the specified temperature.
  • the compound temperature system In order to maintain the second container at the specified pressure, there is a pressure control system (26) consisting of a compression and suction device (25) self-controlled instrument and valve (hereinafter referred to as the compound pressure system).
  • a pressure control system consisting of a compression and suction device (25) self-controlled instrument and valve (hereinafter referred to as the compound pressure system).
  • a pressure control system (12) consisting of a pneumatic, compression, and air suction device (11) self-controlled instrument and valve (hereinafter referred to as the container pressure system), so that the entire container is reached and maintained at the designated pressure.
  • a pressure control system (12,) (hereinafter referred to as the regional pressure system) consisting of aeration, compression, and aspirator (11,) self-controlled instruments and valves to achieve and maintain a specified pressure in a certain area of the container.
  • heating or cooling device (8) inside or outside the first container, with heating or cooling device (8), temperature measurement and control by the system (9) (hereinafter referred to as the container temperature system) to achieve and maintain the container at the specified temperature;
  • the heating or cooling device (8,), temperature measurement and control by the system (9,) (hereinafter referred to as the zone temperature system) to achieve and maintain an area at the specified temperature.
  • the first container (1) has a gas inlet (10); a specified amount of gas can be supplied thereby, and can also be accessed when the elemental or / and compound A are placed outside the low pressure vessel.
  • a cathode (2), an anode (3), or two electrodes (2') (3,) are provided; and a power source (4) for generating current and voltage between the electrodes is provided.
  • the power supply is: DC, DC pulse, AC, microwave, RF, high frequency, etc.; Power system (4) Power supply and measurement and control of voltage and current.
  • the hazy gas AI (m) is obtained by a fog gas formation method.
  • the method is as follows: [1] For elemental and / or compound A, at temperature T. The saturated vapor pressure at that time is P. When the temperature is T. No change, the pressure inside the container is less than P. ; or P. No change, the temperature inside the container is greater than T. When A is in a gas state.
  • the pretreatment gas gradually reduces only the A gas in the first vessel or a very small amount of pretreatment gas remaining. Or retain some of the pretreatment gas as needed.
  • start the vessel temperature system (8) (9) to maintain the vessel temperature T at T.
  • the start zone pressure control system (11,) (12,) causes the pressure P in a certain area of the vessel to be greater than P. , part of the gaseous A is converted to micro-nano liquid A or solid A;
  • Nano-liquid A or solid A is suspended in gas A to form a foggy gas A
  • T T. , ⁇ > ⁇ .
  • the container pressure system (11) (12) is activated to maintain the container pressure P at P.
  • Part of the gaseous enthalpy is converted into a nanometer liquid enthalpy or solid enthalpy; the micro-nano liquid A or solid A is suspended in the gas A to form a foggy gas A (m);
  • micro-nano liquid A or solid A is suspended in the gas A to form a fogged gas A (ra);
  • the compound temperature system S) (24) is initiated to raise the temperature of the crucible beyond T. And gasification.
  • the temperature in the first container (1) is lower than ⁇ .
  • part of the gaseous A changes to the micro-nano liquid A or the solid A, which becomes the fog state A (m); the fog state A (m) gradually increases in the concentration of the closed container; , the pressure in the first container (1) increases.
  • H (g) occupies a certain proportion
  • the elemental or/and compound E is converted into a micro-nano solid or liquid by physical methods such as gas discharge sputtering, magnetron sputtering, and ion implantation. Or directly into the solid or liquid state of t nano.
  • the fog state C (m) is a reaction product, and may also be a reaction product and a composition of A or B remaining after the reaction.
  • the haze element or / and compound A (m) decompose to form a micro-nano solid or liquid M (s, 1), gas N (g).
  • the fog state D (m) is a reaction product, and may also be a reaction product and a remaining A (m) after the reaction.
  • the formed gaseous gas A (m) B (m) C (m) D (m) I (m) according to the above 1, 2, 3, 4, 5 formation conditions J (m) K (m) L (m) is collectively referred to as the foggy gas AI (m).
  • a misty gas composed of two or more simple substances and/or compounds is obtained multiple times at one time or at different times. That is, it may be composed of (m) + AI 2 (m) + AI 3 (m) + ... and the like.
  • the characteristics of the foggy gas AI (m) are: due to the suspension of micro-nano solids and liquids in the gaseous state; the low-transparency of the atomic gas AI (m); the appearance of the glow and the gas discharge under the same voltage, current, pressure and temperature conditions different.
  • mist state gas AI the power supply system (4) is activated, a voltage is generated between the electrodes or between the anode and the cathode, and a gas is generated between the electrodes under the action of the electric field. Discharge.
  • the fog gas discharge is not limited to a single fog discharge, but multiple fog discharges, such as:
  • a ( m ) discharge + J ( m ) discharge + D ( m ) discharge + atomic gas discharge and normal gas discharge, PVD, CVD, sputtering, etc., can be alternated with the method of the present invention.
  • a variety of fog discharges and multiple ordinary gas discharges are performed multiple times, such as:
  • Material C is a simple substance or compound, including but not limited to metals and their alloys, ceramics, glass, fiberglass, graphite, diamond, carbon fiber, polyethylene, polyvinyl chloride, polytetrafluoroethylene, etc., rubber, cotton, hemp, Natural fibers such as wool, silk, and wood; synthetic fibers such as viscose fiber and protein fiber, synthetic fibers such as spandex, polyester, aramid, and nylon, and coatings, coatings, layers, and composite layers of the above materials.
  • the advantage of the present invention is that the concentration of A in a unit volume of the mist gas is much higher than that per unit volume in the closed container due to the presence of the atomic gas AI (in).
  • the atomic gas AI (m) is composed of a variety of substances, and the range of elements and compounds is wider.
  • mist gas discharge can be performed at a lower temperature or higher than the conventional gas discharge.
  • a specific device (5) is placed on the cathode, wherein the mold steel HI 3 to be modified is placed on the inner surface of the first container (1).
  • the heating or cooling device (6) is temperature controlled by the material temperature measurement and control system (7) (hereinafter referred to as the material temperature system), so that the material C: die steel HI 3 is reached and maintained at the specified temperature 1 ⁇ .
  • the solid compound A1C1 3 is placed in the second container (22) inside or outside the first container (1).
  • the heating or cooling device (23) power and temperature measurement control is carried out by the compound system (24) (hereinafter referred to as the compound temperature system).
  • the container pressure system consisting of a gas-filling device (11), a self-controlled instrument and a valve (hereinafter referred to as the container pressure system), so that the entire container reaches and maintains the specified pressure.
  • a pressure control system consisting of aeration and suction device (11,) self-control instrument and valve.
  • System (12,) (hereinafter referred to as the regional pressure system), so that a certain area of the container reaches and maintains the specified pressure.
  • a heating or cooling device (8) is provided, and the temperature measurement and control is carried out by the system (9) (hereinafter referred to as the container temperature system) to maintain and maintain the container at the specified temperature.
  • the first container (1) has a gas inlet (10); the specified gas is allowed to enter thereby.
  • the cathode (2) and the anode (3) are arranged, and between the cathode and the anode, a 0-1500V adjustable DC or pulsed high voltage is supplied by the high voltage power supply system (4), and the voltage is applied. , current measurement and control.
  • A1C1 3 fogged gas AI (m) is obtained by the method of forming a mist gas, as follows:
  • Compound start temperature control system (23) (24) so that the second container is placed ⁇ 2) in an A: A1C1 3 up to the temperature of 120 ° C than T. Since the outlet of the container (22) is the same as the first container (1), the pressure has reached 133 Pa, which is equal to P. , A: A1C1 3 gasification Load a container (1). At this point, the pressure in the container increases.
  • ⁇ l 7 P Po, T ⁇ T 0 , A (g) A (s, 1) + A (g) ⁇ A (m).
  • the compound temperature control system ( 23 ) ( 24 ) is activated so that the temperature of the A1C1 3 placed in the second vessel (22) exceeds 120 ° C.
  • the voltage is 350 ⁇ 1 500 volts, which is adjusted according to the requirements of the layer of the mold steel. Under the action of the electric field, a fog spark and an arc discharge are generated between the electrodes, after several minutes to several tens of minutes. .
  • the surface of the mold steel (5) forms Fe, Al solid solution Fe 2 Al 5 , Fe 3 A FeAK FeAl 2 , FeAl 3 and the like.
  • various steels and various metals such as Ni, Cr, Ti, Cu, Mo, Nb, W, and Mg and alloys thereof are placed on the cathode, and various alloys and compound layers of Al are formed on the surface.
  • Example 2 Formation of a nitride layer on the surface of a metal material by discharge of a mist of ammonium chloride gas
  • Mist gas A (m): NH 4 C1 T.
  • Saturated vapor pressure P at 162 °C. 133Pa
  • Modified material C 35CrMo nitrided steel.
  • the equipment used was the same as in the first embodiment.
  • the solid compound NH 4 C1 is contained in the second container ( 22 ) and placed inside or outside the first container (1).
  • the vessel pressure control system (11) is activated (12) to maintain the pressure of the first vessel at 133 Pa; the inert gas is gradually reduced by a certain ratio, for example, 40%.
  • the start zone temperature system (8,) (9,) causes the temperature in the vicinity of the material C near the material C in the container or the temperature of the first container casing to be less than T. It is 120 °C.
  • the voltage is 3 5 0 ⁇ 1 500 volts, which is adjusted with the seepage requirements of the 3 5 CrMo steel. Under the action of the electric field, a foggy spark and an arc discharge are generated between the electrodes. After several minutes. To tens of minutes.
  • Fe 4 N, Fe 2 N, isotonic layer More than nitriding, the thickness is increased by more than 20%.
  • a metal such as Cu, Al, Mg, W, Mo, or an alloy thereof, forms a compound layer of nitrogen on the surface.
  • Example 3 Formation of a sulfurized layer or a composite layer of a bowl and a sulfide on a metal surface by a misty sulfur gas discharge.
  • the equipment used was the same as in the first embodiment.
  • the compound temperature system (23) ( 24 ) is activated to place A in the second vessel (22): elemental sulfur At a temperature above 190 ° C, A is vaporized into the vessel.
  • the temperature of the first container (1) is lower than T. After the gas sulfur enters the first container (1), the portion becomes a micro-nano liquid, solid, that is, the atomic sulfur A (m), and the concentration of the atomic sulfur in the closed container gradually increases; at this time, the first container (1) The medium pressure increases.
  • the vessel pressure control system (11) is started (12) to maintain the vessel pressure at 13.3 Pa; the gas NH 3 is gradually reduced; and the atomic sulfur AI (m) is increased in the low pressure vessel.
  • micro-nano (or generated by sputtering, etc.) molybdenum is introduced into the first container S 2 .
  • +Mo ⁇ Mo S 2 or directly into Mo S 2 forms a fog state J (m).
  • the equipment used was the same as in the first embodiment.
  • Liquid compound A Liquid acrylic acid is placed outside the first container (1).
  • the compound temperature system (23) ( 24 ) is activated so that the temperature of A:acrylic acid placed in the second vessel ( 22 ) exceeds 40 °C, and A is vaporized into the vessel.
  • the concentration of gaseous acrylic acid in the first vessel is gradually increased; at this time, the pressure in the first vessel is increased.
  • the vessel pressure control system (11) is activated (12) to maintain the first vessel pressure at 600 Pa; the air gradually decreases and approaches zero; the first vessel (1) contains only acrylic acid.
  • Start zone temperature system (8,) (9,) causes the temperature in the first vessel (near material C) to be less than 15 °C.
  • a synthetic fiber, a natural fiber, a glass and a fiber product, a carbon fiber and a product, a polymer such as polyvinyl chloride or polytetrafluoroethylene are placed between the cathode and the anode, and a double bond or a triple bond is used.
  • An unsaturated organic acid or an organic compound is subjected to surface modification as a mist gas discharge reaction product. The hygroscopicity of the surface of the modified synthetic fiber, high polymer, glass fiber, carbon fiber, etc. is remarkably improved.
  • the power source (4) in this embodiment may also be a radio frequency, microwave, alternating current, high frequency power source.
  • Example 5 Surface modification of plastic and rubber by atomic sulfur gas discharge
  • the equipment used was the same as in the first embodiment.
  • the vessel pressure control system (HX 12) is started to bring the pressure of the first vessel to 1.3 Pa.
  • the raising and lowering temperature and temperature control system (23) (24) are placed in the second container (22).
  • the surface-modified polyvinyl chloride resistance increases remarkably.
  • the body resistivity increases from 1 X 10" ohm ⁇ cm to 4 1Q 14 ohm.cm at 20 °C, and the toughness increases. .
  • the power source (4) in this embodiment may also be a radio frequency, microwave, alternating current, high frequency power source.
  • Example 6 Vapor gas discharge makes silk have antibacterial properties
  • the equipment used was the same as in the first embodiment.
  • the starting system (8) (9) maintains the temperature T of the first vessel (1) at 20 °C.
  • the compound temperature system ( 2 3 ) ( 2 4 ) allows the temperature of the A: element in the second vessel ( 22 ) to exceed 60 ° C, and the pressure of the vessel has reached 1.3 Pa.
  • Solid iodine gasification into the container, due to the temperature of the first container (1) is lower than! 1 .
  • the iodine gas enters the first container (1), it becomes a fog state A (m), and the concentration of the fog iodine gradually increases in the first container; at this time, the pressure in the first container (1) increases.
  • the voltage is 350 ⁇ 1500 volts, which is adjusted according to the process requirements. Under the action of the electric field, a fog spark and an arc discharge are generated between the electrodes, and it takes several minutes to several tens of minutes.
  • the surface-modified silk fiber product has a significant inhibition of Staphylococcus and Escherichia coli.
  • the power source (4) in this embodiment may also be a radio frequency, microwave, alternating current, high frequency power source.
  • Example 7 Vapor gas discharge forms a titanium layer on the surface of a metal material
  • the equipment used was the same as in the first embodiment.
  • the zone temperature system (8,) (9,) is activated such that the temperature in the first vessel (e.g., near the vessel casing) is less than T. Such as 400 ° C.
  • Part of the gaseous A: TiCl 3 is converted into a liquid or solid state, suspended in the gas A to form a fogged gas A (m); or the rising, cooling and temperature control system (8) (9) makes the first vessel temperature less than T.
  • TiCl 4 can also be used as the reaction compound, under high temperature gas discharge
  • 3TiCl 4 +Fe ⁇ 3TiCl 3 +FeCl 3 forms a surface of high-speed steel (5) under the physical and chemical action of gas discharge in a fog state Fe 2 Ti, FeTi, TiC isotonic layer, using the same method and different processes as described above, placing various steels and metals such as Ni, Cu, Mo, Nb, Al, Co and their alloys on the cathode, and forming titanium on the surface Solid solution and compound infiltration layer.
  • Mist gas A (m): A1C1 3 is at T. 96.7 ° C, saturated vapor pressure P. -133Pa Modified Material C: Die Steel HI 3
  • the starting compound temperature system (23) (24) makes the A: A1C1 3 in the second vessel (2 2 ) When the temperature exceeds 100 ° C, A is vaporized into the container.
  • the concentration of gaseous compound A1C1 3 in the closed container gradually increases; at this time, it is sealed
  • the pressure in the vessel is increased, the vessel pressure control system (11) is activated (I 2 ) to maintain the pressure of the first vessel at 133 Pa; the inert gas is gradually reduced, the gas Ar is gradually reduced and is close to zero; only the first vessel (1) is A1C1 3 gases.
  • the zone temperature system (8,) (9,) is activated so that the temperature T in the container near the first vessel casing is 80 ° C less than T. .
  • Part of gaseous A ALC1 3 is converted to liquid or solid, suspended in gas A to form a misty gas A(m); or the vessel temperature system (8) is activated (9) to make the first vessel temperature less than T Q to form a foggy gas.
  • the voltage is 350 ⁇ 1500 volts, which is adjusted with the requirements of the layer of the mold steel. Under the action of the electric field, a fog spark and an arc discharge are generated between the electrodes, after several minutes to several tens of minutes.
  • Fe 4 N, Fe 2 N, etc. are formed on the surface of the die steel ( 5 ), which is more than 50% thicker than the general ion nitriding.
  • Example 9 Vapor gas discharge forms carbon and nitrogen infiltration on the metal surface
  • Mist gas A (m) NH4CI, T.
  • Saturated vapor pressure P at -162 °C. 133Pa modified material C: 35CrMo steel
  • the concentration of the gaseous compound NH 4 C1 in the first vessel is gradually increased; at this time, the pressure in the first vessel is increased, the starting material pressure control system (11) (12) maintains the vessel pressure at 133 Pa; the gas N 2 is gradually decreased, a gaseous NH 4 C1 in a vessel (1) N 2 .
  • the zone temperature system (8,) (9,) is activated so that the vicinity of the first vessel casing is below the critical temperature of 150 °C.
  • Part of the gaseous A: NH 4 C1 is converted to a liquid or solid state, suspended in the gas A to form a fogged gas A (m); or the vessel temperature system (8) is activated (9) to make the first vessel temperature less than T Q to form a fog state.
  • Gas A (m) is activated so that the vicinity of the first vessel casing is below the critical temperature of 150 °C.
  • Compound temperature system (22) (23) and compound pressure system (24) (25) maintain the specified amount of compound NH1 in the first vessel.
  • the surface of the 35CrMo steel (5) forms a nitrogen-carbon layer.
  • Example 2 The same as the apparatus used in Example 1. A) Place the material to be modified, W18Cr 4 V steel, in a specific device (5) on the cathode.
  • the vessel pressure control system (11) (12) is started to bring the pressure of the first vessel to 1.3 Pa.
  • start compound temperature system (23) Let A: solid state NH 4 C1 in the second vessel (22) exceed 190 ° C, A gasification into the first vessel, gaseous compound NH 4 C1 in the airtight The concentration of the container gradually increases; at this time, the pressure in the closed container increases.
  • the start zone temperature system (8,) (9,) causes the temperature in the vicinity of the material C or the container casing in the first container to be less than T. It is 120 °C.
  • Part of the gaseous A NH 4 C1 is converted into a micro-nano liquid or solid, suspended in gas A to form a fogged gas A (m); or the rising, cooling and temperature control system (8) (9) makes the vessel temperature less than T .
  • a misty gas A(m) is formed.
  • H) a compound of the temperature system (22) (23) and the pressure system compound (24) (25) reacting a compound of NH 4 C1 first container holding a specified number.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Textile Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Chemical Vapour Deposition (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

雾态气体的制备及通过雾态气休 放电形成新材料的方法及设备 技术领域
本发明涉及通过气体放电形成新材料的方法, 更具体地, 本 发明涉及雾态气体的制备及通过雾态气体放电形成新材料的方法 和雾态气体产生设备及电源设备。 背景技术
早在 1835年 Faraday就发现了低气压下气体放电现象、历经 百余年, 气体放电的应用极为广泛, 已用于电光源、 激光、 金属 材料及高分子材料改性、 半导体、 集成电路 ... ...。 上述的气体放 电都是单纯的气体放电, 仅以材料工业为例: 如等离子渗氮采用 氮、氢气体《张国庆等 0Crl7Nil2Mo2奥氏体不锈钢低温等离子渗 氮研究 [ J ] 金属热处理. 2008. 33 ( 8 ) 138 ~ 141》。 离子镀技术 用的是氩气《张钧 赵彦辉 多弧离子镀技术与应用 [ M ] 北京冶 金工业出版社 2007》。 等离子体织物改性用空气、 氧、 氮、 含氟 气体等 《中国专利公开号 CN1318664. A》 。 放电介质都是气体, 而本发明与单一气体比较, 雾态气体 AI ( m ) 由多种物质形态组 成,单质和 /或化合物选择范围更宽的雾态气体进行气体放电—— 雾态气体放电。 应用此雾态气体放电来形成新材料。 发明内容
第一方面, 本发明提供了一种雾态气体的产生方法。
第二方面, 本发明提供了一种通过雾态气体放电形成新材料 的方法。 另一方面, 本发明提供了雾态气体产生设备及电源设备等, 即通过雾态气体放电形成新材料的设备。
本发明的放电是在一定的温度、 压力条件下, 在含有微纳固 体、 液体的雾态气体中, 以雾态气体放电形式, 在自行设计的设 备中形成新的材料。
第一方面, 本发明提供了一种产生雾态气体的方法。 该方法 包括步骤:
1 )提供第一容器, 容器或容器局部某特定区域的压力和温度 是可设定的。
2 )在第二容器中提供固态、 液态的单质或 /和化合物, 所述 第二容器位于笫一容器之内或之外。
3 ) 改变第二容器中的温度或 /和压力, 使位于第二容器中的 固态、 液态的单质或 /和化合物进入第一容器产生雾态气体, 该 雾态气体弥散在第一容器或第一容器局部。
笫二方面, 本发明提供了一种通过雾态气体放电形成新材料 的方法。 该方法包括步骤:
1 )提供有待在其中形成新材料的装置或有待改性的材料,将 其放入第一容器中,
2 )通入预处理气体, 并产生火花或弧光放电, 随后转为辉光 放电, 利用辉光放电对所述装置或材料进行预处理;
3 )加热或冷却在第一容器中的装置或有待改性的材料, 达到 并保持在指定的温度;
4 )按第一方面所述方法产生单质或 /和化合物的雾态气体;
5 )启动电源设备,在第一容器中的两电极间产生雾态气体放 电, 在第一容器的指定压力下: 如 1. 3Pa ~ 50 Pa , 在特定装置中 形成新材科或对材料进行雾态气体放电改性。
在本发明的优选实施方案中, 加热或冷却在第一容器中的装 置或有待改性的材料, 达到并保持在 - 210°C ~ 1400°C。
在本发明的优选实施方案中, 所述雾态气体放电不限于单一 的雾态气体放电, 而是多种雾态气体放电多次进行 , 如:
A ( m )放电 + J ( m )放电 + D ( m )放电 +
其中 A (m)、 J (m)、 D (m)分别表示不同的雾态气体。 在本发明的优选实施方案中, 可以使通常的气体放电、 PVD、 CVD、 溅射等与本发明的雾态气体放电方法交替进行。 如: 普通气 体放电等 + J (m)放电等。 在本发明的可选实施方案中, 多种雾态气体放电与多种普通 气体放电多次进行, 如:
A (m)放电 +普通气体放电等 + J (m)放电 + D (m) 放电 +另一种普通气体放电等 +……,
其中 A (m)、 J (m) 、 D (m)分别表示不同的雾态气体。 在本发明的实施方案中, 所述待改性材料是单质、 化合物, 并且包括但不限于金属及其合金、 陶瓷、 玻璃、 玻璃纤维、 石墨、 金刚石、 碳纤维、 聚乙烯、 聚氯乙烯、 聚四氟乙烯等聚合物; 棉、 麻、 毛、 丝、 木材等天然纤维; 粘胶纤维、 蛋百质纤维等人造纤 维; 氨纶、 涤纶、 芳纶、 尼龙等合成纤维; 以及上述材料的镀层、 涂层、 渗层、 复合层等。 用于实施本发明的雾态气体放电方法的设备主要包括下列部 分:
1)第一容器, 该容器包含使容器或容器局部某特定区域达到 指定压力的压力系统; 2)第二容器,该笫二容器位于第一容器之内或之外并且装有 单质或化合物, 该第二容器包含使该第二容器达到指定压力的第 二压力系统;
3)—个或多个加热或冷却装置, 这些加热、 冷却装置分别用 于加热或冷却材料、单廣或 /和化合物、容器或局部区域的温度, 以便使材料、单质或 /和化合物、容器或局部区域达到指定温度;
4)在第一容器内的电极或阴极和阳极,有待产生新材料的装 置或有待处理的材料放在两电极间或电极上; 产生电流和电压的 电源, 并可以对电压电流进行调节, 供给两电极以产生雾态气体 放电。
在本发明的优选实施方案中, 所述电源可以为直流、 直流脉 冲、 交流、 微波、 射频、 高频等电源。
在本发明的一个优选实施方案中, 通常的 PVD、 CVD、 溅射、 离子镀等可以在本发明的设备中进行。
在本发明的另一个优选实施方案中, 雾态气体可以是不同时 间多次得到两种或两种以上的单质和 /或化合物组成的雾态气体, 即可以是 A (m) +AI2 (m) +AI3 (m) +…等组成, 其中 Al^ (m) 、 AI2 (m) 、 AIs (ra) 等分别表示不同组成的雾态气体。
附图说明
图 1示出了用于实施本发明的雾态气体放电方法的设备的原 理图。 具体实施方式
本发明的雾态气体放电方法详述如下。
A) 第一容器(1) 中, 设有电极或设有阴极和阳极。 有特定 装置(5)放在电极上或电极之间, 其内形成新材料、 或被改性的 材料 C放在其中。 有加热或冷却装置(6), 温度控制由材料温度 测量和控制系统 ( 7) (以下简称材料温度系统) 。 可使材料 C 达到并保持在指定温度。
B) 固态、 液态的单质或 /和化合物 A: 装在第二容器 (22) 中, 放在第一容器(1)内部或外面。 当两容器导通时, 容器(22) 出口处的压力与第一容器(1)相同。 为了使 A达到并保持在指定 温度, 由加热或冷却装置(23)温度测量控制由化合物系统(24)
(以下简称化合物温度系统)承担; 为了使第二容器保持在指定 压力, 有压缩、 抽气装置 (25) 自控仪器及阀组成的压力控制系 统 (26) (以下简称化合物压力系统) 。
C) 第一容器 (1) 中, 有充气、 压缩、 抽气装置 (11) 自控 仪器及阀组成的压力控制系统(12) (以下筒称容器压力系统) , 使整个容器达到并保持在指定压力。
并有充气、 压缩、 抽气装置(11,) 自控仪器及阀组成的压力 控制系统(12,) (以下简称区域压力系统) , 使容器某区域达到 并保持在指定压力。
D) 第一容器内或外, 设置加热或冷却装置 (8) , 温度测量 和控制由系统( 9 ) (以下简称容器温度系统)使容器达到并保持 在指定温度;
并设置加热或冷却装置(8,) , 温度测量和控制由系统(9,) (以下简称区域温度系统)使某区域达到并保持在指定温度。
E) 第一容器 (1)有气体入口 (10) ; 可供指定数量的气体 由此进入, 当单质或 /和化合物 A放在低压容器外时, 也可由此 进入。
F)启动抽气装置 (11)压力控制系统 (12) , 使密闭容器中 成为负压。 当密闭容器达到中达到最低压力; 启动充气系统 (11) , 经 过气体入口 (10)通入预处理气体。
G)第一容器(1) 中, 设置阴极(2) 、 阳极(3) , 或两电极 (2') ( 3,) ; 电极间有产生电流、 电压的电源 (4) 。 电源是: 直流、 直流脉冲、 交流、 微波、 射频、 高频等任一方式; 电源系 统 (4)供电并对电压、 电流进行测量与控制。
H)启动材料温度系统 (6) (7)使特定装置或被改性材料 C 达到并保持在某个一定温度。
I)启动电源系统(4) , 电极间产生辉光放电, 在容器指定压 力下: 如 1.3Pa~50Pa, 对特定装置或被改性材料 C表面进行预 处理。
J)启动材料温度系统(6) (7) , 及辉光放电的热效应使特 定装置或被改性材料 C温度不断上升,依工艺要求升至指定温度。
K)采用雾态气体形成方法得到雾态气体 AI (m) 。 方法如下: [ 1] 对单质和 /或化合物 A, 在温度 T。时的饱和蒸气压为 P。; 当温度 T。不变, 容器内压力小于 P。; 或 P。不变, 容器内温度 大于 T。时, A均为气体状态。
启动容器温度系统 (8) (9)使第一容器温度 T保持在 T。, 启动容器压力系 ( 11 ) (12)使第一容器的压力 Ρ保持在 Ρ0
启动装置 (23) 电源及温度测量控制化合物系统 (24)使放 在第二容器 (22) 中的单质或 /和化合物 A, Α的温度超过 Τ。, 由于第一容器(1) 与容器(22) 出口处相同, 保持在 P。, A气化 进入容器。 此时, 第一容器中压力增大, 压力系统使密闭容器压 力保持在指定压力。 预处理气体逐渐减少第一容器中只有 A气体 或残留极少量预处理气体。 或按需要存留部分预处理气体。
(a)在第一容器内, 启动容器温度系统(8) (9)使容器温 度 T保持在 T。启动容器压力控制系统(11) (12)使容器的压力 P大于 P。, 部分气态 A转变为微纳米的液态 A或固态 A;
微纳米液态 A或固态 A悬浮在气体 A中,形成雾态气体 A( m ); 即 T = T。, Ρ > Ρ。时, A ( g) → A ( s、 1 ) + A ( g) → A (m) 。
(b)在第一容器内, 启动容器温度系统(8) ( 9 )使容器温 度 T保持在 T。启动区域压力控制系统 (11,) (12,)使容器某区 域的压力 P大于 P。,部分气态 A转变为微纳米的液态 A或固态 A;
纳米的液态 A或固态 A悬浮在气体 A中, 形成雾态气体 A
(m) ;
即 T = T。, Ρ > Ρ。时, A ( g) → A ( s、 1 ) + A ( g) → A (m) 。
(c)在第一容器内, 启动容器压力系统(11 ) ( 12)使容器 压力 P保持在 P。, 启动容器温度系统 (8 ) ( 9 )使容器内温度 T 小于 T。, 部分气态 Α转变为 纳米的液态 Α或固态 Α; 微纳米的 液态 A或固态 A悬浮在气体 A中, 形成雾态气体 A (m) ;
即 P = P。, T < Τ。时, A ( g) → A ( s、 1 ) + A ( g) → A (m) 。
(d)在笫一容器内, 启动容器压力控制系统(11 ) ( 12)使 容器压力 P保持在 P。, 启动区域温度系统 (8,) (9,) 或由于散 热快, 如靠近炉壁处形成低温区域, 使容器内某区域温度 T小于 To, 部分气态 A转变为微纳米的液态 A或固态 A;
微纳米的液态 A或固态 A悬浮在气体 A中, 形成雾态气体 A (ra) ;
即 P = Ρβ, Τ < Τ。时, A ( g) → A ( s、 1 ) + A ( g) → A (ffl) 。 当容器中存在不与 A起化学反应的气体 H时, 形成雾态气体 I (m) ;
即 A (m) + H (g) →I (m) ;
[2 ]设第一容器(1) 中有预处理气体或气体 H (g) , 温度 低于 T。,
在第二容 (22) 中, 启动化合物温度系统 S) (24)使 Α的温度升高, 超过 T。 而气化。
但第一容器(1) 中的温度低于 Τ。, Α气体进入第一容器(1) 后,部分气态 A转变为微纳米液态 A或固态 A, 即成为雾态 A(m); 雾态 A (m)在密闭容器的浓度逐渐增加; 此时, 第一容器 (1) 中压力增大。
启动容器压力系统 (11) (12)使容器压力保持在某设定压 力 P; 气体 H (g) 逐渐减少, 在 A的饱和蒸气压是够大时接近为 零; 第一容器 (1) 中只有雾态 A (m) 。
一般说 H (g) 占有一定比例
即在容器中 A (m) + H (g) →I (m) 。
[ 3]在第一容器中有雾态 A (m) , 通过气体放电溅射、 磁 控溅射、 离子注入等物理方法, 将单质或 /和化合物 E转变为微 纳米的固态或液态。 或直接通入 t纳米的固态或液态。
E (s、 1) 悬浮在 A (m) 中, 形成雾态气体 F (ra)
即 A (m) +E ( s、 1 ) → F (m) ;
当容器中存在不与 A起化学反应的气体 H时, 形成雾态气体 J (m) ;
即 F (m) + H (g) →J (m) 。
[4〗在第一容器中, 有雾态的单质或 /和化合物 A (m)或 A (g) 、 雾态的单质或 /和化合物 B (m) 或 B (g) 。 人与 B产生 化学反应, 形成微納米固态或液态 M (s、 1) , 气体 N (g) 。
即 A (m) + B (m) → M ( s, 1 ) +N (g) →C (m) A (ffl) + B (g) → M (s, 1) +N (g) →C (ra) A (g) + B (m) → M (s, 1) +N (g) →C (m)
雾态 C (m)是反应产物, 也可以是反应产物与反应后剩余的 A 或 B组成。
当容器中存在不与 A、 B起化学反应的气体 H时,形成雾态气 体 K (m) ;
即 C ( m ) +H ( g ) → K ( m ) 。
[5〗在第一容器中, 雾态的单质或 /和化合物 A (m)分解, 形成微纳米固态或液态 M (s、 1) , 气体 N (g) 。
即 A (m) →M (s、 1) +N (g) →D (m)
雾态 D (m)是反应产物, 也可以是反应产物与反应后剩余的 A (m) 组成。
当容器中存在不与 A起化学反应的气体 H时, 形成雾态气体 L (m) ;
即 D (m) + H (g) →L (m) 。
[ 6]在第一容器中, 按上述 1、 2、 3、 4、 5、 形成条件, 所 形成的雾态气体 A (m) B (m) C (m) D (m) I (m) J (m) K (m) L (m) 统称为雾态气体 AI (m) 。 是一次或不同时间多次得到两 种或两种以上的单质和 /或化合物组成的雾态气体。 即可以是 (m) +AI2 (m) +AI3 (m) +…等组成。
雾态气体 AI (m)的特征是: 由于气态中悬浮微纳米固、 液 体; 雾态气体 AI (m)透明度低; 相同电压、 电流、 气压、 温度 条件下, 辉光的形貌与气体放电不同。
L)启动化合物温度系统( 22 ) ( 23 )及化合物压力系统(24) ( 25 M吏第一容器中的单质或 /和化合物按工艺达到指定的数量。
M)在以上产生的雾态气体 AI (m) 中, 启动电源系统 (4) , 两电极间或阴阳极间产生电压, 在电场作用下, 电极间产生气体 放电。
N)启动(6) (7) (8) (9) (11) (12)调节压力、 温度、 并启动电源系统(4)的两极间电压、 电流, 在雾态气体放电产生 的热效应下, 特定装置(5)或被改性材料 C温度不断上升, 依工 艺要求升至指定温度,雾态放电保持一定时间(依工艺要求而定)。 在雾态气体放电的物理化学作用下得到新材料。 或被改性材 料 C得到不同的物理化学性能, 成为新的材料。
雾态气体放电不限于单一的雾态放电, 而是多种雾态放电多 次进行 , 如:
A ( m )放电 + J ( m )放电 + D ( m )放电 + 雾态气体放电和通常的气体放电、 PVD、 CVD、 溅射等、 能够 与本发明的方法交替进行。 如: 普通气体放电等 + J (m)放电。
多种雾态放电与多种普通气体放电多次进行, 如:
A (m)放电 +普通气体放电等 + J (m)放电 + D (m) 放电 +另一种普通气体放电等 +……
通常的 PVD、 CVD、 溅射、 离子鍍、 等能在本发明的设备中进 行。
材料 C是单质或化合物, 包括但不限于金属及其合金、 陶瓷、 玻璃、 玻璃纤维、 石墨、 金刚石、 碳纤维、 聚乙烯、 聚氯乙烯、 聚四氟乙烯等聚合物、 橡胶、 棉、 麻、 毛、 丝、 木材等天然纤维; 粘胶纤维、 蛋白质纤维等人造纤维、 氨纶、 涤纶、 芳纶、 尼龙等 合成纤维, 以及上述材料的镀层、 涂层、 渗层、 复合层等。 本发明的优点在于由于雾态气体 AI (in) 的存在, 在密闭容 器中, 单位体积的雾态气体中 A的浓度, 远远高于单位体积的气 体中 A的浓度; 在一些特定条件下物理化学反应更容易进行, 能 形成新的材料并有更高的效率。
与单一气体比较, 雾态气体 AI (m) 由多种物质形态组成, 单质及化合物选择范围更宽,
又由于雾态形成时, P不变 Τ<Τ。, Τ不变 Ρ>Ρ。, 雾态气体放 电与常规气体放电比较, 可以在更低温度或更高压力下进行。 实施例:
下面通过具体的实施例对本发明进行详细说明, 这些实施例 仅在于举例说明而并不意图限制本发明的范围。 实施例 1. 通过雾态氯化铝气体放电在金属材料表面形成渗铝层 雾态气体 A (m) : A1C13 , 在 T。=96.7°C下, 饱和蒸气压 P。=133Pa 改性材料 C: 模具钢 HI 3
A) 第一容器 (1) 中, 将特定装置 (5)放在在阴极上, 其 中待改性材料模具钢 HI 3放在第一容器( 1 )内面。 加热或冷却装 置 (6) , 由材料温度测量和控制系统(7) (以下简称材料温度 系统)进行温度控制, 可使材料 C: 模具钢 HI 3达到并保持在指 定温度 1\。
B) 固态化合物 A1C13装在第二容器(22)中放在第一容器(1) 内部或外面。 为了使 A1C13达到并保持在指定温度 T4, 由加热或 冷却装置 (23) 电源及温度测量控制由化合物系统 (24) (以下 简称化合物温度系统)承担。
0 笫一容器 (1) 中, 有充气、 抽气装置 (11) 自控仪器及 阀组成的压力控制系统 (12) (以下筒称容器压力系统) , 使整 个容器达到并保持在指定压力。
并有充气、 抽气装置(11,) 自控仪器及阀组成的压力控制系 统(12,) (以下简称区域压力系统) , 使容器某区域达到并保持 在指定压力。
D) 在第一容器内或外, 设置加热或冷却装置 (8) , 温度测 量和控制由系统(9) (以下简称容器温度系统)使容器达到并保 持在指定温度。
并在某区域设置加热或冷却装置 (8,) , 温度测量和控制由 系统 (9,) (以下简称区域温度系统)使某区域达到并保持在指 定温度。
E) 第一容器(1)有气体入口 (10) ; 可供指定的气体由此 进入。
F) 启动抽气装置(11)压力控制系统(12) , 使密闭容器中 成为负压。
当密闭容器达到中达到 1.3Pa; 启动容器压力控制系统(11) ( 12) , 经过气体入口 ( 10 )通入预处理 Ar。
G) 第一容器 (1) 中, 设置阴极(2) 、 阳极( 3) , 阴极与 阳极之间由高压电源系统( 4 )提供 0-1500V可调节的直流或脉冲 高压电, 并对电压、 电流进行测量与控制。
H) 启动电源系统 (4) , 电极间产生辉光放电, 在容器指定 压力下: 如 1.3 Pa~ 50 Pa, 对被改性材料 C: 模具钢 H13表面 进行预处理。
I) 启动容器压力控制系统 (11) (12)使容器达到 133Pa。 J) 采用雾态气体形成方法得到 A1C13雾态气体 AI (m),方法 如下:
启动容器温度系统(8) (9)使第一容器温度达 100°C。
启动化合物温控系统 (23 ) ( 24 )使放在第二容器 Π2) 中 的 A: A1C13的温度达 120°C超过 T。, 由于容器(22) 出口处与第 一容器 (1)相同, 其压力已达到 133Pa, 等于 P。, A: A1C13气化 迸入笫一容器 (1) 。 此时, 容器中压力增大。
启动容器压力控制系统 (11) (12)使密闭容器压力保持在 133Pa。 预处理气体逐渐减少并接近为零; 第一容器中只有 A1C13 气体。
(a) 启动容器温度系统(8,) (9,)使第一容器内材料 C附 近或第一容器外壳温度达 80°C小于 T。,部分气态 Α转变为微纳米 液态 A或固态 A。 悬浮在气体 A中, 形成雾态气体 A (m)
^l7 P = Po, T<T0时, A (g) A (s、 1) +A (g) → A (m) 。
(b) 或当第一容器温度维持 100°C, 启动化合物温控系统 ( 23 ) ( 24 )使放在第二容器(22) 中 A1C13的温度达 120°C超过
T„, 由于容器(22) 出口处与第一容器(1)相同, 其压力已达到 133Pa, 等于 Po, MC13气化进入第一容器(1)。 容器中压力增大, 此时启动容器的气体入口处(10,)的区域压力系统(11,) (12,) 及化合物压力系统 ( 24 ) ( 25 ) , 使该区域的压力为 150Pa, 大 于 P。 部分气态 A转变为微纳米液态 A或固态 A。 悬浮在气体 A 中, 形成雾态气体 A (m) ;
即 T - T。, Ρ < Ρ。时, A (g) → A (s、 1 ) + A ( g) → A (m) 。
K) 化合物温度系统( 22 ) ( 23 )、化合物压力系统( 24 ) ( 25 ) 及容器温度系统 ) (9) 、 容器压力系统 (11) (12) , 使第 一容器中的化合物 A1C13按工艺保持一定数量。
L) 启动高压电源系统(4) , 电压 350 ~ 1500伏, 随模具钢 的渗层要求来调节, 在电场作用下, 电极间产生雾态火花、 弧光 放电, 经过数分钟至数十分钟。
M) 启动(6) (7) (8) (9) (11) (12)调节压力、 温度、 并启动电源系统( 4 )的两极间电压、 电流, 雾态火花、 弧光放电 转为雾态辉光放电, 在辉光放电的热效应下, 模具钢 C温度不断 上升, 依模具钢渗层的要求升至指定温度 Tl, 如为 550°C。 N) 在雾态放电的作用下, 雾态 A1C13在 550°C模具钢附近分 解: 2A1C13→2A1+3C12 成为雾态 D (m) , 雾态放电保持 2小 时 (依钢渗层的要求而定) 。
在雾态气体放电的物理化学作用下, 模具钢(5)表面形成 F e、 Al固溶体 Fe2Al5、 Fe3A FeAK FeAl2、 FeAl3等。 用上述相同的方法,在阴极上放置各种钢铁以及 Ni、 Cr、 Ti、 Cu、 Mo、 Nb、 W、 Mg等各种金属及其合金, 表面形成 Al的多种合 金、 化合物层。 实施例 2. 通过雾态氯化铵气体放电在金属材料表面形成氮化物 渗层
雾态气体 A (m) : NH4C1 T。=162°C下, 饱和蒸气压 P。=133Pa 改性材料 C: 35CrMo氮化钢。
所用设备与实施例 1相同。
A) 将待改性材料 35CrMo氮化钢放在阴极上的特定装置 (5) 中。
B) 固体化合物 NH4C1装在第二容器( 22 ) 中, 放在第一容器 (1) 内部或外面。
C) 启动容器压力控制系统(11) (12) , 使第一容器中形成 负压。
D) 当第一容器达到 1.3Pa; 启动控制系统(11) (12) , 经 过气体入口 (10) 通入预处理气体 N2
E) 启动电源系统 (4) , 产生 0- 1500V可调节的直流或脉冲 高压电, 电极间产生火花、 弧光放电后转为辉光放电, 在容器指 定压力下: 如 1.3 Pa ~50 Pa, 对材料 C: 35CrMo氮化钢。 表面 进行预处理。 F) 材料 C35CrMo 预处理后, 启动容器压力系 (11) (12) 使第一容器的压力达到 50Pa。
G) 形成雾态气体:
启动升、 降温及温控系统(8) (9)使第一容器 (1)温度 T 保持在 170°C。
由于第二容器( 22 )出口处压力与第一容器(1)的压力已达 到 50Pa。 启动升、 启动化合物温度系统( 23 ) ( 24 )使在第二容 器(22) 中的 A: 固态 NH4C1的温度超过 190°C, A气化进入第一 容器, 气态化合物 NH4C1 在笫一容器的浓度逐渐增加; 此时, 笫 一容器中压力增大。
启动容器压力控制系统 (11) ( 12)使第一容器压力保持在 133Pa; 惰性气体逐 渐减少 l据渗层要求达到一定比例, 如, 40 %。 笫一容器(1) 中有气态 NH4C1、 N2o
启动区域温度系统 (8,) (9,)使容器内材料 C附近材料 C 附近或第一容器外壳温度小于 T。为 120°C。 部分气态 A: NH4C1转 变为微纳米液态或固态, 悬浮在气体 A中, 形成雾态气体 A(m) ; 或启动温度系统( 8 ) (9)使第一容器温度小于 TQ形成雾态气体 A (m) 。
H)化合物温度系统( 22 ) ( 23 )及化合物压力系统( 24 ) ( 25 ) 及容器温度系统 (8) (9) 、 容器压力系统 (11) (I2) , 使第 一容器中的化合物 NH4C1保持指定数量。
I) 启动高压电源系统(4) , 电压 350 ~ 1500伏, 随 35CrMo 钢的渗层要求来调节, 在电场作用下, 电极间产生雾态火花、 弧 光放电, 经过数分钟至数十分钟。
J) 启动(6) (7) (8) (9) (11) (12)调节压力、 温度、 并启动电源系统(4)调节两极间电压、 电流, 使雾态火花、 弧光 放电转为雾态辉光放电。 35CrMo 钢 C温度不断上升。 依 35CrMo 钢渗层的要求升至指定温度, 如为 550。C。
) 在雾态放电的作用下, 雾态 NH4C1在模具钢附近分解:
2NH4C1→N2 + 3H2 + 2HC1 雾态放电保持 4小时 (依钢渗层的要求而定) 。
在雾态气体放电的物理化学作用下, 35CrMo氮化钢表面形成
Fe4N、 Fe2N、 等渗层。 较通常渗氮, 厚度提高%20以上。
用上迷相同的方法,在阴极上放置各种钢铁以及 Ni、 Cr、 Ti、
Cu、 Al、 Mg、 W、 Mo等金属及其合金, 表面形成氮的化合物层。 实施例 3. 通过雾态硫气体放电在金属表面形成渗硫层或碗与硫 化物的复合层
雾态气体 A ( m ) : 单质硫 T。=144. 5 °C下, 饱和蒸气压 P。=13. 3Pa 改性材料 C: GCrl5轴承钢
所用设备与实施例 1相同。
A) 将待改性材料 GCrl5钢放在阴极上的特定装置 (5 ) 中。
B) 固体化合物单质硫装在第二容器( 22 )中, 放在第一容器 ( 1 ) 内部或外面。
0 启动抽气装置(11 )压力控制系统(12 ) , 使第一容器中 形成负压。
D) 当第一容器达到 1. 3Pa; 启动充气系统(11 ) , 经过气体 入口 (10 )通入预处理气体 NH3
E) 启动电源系统 (4 ) , 产生 0- 1500V可调节的直流或脉冲 高压电, 电极间产生火花、 弧光放电后转为辉光放电, 在容器指 定压力下: 如 1. 3Pa ~ 50Pa , 对材料 GCrl5钢的表面进行预处理。
F) 材料 GCrl5钢预处理后,启动容器压力控制系统( 11 X 12 ) 使第一容器的压力达到 1. 3Pa。 G) 形成雾态气体:
启动容器温度系统(8) (9)使第一容器(1)温度 T保持在 90°C。
由于第二容器( 22 )出口处压力与第一容器(1)的压力已达 1.3Pa0 启动化合物温度系统 ( 23 ) ( 24 )使放在第二容器 (22) 中的 A: 单质硫的温度超过 190°C, A气化进入容器。
由于第一容器 ( 1 )温度低于 T。, 气体硫进入第一容器 ( 1 ) 后, 部分^ <即成为微纳米的液、 固体, 即雾态硫 A (m) , 雾态硫 在密闭容器的浓度逐渐增加; 此时, 第一容器 (1) 中压力增大。
启动容器压力控制控制系统 (11) ( 12)使容器压力保持在 13.3Pa; 气体 NH3逐渐减少; 低压容器中雾态硫 AI ( m )增多。
H) 化合物温度系统( 22 ) ( 23 )及化合物压力系统( 24 ) ( 25 ) 及容器温度系统 (8) (9) 、 容器压力系统 (11) (I2) , 使第 一容器中的单 ^硫保持指定数量。
I) 启动高压电源系统(4) , 电压 350 ~ 1500伏, 可随 GCrl5 钢性能要求来确定, 在电场作用下, 电极间产生雾态火花、 弧光 放电, 经过数分钟至数十分钟。
J) 运用 (6) (7) (8) (9) (11) (12)调节压力、 温度 及电源系统(4)调节两极间电压、 电流, 使雾态火花、 弧光放电 转为雾态辉光放电。 GCrl5钢 C温度不断上升。 依 GCrl5钢渗层 的要求升至指定温度 T1, 如为 140°C。 雾态放电保持 2小时 (依 钢渗层的要求而定) 。
K) 启动化合物温度系统 ( 23 ) ( 24 )使硫快速升至 300°C, 雾态硫大量进入, 第一容器, 压力升高。
L) 启动容器压力控制系统 (11) (12) , 化合物温度系统 ( 23 ) ( 24 )使压力保持 500Pa。
m)微纳米 (或溅射等产生的) 钼通入第一容器 S2. +Mo→ Mo S2 或直接通入 Mo S2, 形成雾态 J (m) 。
N) 运用电源系统(4)化合物温度 系统( 23 ) ( 24 )容器温 度系统 (8) (9) , 区域温度系统 (8,) (9,) , 材料温度系统 (6) (7)使轴承钢温度保持 14G°C 保温 10 ~ 50分钟。
0) 关闭电源 (4) , 容器加热系统 (8) (9) 。
P) 当第一容器压力达 2000 Pa (依复合层厚度而定) 。 关闭 化合物加热系统 ( 24 ) ( 23 ) 。
这样, 在雾态气体放电的物理化学作用下, 轴承钢(5)表面 形成 F e、 S的固溶体及化合物 FeS、 FeS2等。并在其上形成了 S+MoS2 复合材料。
用上述相同的方法,在阴极上放置各种钢铁以及 Ni、 Ti、 Cu、 Mo、 Nb、 W、 Mg、 Al等金属及其合金, 表面形成 S的固溶体、 化 合物层及复合材料层。
硫的化合物之上, 除 MoS2以外, 还可以通入 WS2、 石墨、 等 微纳米固体或液体, 形成相应的复合材料。
根据需要, 可以减少 J、 K、 L、 M、 N、 0 步骤, 则轴承钢(5) 表面只形成 Fe、 S的固溶体及化合物 FeS、 FeS2等。 实施例 4. 雾态丙烯酸气体放电对化纤改性
雾态气体 A (m) : 液态丙烯酸。 T。=39°C, 饱和蒸气压 P。=1330Pa 改性材料 C: 化学合成纤维涤纶。
所用设备与实施例 1相同。
A) 将待改性材料涤纶放在两极之间的特定装置 (5,) 中。
B) 液体化合物 A : 液态丙烯酸放在第一容器 (1)外面。
C) 启动容器压力控制系统(11) (12) , 使第一容器中形成 负压
D) 当第一容器达到 1.3Pa; 启动充气系统(11) , 经过气体 入口 ( 10)通入预处理气体空气。
E) 启动电源系统 (4) , 产生 0- 1500V可调节的直流或脉冲 高压电, 电极间产生火花、 弧光放电后转为辉光放电, 在第一容 器指定压力下: 如 1.3 Pa ~ 50 Pa, 对材料涤纶表面进行预处理。
F) 材料涤纶預处理后, 启动容器压力控制系统 (11) (12) 使第一容器的压力达到 1.3Pa。
G) 形成雾态气体:
启动容器温度系统(8) (9)使第一容器(1)温度 T保持在 40°C。
由于第二容器(22) 出口处压力与第一容器(1)的压力已达 1.3Pa。 启动化合物温度系统( 23 ) ( 24 )使放在第二容器 (22) 中的 A: 丙烯酸的温度超过 40°C, A气化进入容器。
气态丙烯酸在第一容器的浓度逐渐增加; 此时, 第一容器中 压力增大。
启动容器压力控制系统 (11) (12)使第一容器压力保持在 600Pa; 空气逐渐减少并接近为零; 第一容器(1)中只有丙烯酸。
启动区域温度系统 (8,) (9,)使第一容器内局部 (材料 C 附近) 温度 T小于 15°C。 部分气态 A: 丙烯酸转变为微细米液态 或固态, 悬浮在气体 A中, 形成雾态气体 A (m) 。
H) 化合物温度系统( 22 ) ( 23 )及化合物压力系统( 24 ) ( 25 ) 及容器温度系统 (8) ( 9) 、 容器压力系统 (11) (12) , 使第 一容器中的丙烯酸保持指定数量。
I) 启动高压电源系统 (4) , 电压 350 ~ 1500伏, 在电场作 用下, 电极间产生雾态火花、 孤光放电, 经过数分钟至数十分钟。
J) 启动(6) (7) (8) (9) ( 11) (12)调节压力、 温度、 并启动电源系统(4)调节两极间电压、 电流, 使雾态火花、 弧光 放电转为雾态辉光放电。 涤纶 C温度不断上升。 依涤纶性能的要 求升至指定温度 110°C。 雾态放电保持 1 小时 (依涤纶性能要求 而定) 。 在雾态气体放电的物理化学作用下, 纤维表面接枝亲水 性的含氧极性基团, 如- 0H基等。
用上述相同的方法, 在阴极和阳极之间放置合成纤维、 天然 纤维、 玻璃及纤维制品、 碳纤维及制品、 聚氯乙烯、 聚四氟乙烯 等高聚物, 并采用含有双键或三键的不饱和有机酸或有机化合物 等作为雾态气体放电反应物, 进行表面改性。 改性后的合成纤维, 高聚物、 玻璃纤维、 碳纤维等表面的吸湿性显著提高。
本实施中的电源(4)也可以是射频、微波、 交流、 高频电源。 实施例 5. 雾态硫气体放电对塑料、 橡胶的表面改性
雾态气体 A (m) : 单质硫 TQ=144.5°C下, 饱和蒸气压 PQ=13.3Pa 改性材料 C: 聚氯乙烯
所用设备与实施例 1相同。
A) 将待改性材料聚氯乙烯放在两极间的特定装置 (5,) 中。
B) 即将固体化合物单质^ <放在第一容器 (1) 内部或外面。
C) 启动容器压力控制系统(11) (12) , 使第一容器中形成 负压;
D) 当第一容器达到 1.3Pa; 启动充气系统(11) , 经过气体 入口 (10)通入预处理气体 NH3
E) 启动电源系统 (4) , 产生 0- 1500V可调节的直流或脉冲 高压电, 电极间产生火花、 弧光放电后转为辉光放电, 在容器指 定压力下: 如 1.3 Pa~ 50 Pa, 对材料 C: 聚氯乙烯表面进行预 处理。
F) 材料聚氯乙烯预处理后,启动容器压力控制系统( HX 12) 使第一容器的压力达到 1· 3Pa。
G) 形成雾态气体: 启动容器温度系统(8) (9)使笫一容器(1)温度 T保持在 40°C!。
由于第二容器(22)出口处压力与第一容器(1)的压力已达 1.3Pa,启动升、降温及温控系统( 23 ) ( 24 )使放在第二容器(22) 中的 A: 单质硫的温度超过 200°C, A气化进入容器, 由于第一容 器( 1 )温度低于 T。 , 气体硫进入第一容器( 1 )后即成为雾态 A (m) , 雾态硫在密闭容器的浓度逐渐增加; 此时, 第一容器(1) 中压力增大。
启动容器压力控制系统( 11 ) ( 12 吏容器压力保持在 133Pa; 气体 NH3逐渐减少; 第一容器 (1) 中雾态硫增多。
H) 启动化合物温度系统( 22 ) ( 23 )及化合物压力系统( 24 ) (25)及容器温度系统(8) (9) 、 容器压力系统(11) (12) , 使第一容器中的硫保持指定数量。
I) 启动高压电源系统(4) , 启动高压电源系统(4) , 电压 350 ~ 1500 伏, 可随聚氯乙烯性能要求来调节, 在电场作用下, 电极间产生雾态火花、 弧光放电, 经过数分钟至数十分钟。
J) 运用 (6) (7) (8) (9) (11) (12)调节压力、 温度 及电源系统(4)调节两极间电压、 电流, 使雾态火花、 弧光放电 转为雾态辉光放电。 依聚氯乙烯温度不断上升。 依聚氯乙浠的性 能要求升至指定温度 T1, 如为 80°C!。 雾态放电保持 2小时(依聚 氯乙烯的要求性能而定) 。
在雾态气体放电的物理化学作用下, 经过表面改性的聚氯乙 烯电阻显著增大, 20°C时体电阻系数由 1 X 10"欧姆 ·厘米提高到 4 1Q14欧姆 .厘米, 韧性增加。
用上述相同的方法,在阴极和阳极之间放置聚乙烯、聚丙烯、 橡胶等材料, 采用采用硫单盾作为雾态气体放电反应物, 进行表 面改性得到异常的性能。 本实施中的电源(4)也可以是射频、微波、 交流、 高频电源。 实施例 6. 雾态气体放电使蚕丝具有抗菌性能
雾态气体 A (m) : 固态碘, T。-43.7°C下, 饱和蒸气压 P。=133Pa 改性材料 C: 蚕丝纤维。
所用设备与实施例 1相同。
A) 将待改性材料蚕丝纤维放在两极之间的特定装置( 5 )中。
B) 将固体化合物固态碘放在第一容器 (1) 外面。
0 启动容器压力控制系统(11) (12)使第一容器的压力达 到 133Pa。
D) 形成雾态气体:
启动系统 (8) (9)使第一容器 (1) 温度 T保持在 20°C。 启化合物温度系统 (23 ) ( 24 )使放在第二容器 (22) 中的 A: 单质換的温度超过 60°C, 容器的压力已达到 1.3Pa。 固态碘 气化进入容器, 由于第一容器 (1) 温度低于!1。 , 碘气体进入第 一容器 (1)后即成为雾态 A (m) , 雾态碘在第一容器的浓度逐 渐增加; 此时, 第一容器(1) 中压力增大。
启动容器压力控制系统( 11 ) ( 12 吏容器压力保持在 133Pa; 空气在容器中逐渐减少;
E) 化合物温度系统( 22 ) ( 23 )及化合物压力系统( 24 ) ( 25 ) 使第一容器中的单质砩保持指定数量。
F) 启动高压电源系统(4) , 电压 350 ~ 1500伏, 随工艺要 求来调节, 在电场作用下, 电极间产生雾态火花、 弧光放电, 经 过数分钟至数十分钟。
G) 启动(6) (7) (8) (9) ( 11) ( 12)调节压力、 温度、 并启动电源系统(4)调节两极间电压、 电流, 使雾态火花、 弧光 放电转为雾态辉光放电。 蚕丝温度不断上升。 依蚕丝性能的要求 升至指定温度 100°C。 雾态放电保持 0.5 小时 (依蚕丝性能要求 而定) 。
在雾态气体放电的物理化学作用下, 经过表面改性的丝纤维 制品具有明显抑制葡萄球菌、 大肠杆菌的作用。
用上述相同的方法, 在阴极和阳极之间放置其它合成纤维、 天然纤维等进行表面改性, 得到类似效果。
本实施中的电源(4)也可以是射频、微波、 交流、 高频电源。 实施例 7. 雾态气体放电在金属材料表面形成渗钛层
雾态气体 A(m): TiCl3 在 T。=531°C下,饱和蒸气压 P0=133Pa 改性材料 C: 高速钢 W18Cr4V。
所用设备与实施例 1相同。
A) 将待改性材料 W18Cr4V钢放在阴极上的特定装置(5)中。
B) 将固体化合物 TiCl3放在第一容器 (1) 内部或外面。
C) 启动容器压力控制系统(11) (12) , 使第一容器中形成 负压。
D) 当第一容器达到 1.3Pa; 启动充气系统(11) , 经过气体 入口 (10)通入预处理气体 Ar。
E) 启动电源系统 (4) , 产生 0-1500V可调节的直流或脉冲 高压电, 电极间产生火花、 弧光放电后转为辉光放电, 在容器指 定压力下: 如 1.3Pa~50Pa, 对材料 C: W18C.r4V钢的表面进行 预处理。
F) 材料 C l 8Cr4V钢预处理后,启动容器压力控制系统( 11 ) ( 12 )使第一容器的压力达到 1.3Pa0
G) 形成雾态气体:
启动容器温度系统(8) (9)使第一容器(1)温度 T保持在 450°C 由于第二容器、11、 出口处压力与第一容器(1)的压力已达 1.3Pa0 启动化合物温度系统( 23 ) ( 24 )使在第二容器( 22 ) 中 的 A: TiCl3的温度超过 560°C, A气化进入容器。
气态化合物 1^(13在第一容器的浓度逐渐增加; 此时, 第一 容器中压力增大, 启动容器压力控制系统 (11) (12)使容器压 力保持在 133Pa; 惰性气体逐渐减少, 气体 Ar逐渐减少并接近为 零; 第一容器 (1) 中只有 TiCl3
启动区域温度系统 (8,) (9,)使第一容器内局部 (如容器 外壳附近) 温度 T小于 T。如 400°C。 部分气态 A: TiCl3转变为液 态或固态, 悬浮在气体 A中, 形成雾态气体 A (m) ; 或启动升、 降温及温控系统(8) (9)使第一容器温度小于 T。形成雾态气体 A (m) 。
H) 化合物温度系统( 22 ) ( 23 )及化合物压力系统( 24 ) ( 25 ) 使第一容器中的化合物 TiCl3保持指定数量。
I) 启动高压电源系统(4) , 电压 350 ~ 1500伏, 随高速钢 的渗层要求来调节, 在电场作用下, 电极间产生雾态火花、 弧光 放电, 经过数分钟至数十分钟。
J) 启动(6) (7) (8) (9) (11) ( 12)调节压力、 温度、 并启动电源系统(4)调节两极间电压、 电流, 使雾态火花、 弧光 放电转为雾态辉光放电。 高速钢 C温度不断上升。 依钢渗层的要 求升至指定温度 T1, 如为 560°C。
K) 在雾态放电的作用下, 雾态 TiCl3在 560°C钢附近分解: 2TiCl3→2Ti+3Cl2、雾态放电保持 4小时(依钢渗层的要求而定)。
采用 TiCl4作为反应化合物亦可, 在高温气体放电下
3TiCl4+Fe → 3TiCl3+FeCl3 在雾态气体放电的物理化学作用下, 高速钢 (5)表面形成 Fe2Ti、 FeTi、 TiC等渗层, 用上述相同的方法及不同的工艺, 在 阴极上放置各种钢铁以及 Ni、 Cu、 Mo、 Nb、 Al、 Co等金属及其合 金, 表面形成钛的固溶体及化合物渗层。 实施例 8. 雾态气体放电在金属表面渗铝后渗氮
雾态气体 A (m) : A1C13在 T。=96.7°C下, 饱和蒸气压 P。-133Pa 改性材料 C: 模具钢 HI 3
与实施例 1所用设备相同。
A) 将待改性材料 H13钢放在阴极上的特定装置 (5) 中。
B) 将固体化合物 A1C13第一容器 (1) 内部或外面。
0 启动第一容器压力控制系统(11) (12) , 使第一容器中 形成负压。
D) 当第一容器达到 1.3Pa; 启动充气系统(11) , 经过气体 入口 (10)通入预处理气体 Ar。
Ε) 启动电源系统 (4) , 产生 0- 1500V可调节的直流或脉沖 高压电, 电极间产生火花、 弧光放电后转为辉光放电, 在第一容 器指定压力下: 如 1.3 Pa -50 Pa, 对材料 H13钢的表面进行预 处理。
F) 对材料 HI 3钢预处理后,启动容器压力控制系统( 11 X 12 ) 使第一容器的压力达到 1.3Pa。
G) 形成雾态气体:
启动容器温度系统(8) (9)使第一容器(1)温度 T保持在 300°C
由于第二容器(22) 出口处压力与第一容器(1)的压力已达 1.3PaD 启动化合物温度系统( 23 ) ( 24 )使在第二容器(22) 中 的 A: A1C13的温度超过 100°C, A气化进入容器。
气态化合物 A1C13在密闭容器的浓度逐渐增加; 此时, 密闭 容器中压力增大, 启动容器压力控制系统 (11) ( I2)使第一容 器压力保持在 133Pa; 惰性气体逐渐减少, 气体 Ar逐渐减少并接 近为零; 第一容器 (1) 中只有 A1C13气体。
启动区域温度系统 (8,) (9,)使容器内, 第一容器外壳附 近温度 T为 80°C小于 T。。 部分气态 A: ALC13转变为液态或固态, 悬浮在气体 A中,形成雾态气体 A(m); 或启动容器温度系统(8) (9)使第一容器温度小于 TQ形成雾态气体 A (m) ;
H) 化合物温度系统( 22 ) ( 23 )及化合物压力系统( 24 ) ( 25 ) 使第一容器中的化合物人1(13保持指定数量。
I) 启动高压电源系统 (4) , 电压 350 ~ 1500伏, 随模具钢 的渗层要求来调节, 在电场作用下, 电极间产生雾态火花、 弧光 放电, 经过数分钟至数十分钟,
J) 启动(6) (7) (8) (9) (11) (12)调节压力、 温度、 并启动电源系统(4)调节两极间电压、 电流, 使雾态火花、 弧光 放电转为雾态辉光放电。 模具钢 C温度不断上升, 依钢渗层的要 求升至指定温度 T1, 如为 560°C。 雾态人1(13在 560°C模具钢附近 分解: 2A1C13→2A1+3C12、成为雾 D (m)雾态放电保持 1小时(依 钢渗层的要求而定) 。
K) 通入 NH3,第一容器中压力增大,启动容器压力系统使第一 容器压力保持在 133Pa; 气体 A1C13逐渐减少达到一定比例, 根据 渗层要求, 如, 10%A1C13: 90%NH3o
L) 依模具钢渗层的要求在指定温度, 如为 550°C。 保持 6小 时 (依高速钢渗层的要求而定) 。
在雾态气体放电的物理化学作用下, 模具钢 (5) 表面形成 Fe4N、 Fe2N、 等, 较一般离子渗氮, 同样的时间温度, 厚度增加 50%以上。
用上述相同的方法,在阴极上放置各种钢铁以及 Ni、 Ti、 Cu、 Mo、 Nb、 W等金属及其合金, 表面形成氮的化合物渗层。 实施例 9. 雾态气体放电在金属表面形成碳、 氮渗层
雾态气体 A (m) : NH4CI, T。-162°C下, 饱和蒸气压 P。=133Pa 改性材料 C: 35CrMo钢
与实施例 1所用设备相同。
A) 将待改性材料 35CrMo钢放在阴极上的特定装置 (5) 中。
B) 将固体化合物 NH4C1 放在第一容器 (1) 内部或外面。
C) 启动容器压力控制系统(11) (12) , 使密闭容器中形成 负压。
D) 当第一容器达到 1.3Pa; 启动充气系统(11) , 经过气体 入口 ( 10)通入预处理气体 N2
E) 启动电源系统 (4) , 产生 0- 1500V可调节的直流或脉冲 高压电, 电极间产生火花、 弧光放电后转为辉光放电, 在笫一容 器指定压力下: 如 1.3Pa ~ 50Pa, 对材料 35CrMo钢的表面进行预 处理。
F) 材料 35CrMo钢预处理后, 启动容器压力控制系统(11) ( 12 )使第一容器的压力达到 1.3PaD
G) 形成雾态气体:
启动容器温度系统(8) (9)使笫一容器(1)温度 T保持在 170°C;
由于第二容器(22) 出口处压力与第一容器(1)的压力已达 1.3Pa。 启动化合物温度系统(23) (2 使在第二容器(22) 中 的 A: NH4C1温度超过 190°C; A气化进入容器。
气态化合物 NH4C1 在第一容器的浓度逐渐增加; 此时, 第一 容器中压力增大, 启动材料压力控制系统 (11) ( 12)使容器压 力保持在 133Pa;气体 N2逐渐减少,第一容器( 1 )中有气态 NH4C1、 N2
启动区域温度系统 (8,) (9,)使容器内, 第一容器外壳附 近低于临界温度, 为 150°C。 部分气态 A: NH4C1转变为液态或固 态, 悬浮在气体 A中, 形成雾态气体 A (m) ; 或启动容器温度系 统 (8) (9)使第一容器温度小于 TQ形成雾态气体 A (m) 。
H)化合物温度系统( 22 ) ( 23 )及化合物压力系统( 24 ) ( 25 ) 使第一容器中的化合物 NH 1保持指定数量。
I)通入乙醇 CH3CH2OH ( 100Pa, 沸点- 31.3°C ) , 并根据渗层 要求达到一定比例: 如 CH3CH20H: 40% , NH4C1: 30% , N2: 30% , 压力保持在 133Pa。
J) 启动高压电源系统(4),电压 350 ~ 1500伏,可随 35CrMo 钢的渗层要求来调节, 电极间产生火花、 弧光放电, 经过数分钟 至数十分钟, 启动(6) (7) (8) (9) ( 11) ( 12)调节压力、 温度、 两极间电压, 火花、 弧光放电转为辉光放电, 35CrMo钢温 度不断上升, 依钢渗层的要求升至指定温度, 如为 550°C。
K) 在雾态放电的作用下, 雾态 NH4C1 、 CH3CH2OH在 550°C的 35CrMo钢附近分解: 雾态放电保持 4小时 (依 35CrMo钢渗层的 要求而定) 。
在雾态气体放电的物理化学作用下, 35CrMo 钢 (5)表面形 成氮碳渗层。
用上述相同的方法,在阴极上放置各种钢铁以及 Cr、 Ti、 Cu、 Al、 Mg等金属及其合金, 表面形成氮碳的化合物层。 实施例 10. 雾态气体放电在金属表面形成氮化铁、 氮化钛层 雾态气体 A (m) : NH4C1 T。-162°C下, 饱和蒸气压 P。=133Pa 改性材料 C: W18Cr4V钢
与实施例 1所用设备相同。 A) 将待改性材料 W18Cr4V钢放在阴极上的特定装置(5)中。
B) 将固体化合物 NH4C1 放在第一容器 (1) 内部或外面。
C) 启动容器压力控制系统(11) (I2) , 使第一容器中形成 负压。
D) 当第一容器达到 1.3Pa; 启动充气系统(11) , 经过气体 入口 ( 10)通入预处理气体 Ar。
Ε) 启动电源系统 (4) , 产生 0- 1500V可调节的直流或脉冲 高压电, 电极间产生火花、 弧光放电后转为辉光放电, 在容器指 定压力下: 如 1.3 Pa~ 50 Pa, 对待改性材料 W18Cr4V钢。 表面 进行预处理。
F) 待改性材料 W18Cr4V钢预处理后,启动容器压力控制系统 (11) (12)使第一容器的压力达到 1.3Pa。
G) 形成雾态气体:
启动升、 降温及温控系统(8) (9)使第一容器(1)温度 T 保持在 170°C。
由于第二容器(22) 出口处压力与第一容器(1)的压力已达 1.3Pa。 启动升、 启动化合物温度系统(23) 4)使在第二容器 (22) 中的 A: 固态 NH4C1的温度超过 190°C, A气化进入第一容 器, 气态化合物 NH4C1 在密闭容器的浓度逐渐增加; 此时, 密闭 容器中压力增大。
启动容器压力控制系统( 11 ) ( 12 吏容器压力保持在 133Pa; Ar气体逐渐减少, 容器中仅有 NH4C1。
启动区域温度系统 (8,) (9,) 使第一容器内材料 C附近或 容器外壳温度小于 T。为 120°C。 部分气态 A: NH4C1转变为微纳米 液态或固态, 悬浮在气体 A中, 形成雾态气体 A(m) ; 或启动升、 降温及温控系统( 8 ) ( 9 )使容器温度小于 T。形成雾态气体 A( m)。 H) 化合物温度系统( 22 ) ( 23 )及化合物压力系统( 24 ) ( 25 ) 使第一容器中的化合物 NH4C1保持指定数量。
I) 启动高压电源系统(4) , 电压 350 ~ 1500伏, 随 W18Cr4V 钢的渗层要求来调节, 在电场作用下, 电极间产生雾态火花、 弧 光放电, 经过数分钟至数十分钟。
J) 启动(6) (7) (8) (9) (11) (12)调节、 温度、 并 启动电源系统(4)调节两极间电压、 电流, 使雾态火花、 孤光放 电转为雾态辉光放电, W18Cr4V钢温度不断上升。 依 W18Cr4V钢 渗层的要求升至指定温度 Tl, 如为 550°C。
K) 在雾态放电的作用下, 雾态 NH4C1在钢附近分解:
2NH4C1→N2+ 3H2 + 2HC1 雾态放电保持 4小时 (依钢渗层的要求而定) 。
L) 通入 TiCl4气体, 通入 NH3, 使与 TiCl4、 NH4C1、 NH3达到 一定比例, 根据渗层要求, 如, 60%TiCl 30%NH3: 20%NH4CU
M) 依模具钢渗层的要求在指定温度, 如为 550°C。 放电保持 20分钟 (依高速钢渗层的要求而定) 。
在雾态气体放电的物理化学作用下, 模具钢 (5)表面形成 Fe4N、 Fe2N、 TiN等。
用上述相同的方法,在阴极上放置各种钢铁以及 Cr、 Ti、 Cu、 Al、 Mg等金属及其合金, 表面形成氮的化合物层。

Claims

权 利 要 求
1. 一种产生雾态气体的方法,该方法包括步骤:
1 )提供第一容器,容器或容器局部某特定区域的压力和温度 是可设定的;
2 )在第二容器中提供固态、 液态的单质或 /和化合物, 所述 第二容器位于第一容器之内或之外;
3 ) 改变第二容器中的温度或 /和压力, 使位于第二容器中的 固态、 液态的单质或 /和化合物进入第一容器产生雾态气体, 该雾 态气体弥散在第一容器或第一容器局部区域。
2. 权利要求 1所述的方法, 其中通过选自如下的一种或多种 产生雾态气体: 固态、 液态的单质或 /和化合物溅射、 离子注入、 直接通入; 单质或 /和化合物分解; 单质或 /和化合物合成。
3. 一种通过雾态气体放电形成新材料或材料改性的方法, 该 方法包括步驟:
1 )提供有待在其中形成新材料的装置或有待改性的材料, 将 其放入第一容器中;
2 )通入预处理气体, 并产生火花或弧光放电, 随后转为辉光 放电, 利用辉光放电对所述装置或材料进行预处理;
3 )加热或冷却在第一容器中的装置或有待改性的材料, 达到 并保持在指定的温度;
4 )按权利要求 1 所述方法产生单质或 /和化合物的雾态气 体;
5 )启动电源设备, 在第一容器两极间产生雾态气体放电, 在 第一容器的指定压力下: 如 1. 3Pa ~ 50Pa , 在特定装置中产生新 材料或被改性材料进行雾态气体放电处理。
4. 根据权利要求 3的雾态气体放电方法, 其中所述的雾态气 体放电不限于单一的雾态放电,而是多种雾态气体放电多次进行。
5. 根据权利要求 3的雾态气体放电方法, 其中可以使通常的 气体放电、 PVD、 CVD, 溅射等与本发明的雾态气体放电方法交替 进行。
6. 根据权利要求 3的雾态气体放电方法, 其中多种雾态气体 放电与多种普通气体放电多次进行。
7. 根据权利要求 3的雾态气体放电方法, 其中所述待改性材 料是单质或化合物, 包括: 金属及其合金、 陶瓷、 玻璃、 玻璃纤 维、 石墨、 金刚石、 碳纤维、 聚乙烯等聚合物、 天然纤维、 人造 纤维、合成纤维, 以及上述材料的镀层、涂层、渗层和 /或复合层。
8. 一种用于产生雾态气体并进行雾态气体放电的设备, 该设 备主要包括下列部分:
1 )第一容器, 所述第一容器包括: 使容器或某区域达到指定 压力的压力系统或区域压力系统; 使容器或某区域达到指定温度 的温度系统或区域温度系统; 气体入口, 通过该气体入口通入指 定的气体并可通入微纳固体或液体;
2 )第二容器, 该第二容器位于第一容器之内或之外并且装有 单质或化合物, 该第二容器包含使该第二容器达到指定压力的笫 二压力系统;
3 )—个或多个加热或冷却装置,这些装置分别用于加热或冷 却材料、单质和 /或化合物、容器或局部区域的温度,以便使材料、 单质和 /或化合物、 容器或容器局部区域达到指定温度;
4 )在第一容器内的电极或阴极和阳极, 并且有待产生新材料 的装置或有待处理的材料放在两电极间或电极上; 以及产生电流 和电压的电源, 并可以对电压电流进行调节, 供给两电极以产生 雾态气体放电。
9. 根据权利要求 8的设备, 其中所述电源可以为直流、 直流 脉冲、 交流、 微波、 射频或高频电源。
10. 根据权利要求 8的设备, 其中通常的 PVD、 CVD、 离子镀 和 /或溅射可以在本发明的设备中进行。
PCT/CN2009/001035 2008-11-03 2009-09-15 雾态气体的制备及通过雾态气体放电形成新材料的方法及设备 WO2010060259A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP09828520.8A EP2381007B1 (en) 2008-11-03 2009-09-15 Method and apparatus of forming novel material by mist gas discharge
US13/127,342 US8795770B2 (en) 2008-11-03 2009-09-15 Preparation of mist, process and apparatus for forming new materials by mist gas discharge
JP2011533512A JP5624048B2 (ja) 2008-11-03 2009-09-15 ミストの準備、ミストガス放電による新規の材料の形成方法およびその装置
DE9828520T DE9828520T1 (de) 2008-11-03 2009-09-15 Herstellung von zerstäubungsgas, verfahren und vorrichtung zur bildung von neuem material durch zerstäubungsgasabgabe

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN 200810172701 CN101730373B (zh) 2008-11-03 2008-11-03 通过雾态气体放电形成新材料的方法及设备
CN200810172701.8 2008-11-03

Publications (1)

Publication Number Publication Date
WO2010060259A1 true WO2010060259A1 (zh) 2010-06-03

Family

ID=42225200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/001035 WO2010060259A1 (zh) 2008-11-03 2009-09-15 雾态气体的制备及通过雾态气体放电形成新材料的方法及设备

Country Status (6)

Country Link
US (1) US8795770B2 (zh)
EP (1) EP2381007B1 (zh)
JP (1) JP5624048B2 (zh)
CN (1) CN101730373B (zh)
DE (1) DE9828520T1 (zh)
WO (1) WO2010060259A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6924944B2 (ja) * 2017-04-05 2021-08-25 パナソニックIpマネジメント株式会社 微粒子製造装置及び微粒子製造方法
CN111686990B (zh) * 2020-06-06 2022-04-22 深圳市捷安纳米复合材料有限公司 一种将纳米材料从液态转换成雾态的工艺及超声波设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1097221A (zh) * 1993-07-08 1995-01-11 张弋飞 金属材料表面合金化的方法与设备
JPH10330941A (ja) * 1997-06-04 1998-12-15 Fujikura Ltd Cvd用液体原料供給装置
JP2000097030A (ja) * 1998-09-24 2000-04-04 Mitsubishi Electric Corp 筒内噴射式内燃機関および筒内噴射用燃料噴射弁
CN1318664A (zh) 2001-04-17 2001-10-24 华中科技大学 射频激励等离子体织物改性处理装置
CN2720237Y (zh) * 2004-07-19 2005-08-24 富松精密机械(上海)有限公司 液态燃料雾化装置
CN2761199Y (zh) * 2004-07-22 2006-03-01 范吉新 一种雾化治疗器

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0962260B1 (en) * 1998-05-28 2005-01-05 Ulvac, Inc. Material evaporation system
US7067405B2 (en) * 1999-02-01 2006-06-27 Sigma Laboratories Of Arizona, Inc. Atmospheric glow discharge with concurrent coating deposition
JP2002305163A (ja) 2001-04-05 2002-10-18 Ebara Corp 複合クラスタ及びその製造方法、並びにその製造装置
JP4185694B2 (ja) 2002-02-26 2008-11-26 トヨタ自動車株式会社 触媒の製造方法および触媒
GB0211354D0 (en) * 2002-05-17 2002-06-26 Surface Innovations Ltd Atomisation of a precursor into an excitation medium for coating a remote substrate
US6913841B2 (en) * 2002-08-19 2005-07-05 Charles J. Upchurch Method and apparatus for producing iron article and product
CN1242094C (zh) * 2003-04-18 2006-02-15 天津大学 液相源雾化微波等离子体化学气相沉积制备薄膜的方法
GB0410749D0 (en) 2004-05-14 2004-06-16 Dow Corning Ireland Ltd Coating apparatus
US7741621B2 (en) * 2004-07-14 2010-06-22 City University Of Hong Kong Apparatus and method for focused electric field enhanced plasma-based ion implantation
JP2007182605A (ja) * 2006-01-06 2007-07-19 Konica Minolta Holdings Inc 薄膜形成方法及び薄膜
CN100482858C (zh) * 2006-09-22 2009-04-29 西安工业大学 液体输送金属有机物化学汽相沉积设备
CN100572262C (zh) * 2007-01-11 2009-12-23 武汉理工大学 含水乙醇制备富氢混合气的方法及其等离子体重整器
CN101255544B (zh) * 2008-03-21 2012-06-27 中国科学院上海硅酸盐研究所 纳米金属或金属氧化物/碳纳米管复合材料的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1097221A (zh) * 1993-07-08 1995-01-11 张弋飞 金属材料表面合金化的方法与设备
JPH10330941A (ja) * 1997-06-04 1998-12-15 Fujikura Ltd Cvd用液体原料供給装置
JP2000097030A (ja) * 1998-09-24 2000-04-04 Mitsubishi Electric Corp 筒内噴射式内燃機関および筒内噴射用燃料噴射弁
CN1318664A (zh) 2001-04-17 2001-10-24 华中科技大学 射频激励等离子体织物改性处理装置
CN2720237Y (zh) * 2004-07-19 2005-08-24 富松精密机械(上海)有限公司 液态燃料雾化装置
CN2761199Y (zh) * 2004-07-22 2006-03-01 范吉新 一种雾化治疗器

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
See also references of EP2381007A4 *
ZHANG GUOQING ET AL.: "Studies on low temperature plasma nitriding of OCrl7Nil2Mo2 austenite stainless steel [J", HEAT TREATMENT OF METALS, vol. 33, no. 8, 2008, pages 138 - 141
ZHANG JUN, ZHAO YANHUI: "Techniques and Application of Multi-arc Ion Plating [M", 2007, BEIJING METALLURGICAL INDUSTRY PRESS

Also Published As

Publication number Publication date
EP2381007B1 (en) 2016-12-28
JP5624048B2 (ja) 2014-11-12
CN101730373B (zh) 2012-09-05
JP2012507621A (ja) 2012-03-29
EP2381007A1 (en) 2011-10-26
US8795770B2 (en) 2014-08-05
EP2381007A4 (en) 2013-07-24
DE9828520T1 (de) 2012-05-10
US20110268889A1 (en) 2011-11-03
CN101730373A (zh) 2010-06-09

Similar Documents

Publication Publication Date Title
JP3105962B2 (ja) 固体潤滑性を有する非晶質薄膜およびその製造方法
US8728252B2 (en) Treatment of metal components
Nozaki et al. Carbon nanotubes deposition in glow barrier discharge enhanced catalytic CVD
JP5159960B2 (ja) オニオンライクカーボンの作製方法
JPS6311401B2 (zh)
JPS60211061A (ja) アルミニウム材のイオン窒化方法
CN101848861A (zh) 碳薄膜及其制造方法
Timerkaev et al. Technology of growing silicon nanotubes
WO2010060259A1 (zh) 雾态气体的制备及通过雾态气体放电形成新材料的方法及设备
Nam et al. A study on plasma-assisted bonding of steels
KR20040060182A (ko) 저압 기상반응법에 의한 나노 wc계 분말의 제조방법
JP6696991B2 (ja) 金属部片の表面を熱化学処理するためのプラズマプロセスおよびリアクタ
JP3938704B2 (ja) 表面改質繊維材料、表面改質繊維製品並びに低温プラズマを用いた表面改質繊維材料の製造方法および製造装置
Ogawa et al. Decreased hydrogen content in diamond-like carbon grown by CH4/Ar photoemission-assisted plasma chemical vapor deposition with CO2 gas
JP2008135286A (ja) プラズマ表面処理装置
JPH02138469A (ja) ダイアモンド表面を有する真空用材料、この真空用材料の表面処理法、ダイアモンド膜表面の作製法、真空用材料を用いた真空容器とその部品,真空内駆動機構,電子放出源,真空内ヒータおよび蒸着源容器
CN1390976A (zh) 双辉放电无氢渗碳共渗装置及工艺
JP2006206959A (ja) アルミニウム合金の窒化方法
JP4442182B2 (ja) 金属酸化膜の形成方法
US11335896B2 (en) Method for producing yttrium oxide-containing thin film by atomic layer deposition
TW201102451A (en) Method for preparing nitrogen-doped titanium dioxide
Zdunek Combined impulse-stationary impulse plasma deposition
Shoushtari et al. Fabrication and characterization of zinc oxide nanoparticles by DC arc plasma
Menshakov et al. Influence of parameters of the discharge with a self-heating hollow cathode and a sectional anode on the activation degree of a vapor-gas medium
JPS58174568A (ja) 金属化合物被膜の形成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09828520

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011533512

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2009828520

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009828520

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13127342

Country of ref document: US