WO2010058898A1 - Incubator for cell culture - Google Patents
Incubator for cell culture Download PDFInfo
- Publication number
- WO2010058898A1 WO2010058898A1 PCT/KR2009/004888 KR2009004888W WO2010058898A1 WO 2010058898 A1 WO2010058898 A1 WO 2010058898A1 KR 2009004888 W KR2009004888 W KR 2009004888W WO 2010058898 A1 WO2010058898 A1 WO 2010058898A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- carbon dioxide
- incubator
- culture chamber
- nitrogen
- concentration
- Prior art date
Links
- 238000004113 cell culture Methods 0.000 title claims abstract description 26
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims abstract description 230
- 229910002092 carbon dioxide Inorganic materials 0.000 claims abstract description 115
- 239000001569 carbon dioxide Substances 0.000 claims abstract description 115
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 76
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 45
- 239000001301 oxygen Substances 0.000 claims abstract description 45
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 45
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 38
- 238000007599 discharging Methods 0.000 claims abstract description 5
- 238000001514 detection method Methods 0.000 claims description 24
- 238000012258 culturing Methods 0.000 claims description 8
- 238000000034 method Methods 0.000 claims description 3
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 claims 1
- 206010021143 Hypoxia Diseases 0.000 abstract description 22
- 230000007954 hypoxia Effects 0.000 abstract description 22
- 210000004027 cell Anatomy 0.000 description 25
- 238000010586 diagram Methods 0.000 description 6
- 210000000130 stem cell Anatomy 0.000 description 4
- 206010020649 Hyperkeratosis Diseases 0.000 description 3
- 210000004102 animal cell Anatomy 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 210000002257 embryonic structure Anatomy 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M41/00—Means for regulation, monitoring, measurement or control, e.g. flow regulation
- C12M41/12—Means for regulation, monitoring, measurement or control, e.g. flow regulation of temperature
- C12M41/14—Incubators; Climatic chambers
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M41/00—Means for regulation, monitoring, measurement or control, e.g. flow regulation
- C12M41/30—Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
- C12M41/34—Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of gas
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M41/00—Means for regulation, monitoring, measurement or control, e.g. flow regulation
- C12M41/48—Automatic or computerized control
Definitions
- the present invention relates to an incubator for culturing cells, and more particularly, to a carbon dioxide incubator using a higher carbon dioxide concentration in the culture chamber and a hypoxia incubator using a lower oxygen concentration in the culture chamber. It relates to a cell culture incubator that can be used.
- Cell culture is the cultivation of cells isolated from tissues of living organisms. In plants, some of the callus, which is a tissue that occurs when the plant is injured, is also called oily tissue, callus, or callus. Incubate.
- Incubators are generally used to culture cells. Cells must meet a variety of conditions for each type, the most commonly used being a carbon dioxide incubator for culturing most animal cells. Atmospheric air consists of 78% nitrogen, 21% oxygen, 0.03% carbon dioxide and other components, with a concentration of about 5% suitable for the cell culture in the carbon dioxide incubator.
- Patent Publication No. 10-2004-27395 discloses a carbon dioxide incubator, the carbon dioxide incubator disclosed in the document is a detection means for detecting the carbon dioxide concentration in the incubator as shown in Figure 1, setting means for setting the carbon dioxide concentration, It consists of a supply means for supplying carbon dioxide and a control means for controlling the supply means is configured to adjust the carbon dioxide concentration in the culture space by pushing the air in the culture space through the discharge pipe to the outside of the culture space while supplying carbon dioxide from the supply means.
- the carbon dioxide incubator is simple in configuration and relatively inexpensive, the carbon dioxide incubator has a disadvantage in that it can only cultivate cells satisfying the culture conditions through carbon dioxide concentration control.
- the oxygen concentration in the atmosphere is about 21%, and this state is called a nomoxia state, and a state where the oxygen concentration is lower than that in the air is called a hypoxia state. It is called a hypoxia incubator to be used while maintaining the state of this hypoxia.
- the oxygen concentration suitable for culturing stem cells or the like cultured by the oxygen concentration in the Hypoxia incubator is about 1 to 8% depending on the type thereof.
- the HYPOXY incubator disclosed in the above document has an oxygen tank, a nitrogen tank, and a carbon dioxide tank connected to the culture chamber by a controller to control the supply of oxygen, nitrogen, and carbon dioxide to the culture chamber as shown in FIG. 2. It is configured to push out air while supplying the components to adjust the oxygen concentration in the culture chamber.
- the Hypoxia incubator is considerably more expensive than the carbon dioxide incubator and requires considerable skill in mixing the components supplied from each of the three tanks, and even if there is a slight error, there are three sensors that detect each component. As the number of sensors is high, the probability of failure due to the sensors also increases.
- the present invention has been made to solve the problems of the prior art, the carbon dioxide incubator mainly used for animal cell culture by adjusting the carbon dioxide concentration in the culture chamber and the hypoxia mainly used for stem cell culture by controlling the oxygen concentration in the culture chamber It is an object of the present invention to provide an incubator for cell culture that can selectively use an incubator.
- the present invention is to provide a cell culture incubator that can be configured in combination with a carbon dioxide incubator and a Hypoxia incubator, but by simplifying the device can reduce the cost and facilitate the maintenance.
- the present invention for solving the above problems is a culture chamber 10 for culturing cells, a vacuum pump 20 for discharging air in the culture chamber 10 to the outside, and a carbon dioxide tank for supplying carbon dioxide into the culture chamber 10
- the supply pipe 41 of the 40 and the automatic control valve 30 for supplying carbon dioxide and nitrogen by controlling the supply pipe 51 of the nitrogen tank 50 for supplying nitrogen, and detecting the carbon dioxide concentration in the culture chamber 10
- Controller for controlling the automatic control valve 30 by receiving the carbon dioxide detection sensor 60 and the oxygen detection sensor 70 for detecting the oxygen concentration, and the detection signal of the vacuum pump 20 and each sensor 60, 70 It consists of 80, which has its technical features.
- the present invention is characterized in that the automatic control valve 30 is connected to the carbon dioxide supply pipe 41 and the nitrogen supply pipe 51 is a three-way valve for selectively controlling and supplying carbon dioxide and nitrogen.
- the present invention is characterized in that the automatic control valve 30 is connected to the carbon dioxide supply pipe 41 and the nitrogen supply pipe 51, respectively.
- the carbon dioxide incubator used to control the carbon dioxide concentration and the hypoxia incubator used to control the oxygen concentration are configured as one incubator, thereby reducing the cost of purchasing each incubator separately.
- the carbon dioxide incubator and the Hypoxia incubator are configured in combination, but by reducing the number of tanks and sensors controlled in each incubator, the configuration is simple and easy to maintain accordingly, there is an effect of easy concentration control.
- 1 is a block diagram of a conventional carbon dioxide incubator
- FIG. 2 is a block diagram of a conventional Hypoxia incubator
- FIG. 3 is a schematic structural diagram of an incubator for cell culture according to one embodiment of the present invention.
- FIG. 4 is a schematic configuration diagram of an incubator for cell culture according to another embodiment of the present invention.
- FIG 3 is a schematic configuration diagram of a cell culture incubator according to an embodiment of the present invention
- Figure 4 is a schematic configuration diagram of a cell culture incubator according to another embodiment of the present invention.
- the cell culture incubator A includes a culture chamber 10 for culturing cells and a vacuum pump 20 for discharging air in the culture chamber 10 to the outside.
- the automatic control valve 30 for controlling and supplying carbon dioxide or nitrogen to the culture chamber 10, the carbon dioxide detection sensor 60 for detecting the carbon dioxide concentration in the culture chamber 10 and the oxygen detection sensor 70 for detecting the oxygen concentration (70) )
- a controller 80 for controlling the automatic control valve 30 according to the detection of the vacuum pump 20 and the sensors 60 and 70.
- the culture chamber 10 is a space for growing organisms (mainly microorganisms and embryos of living plants and animals) or parts of organisms (organs, tissues, cells, etc.) under environmental conditions in which artificial conditions are appropriately controlled. It is composed of a case shape (not shown) and puts a culture vessel (not shown) containing cells therein and is used to culture the cells while controlling the air composition ratio in the culture chamber 10 according to the stable growth conditions of the cells.
- the present invention it is possible to selectively adjust the air composition ratio, in particular carbon dioxide concentration and oxygen concentration in the culture chamber (10), in which the use of the carbon dioxide concentration to control the carbon dioxide incubator (Carbon dioxide Incubator), to control the oxygen concentration It is referred to as a Hypoxia incubator.
- the vacuum pump 20 is connected to the culture chamber 10 to forcibly discharge the air in the culture chamber 10 to the outside, and is also connected to the controller 80 and is controlled according to the situation in the culture chamber 10.
- the carbon dioxide concentration is 0.03% by supplying carbon dioxide from the carbon dioxide tank 40 to increase the amount of carbon dioxide in the culture chamber 10. Is controlled to about 5%, and when used as a HYPOXY incubator, by supplying nitrogen from the nitrogen tank 50 to increase the amount of nitrogen in the culture chamber 10 to reduce the concentration of oxygen of 21% to about 1 to 8% To control the oxygen concentration.
- the automatic control valve 30 is connected to the supply pipe 41 of the carbon dioxide tank 40 for supplying carbon dioxide into the culture chamber 10 and to the supply pipe 51 of the nitrogen tank 50 for supplying nitrogen, and the vacuum pump ( 20 and carbon dioxide or oxygen in the culture chamber 10 by controlling the supply of carbon dioxide and / or nitrogen into the culture chamber 10 by the controller 80 receiving the detection signal from the carbon dioxide detection sensor 60 and the oxygen detection sensor 70. To adjust the concentration.
- each supply pipe (41, 51) may be used by connecting with a three-way valve, or may be used separately as shown in FIG.
- each supply pipe 41 and 51 are separately installed in FIG. 3 and FIG. 4, when using as a carbon dioxide incubator, a carbon dioxide tank may be connected, and when using a hypoxia incubator, a carbon dioxide tank may be removed and a nitrogen tank may be connected. have.
- both the carbon dioxide tank and the nitrogen tank are used.
- the detection range is mainly about 5% of carbon dioxide concentration and can be freely adjusted to other desired concentrations.
- the sensor 60 detects the signal from the controller 80.
- the controller 80 controls the carbon dioxide concentration in the culture chamber 10 by stopping the supply of carbon dioxide from the carbon dioxide tank 40 to the culture chamber 10 by operating the automatic control valve 30.
- the oxygen detection sensor 70 is operated when used as a hypoxia, and the detection range is determined in a range that satisfies the conditions in which the cells are cultured, and is mainly set at an oxygen concentration of 1 to 8%. Free adjustment is possible in the range of% or less.
- a signal is sent from the sensor 70 to the controller 80.
- the controller 80 operates the automatic control valve 30 to stop the nitrogen supply from the nitrogen tank 40 into the culture chamber 10 to adjust the oxygen concentration in the culture chamber 10.
- the carbon dioxide detecting sensor 60 and the oxygen detecting sensor 70 are respectively connected to the controller 80 to transmit a detection signal to the controller 80.
- the controller 80 is connected to the sensors 60 and 70, the automatic control valve 30, and the vacuum pump 20, so that when a detection signal is transmitted from the sensors 60 and 70 and the vacuum pump 20, the carbon dioxide tank ( 40) and the carbon dioxide concentration and the oxygen concentration in the culture chamber 10 by adjusting the automatic control valve 30 connected to the nitrogen tank 50.
- the controller 80 is mainly composed of a PLC (automatic control circuit) is operated by a program configured to meet the conditions in the culture chamber 10, because the given conditions are not complicated or varied, it is possible to use a low-cost PCB circuit board or It can be composed of a variety of circuits.
- PLC automatic control circuit
- the vacuum pump 20 After inserting the culture vessel containing the cells into the culture chamber 10, the vacuum pump 20 forcibly sucks the air in the culture chamber 10 and discharged to the outside, the controller 80 detects the signal to operate the automatic control valve 30 By operating the carbon dioxide tank 40 to supply as much carbon dioxide as the amount of air in the culture chamber 10.
- the carbon dioxide concentration in the culture chamber 10 is improved, and when the carbon dioxide concentration suitable for cell culture is reached (mainly 5%), the carbon dioxide detection sensor 60 installed in the culture chamber 10 detects the signal and the controller 80 ), The controller 80 operates the automatic control valve 30 again to stop the supply of carbon dioxide.
- Hypoxia incubator used to culture cells of the same type as stem cells and used to control the concentration of oxygen.
- the culture vessel containing the cells is placed in the culture chamber 10, and the vacuum pump 20 forcibly sucks the air in the culture chamber 10 and discharges it to the outside. 30) is operated to supply nitrogen as much as the amount of air in the culture chamber 10 from the nitrogen tank 50.
- the controller 80 stops the supply of nitrogen by operating the automatic control valve 30 again.
- the door of the culture chamber 10 is opened, and the air components in the culture chamber 10 are held back. It becomes equal to medium oxygen concentration (21%). Inserting the culture vessel containing the cells in the culture chamber 10 for another cell culture and closing the door, the operation is repeated in order starting with the operation of the vacuum pump 20 while the oxygen concentration in the culture chamber 10 during the cell culture (Mainly 1 to 8%) is kept constant.
- the supply of nitrogen into the culture chamber 10 to adjust the oxygen concentration is lowered because the naturally occurring carbon dioxide is generated as the cells in the culture chamber 10 are cultured, but it is not necessary to supply carbon dioxide separately. If necessary, carbon dioxide is supplied from the carbon dioxide tank to control the carbon dioxide concentration.
- the carbon dioxide incubator used while adjusting the carbon dioxide concentration according to the type of cells to be cultured, and the hypoxia incubator used while adjusting the oxygen concentration can be selectively used. Will be.
- the Hypoxia incubator can be used at the same time.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Analytical Chemistry (AREA)
- Sustainable Development (AREA)
- Microbiology (AREA)
- Biotechnology (AREA)
- Biomedical Technology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
The present invention relates to an incubator for cell culture, comprising a culture chamber (10) for cell culture, a vacuum pump (20) for discharging air from the culture chamber (10) to the outside, an automatic control valve (30) for controlling a supply pipe (41) of a carbon dioxide tank (40) for supplying carbon dioxide into the culture chamber (10) and a supply pipe (51) of a nitrogen tank (50) for supplying nitrogen into the culture chamber (10) to control a supply of carbon dioxide and nitrogen, a carbon dioxide sensor (60) for sensing the concentration of carbon dioxide in the culture chamber (10), an oxygen sensor (70) for sensing the concentration of oxygen in the culture chamber (10), and a controller (80) for receiving signals from the vacuum pump (20) and sensors (60, 70), and controlling the automatic control valve (30) in accordance with the received signals, whereby the present invention with the aforementioned simple configuration can be selectively used as a carbon dioxide incubator in which a concentration of carbon dioxide in a culture chamber is controlled, or as a hypoxia incubator in which a concentration of oxygen in a culture chamber is controlled.
Description
본 발명은 세포를 배양하기 위한 인큐베이터에 관한 것으로, 보다 상세하게는 배양실 내의 이산화탄소 농도를 대기 중 보다 높게 사용하는 이산화탄소 인큐베이터와, 배양실 내의 산소 농도를 대기 중 보다 낮게 사용하는 하이폭시아 인큐베이터를 선택적으로 사용할 수 있는 세포 배양용 인큐베이터에 관한 것이다.The present invention relates to an incubator for culturing cells, and more particularly, to a carbon dioxide incubator using a higher carbon dioxide concentration in the culture chamber and a hypoxia incubator using a lower oxygen concentration in the culture chamber. It relates to a cell culture incubator that can be used.
세포 배양은 생물체의 조직으로부터 분리된 세포를 배양하는 것으로 주로 식물에서는 캘러스(callus, 식물체에 상처가 났을 때 생기는 조직으로 유상조직, 유합조직, 칼루스라고도 한다) 일부를 액체 배양하거나 동식물의 종양 세포를 배양한다.Cell culture is the cultivation of cells isolated from tissues of living organisms. In plants, some of the callus, which is a tissue that occurs when the plant is injured, is also called oily tissue, callus, or callus. Incubate.
일반적으로 세포를 배양하는데 인큐베이터가 사용된다. 세포는 그 종류마다 다양한 조건들을 맞추어야 하는데 그 중 주로 사용되는 것으로는 대부분의 동물세포를 배양하는 이산화탄소 인큐베이터가 있다. 대기 중 공기는 질소 78%, 산소 21%, 이산화탄소 0.03% 및 기타 성분들로 이루어지는데, 이산화탄소 인큐베이터에서 세포가 배양되기 적합한 이산화탄소의 농도는 5% 정도이다.Incubators are generally used to culture cells. Cells must meet a variety of conditions for each type, the most commonly used being a carbon dioxide incubator for culturing most animal cells. Atmospheric air consists of 78% nitrogen, 21% oxygen, 0.03% carbon dioxide and other components, with a concentration of about 5% suitable for the cell culture in the carbon dioxide incubator.
공개특허공보 제10-2004-27395호에는 이산화탄소 인큐베이터가 개시되어 있는데, 상기 문헌에 개시된 이산화탄소 인큐베이터는 도 1에 도시된 바와 같이 인큐베이터 내에 이산화탄소 농도를 검출하는 검출 수단, 이산화탄소 농도를 설정하는 설정 수단, 이산화탄소를 공급하는 공급 수단 및 공급 수단을 제어하는 제어 수단으로 이루어져 공급 수단에서 이산화탄소를 공급하면서 배양 공간 내의 공기를 배출관을 통해 배양 공간 외부로 밀어내어 배양 공간 내의 이산화탄소 농도를 조절하도록 구성된다.Patent Publication No. 10-2004-27395 discloses a carbon dioxide incubator, the carbon dioxide incubator disclosed in the document is a detection means for detecting the carbon dioxide concentration in the incubator as shown in Figure 1, setting means for setting the carbon dioxide concentration, It consists of a supply means for supplying carbon dioxide and a control means for controlling the supply means is configured to adjust the carbon dioxide concentration in the culture space by pushing the air in the culture space through the discharge pipe to the outside of the culture space while supplying carbon dioxide from the supply means.
상기 이산화탄소 인큐베이터는 구성이 간단하고 비교적 저가이긴 하나 이산화탄소 농도 조절을 통해 배양되는 조건을 만족하는 세포들만 배양할 수밖에 없어 사용이 제한되는 단점이 있다.Although the carbon dioxide incubator is simple in configuration and relatively inexpensive, the carbon dioxide incubator has a disadvantage in that it can only cultivate cells satisfying the culture conditions through carbon dioxide concentration control.
상기 이산화탄소 인큐베이터에서 배양되는 세포들과는 달리 산소 농도 조절을 통해 줄기세포와 같은 종류의 세포를 배양하는 하이폭시아(Hypoxia) 인큐베이터가 있는데, 그 하나의 예가 미국 공개특허공보 제2003-92178호에 개시되어 있다.Unlike cells cultured in the carbon dioxide incubator, there is a Hypoxia incubator for culturing cells of the same type as stem cells by adjusting oxygen concentration, and one example thereof is disclosed in US Patent Publication No. 2003-92178. have.
대기 중 산소 농도는 약 21% 정도인데 이러한 상태를 노목시아 상태라 하고, 산소 농도가 대기 중 보다 낮은 상태를 하이폭시아 상태라 한다. 이러한 하이폭시아 상태를 유지시켜 가며 사용되는 것을 하이폭시아 인큐베이터라 한다. 하이폭시아 인큐베이터에서 산소 농도에 의해 배양되는 줄기세포 등이 배양되기 적합한 산소 농도는 그 종류에 따라 1∼8% 정도이다.The oxygen concentration in the atmosphere is about 21%, and this state is called a nomoxia state, and a state where the oxygen concentration is lower than that in the air is called a hypoxia state. It is called a hypoxia incubator to be used while maintaining the state of this hypoxia. The oxygen concentration suitable for culturing stem cells or the like cultured by the oxygen concentration in the Hypoxia incubator is about 1 to 8% depending on the type thereof.
상기 문헌에 개시된 하이폭시아 인큐베이터는 도 2에 도시된 바와 같이 배양실에 컨트롤러에 의해 산소 탱크, 질소 탱크 및 이산화탄소 탱크가 연결되어 컨트롤러에서 배양실 내로 산소, 질소 및 이산화탄소의 공급을 제어하도록 이루어져 배양실 내로 각 성분들을 공급하면서 공기를 밀어내어 배양실 내의 산소 농도를 조절하도록 구성된다.The HYPOXY incubator disclosed in the above document has an oxygen tank, a nitrogen tank, and a carbon dioxide tank connected to the culture chamber by a controller to control the supply of oxygen, nitrogen, and carbon dioxide to the culture chamber as shown in FIG. 2. It is configured to push out air while supplying the components to adjust the oxygen concentration in the culture chamber.
상기 하이폭시아 인큐베이터는 이산화탄소 인큐베이터에 비해 상당히 고가이고, 세 개의 각 탱크에서 공급되는 성분들을 섞는데 있어서 상당한 기술을 필요로 하고 약간의 오차만 나도 잔고장이 잦으며 각 성분들을 감지하는 센서가 3개나 들어가게 되므로 센서의 개수가 많은 만큼 센서들에 의한 고장확률이 높아지게 되는 문제점도 안고 있다.The Hypoxia incubator is considerably more expensive than the carbon dioxide incubator and requires considerable skill in mixing the components supplied from each of the three tanks, and even if there is a slight error, there are three sensors that detect each component. As the number of sensors is high, the probability of failure due to the sensors also increases.
한편, 상기 이산화탄소 인큐베이터와 하이폭시아 인큐베이터를 선택적으로 사용할 필요가 있으나, 현재 하나의 인큐베이터로 이산화탄소 인큐베이터와 하이폭시아 인큐베이터를 모두 사용할 수 있는 인큐베이터가 개발되어 있지 않는 실정이고, 각각 별도로 구매하는 경우 이에 따른 비용 및 유지보수비용이 늘어나게 되는 문제점이 있다.On the other hand, it is necessary to selectively use the carbon dioxide incubator and the Hypoxia incubator, but there is currently no incubator that can use both the carbon dioxide incubator and the Hypoxia incubator as one incubator, and if purchased separately, There is a problem that increases the cost and maintenance costs.
본 발명은 상기 종래기술의 문제점을 해결하기 위하여 안출한 것으로, 배양실 내에 이산화탄소 농도를 조절하여 주로 동물세포 배양에 사용되는 이산화탄소 인큐베이터와 배양실 내에 산소 농도를 조절하여 주로 줄기세포 배양에 사용되는 하이폭시아 인큐베이터를 선택적으로 사용할 수 있는 세포 배양용 인큐베이터를 제공하는데 그 목적이 있다.The present invention has been made to solve the problems of the prior art, the carbon dioxide incubator mainly used for animal cell culture by adjusting the carbon dioxide concentration in the culture chamber and the hypoxia mainly used for stem cell culture by controlling the oxygen concentration in the culture chamber It is an object of the present invention to provide an incubator for cell culture that can selectively use an incubator.
또한 본 발명은 이산화탄소 인큐베이터와 하이폭시아 인큐베이터를 복합적으로 구성하되 장치를 간단하게 함으로써 비용을 절감하고 그 유지보수를 용이하게 할 수 있는 세포 배양용 인큐베이터를 제공하는데 또 다른 목적이 있다.In another aspect, the present invention is to provide a cell culture incubator that can be configured in combination with a carbon dioxide incubator and a Hypoxia incubator, but by simplifying the device can reduce the cost and facilitate the maintenance.
상기와 같은 과제를 해결하기 위한 본 발명은 세포를 배양하는 배양실(10)과, 배양실(10) 내의 공기를 외부로 배출시키는 진공 펌프(20)와, 배양실(10) 내로 이산화탄소를 공급하는 이산화탄소 탱크(40)의 공급관(41)과 질소를 공급하는 질소 탱크(50)의 공급관(51)을 제어하여 이산화탄소와 질소를 공급하는 자동제어밸브(30)와, 배양실(10) 내의 이산화탄소 농도를 감지하는 이산화탄소 감지 센서(60) 및 산소 농도를 감지하는 산소 감지 센서(70)와, 상기 진공 펌프(20) 및 각 센서(60, 70)의 감지신호를 전송받아 자동제어밸브(30)를 제어하는 컨트롤러(80)로 구성되는데 그 기술적 특징이 있다.The present invention for solving the above problems is a culture chamber 10 for culturing cells, a vacuum pump 20 for discharging air in the culture chamber 10 to the outside, and a carbon dioxide tank for supplying carbon dioxide into the culture chamber 10 The supply pipe 41 of the 40 and the automatic control valve 30 for supplying carbon dioxide and nitrogen by controlling the supply pipe 51 of the nitrogen tank 50 for supplying nitrogen, and detecting the carbon dioxide concentration in the culture chamber 10 Controller for controlling the automatic control valve 30 by receiving the carbon dioxide detection sensor 60 and the oxygen detection sensor 70 for detecting the oxygen concentration, and the detection signal of the vacuum pump 20 and each sensor 60, 70 It consists of 80, which has its technical features.
또한 본 발명은 상기 자동제어밸브(30)가 이산화탄소 공급관(41)과 질소 공급관(51)에 연결되어 이산화탄소와 질소를 선택적으로 제어하여 공급하는 3방향밸브인 것을 그 기술적 특징으로 한다.In addition, the present invention is characterized in that the automatic control valve 30 is connected to the carbon dioxide supply pipe 41 and the nitrogen supply pipe 51 is a three-way valve for selectively controlling and supplying carbon dioxide and nitrogen.
또한 본 발명은 상기 자동제어밸브(30)가 이산화탄소 공급관(41)과 질소 공급관(51)에 각각 연결되는 것을 그 기술적 특징으로 한다.In addition, the present invention is characterized in that the automatic control valve 30 is connected to the carbon dioxide supply pipe 41 and the nitrogen supply pipe 51, respectively.
본 발명은 세포 배양에 이산화탄소 농도를 조절하여 사용하는 이산화탄소 인큐베이터와 산소 농도를 조절하여 사용하는 하이폭시아 인큐베이터를 하나의 인큐베이터로 구성함으로써 각각의 인큐베이터를 별도를 구매할 필요가 없어 비용이 절감된다.According to the present invention, the carbon dioxide incubator used to control the carbon dioxide concentration and the hypoxia incubator used to control the oxygen concentration are configured as one incubator, thereby reducing the cost of purchasing each incubator separately.
또한 이산화탄소 인큐베이터와 하이폭시아 인큐베이터를 복합적으로 구성하되 각각의 인큐베이터에서 제어하는 탱크와 센서의 개수를 줄임으로써 구성이 간단하여 이에 따른 유지보수가 용이하고, 농도조절이 용이한 효과가 있다.In addition, the carbon dioxide incubator and the Hypoxia incubator are configured in combination, but by reducing the number of tanks and sensors controlled in each incubator, the configuration is simple and easy to maintain accordingly, there is an effect of easy concentration control.
도 1은 종래 이산화탄소 인큐베이터의 구성도,1 is a block diagram of a conventional carbon dioxide incubator,
도 2는 종래 하이폭시아 인큐베이터의 구성도,2 is a block diagram of a conventional Hypoxia incubator,
도 3은 본 발명의 일 실시형태에 따른 세포 배양용 인큐베이터의 개략 구성도,3 is a schematic structural diagram of an incubator for cell culture according to one embodiment of the present invention,
도 4는 본 발명의 다른 실시형태에 따른 세포 배양용 인큐베이터의 개략 구성도.4 is a schematic configuration diagram of an incubator for cell culture according to another embodiment of the present invention.
<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>
A: 세포 배양용 인큐베이터 10: 배양실A: incubator 10 for cell culture: culture chamber
20: 진공 펌프 30: 자동제어밸브20: vacuum pump 30: automatic control valve
40: 이산화탄소 탱크 41, 51: 공급관40: carbon dioxide tank 41, 51: supply pipe
50: 질소 탱크 60: 이산화탄소 감지 센서50: nitrogen tank 60: carbon dioxide detection sensor
70: 산소 감지 센서 80: 컨트롤러70: oxygen detection sensor 80: controller
이하에서는 첨부된 도면을 이용하여 본 발명의 구성 및 실시형태를 상세히 설명한다.Hereinafter, with reference to the accompanying drawings will be described in detail the configuration and embodiment of the present invention.
도 3은 본 발명의 일 실시형태에 따른 세포 배양용 인큐베이터의 개략 구성도이고, 도 4는 본 발명의 다른 실시형태에 따른 세포 배양용 인큐베이터의 개략 구성도이다.3 is a schematic configuration diagram of a cell culture incubator according to an embodiment of the present invention, Figure 4 is a schematic configuration diagram of a cell culture incubator according to another embodiment of the present invention.
도 3 및 도 4를 참조하여 보면 본 발명의 실시형태에 따른 세포 배양용 인큐베이터(A)는 세포를 배양하는 배양실(10)과, 배양실(10) 내의 공기를 외부로 배출시키는 진공 펌프(20)와, 배양실(10)에 이산화탄소 또는 질소를 제어하여 공급하는 자동제어밸브(30)와, 배양실(10) 내의 이산화탄소 농도를 감지하는 이산화탄소 감지 센서(60) 및 산소 농도를 감지하는 산소 감지 센서(70)와, 상기 진공 펌프(20) 및 각 센서(60, 70)의 감지에 따라 자동제어밸브(30)를 제어하는 컨트롤러(80)를 포함하는 구조이다.Referring to FIGS. 3 and 4, the cell culture incubator A according to the embodiment of the present invention includes a culture chamber 10 for culturing cells and a vacuum pump 20 for discharging air in the culture chamber 10 to the outside. And, the automatic control valve 30 for controlling and supplying carbon dioxide or nitrogen to the culture chamber 10, the carbon dioxide detection sensor 60 for detecting the carbon dioxide concentration in the culture chamber 10 and the oxygen detection sensor 70 for detecting the oxygen concentration (70) ) And a controller 80 for controlling the automatic control valve 30 according to the detection of the vacuum pump 20 and the sensors 60 and 70.
배양실(10)은 생물체(주로 미생물 및 발생중인 동식물의 배(胚))나 생물체의 일부(기관, 조직, 세포 등)를 적당히 인공적으로 조절한 환경조건에서 생육시키는 공간으로, 주로 도어 구조가 설치된 케이스 형상(미도시됨)으로 구성되어 그 내부에 세포가 담긴 배양용기(미도시됨)를 넣고 세포의 안정된 성장조건에 따라 배양실(10) 내의 공기 조성비를 조절해 가며 세포를 배양하는데 사용된다.The culture chamber 10 is a space for growing organisms (mainly microorganisms and embryos of living plants and animals) or parts of organisms (organs, tissues, cells, etc.) under environmental conditions in which artificial conditions are appropriately controlled. It is composed of a case shape (not shown) and puts a culture vessel (not shown) containing cells therein and is used to culture the cells while controlling the air composition ratio in the culture chamber 10 according to the stable growth conditions of the cells.
본 발명에서는 배양실(10) 내에서 공기 조성비, 특히 이산화탄소 농도 및 산소 농도를 선택적으로 조절할 수 있도록 한 것이며, 이때 이산화탄소 농도를 조절하여 사용하는 것을 이산화탄소 인큐베이터(Carbon dioxide Incubator)라 하고, 산소 농도를 조절하여 사용하는 것을 하이폭시아 인큐베이터(Hypoxia Incubator)라 하 한다.In the present invention, it is possible to selectively adjust the air composition ratio, in particular carbon dioxide concentration and oxygen concentration in the culture chamber (10), in which the use of the carbon dioxide concentration to control the carbon dioxide incubator (Carbon dioxide Incubator), to control the oxygen concentration It is referred to as a Hypoxia incubator.
진공 펌프(20)는 배양실(10)에 연결 설치되어 배양실(10) 내의 공기를 외부로 강제 배출시키게 되고, 또한 컨트롤러(80)와 연결 설치되어 배양실(10) 내의 상황에 따라 제어된다.The vacuum pump 20 is connected to the culture chamber 10 to forcibly discharge the air in the culture chamber 10 to the outside, and is also connected to the controller 80 and is controlled according to the situation in the culture chamber 10.
진공 펌프(20)에서 배양실(10) 내의 공기를 외부로 배출시킨 후 이산화탄소 인큐베이터로 사용할 때에는 이산화탄소 탱크(40)로부터 이산화탄소를 공급하여 배양실(10) 내의 이산화탄소의 양을 증가시킴으로써 0.03%인 이산화탄소의 농도를 5% 정도로 조절하게 되고, 하이폭시아 인큐베이터로 사용할 때에는 질소 탱크(50)로부터 질소를 공급하여 배양실(10) 내의 질소의 양을 증가시킴으로써 21%인 산소의 농도를 1~8% 정도로 저하시켜 산소 농도를 조절하게 된다. 이때 하이폭시아 인큐베이터로 사용할 때에는 통상 이산화탄소를 주도적으로 제어할 필요가 없으나, 이산화탄소 농도가 너무 낮거나 높아 이산화탄소 농도를 조절할 필요가 있는 경우에는 이산화탄소 탱크(40)로부터 이산화탄소를 공급하거나 진공펌프(20)에서 배양실(10) 내의 공기를 배출시켜 이산화탄소 농도를 조절할 수도 있다.When the vacuum pump 20 discharges the air in the culture chamber 10 to the outside and uses it as a carbon dioxide incubator, the carbon dioxide concentration is 0.03% by supplying carbon dioxide from the carbon dioxide tank 40 to increase the amount of carbon dioxide in the culture chamber 10. Is controlled to about 5%, and when used as a HYPOXY incubator, by supplying nitrogen from the nitrogen tank 50 to increase the amount of nitrogen in the culture chamber 10 to reduce the concentration of oxygen of 21% to about 1 to 8% To control the oxygen concentration. In this case, when using as a HYPOXY incubator, it is usually not necessary to control the carbon dioxide, but when the carbon dioxide concentration is too low or high, it is necessary to adjust the carbon dioxide concentration from the carbon dioxide tank 40 or supply a vacuum pump 20 By discharging the air in the culture chamber 10 may be adjusted to the carbon dioxide concentration.
자동제어밸브(30)는 배양실(10) 내로 이산화탄소를 공급하는 이산화탄소 탱크(40)의 공급관(41)과, 질소를 공급하는 질소 탱크(50)의 공급관(51)에 연결 설치되고, 진공 펌프(20)와 이산화탄소 감지 센서(60) 및 산소 감지 센서(70)로부터 감지신호를 전송 받은 컨트롤러(80)에 의해 배양실(10) 내로 이산화탄소 및/또는 질소를 공급 조절함으로써 배양실(10) 내의 이산화탄소 또는 산소의 농도를 조절하게 된다.The automatic control valve 30 is connected to the supply pipe 41 of the carbon dioxide tank 40 for supplying carbon dioxide into the culture chamber 10 and to the supply pipe 51 of the nitrogen tank 50 for supplying nitrogen, and the vacuum pump ( 20 and carbon dioxide or oxygen in the culture chamber 10 by controlling the supply of carbon dioxide and / or nitrogen into the culture chamber 10 by the controller 80 receiving the detection signal from the carbon dioxide detection sensor 60 and the oxygen detection sensor 70. To adjust the concentration.
이때 도 3에서와 같이 각 공급관(41, 51)을 3방향밸브로 연결하여 사용할 수도 있고, 도 4에서와 같이 별개로 사용할 수도 있다. 또한 도 3 및 도 4에서는 각 공급관(41, 51)을 별개로 설치하였으나, 이산화탄소 인큐베이터로 사용할 때에는 이산화탄소 탱크를 연결하고, 하이폭시아 인큐베이터로 사용할 때에는 이산화탄소 탱크를 제거하고 질소 탱크를 연결하여 사용할 수도 있다. 물론 하이폭시아 인큐베이터에서 이산화탄소 농도를 조절할 필요가 있는 경우에는 이산화탄소 탱크와 질소 탱크를 모두 연결하여 사용하게 된다.At this time, as shown in Figure 3, each supply pipe (41, 51) may be used by connecting with a three-way valve, or may be used separately as shown in FIG. In addition, although each supply pipe 41 and 51 are separately installed in FIG. 3 and FIG. 4, when using as a carbon dioxide incubator, a carbon dioxide tank may be connected, and when using a hypoxia incubator, a carbon dioxide tank may be removed and a nitrogen tank may be connected. have. Of course, when it is necessary to control the carbon dioxide concentration in the Hypoxia incubator, both the carbon dioxide tank and the nitrogen tank are used.
이산화탄소 감지 센서(60)는 이산화탄소 인큐베이터로 사용할 때 작동되는데 이때 감지범위는 주로 이산화탄소 농도 5% 정도이며 그 외 원하는 농도로 자유 조절이 가능하다. 이산화탄소 탱크(40)로부터 배양실(10) 내로 이산화탄소를 공급시키고 배양실(10) 내의 이산화탄소 농도가 이산화탄소 감지 센서(60)에 입력된 이산화탄소 감지 범위에서 벗어나게 되면 센서(60)에서 컨트롤러(80)로 감지신호를 보내게 되며, 컨트롤러(80)에서는 자동제어밸브(30)를 작동시켜 이산화탄소 탱크(40)로부터 배양실(10) 내로의 이산화탄소 공급을 중단하여 배양실(10) 내의 이산화탄소 농도를 조절하게 된다.When the carbon dioxide sensor 60 is used as a carbon dioxide incubator, the detection range is mainly about 5% of carbon dioxide concentration and can be freely adjusted to other desired concentrations. When the carbon dioxide is supplied from the carbon dioxide tank 40 into the culture chamber 10 and the carbon dioxide concentration in the culture chamber 10 is out of the carbon dioxide detection range input to the carbon dioxide sensor 60, the sensor 60 detects the signal from the controller 80. The controller 80 controls the carbon dioxide concentration in the culture chamber 10 by stopping the supply of carbon dioxide from the carbon dioxide tank 40 to the culture chamber 10 by operating the automatic control valve 30.
반면 산소 감지 센서(70)는 하이폭시아로 사용할 때 작동되며 이때 감지범위는 세포가 배양되는 조건을 만족하는 범위에서 결정되고 주로 산소 농도 1∼8%로 설정되며, 그 외 대기 중 산소 농도인 21% 이하의 범위에서 자유 조절이 가능하다. 질소 탱크(50)로부터 배양실(10) 내로 질소를 공급시키고 배양실(10) 내의 산소 농도가 산소 감지 센서(70)에 입력된 산소 감지 범위에서 벗어나게 되면 센서(70)에서 컨트롤러(80)로 신호를 보내게 되고, 컨트롤러(80)에서는 자동제어밸브(30)를 작동시켜 질소 탱크(40)로부터 배양실(10) 내로의 질소 공급을 중단하여 배양실(10) 내의 산소 농도를 조절하게 된다.On the other hand, the oxygen detection sensor 70 is operated when used as a hypoxia, and the detection range is determined in a range that satisfies the conditions in which the cells are cultured, and is mainly set at an oxygen concentration of 1 to 8%. Free adjustment is possible in the range of% or less. When nitrogen is supplied from the nitrogen tank 50 into the culture chamber 10 and the oxygen concentration in the culture chamber 10 is out of the oxygen detection range input to the oxygen detection sensor 70, a signal is sent from the sensor 70 to the controller 80. The controller 80 operates the automatic control valve 30 to stop the nitrogen supply from the nitrogen tank 40 into the culture chamber 10 to adjust the oxygen concentration in the culture chamber 10.
상기 이산화탄소 감지 센서(60)와 산소 감지 센서(70)는 컨트롤러(80)에 각각 연결되어 감지신호를 컨트롤러(80)로 전송하게 된다.The carbon dioxide detecting sensor 60 and the oxygen detecting sensor 70 are respectively connected to the controller 80 to transmit a detection signal to the controller 80.
컨트롤러(80)는 상기 센서(60, 70)와 자동제어밸브(30) 및 진공 펌프(20)와 상호 연결되어 센서(60, 70)와 진공 펌프(20)에서 감지신호가 전송되면 이산화탄소 탱크(40)와 질소 탱크(50)에 연결된 자동제어밸브(30)를 조절함으로써 배양실(10) 내의 이산화탄소 농도 및 산소 농도를 조절하도록 구성된다.The controller 80 is connected to the sensors 60 and 70, the automatic control valve 30, and the vacuum pump 20, so that when a detection signal is transmitted from the sensors 60 and 70 and the vacuum pump 20, the carbon dioxide tank ( 40) and the carbon dioxide concentration and the oxygen concentration in the culture chamber 10 by adjusting the automatic control valve 30 connected to the nitrogen tank 50.
상기 컨트롤러(80)는 주로 PLC(자동제어회로)로 구성되어 배양실(10) 내의 조건에 맞도록 구성된 프로그램에 의해 작동되며, 주어진 조건들이 복잡하거나 다양하지 않으므로 저가의 PCB회로기판을 사용할 수도 있고 그 외 다양한 회로로 구성될 수 있다.The controller 80 is mainly composed of a PLC (automatic control circuit) is operated by a program configured to meet the conditions in the culture chamber 10, because the given conditions are not complicated or varied, it is possible to use a low-cost PCB circuit board or It can be composed of a variety of circuits.
이하에서는 상기한 구조로 이루어진 본 발명의 세포 배양용 인큐베이터(A)를 사용하는 방법에 대해 설명한다.Hereinafter, a method of using the cell culture incubator (A) of the present invention having the above structure will be described.
먼저 대부분의 동물세포를 배양하는데 사용되고 이산화탄소의 농도를 조절해 가며 사용되는 이산화탄소 인큐베이터에 대해 설명한다.First, the carbon dioxide incubator used to culture most animal cells and used to control the concentration of carbon dioxide will be described.
세포가 담긴 배양용기를 배양실(10) 내에 넣은 후 진공 펌프(20)에서 배양실(10) 내의 공기를 강제 흡입하여 외부로 배출시키면 컨트롤러(80)가 그 신호를 감지하여 자동제어밸브(30)를 동작시켜 이산화탄소 탱크(40)로부터 배양실(10) 내의 모자란 공기량만큼의 이산화탄소를 공급하여 준다.After inserting the culture vessel containing the cells into the culture chamber 10, the vacuum pump 20 forcibly sucks the air in the culture chamber 10 and discharged to the outside, the controller 80 detects the signal to operate the automatic control valve 30 By operating the carbon dioxide tank 40 to supply as much carbon dioxide as the amount of air in the culture chamber 10.
이산화탄소가 공급되면서 배양실(10) 내의 이산화탄소 농도가 향상되고, 세포배양에 적합한 이산화탄소 농도(주로 5%)에 다다르게 되면 배양실(10) 내에 설치된 이산화탄소 감지 센서(60)에서 감지하여 그 신호를 컨트롤러(80)로 보내게 되며, 컨트롤러(80)는 다시 자동제어밸브(30)를 동작시켜 이산화탄소의 공급을 중단하게 된다.As the carbon dioxide is supplied, the carbon dioxide concentration in the culture chamber 10 is improved, and when the carbon dioxide concentration suitable for cell culture is reached (mainly 5%), the carbon dioxide detection sensor 60 installed in the culture chamber 10 detects the signal and the controller 80 ), The controller 80 operates the automatic control valve 30 again to stop the supply of carbon dioxide.
이 상태(이산화탄소 농도 5%)에서 세포를 배양하게 되고, 배양이 완료된 세포를 배양실(10) 외부로 빼내게 되면 배양실(10)의 도어가 개방되면서 배양실(10) 내의 공기성분은 다시 대기 중 이산화탄소 농도(0.03%)와 같아지게 된다. 또 다른 세포 배양을 위해 배양실(10) 내에 세포가 담긴 배양용기를 넣고 도어를 닫게 되면 진공 펌프(20)의 작동을 시작으로 상기 동작들을 순서대로 반복하게 되면서 세포 배양시 배양실(10) 내의 이산화탄소 농도(주로 5%)를 일정하게 유지시켜 주게 된다.When the cells are cultured in this state (carbon dioxide concentration of 5%) and the cells which have been cultured are pulled out of the culture chamber 10, the door of the culture chamber 10 is opened, and the air components in the culture chamber 10 again return to atmospheric carbon dioxide. It becomes equal to the concentration (0.03%). Inserting the culture vessel containing the cells in the culture chamber 10 for another cell culture and closing the door repeats the above operations in order starting with the operation of the vacuum pump 20, the carbon dioxide concentration in the culture chamber 10 during cell culture (Mainly 5%) is kept constant.
다음으로 줄기세포와 같은 종류의 세포들을 배양하는데 사용되고 산소의 농도를 조절해가며 사용되는 하이폭시아 인큐베이터에 대해 설명한다.Next, we describe the Hypoxia incubator used to culture cells of the same type as stem cells and used to control the concentration of oxygen.
상기와 마찬가지로 세포가 담긴 배양용기를 배양실(10) 내에 넣은 후 진공 펌프(20)에서 배양실(10) 내의 공기를 강제 흡입하여 외부로 배출시키면 컨트롤러(80)가 그 신호를 감지하여 자동제어밸브(30)를 동작시켜 질소 탱크(50)로부터 배양실(10) 내의 모자란 공기량만큼의 질소를 공급하여 준다.In the same manner as above, the culture vessel containing the cells is placed in the culture chamber 10, and the vacuum pump 20 forcibly sucks the air in the culture chamber 10 and discharges it to the outside. 30) is operated to supply nitrogen as much as the amount of air in the culture chamber 10 from the nitrogen tank 50.
질소가 공급되면서 배양실(10) 내의 산소 농도가 저하되고, 세포배양에 적합한 산소 농도(주로 1∼8%)에 다다르게 되면 배양실(10) 내에 설치된 산소 감지 센서(70)에서 감지하여 그 신호를 컨트롤러(80)로 보내게 되며, 컨트롤러(80)는 다시 자동제어밸브(30)를 동작시켜 질소의 공급을 중단하게 된다.When nitrogen is supplied, the oxygen concentration in the culture chamber 10 decreases, and when the oxygen concentration (mainly 1 to 8%) suitable for cell culture is reached, the signal is detected by the oxygen detecting sensor 70 installed in the culture chamber 10. 80, the controller 80 stops the supply of nitrogen by operating the automatic control valve 30 again.
이 상태(산소 농도 1∼8%)에서 세포를 배양하게 되고, 배양이 완료된 세포를 배양실(10) 외부로 빼내게 되면 배양실(10)의 도어가 개방되면서 배양실(10) 내의 공기성분은 다시 대기 중 산소 농도(21%)와 같아지게 된다. 또 다른 세포 배양을 위해 배양실(10) 내에 세포가 담긴 배양용기를 넣고 도어를 닫게 되면 진공 펌프(20)의 작동을 시작으로 상기 동작들을 순서대로 반복하게 되면서 세포 배양시 배양실(10) 내의 산소 농도(주로 1∼8%)를 일정하게 유지시켜 주게 된다.When the cells are cultured in this state (oxygen concentration of 1 to 8%) and the cells which have been cultured are taken out of the culture chamber 10, the door of the culture chamber 10 is opened, and the air components in the culture chamber 10 are held back. It becomes equal to medium oxygen concentration (21%). Inserting the culture vessel containing the cells in the culture chamber 10 for another cell culture and closing the door, the operation is repeated in order starting with the operation of the vacuum pump 20 while the oxygen concentration in the culture chamber 10 during the cell culture (Mainly 1 to 8%) is kept constant.
이때 배양실(10) 내로 질소만을 공급하여 산소 농도가 저하되도록 조절하는 것은 배양실(10) 내의 세포가 배양되면서 자연스레 이산화탄소가 발생되므로 별도로 이산화탄소를 공급할 필요는 없기 때문이나, 필요에 따라 이산화탄소 농도를 조절할 필요가 있는 경우에는 이산화탄소 탱크로부터 이산화탄소를 공급하여 이산화탄소 농도를 조절하게 된다.In this case, the supply of nitrogen into the culture chamber 10 to adjust the oxygen concentration is lowered because the naturally occurring carbon dioxide is generated as the cells in the culture chamber 10 are cultured, but it is not necessary to supply carbon dioxide separately. If necessary, carbon dioxide is supplied from the carbon dioxide tank to control the carbon dioxide concentration.
본 발명의 세포 배양용 인큐베이터(A)를 상기와 같이 구성함으로써 배양되는 세포의 종류에 따라 이산화탄소 농도를 조절하면서 사용되는 이산화탄소 인큐베이터와, 산소 농도를 조절하면서 사용되는 하이폭시아 인큐베이터를 선택적으로 사용할 수 있게 되는 것이다.By constructing the cell culture incubator (A) of the present invention as described above, the carbon dioxide incubator used while adjusting the carbon dioxide concentration according to the type of cells to be cultured, and the hypoxia incubator used while adjusting the oxygen concentration can be selectively used. Will be.
또한 기존의 이산화탄소 인큐베이터를 변경 제작하면 하이폭시아 인큐베이터를 동시에 사용할 수 있으므로 사용자들의 많은 수요가 기대된다.In addition, if the existing carbon dioxide incubator is modified and manufactured, the Hypoxia incubator can be used at the same time.
Claims (3)
- 세포를 배양하기 위한 인큐베이터에 있어서,In an incubator for culturing cells,세포를 배양하는 배양실(10)과,A culture chamber 10 for culturing cells,배양실(10) 내의 공기를 외부로 배출시키는 진공 펌프(20)와,A vacuum pump 20 for discharging air in the culture chamber 10 to the outside,배양실(10) 내로 이산화탄소를 공급하는 이산화탄소 탱크(40)의 공급관(41)과 질소를 공급하는 질소 탱크(50)의 공급관(51)을 제어하여 이산화탄소 또는 질소를 공급하는 자동제어밸브(30)와,An automatic control valve 30 for supplying carbon dioxide or nitrogen by controlling a supply pipe 41 of a carbon dioxide tank 40 supplying carbon dioxide into the culture chamber 10 and a supply pipe 51 of a nitrogen tank 50 supplying nitrogen; ,배양실(10) 내의 이산화탄소 농도를 감지하는 이산화탄소 감지 센서(60) 및 산소 농도를 감지하는 산소 감지 센서(70)와,A carbon dioxide detection sensor 60 for detecting the carbon dioxide concentration in the culture chamber 10 and an oxygen detection sensor 70 for detecting the oxygen concentration,상기 진공 펌프(20) 및 각 센서(60, 70)의 감지신호를 전송받아 자동제어밸브(30)를 제어하는 컨트롤러(80)로 구성되는 것을 특징으로 하는 세포 배양용 인큐베이터.Cell vacuum incubator, characterized in that consisting of a controller (80) for receiving the detection signal of the vacuum pump 20 and each sensor (60, 70) to control the automatic control valve (30).
- 청구항 1에 있어서,The method according to claim 1,자동제어밸브(30)는 이산화탄소 공급관(41)과 질소 공급관(51)에 연결되어 이산화탄소와 질소를 선택적으로 제어하여 공급하는 3방향밸브인 것을 특징으로 하는 세포 배양용 인큐베이터.Automatic control valve 30 is a cell culture incubator, characterized in that the three-way valve is connected to the carbon dioxide supply pipe 41 and the nitrogen supply pipe 51 to selectively control the supply of carbon dioxide and nitrogen.
- 청구항 1에 있어서,The method according to claim 1,자동제어밸브(30)는 이산화탄소 공급관(41)과 질소 공급관(51)에 각각 연결되는 이산화탄소와 질소를 제어하는 것을 특징으로 하는 세포 배양용 인큐베이터.Automatic control valve 30 is a cell culture incubator, characterized in that for controlling the carbon dioxide and nitrogen connected to the carbon dioxide supply pipe 41 and the nitrogen supply pipe 51, respectively.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2008-0114961 | 2008-11-19 | ||
KR1020080114961A KR20100056017A (en) | 2008-11-19 | 2008-11-19 | Incubator for cell culture |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010058898A1 true WO2010058898A1 (en) | 2010-05-27 |
Family
ID=42198316
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2009/004888 WO2010058898A1 (en) | 2008-11-19 | 2009-08-31 | Incubator for cell culture |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR20100056017A (en) |
WO (1) | WO2010058898A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018055153A1 (en) | 2016-09-23 | 2018-03-29 | Xcell Medical Solutions, S.L. | Cell therapy with polarized macrophages for tissue regeneration |
CN108384714A (en) * | 2018-04-23 | 2018-08-10 | 苏州欧飞纳米科技有限公司 | A kind of gas-dynamic control system of biological cell reactor |
CN110106082A (en) * | 2019-05-28 | 2019-08-09 | 中南大学湘雅医院 | Embedded cell hypoxia culture box |
CN111205975A (en) * | 2019-10-18 | 2020-05-29 | 浙江泰林医学工程有限公司 | Carbon dioxide culture system |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101896564B1 (en) * | 2015-12-09 | 2018-09-07 | 이길영 | Cell culture device for multiple environment control |
CN109868221A (en) * | 2019-03-18 | 2019-06-11 | 黄展鹏 | A kind of biotechnology cell culture apparatus |
CN110760442B (en) * | 2019-10-09 | 2024-10-08 | 浦江鲲鹏器械有限公司 | Carbon dioxide cell incubator |
CN111685051B (en) * | 2020-07-01 | 2024-06-04 | 重庆医科大学 | Animal hypoxia/reoxygenation culture device |
KR20230072901A (en) | 2021-11-18 | 2023-05-25 | 주식회사 제이오텍 | CO2 Incubator |
CN114107052B (en) * | 2021-12-03 | 2022-05-20 | 深圳市新一仑生物科技有限公司 | Portable stem cell amplification culture equipment capable of realizing online dynamic real-time monitoring |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0577A (en) * | 1991-06-24 | 1993-01-08 | Sanyo Electric Co Ltd | Culture device |
JPH0661257B2 (en) * | 1990-06-07 | 1994-08-17 | 三洋電機株式会社 | Incubator |
KR20040027395A (en) * | 2002-09-27 | 2004-04-01 | 산요덴키가부시키가이샤 | Carbon dioxide incubator |
KR100580304B1 (en) * | 2004-04-28 | 2006-05-16 | 양남웅 | Multi purpose incubator |
-
2008
- 2008-11-19 KR KR1020080114961A patent/KR20100056017A/en not_active Application Discontinuation
-
2009
- 2009-08-31 WO PCT/KR2009/004888 patent/WO2010058898A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0661257B2 (en) * | 1990-06-07 | 1994-08-17 | 三洋電機株式会社 | Incubator |
JPH0577A (en) * | 1991-06-24 | 1993-01-08 | Sanyo Electric Co Ltd | Culture device |
KR20040027395A (en) * | 2002-09-27 | 2004-04-01 | 산요덴키가부시키가이샤 | Carbon dioxide incubator |
KR100580304B1 (en) * | 2004-04-28 | 2006-05-16 | 양남웅 | Multi purpose incubator |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018055153A1 (en) | 2016-09-23 | 2018-03-29 | Xcell Medical Solutions, S.L. | Cell therapy with polarized macrophages for tissue regeneration |
US10724004B2 (en) | 2016-09-23 | 2020-07-28 | Xcell Medical Solutions, S.L. | Cell therapy with polarized macrophages for tissue regeneration |
CN108384714A (en) * | 2018-04-23 | 2018-08-10 | 苏州欧飞纳米科技有限公司 | A kind of gas-dynamic control system of biological cell reactor |
CN110106082A (en) * | 2019-05-28 | 2019-08-09 | 中南大学湘雅医院 | Embedded cell hypoxia culture box |
CN111205975A (en) * | 2019-10-18 | 2020-05-29 | 浙江泰林医学工程有限公司 | Carbon dioxide culture system |
CN111205975B (en) * | 2019-10-18 | 2023-06-02 | 浙江泰林医学工程有限公司 | Carbon dioxide culture system |
Also Published As
Publication number | Publication date |
---|---|
KR20100056017A (en) | 2010-05-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010058898A1 (en) | Incubator for cell culture | |
Cohen et al. | Anaerobic digestion of glucose with separated acid production and methane formation | |
Williams et al. | Enumeration of some microbial groups in thermophilic poultry waste digesters and enrichment of a feather‐degrading culture | |
CN106277320B (en) | A kind of Penaeus Vannmei freshwater cultivation water regulation method | |
Li et al. | Performance and role of N-acyl-homoserine lactone (AHL)-based quorum sensing (QS) in aerobic granules | |
CN105683388A (en) | Self-contained anaerobic environment-generating culture devices and methods of use | |
CN201915101U (en) | Bioreactor for animal cell culture | |
CN113088451A (en) | Biological incubator for experiments | |
WO2019132423A1 (en) | High-purity methane production system and production method which use two-phase anaerobic fermentation | |
Gijzen et al. | Continuous cultivation of rumen microorganisms, a system with possible application to the anaerobic degradation of lignocellulosic waste materials | |
CN101705189A (en) | Spirulina mixed culturing technology and device | |
Tatton et al. | Methanogenesis from ethanol by defined mixed continuous cultures | |
CN105002085A (en) | Culture farm special-purpose microalgae photo-biological culture system and culture method | |
CN104109631A (en) | Microalgae culture reactor | |
CN110384001B (en) | Method and system for reducing farmland greenhouse gas emission | |
CN219385164U (en) | Automatic domestication device for domestication of strains | |
WO2004033616A8 (en) | Device for culturing cells, particularly human or animal cells | |
CN115779084B (en) | Application of preparation for activating TUSC1 gene expression of pigs in preparation of anti-pseudorabies virus infection medicines of pigs | |
AU2003302400A1 (en) | Modular system comprising multiple automated mini-bioreactors for high-throughput screening (hts) in biotechnology | |
WO2018182100A1 (en) | Photosynthetic microorganism culturing method using bicarbonate buffer prepared using carbon dioxide in exhaust gas and inorganic phosphate buffer | |
Zoutberg et al. | Aggregate-formation by Clostridium butyricum | |
CN209602556U (en) | A kind of animal cells in vitro anoxic culture control device | |
CN208361995U (en) | A kind of purifying water micrcxDrganism automatic vaccination corollary apparatus | |
CN208603980U (en) | Poultry waste water treatment system | |
Thomas | The secret to achieving reliable biological phosphorus removal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09827663 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09827663 Country of ref document: EP Kind code of ref document: A1 |