WO2010058769A1 - 石油掘削油用基油および石油掘削油組成物 - Google Patents

石油掘削油用基油および石油掘削油組成物 Download PDF

Info

Publication number
WO2010058769A1
WO2010058769A1 PCT/JP2009/069488 JP2009069488W WO2010058769A1 WO 2010058769 A1 WO2010058769 A1 WO 2010058769A1 JP 2009069488 W JP2009069488 W JP 2009069488W WO 2010058769 A1 WO2010058769 A1 WO 2010058769A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
olefin
drilling
oligomer
base oil
Prior art date
Application number
PCT/JP2009/069488
Other languages
English (en)
French (fr)
Inventor
邦夫 竹内
真治郎 藤川
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to US13/121,710 priority Critical patent/US20110251445A1/en
Priority to MX2011004439A priority patent/MX2011004439A/es
Priority to CN2009801459676A priority patent/CN102216414A/zh
Priority to EP09827550.6A priority patent/EP2357216A4/en
Priority to JP2010539230A priority patent/JPWO2010058769A1/ja
Publication of WO2010058769A1 publication Critical patent/WO2010058769A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/02Well-drilling compositions
    • C09K8/32Non-aqueous well-drilling compositions, e.g. oil-based
    • C09K8/34Organic liquids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/02Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
    • C07C2/04Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation
    • C07C2/06Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation of alkenes, i.e. acyclic hydrocarbons having only one carbon-to-carbon double bond
    • C07C2/08Catalytic processes
    • C07C2/26Catalytic processes with hydrides or organic compounds
    • C07C2/32Catalytic processes with hydrides or organic compounds as complexes, e.g. acetyl-acetonates
    • C07C2/34Metal-hydrocarbon complexes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/14Monomers containing five or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • C07C2531/12Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
    • C07C2531/14Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides of aluminium or boron
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups C07C2531/02 - C07C2531/24
    • C07C2531/38Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups C07C2531/02 - C07C2531/24 of titanium, zirconium or hafnium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • C08F4/65922Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not
    • C08F4/65925Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring containing at least two cyclopentadienyl rings, fused or not two cyclopentadienyl rings being mutually non-bridged

Definitions

  • the present invention relates to a base oil for oil drilling oil and an oil drilling oil composition, and more particularly to a base oil for oil drilling oil and an oil drilling oil composition suitable for offshore oil drilling.
  • a well is dug by a rotary drilling method in which a drilling machine (rig) is used and the drilling is usually carried out while rotating a bit.
  • a fluid called muddy water is used for conveying and discharging shavings, adjusting the pressure in the well, preventing collapse of the well, and cooling and lubricating the bit and the like.
  • various components are blended in the muddy water so that specific gravity, viscosity, lubrication performance and the like are appropriate.
  • mineral oil has been used as a lubricating oil in offshore oil drilling and the like, and it has been used as a component of muddy water.
  • synthetic oil has come to be used in order to cope with low temperature drilling and the environment as described above. ing.
  • Synthetic oils commonly known for lubrication include poly- ⁇ -olefins.
  • Patent Document 1 describes a composition containing an ⁇ -olefin dimer obtained by using BF 3 .
  • the low-temperature viscosity of the composition is high and is not suitable for oil drilling at low temperatures.
  • Patent Document 2 describes drilling oil containing poly- ⁇ -olefin, but it cannot be said to have sufficient properties for recent severe environmental regulations.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a base oil for drilling oil that has characteristics such as low toxicity and low aromatic content, has high environmental adaptability, and is suitable for oil extraction at low temperatures. It is what.
  • the present invention has been completed based on such findings. That is, the present invention 1. a base oil for oil drilling oil comprising an ⁇ -olefin oligomer produced from a ⁇ -olefin as a raw material using a metallocene catalyst, 2. 2. The base oil for oil drilling oil according to 1 above, wherein the ⁇ -olefin oligomer is an ⁇ -olefin oligomer having a kinematic viscosity at 0 ° C. of 18 mm 2 / s or less, 3. 3.
  • the metallocene catalyst has the general formula (I) (RC 5 H 4 ) 2 MX 2 (I) (R represents a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms, M represents a transition metal element of Group 4 of the periodic table, and X represents a covalent bond or ionic bond ligand.)
  • the present invention relates to an oil drilling oil composition comprising the base oil for oil drilling oil according to any one of 1 to 11 above.
  • a base oil for oil drilling oil having characteristics such as low toxicity and low aromatic content, high environmental adaptability, and low viscosity even at low temperatures.
  • the base oil for oil drilling oil of the present invention is composed of an ⁇ -olefin oligomer produced using a metallocene catalyst using ⁇ -olefin as a raw material.
  • the “oligomer” refers to a polymer obtained by polymerization of a monomer or a composition thereof, and may be a substantially specific kind of polymer, or two or more kinds (dimer, three It may be a mixture of polymers.
  • the ⁇ -olefin oligomer used in the present invention preferably has a kinematic viscosity at 0 ° C. of 18 mm 2 / s or less. Since the kinematic viscosity at 0 ° C. is 18 mm 2 / s or less, excavation can be efficiently performed even at low temperature. In view of the above, the kinematic viscosity at 0 °C is more preferably 5.0 ⁇ 17.0mm 2 / s, particularly preferably 5.0 ⁇ 15.0mm 2 / s. An ⁇ -olefin oligomer having a kinematic viscosity at 0 ° C.
  • mm 2 / s or less can be produced, for example, by increasing the content of the dimer, and is usually 80% by mass based on the total amount of the ⁇ -olefin oligomer. Above, preferably 90% by mass or more.
  • the ⁇ -olefin oligomer used in the present invention preferably has a kinematic viscosity at 100 ° C. of 2 mm 2 / s or less, more preferably 1.0 to 1.8 mm 2 / s.
  • An ⁇ -olefin oligomer having a kinematic viscosity at 100 ° C. of 2 mm 2 / s or less can be produced, for example, by using an ⁇ -olefin having 10 or less carbon atoms as a monomer.
  • the ⁇ -olefin oligomer used in the present invention preferably has a kinematic viscosity at 40 ° C. of 7 mm 2 / s or less, more preferably 2.0 to 7.0 mm 2 / s.
  • An ⁇ -olefin oligomer having a kinematic viscosity at 40 ° C. of 7 mm 2 / s or less can be produced, for example, by using an ⁇ -olefin having 8 or less carbon atoms as a monomer.
  • the ⁇ -olefin oligomer used in the present invention preferably has an average carbon number of 16 to 22, more preferably 16 to 20, particularly preferably 16 to 18, and most preferably 16 to 17.
  • ⁇ -olefin As the ⁇ -olefin as the raw material of the ⁇ -olefin oligomer, a linear ⁇ -olefin having 4 to 12 carbon atoms is usually used. Specifically, 1-butene, 1-octene, 1-hexene, 1-hexene, Examples include heptene, 1-octene, 1-nonene, 1-decene, 1-dodecene and the like. By using an ⁇ -olefin having 4 to 12 carbon atoms, it becomes easy to produce an ⁇ -olefin oligomer satisfying the above kinematic viscosity.
  • ⁇ -olefins having 8 to 10 carbon atoms are preferably used, and 1-octene and 1-decene are more preferable.
  • one ⁇ -olefin may be used alone, or two or more ⁇ -olefins may be used in combination.
  • the ⁇ -olefin oligomer used in the present invention is preferably 80% by mass or more, more preferably 90% by mass or more based on the total amount of ⁇ -olefin oligomer.
  • the content of the dimer is 80% by mass or more, the viscosity characteristics at low temperature are improved, and the production of an ⁇ -olefin oligomer that satisfies the above-mentioned definition of kinematic viscosity at 0 ° C. is facilitated.
  • the content of the dimer based on the total amount of the dimer containing a vinylidene group is preferably 80% by mass or more, more preferably 90% by mass or more. preferable.
  • the pour point of the ⁇ -olefin oligomer used in the present invention is preferably ⁇ 5 ° C. or lower, more preferably ⁇ 10 ° C. or lower. Since it is -5 ° C or less, it can be excavated efficiently even at low temperature.
  • the base oil for oil drilling oil of the present invention comprises the above ⁇ -olefin oligomer.
  • the ⁇ -olefin oligomer has low toxicity, low aromatic content, high environmental adaptability, and excellent viscosity characteristics at low temperatures. Therefore, the base oil for oil drilling oil of the present invention is preferably used in oil mining at low temperatures, particularly in offshore oil mining.
  • An oil drilling oil composition is obtained by mixing the base oil for oil drilling oil of the present invention and an additive. Since the oil drilling oil composition also has high environmental adaptability and is excellent in viscosity characteristics at low temperatures, it is preferably used in oil mining at low temperatures, particularly in offshore oil mining.
  • the form of use of the above base oil for oil drilling oil or the oil drilling oil composition is not particularly limited, and may be applied directly for lubrication of the apparatus or may be used as a component of muddy water.
  • Examples of the metallocene catalyst for producing the ⁇ -olefin oligomer include a catalyst containing a combination of a metallocene compound and a promoter.
  • a metallocene compound a compound represented by the general formula (I) (RC 5 H 4 ) 2 MX 2 (I)
  • the metallocene compound represented by these is preferable.
  • R represents a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms
  • M represents a transition metal element of Group 4 of the periodic table
  • X represents a covalent bond or an ionic bond. Represents a ligand.
  • R is preferably a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms.
  • M include titanium, zirconium, and hafnium. Among these, zirconium is preferable.
  • Specific examples of X include a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms, an amino group, and 1 to 20 carbon atoms.
  • 1 to 12 phosphorus-containing hydrocarbon groups for example, diphenylphosphine group
  • 1 to 20 carbon atoms preferably 1 to 12 silicon-containing hydrocarbon groups (for example, trimethylsilyl group)
  • 1 to 20 carbon atoms are preferable Includes boron compounds containing 1 to 12 hydrocarbon groups or halogens (for example, B (C 6 H 5 ) 4 , BF 4, etc.).
  • halogens for example, B (C 6 H 5 ) 4 , BF 4, etc.
  • hydrogen atoms, halogen atoms, hydrocarbons A group selected from a group and an alkoxy group is preferred.
  • metallocene compound represented by the general formula (I) include bis (cyclopentadienyl) zirconium dichloride, bis (methylcyclopentadienyl) zirconium dichloride, bis (ethylcyclopentadienyl) zirconium dichloride, bis (Iso-propylcyclopentadienyl) zirconium dichloride, bis (n-propylcyclopentadienyl) zirconium dichloride, bis (n-butylcyclopentadienyl) zirconium dichloride, bis (t-butylcyclopentadienyl) zirconium dichloride , Bis (texylcyclopentadienyl) zirconium dichloride, bis (trimethylsilylcyclopentadienyl) zirconium dichloride, bis (trimethylsilylmethylcyclopentadienyl) zirco Um dichloride, bis (cyclopent
  • methylaluminoxane is preferable.
  • the methylaluminoxane is not particularly limited and conventionally known methylaluminoxane can be used.
  • the general formula (II) or the general formula (III) can be used.
  • p represents the degree of polymerization, and is usually 3 to 50, preferably 7 to 40.
  • Examples of the method for producing methylaluminoxane include a method in which methylaluminum is brought into contact with a condensing agent such as water, but the means is not particularly limited, and the reaction may be carried out according to a known method.
  • the compounding ratio of the metallocene compound and methylaluminoxane is usually 1 to 1000, preferably 1 to 100, more preferably 1 to 30 for the methylaluminoxane / metallocene compound (molar ratio). When the molar ratio is 1 or more, sufficient catalytic activity is obtained, and when the molar ratio is 1000 or less, generation of a high molecular weight product can be avoided.
  • the mixing ratio of the metallocene compound represented by the general formula (I) and the ⁇ -olefin [metallocene compound (mmol) / ⁇ -olefin (L)] is usually from 0.01 to 2, preferably from 0.02 to 1. Preferably it is 0.05 to 0.5. Sufficient catalytic activity is obtained by being 0.01 or more, and removal of catalyst residue is facilitated by being 2 or less.
  • the oligomerization reaction is not limited in its reaction method, and may be performed in the absence of a solvent or in a solvent, and any method may be used.
  • a reaction solvent for example, aromatic hydrocarbons such as benzene, toluene, xylene, and ethylbenzene, alicyclic hydrocarbons such as cyclopentane, cyclohexane, and methylcyclohexane, and aliphatic hydrocarbons such as pentane, hexane, heptane, and octane Halogenated hydrocarbons such as chloroform and dichloromethane.
  • the temperature of the oligomerization reaction is usually 0 to 100 ° C., preferably 20 to 80 ° C., more preferably 30 to 70 ° C. If it is within the above range, sufficient catalytic activity can be obtained.
  • the oligomerization reaction may be performed in the presence of an aluminum compound such as diethylaluminum chloride. By allowing the compound to coexist, the polymerization activity can be improved and the degree of polymerization of the oligomer can be adjusted. Further, the oligomerization reaction may be performed in the presence of hydrogen.
  • the amount of hydrogen added is usually 0 to 50 kPa, preferably 0 to 30 kPa, more preferably 0 to 10 kPa. When the amount of hydrogenation is within the above range, it is possible to avoid the formation of a saturated product of the raw material ⁇ -olefin, and the yield of the target ⁇ -olefin oligomer is improved.
  • the ⁇ -olefin oligomer obtained by the above method may be hydrotreated. Thermal stability and oxidation stability can be improved by the hydrogenation treatment.
  • the hydrogenation temperature is usually 50 to 300 ° C., preferably 60 to 250 ° C., more preferably 70 to 200 ° C.
  • the hydrogen pressure is usually 0.1 to 10 MPa, preferably 0.5 to 2 MPa, more preferably. 0.7 to 1.5 MPa.
  • a general hydrogenation catalyst containing Pd, Ni, or the like can be used.
  • the temperature in the distillation is usually 100 to 300 ° C., preferably 120 to 280 ° C., more preferably 140 to 260 ° C., and the pressure is usually 0.1 to 15 Pa, preferably 0.4 to 7 Pa, more preferably 0.6. ⁇ 4Pa.
  • the oligomer yield, the oligomer distribution, and the proportion of vinylidene group-containing compounds in the dimer were analyzed by gas chromatography.
  • the kinematic viscosities at 0 ° C., 40 ° C., and 100 ° C. were measured according to JISK2283.
  • the pour point was measured according to JISK2269.
  • the flash point was measured according to JISK2265 (Cleveland open type).
  • Example 1 After adding 1 L of 1-decene degassed and dehydrated by nitrogen bubbling to a stainless steel autoclave with an internal volume of 2 L which was purged with nitrogen, 5 ml of a toluene solution of methylaluminoxane adjusted to 1.0 mol / L and 1.0 mol / L 1 ml of a toluene solution of diethylaluminum chloride adjusted to L was added. This was heated to 50 ° C. and stirred. Next, 25 mL of a toluene solution of bis (cyclopentadienyl) zirconium dichloride adjusted to 20 mmol / L was added and reacted at 50 ° C. for 20 hours.
  • the reaction was stopped with 250 mL of 1% aqueous sodium hydroxide solution, washed twice with 50 mL of deionized water, and the solution obtained by decomposing and removing the catalyst component was analyzed by gas chromatography.
  • the yield of the oligomer was 87%.
  • the oligomer distribution was 91.5% dimer, 6.1% trimer, 1.5% tetramer, 0.5% pentamer, 0.4% over hexamer.
  • This oligomer liquid was distilled at 1.33 Pa and 200 ° C. using a single distillation apparatus.
  • the obtained distillate was an oligomer composed of 99.9% dimer and 0.1% trimer, and the ratio of vinylidene group-containing product in the dimer was 98.2%.
  • Table 1 shows physical property values.
  • Example 2 After adding 1 L of 1-octene degassed and dehydrated by nitrogen bubbling to a 2 L stainless steel autoclave purged with nitrogen, 5 ml of a toluene solution of methylaluminoxane adjusted to 1.0 mol / L and 1.0 mol / L 1 ml of a toluene solution of diethylaluminum chloride adjusted to L was added. This was heated to 50 ° C. and stirred. Next, 25 mL of a toluene solution of bis (cyclopentadienyl) zirconium dichloride adjusted to 20 mmol / L was added and reacted at 50 ° C. for 20 hours.
  • the reaction was stopped with 250 mL of 1% sodium hydroxide aqueous solution, washed twice with 50 mL of deionized water, and the solution obtained by decomposing and removing the catalyst component was analyzed by gas chromatography.
  • the oligomer yield was 88%.
  • the oligomer distribution is 92.1% dimer, 5.8% trimer, 1.3% tetramer, 0.5% pentamer, 0.3% hexamer or more, dimer
  • the proportion of the vinylidene group-containing product was 99.0%. Table 1 shows physical property values.
  • Example 3 After adding 2.5 L of 1-decene degassed and dehydrated by nitrogen bubbling to a 5 L stainless steel autoclave purged with nitrogen, 12 ml of a toluene solution of methylaluminoxane adjusted to 1.0 mol / L was added. This was heated to 50 ° C. and stirred. Next, 10 mL of a toluene solution of bis (cyclopentadienyl) zirconium dichloride adjusted to 40 mmol / L was added, and the reaction was carried out at 50 ° C. for 7 hours while continuously supplying and stirring 5 kPa of hydrogen.
  • the reaction was stopped with 500 mL of 1% aqueous sodium hydroxide solution, washed twice with 100 mL of deionized water, and the solution obtained by decomposing and removing the catalyst components was analyzed by gas chromatography.
  • the yield of the oligomer was 94%.
  • the oligomer distribution was 42% dimer, 11% trimer, 7% tetramer, 5% pentamer, and 35% over hexamer.
  • This oligomer liquid was distilled at 1.33 Pa and 200 ° C. using a single distillation apparatus.
  • the obtained distillate was an oligomer composed of 99.4% dimer and 0.6% trimer, and the vinylidene group-containing ratio in the dimer was 95.5%.
  • Table 1 shows physical property values.
  • Example 4 After adding 2.5 L of 1-decene degassed and dehydrated by nitrogen bubbling to a 5 L stainless steel autoclave purged with nitrogen, 6 ml of a toluene solution of methylaluminoxane adjusted to 1.0 mol / L was added. This was heated to 50 ° C. and stirred. Next, 10 mL of a toluene solution of bis (t-butylcyclopentadienyl) zirconium dichloride adjusted to 25 mmol / L was added, and 2.5 kPa of hydrogen was continuously supplied and reacted at 50 ° C. for 5 hours while stirring. .
  • the reaction was stopped with 250 mL of 1% sodium hydroxide aqueous solution, washed twice with 50 mL of deionized water, and the solution obtained by decomposing and removing the catalyst component was analyzed by gas chromatography.
  • the oligomer yield was 92%.
  • the oligomer distribution was 42% dimer, 24% trimer, 12% tetramer, 7% pentamer, 15% hexamer or more.
  • This oligomer liquid was distilled at 1.33 Pa and 200 ° C. using a single distillation apparatus.
  • the obtained distillate was an oligomer composed of 99.6% dimer and 0.4% trimer, and the proportion of vinylidene group-containing product in the dimer was 93.5%.
  • Table 1 shows physical property values.
  • Table 1 shows physical property values of commercially available ⁇ -olefin oligomers produced using a BF 3 catalyst. It has a high kinematic viscosity at 0 ° C. and is not suitable for excavation work under low temperature conditions.
  • Table 2 A stainless steel reaction tower (length: 1.1 m, inner diameter: 10 mm) having a diameter of 12 mm is filled with 50 ml of HMFI-90 (manufactured by Zude Chemie, proton type MFI zeolite catalyst), and nitrogen gas is allowed to flow at 100 ml / min at 200 ° C. Pretreated for 24 hours.
  • the reaction temperature was gradually increased from the start of the supply of the ⁇ -olefin mixture, and was adjusted to 160 ° C. when 350 hours had elapsed.
  • the double bond isomerization conversion of the raw material ⁇ -olefin at this time was 96% for the ⁇ -olefin having 16 carbon atoms and 95% for the ⁇ -olefin having 18 carbon atoms.
  • the produced internal olefin composition is 60% by mass of olefins having 16 carbon atoms and 40% by mass of olefins having 18 carbon atoms, and the linearity of the produced internal olefin composition is 95% for olefins having 16 carbon atoms and 18 carbon atoms.
  • the ⁇ -olefin was 90%.
  • the content of raw material ⁇ -olefin in the produced internal olefin composition is 4.4% by mass
  • the content of branched olefin (skeletal isomerization reaction product) is 7.0% by mass
  • heavy component (of ⁇ -olefin) The content of the dimerization reaction product and the like was 1.7% by mass.
  • Table 1 shows the kinematic viscosity, pour point, and flash point of the resulting internal olefin composition. It has a high pour point and is not suitable for excavation work under low temperature conditions.
  • the ⁇ -olefin oligomer of the comparative example is excellent in environmental adaptability, but its performance as a lubricating oil for oil drilling is not sufficient.
  • the ⁇ -olefin oligomers of the examples sufficiently satisfy the regulations established by EPA for offshore oil drilling oil in terms of environmental adaptability, and are excellent in performance as a lubricating oil for oil drilling.
  • a base oil for oil drilling oil having characteristics such as low toxicity and low aromatic content, high environmental adaptability, and low viscosity even at low temperatures.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Lubricants (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

 α-オレフィンを原料としてメタロセン触媒を用いて製造されたα-オレフィンオリゴマーを含有する石油掘削油であって、低毒性、低い芳香族量等の特性を有し環境適応性が高く、さらに低温下の石油採掘に適する掘削油用基油を提供すること。

Description

石油掘削油用基油および石油掘削油組成物
 本発明は石油掘削油用基油および石油掘削油組成物に関し、詳しくは海洋石油掘削に適する石油掘削油用基油および石油掘削油組成物に関する。
 近年の油田開発においては、掘削機(リグ)を使用し、通常はビットを回転させながら掘り進むロータリー式掘削方法によって抗井が掘られる。掘削作業においては、削りくずの運搬および排出、抗井内の圧力調整、抗井の崩壊防止ならびにビット等の冷却および潤滑のために泥水と呼ばれる流体が用いられる。このため、泥水には比重、粘性、潤滑性能等が適切になるように各種成分が配合される。
 近年、アラスカ等の寒冷地の油田や深海の海底油田等が新たな油田として注目されているが、このような寒冷地や深海は温度が非常に低く、泥水も低温になりその性状が変わってしまう。したがってこのような場所の掘削作業にも適する泥水が求められている。さらに、近年の油田開発においては環境への配慮が必要であり、特に海洋油田開発においては海洋生物や自然環境への影響を低減化することが求められている。
 従来海洋石油掘削等における潤滑油として鉱油が用いられ、泥水の成分等として利用されてきたが、上記のような低温掘削や環境への対応のために、近年は合成油が用いられるようになっている。
 潤滑用として一般に知られる合成油としては、ポリ-α-オレフィンが挙げられる。例えば、特許文献1にはBF3を使用して得られるα-オレフィンの二量体を含有する組成物が記載されている。しかしながら、当該組成物の低温粘度は高く低温下の石油掘削には適していない。また、特許文献2には、ポリ-α-オレフィンを含む掘削油が記載されているが、近年の厳しい環境規制に対しては十分な性質を有しているとはいえない。
米国特許第5171905号明細書 米国特許第5045219号明細書
 本発明は上記事情に鑑みなされたもので、低毒性、低い芳香族量等の特性を有し環境適応性が高く、さらに低温下の石油採掘に適する掘削油用基油を提供することを目的とするものである。
 本発明者らは鋭意研究を重ねた結果、メタロセン触媒を使用して製造されるα-オレフィンオリゴマーを用いることにより、上記課題が解決することを見出した。本発明はかかる知見に基づいて完成したものである。
 すなわち本発明は、
1. α-オレフィンを原料としてメタロセン触媒を用いて製造されたα-オレフィンオリゴマーからなる石油掘削油用基油、
2. α-オレフィンオリゴマーが、0℃における動粘度が18mm2/s以下のα-オレフィンオリゴマーである上記1に記載の石油掘削油用基油、
3. α-オレフィンオリゴマーが、100℃における動粘度が2mm2/s以下のα-オレフィンオリゴマーである上記1または2に記載の石油掘削油用基油、
4. α-オレフィンオリゴマーが、40℃における動粘度が7mm2/s以下のα-オレフィンオリゴマーである上記1~3のいずれかに記載の石油掘削油用基油、
5. α-オレフィンオリゴマーが、平均炭素数が16~22のα-オレフィンオリゴマーである上記1~4のいずれかに記載の石油掘削油用基油、
6. α-オレフィンが、炭素数4~12のα-オレフィンである上記1~5のいずれかに記載の石油掘削油用基油、
7. α-オレフィンが、炭素数8~10のα-オレフィンである上記1~6のいずれかに記載の石油掘削油用基油、
8. α-オレフィンが、1-オクテンおよび/または1-デセンである上記1~7のいずれかに記載の石油掘削油用基油、
9. α-オレフィンオリゴマー全量基準で、二量体の含有量が80質量%以上である上記1~8のいずれかに記載の石油掘削油用基油、
10. α-オレフィンオリゴマー全量基準で、二量体の含有量が90質量%以上である上記1~9のいずれかに記載の石油掘削油用基油、および
11. メタロセン触媒が、一般式(I)
(RC542MX2   (I)
(Rは水素原子または炭素数1~10の炭化水素基を表し、Mは周期律表第4族の遷移金属元素を表し、Xは共有結合性又はイオン結合性の配位子を表す。)
で表されるメタロセン化合物、およびメチルアルミノキサンを含有するメタロセン触媒である上記1~10のいずれかに記載の石油掘削油用基油、
12.上記1~11のいずれかに記載の石油掘削油用基油を含有する石油掘削油組成物に関する。
 本発明によれば、低毒性、低い芳香族量等の特性を有し環境適応性が高く、低温下でも低粘度の石油掘削油用基油が提供される。当該石油掘削油用基油を用いることで、寒冷地や深海の油田の掘削作業の効率化が達成される。
 本発明の石油掘削油用基油は、α-オレフィンを原料としてメタロセン触媒を用いて製造されたα-オレフィンオリゴマーからなる。なお、本明細書において「オリゴマー」とはモノマーの重合によって得られる重合体またはその組成物をいい、実質的に特定の一種の重合体であってもよく、二種以上(二量体、三量体等)の混合物であってもよい。
 本発明で用いるα-オレフィンオリゴマーは、0℃における動粘度が18mm2/s以下であることが好ましい。0℃における動粘度が18mm2/s以下であることで、低温下の作業においても効率よく掘削できる。上記観点から、0℃における動粘度は5.0~17.0mm2/sがより好ましく、5.0~15.0mm2/sが特に好ましい。0℃における動粘度が18.0mm2/s以下のα-オレフィンオリゴマーは、例えば二量体の含有量を高くすることで製造することができ、α-オレフィンオリゴマー全量基準で、通常80質量%以上、好ましくは90質量%以上である。
 本発明で用いるα-オレフィンオリゴマーは、100℃における動粘度が2mm2/s以下であることが好ましく、1.0~1.8mm2/sがより好ましい。100℃における動粘度が2mm2/s以下のα-オレフィンオリゴマーは、例えば炭素数10以下のα-オレフィンをモノマーとして用いることで製造することができる。
 本発明で用いるα-オレフィンオリゴマーは、40℃における動粘度が7mm2/s以下であることが好ましく、2.0~7.0mm2/sがより好ましい。40℃における動粘度が7mm2/s以下のα-オレフィンオリゴマーは、例えば、炭素数8以下のα-オレフィンをモノマーとして用いることによって、製造することができる。
 本発明で用いるα-オレフィンオリゴマーは、平均炭素数が16~22であることが好ましく、より好ましくは16~20、特に好ましくは16~18、最も好ましくは16~17である。
 α-オレフィンオリゴマーの原料のα-オレフィンとしては、通常は炭素数4~12の直鎖状α-オレフィンが用いられ、具体的には、1-ブテン、1-オクテン、1-ヘキセン、1-ヘプテン、1-オクテン、1-ノネン、1-デセン、1-ドデセン等が挙げられる。炭素数4~12のα-オレフィンを用いることで、上記の動粘度を満たすα-オレフィンオリゴマーの製造が容易になる。上記観点から、好ましくは炭素数8~10のα-オレフィンが用いられ、1-オクテン、1-デセンがより好ましい。本発明においてはα-オレフィンは一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。
 本発明で用いるα-オレフィンオリゴマーは、α-オレフィンオリゴマー全量基準で、二量体の含有量は80質量%以上が好ましく、90質量%以上がより好ましい。二量体の含有量が80質量%以上であることで、低温下の粘度特性が良好になり、上記の0℃における動粘度の規定を満たすα-オレフィンオリゴマーの製造が容易になる。さらにビニリデン基を含有する二量体(本明細書において、ビニリデン基含有体と称することがある。)の二量体全量基準の含有量は、80質量%以上が好ましく、90質量%以上がより好ましい。
 本発明で用いるα-オレフィンオリゴマーの流動点は-5℃以下が好ましく、-10℃以下がより好ましい。-5℃以下であることで、低温下の作業においても効率よく掘削できる。
 本発明の石油掘削油用基油は、上記α-オレフィンオリゴマーからなる。当該α-オレフィンオリゴマーは、低毒性、低い芳香族量を示し高い環境適応性を有するとともに、低温下の粘度特性に優れる。したがって、本発明の石油掘削油用基油は、低温下の石油採掘、特に海洋石油採掘において好ましく用いられる。
 本発明の石油掘削油用基油と添加剤を混合することで石油掘削油組成物が得られる。当該石油掘削油組成物もまた、高い環境適応性を有するとともに、低温下の粘度特性に優れるため、低温下の石油採掘、特に海洋石油採掘において好ましく用いられる。
 上記、石油掘削油用基油や石油掘削油組成物の使用形態としては特に制限されず、装置の潤滑用として直接塗布してもよく、泥水の成分として用いてもよい。
 上記のα-オレフィンオリゴマーを製造するためのメタロセン触媒としては、メタロセン化合物および助触媒の組み合わせを含む触媒が挙げられる。メタロセン化合物としては、一般式(I)
(RC542MX2   (I)
で表されるメタロセン化合物が好ましい。一般式(I)中、Rは水素原子または炭素数1~10の炭化水素基を表し、Mは周期律表第4族の遷移金属元素を表し、Xは共有結合性、又はイオン結合性の配位子を表す。
 一般式(I)において、Rは水素原子または炭素数1~4の炭化水素基が好ましい。Mの具体例としては、チタニウム、ジルコニウム、ハフニウムを挙げることができ、これらの中でジルコニウムが好ましい。Xの具体例としては、水素原子、ハロゲン原子、炭素数1~20好ましくは1~10の炭化水素基、炭素数1~20好ましくは1~10のアルコキシ基、アミノ基、炭素数1~20好ましくは1~12のリン含有炭化水素基(例えば、ジフェニルホスフィン基など)、炭素数1~20好ましくは1~12の珪素含有炭化水素基(例えば、トリメチルシリル基など)、炭素数1~20好ましくは1~12の炭化水素基あるいはハロゲンを含有するホウ素化合物(例えば、B(C654、BF4など)を挙げることができ、これらの中で、水素原子、ハロゲン原子、炭化水素基及びアルコキシ基から選ばれる基が好ましい。
 一般式(I)で表されるメタロセン化合物の具体例としては、ビス(シクロペンタジエニル)ジルコニウムジクロリド、ビス(メチルシクロペンタジエニル)ジルコニウムジクロリド、ビス(エチルシクロペンタジエニル)ジルコニウムジクロリド、ビス(iso-プロピルシクロペンタジエニル)ジルコニウムジクロリド、ビス(n-プロピルシクロペンタジエニル)ジルコニウムジクロリド、ビス(n-ブチルシクロペンタジエニル)ジルコニウムジクロリド、ビス(t-ブチルシクロペンタジエニル)ジルコニウムジクロリド、ビス(テキシルシクロペンタジエニル)ジルコニウムジクロリド、ビス(トリメチルシリルシクロペンタジエニル)ジルコニウムジクロリド、ビス(トリメチルシリルメチルシクロペンタジエニル)ジルコニウムジクロリド、ビス(シクロペンタジエニル)ジルコニウムクロロヒドリド、ビス(シクロペンタジエニル)メチルジルコニウムクロリド、ビス(シクロペンタジエニル)エチルジルコニウムクロリド、ビス(シクロペンタジエニル)メトキシジルコニウムクロリド、ビス(シクロペンタジエニル)フェニルジルコニウムクロリド、ビス(シクロペンタジエニル)ジメチルジルコニウム、ビス(シクロペンタジエニル)ジフェニルジルコニウム、ビス(シクロペンタジエニル)ジネオペンチルジルコニウム、ビス(シクロペンタジエニル)ジヒドロジルコニウム、ビス(シクロペンタジエニル)ジメトキシジルコニウム、更には、上記に記載の化合物において、これらの化合物の塩素原子を臭素原子、ヨウ素原子、水素原子、メチル基、フェニル基などに置き換えたもの、又、上記化合物の中心金属のジルコニウムをチタニウム、ハフニウムに置き換えたものを挙げることができる。
 上記助触媒としては、メチルアルミノキサンが好ましい。メチルアルミノキサンとしては特に制限はなく従来公知のメチルアルミノキサンを使用することができ、例えば、一般式(II)や一般式(III)
Figure JPOXMLDOC01-appb-C000001
で表される鎖状または環状のメチルアルミノキサンが挙げられる。一般式(II)、(III)において、pは重合度を表し、通常3~50、好ましくは7~40である。
 メチルアルミノキサンの製造法としては、メチルアルミニウムと水などの縮合剤とを接触させる方法が挙げられるが、その手段については特に限定はなく、公知の方法に準じて反応させればよい。
 メタロセン化合物とメチルアルミノキサンの配合割合は、メチルアルミノキサン/メタロセン化合物(モル比)が、通常1~1000、好ましくは1~100、より好ましくは1~30である。上記モル比が1以上であることで十分な触媒活性が得られ、1000以下であることで高分子量体の生成を回避することができる。
 一般式(I)で表されるメタロセン化合物とα-オレフィンの配合割合〔メタロセン化合物(mmol)/α-オレフィン(L)〕は、通常0.01~2、好ましくは0.02~1、より好ましくは0.05~0.5である。0.01以上であることで十分な触媒活性が得られ、2以下であることで触媒残渣の除去が容易になる。
 オリゴマー化反応は、その反応方法には制限はなく、溶媒の不存在下に行なってもよく、溶媒中で行ってもよく、いずれの方法を用いてもよい。反応溶媒を用いる場合、例えば、ベンゼン,トルエン,キシレン,エチルベンゼンなどの芳香族炭化水素、シクロペンタン,シクロヘキサン,メチルシクロヘキサンなどの脂環式炭化水素、ペンタン,ヘキサン,ヘプタン,オクタンなどの脂肪族炭化水素、クロロホルム,ジクロロメタン等のハロゲン化炭化水素などが挙げられる。オリゴマー化反応の温度は通常0~100℃、好ましくは20~80℃、更に好ましくは30~70℃である。上記範囲内であれば十分な触媒活性が得られる。
 オリゴマー化反応においてはジエチルアルミニウムクロリド等のアルミニウム化合物の存在下で行ってもよい。当該化合物を共存させることで、重合活性の向上やオリゴマーの重合度を調整することができる。また、水素共存下でオリゴマー化反応を行ってもよい。水素の添加量は、通常0~50kPa、好ましくは0~30kPa、より好ましくは0~10kPaである。水素添加量が上記範囲内であることで原料α-オレフィンの飽和体の生成を回避でき、目的のα-オレフィンオリゴマーの収率が向上する。
 上記の方法で得られたα-オレフィンオリゴマーに水素化処理を行ってもよい。水素化処理によって、熱安定性や酸化安定性を向上させることができる。水素化処理の温度は通常50~300℃、好ましくは60~250℃、更に好ましくは70~200℃であり、水素圧は通常0.1~10MPa、好ましくは0.5~2MPa、更に好ましくは0.7~1.5MPaである。水素化処理においては、PdやNiなどを含む一般的な水添触媒を用いることができる。α-オレフィンオリゴマーまたはその水素化処理物を蒸留することで、目的の動粘度を有する留分を得ることができる。蒸留における温度は通常100~300℃、好ましくは120~280℃、より好ましくは140~260℃であり、圧力は通常0.1~15Pa、好ましくは0.4~7Pa、より好ましくは0.6~4Paである。
 次に、本発明を実施例により更に詳細に説明するが、本発明はこれらの例によって何ら限定されるものではない。
 オリゴマー収率、オリゴマー分布および二量体中のビニリデン基含有体の割合はガスクロマトグラフィーにより分析した。0℃、40℃、および100℃における動粘度はJISK2283に準拠して測定した。流動点はJISK2269に準拠して測定した。引火点はJISK2265(クリーブランド開放式)に準拠して測定した。
 ガスクロマトクグラフィーの測定条件の詳細を以下に示す。
〔オリゴマー収率および分布〕
カラム:HT-SIMDST(5m×0.53mm×0.17μm)
キャリア流量:40cm/秒
注入モード:クールオンカラム注入
インジェクション、ディテクション温度:440℃
カラム温度:50℃(0.1分保持)、20℃/分で昇温、430℃(15分保持)
INJ量:0.5μL
試料濃度:1重量%トルエン溶液(ヘキサデカン内部標準1重量%含む)
〔二量体中のビニリデン基含有体の割合〕
カラム:ultra2(25m×0.20mm×0.33μm)
キャリア流量:41.7cm/秒
注入モード:スプリット比30
インジェクション、ディテクション温度:300℃
カラム温度:100℃(1分保持)、10℃/分で昇温、300℃(20分保持)
INJ量:1μL
試料濃度:1重量%トルエン溶液
〔実施例1〕
 窒素置換した内容積2Lのステンレス製オートクレーブに、窒素バブリングにて脱気、脱水済みの1-デセン1Lを加えた後、1.0mol/Lに調整したメチルアルミノキサンのトルエン溶液5mlと1.0mol/Lに調整したジエチルアルミニウムクロリドのトルエン溶液1mlを加えた。これを50℃に昇温し、撹拌を行った。次に20mmol/Lに調整したビス(シクロペンタジエニル)ジルコニウムジクロリドのトルエン溶液25mLを加え、50℃で20時間反応させた。1%水酸化ナトリウム水溶液250mLで反応を停止し、脱イオン水50mLで2回洗浄し、触媒成分を分解、除去して得られた溶液をガスクロマトグラフィーにより分析したところ、オリゴマー収率は87%、オリゴマー分布は二量体91.5%、三量体6.1%、四量体1.5%、五量体0.5%、六量体以上0.4%であった。このオリゴマー液を単蒸留装置を用いて1.33Pa、200℃にて蒸留を行った。得られた蒸留物は二量体99.9%、三量体0.1%からなるオリゴマーであり、二量体中のビニリデン基含有体の割合は98.2%であった。第1表に物性値を示す。
〔実施例2〕
 窒素置換した内容積2Lのステンレス製オートクレーブに、窒素バブリングにて脱気、脱水済みの1-オクテン1Lを加えた後、1.0mol/Lに調整したメチルアルミノキサンのトルエン溶液5mlと1.0mol/Lに調整したジエチルアルミニウムクロリドのトルエン溶液1mlを加えた。これを50℃に昇温し、撹拌を行った。次に20mmol/Lに調整したビス(シクロペンタジエニル)ジルコニウムジクロリドのトルエン溶液25mLを加え、50℃で20時間反応させた。1%水酸化ナトリウム水溶液250mLで反応を停止し、脱イオン水50mLで2回洗浄し、触媒成分を分解、除去して得られた溶液をガスクロマトグラフィーにより分析したところ、オリゴマー収率は88%、オリゴマー分布は二量体92.1%、三量体5.8%、四量体1.3%、五量体0.5%、六量体以上0.3%であり、二量体中のビニリデン基含有体の割合は99.0%であった。第1表に物性値を示す。
〔実施例3〕
 窒素置換した内容積5Lのステンレス製オートクレーブに、窒素バブリングにて脱気、脱水済み1-デセン2.5Lを加えた後、1.0mol/Lに調整したメチルアルミノキサンのトルエン溶液12mlを加えた。これを50℃に昇温し撹拌を行った。次に、40mmol/Lに調整したビス(シクロペンタジエニル)ジルコニウムジクロリドのトルエン溶液10mLを加え、水素5kPaを連続的に供給し攪拌しながら、50℃で7時間反応させた。1%水酸化ナトリウム水溶液500mLで反応を停止し、脱イオン水100mLで2回洗浄し、触媒成分を分解、除去して得られた溶液をガスクロマトグラフィーにより分析したところ、オリゴマー収率は94%、オリゴマー分布は二量体42%、三量体11%、四量体7%、五量体5%、六量体以上35%であった。このオリゴマー液を単蒸留装置を用いて1.33Pa、200℃にて蒸留を行った。得られた蒸留物は二量体99.4%、三量体0.6%からなるオリゴマーであり、かつ二量体中のビニリデン基含有体の割合は95.5%であった。第1表に物性値を示す。
〔実施例4〕
 窒素置換した内容量5Lのステンレス製オートクレーブに、窒素バブリングにて脱気、脱水済み1-デセン2.5Lを加えた後、1.0mol/Lに調整したメチルアルミノキサンのトルエン溶液6mlを加えた。これを50℃に昇温し撹拌を行った。次に、25mmol/Lに調整したビス(t-ブチルシクロペンタジエニル)ジルコニウムジクロリドのトルエン溶液10mLを加え、水素2.5kPaを連続的に供給し攪拌しながら、50℃で5時間反応させた。1%水酸化ナトリウム水溶液250mLで反応を停止し、脱イオン水50mLで2回洗浄し、触媒成分を分解、除去して得られた溶液をガスクロマトグラフィーにより分析したところ、オリゴマー収率は92%、オリゴマー分布は二量体42%、三量体24%、四量体12%、五量体7%、六量体以上15%であった。このオリゴマー液を単蒸留装置を用いて1.33Pa、200℃にて蒸留を行った。得られた蒸留物は二量体99.6%、三量体0.4%からなるオリゴマーであり、かつ二量体中のビニリデン基含有体の割合は93.5%であった。第1表に物性値を示す。
〔比較例1〕
 BF3触媒を用いて製造された市販のα-オレフィンオリゴマーの物性値を第1表に示す。0℃における動粘度が高く、低温条件下の掘削作業には適していない。
〔比較例2〕
 直径12mmのステンレス鋼製反応塔(長さ1.1m、内径10mm)にHMFI-90(ズードケミー社製、プロトン型MFIゼオライト触媒)50mlを充填し、窒素ガスを100ml/分で流し、200℃で24時間前処理した。
 次に、反応塔温度を100℃まで冷却した後、炭素数16のα-オレフィン70質量%/炭素数18のα-オレフィン30質量%の混合物を上昇流で100ml/時間で供給した。このとき、供給したα-オレフィン中のオキソ化合物は酸素濃度に換算して12質量ppmであり、水分含有量は5質量ppmであった。尚、原料の炭素数16のα-オレフィンの直鎖率(直鎖オレフィンの割合)は95%、炭素数18のα-オレフィンの直鎖率は90%であった。α-オレフィン混合物の供給開始から反応温度を徐々に上げ、350時間経過時点で、160℃とした。この時点における原料α-オレフィンの二重結合異性化転化率は、炭素数16のα-オレフィンでは96%、炭素数18のα-オレフィンでは95%であった。生成内部オレフィン組成物は、炭素数16のオレフィン60質量%、炭素数18のオレフィン40質量%であり、生成内部オレフィン組成物の直鎖率は、炭素数16のオレフィンでは95%、炭素数18のα-オレフィンでは90%であった。生成内部オレフィン組成物中の原料α-オレフィンの含有量は、4.4質量%、分岐オレフィン(骨格異性化反応生成物)の含有量は7.0質量%、重質分(α-オレフィンの二量化反応生成物等)の含有量は1.7質量%であった。得られた内部オレフィン組成物の動粘度、流動点、引火点を第1表に示す。流動点が高く、低温条件下の掘削作業には適していない。
Figure JPOXMLDOC01-appb-T000002
〔環境適応性〕
 上記実施例および比較例のα-オレフィンオリゴマーを用いて以下の試験を行った。結果を第2表に示す。
魚類急性毒性試験:ASTM E1367-99(Standard Guide for Conducting 10-day Static Sediment Toxicity Tests with Marine and Estuarine Amphipoda)に準拠して試験を実施し、結果の判定はEPA(Environmental Protection Agency)規則(GMG290000:LC50試験品/LC50標準品≦1)に則って行った。
低芳香族試験:PAH(poly-aromatic-hydrocarbon)試験 EPA1654Aに準拠した。
Figure JPOXMLDOC01-appb-T000003
 上記のように、比較例のα-オレフィンオリゴマーは環境適応性については優れているが石油掘削用潤滑油としての性能は十分ではない。一方、実施例のα-オレフィンオリゴマーは環境適応性についても海洋石油掘削油向けにEPAが制定した規則を充分満足しており、石油掘削用潤滑油としての性能についても優れる。
 本発明によれば、低毒性、低い芳香族量等の特性を有し環境適応性が高く、低温下でも低粘度の石油掘削油用基油が提供される。当該石油掘削油用基油を用いることで、寒冷地や深海の油田の掘削作業における生産性が向上するとともに、掘削機械の摩耗を低減化でき、掘削機械の寿命が延長される。

Claims (12)

  1. α-オレフィンを原料としてメタロセン触媒を用いて製造されたα-オレフィンオリゴマーからなる石油掘削油用基油。
  2. α-オレフィンオリゴマーが、0℃における動粘度が18mm2/s以下のα-オレフィンオリゴマーである請求項1に記載の石油掘削油用基油。
  3. α-オレフィンオリゴマーが、100℃における動粘度が2mm2/s以下のα-オレフィンオリゴマーである請求項1または2に記載の石油掘削油用基油。
  4. α-オレフィンオリゴマーが、40℃における動粘度が7mm2/s以下のα-オレフィンオリゴマーである請求項1~3のいずれかに記載の石油掘削油用基油。
  5. α-オレフィンオリゴマーが、平均炭素数が16~22のα-オレフィンオリゴマーである請求項1~4のいずれかに記載の石油掘削油用基油。
  6. α-オレフィンが、炭素数4~12のα-オレフィンである請求項1~5のいずれかに記載の石油掘削油用基油。
  7. α-オレフィンが、炭素数8~10のα-オレフィンである請求項1~6のいずれかに記載の石油掘削油用基油。
  8. α-オレフィンが、1-オクテンおよび/または1-デセンである請求項1~7のいずれかに記載の石油掘削油用基油。
  9. α-オレフィンオリゴマー全量基準で、二量体の含有量が80質量%以上である請求項1~8のいずれかに記載の石油掘削油用基油。
  10. α-オレフィンオリゴマー全量基準で、二量体の含有量が90質量%以上である請求項1~9のいずれかに記載の石油掘削油用基油。
  11. メタロセン触媒が、一般式(I)
    (RC542MX2   (I)
    (Rは水素原子または炭素数1~10の炭化水素基を表し、Mは周期律表第4族の遷移金属元素を表し、Xは共有結合性又はイオン結合性の配位子を表す。)
    で表されるメタロセン化合物、およびメチルアルミノキサンを含有するメタロセン触媒である請求項1~10のいずれかに記載の石油掘削油用基油。
  12. 請求項1~11のいずれかに記載の石油掘削油用基油を含有する石油掘削油組成物。
PCT/JP2009/069488 2008-11-18 2009-11-17 石油掘削油用基油および石油掘削油組成物 WO2010058769A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/121,710 US20110251445A1 (en) 2008-11-18 2009-11-17 Base oil for oil drilling fluid and oil drilling fluid composition
MX2011004439A MX2011004439A (es) 2008-11-18 2009-11-17 Aceite de base para fluido de perforacion petrolera y composicion de fluido de perforacion petrolera.
CN2009801459676A CN102216414A (zh) 2008-11-18 2009-11-17 石油挖掘油用基油及石油挖掘油组合物
EP09827550.6A EP2357216A4 (en) 2008-11-18 2009-11-17 BASE OIL FOR OIL DRILLING FLUID AND OIL DRILLING FLUID COMPOSITION
JP2010539230A JPWO2010058769A1 (ja) 2008-11-18 2009-11-17 石油掘削油用基油および石油掘削油組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008294832 2008-11-18
JP2008-294832 2008-11-18

Publications (1)

Publication Number Publication Date
WO2010058769A1 true WO2010058769A1 (ja) 2010-05-27

Family

ID=42198208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/069488 WO2010058769A1 (ja) 2008-11-18 2009-11-17 石油掘削油用基油および石油掘削油組成物

Country Status (6)

Country Link
US (1) US20110251445A1 (ja)
EP (1) EP2357216A4 (ja)
JP (1) JPWO2010058769A1 (ja)
CN (1) CN102216414A (ja)
MX (1) MX2011004439A (ja)
WO (1) WO2010058769A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012054369A2 (en) * 2010-10-19 2012-04-26 Shell Oil Company A drilling fluid
WO2013164908A1 (ja) * 2012-05-02 2013-11-07 出光興産株式会社 オレフィンオリゴマーの製造方法
KR20170004993A (ko) * 2014-05-08 2017-01-11 이네오스 유에스에이 엘엘씨 시추 유체 및 이의 제조 방법

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103146366A (zh) * 2013-04-09 2013-06-12 吉林大学 一类双组份极地用酯基超低温钻井液
KR102047893B1 (ko) 2013-04-23 2019-11-22 에스케이이노베이션 주식회사 드릴링 유체 및 이의 제조방법
US10125335B2 (en) * 2013-06-28 2018-11-13 Castrol Limited Lubricating compositions containing isoprene based components
CN104449605A (zh) * 2013-09-17 2015-03-25 中国石油化工股份有限公司 一种合成基钻井液基础油
KR20160045467A (ko) 2014-10-17 2016-04-27 에스케이이노베이션 주식회사 바이오매스 유래 유지로부터 드릴링 유체의 제조 방법
US11319474B2 (en) 2017-02-03 2022-05-03 Saudi Arabian Oil Company Oil-based fluid compositions for hydrocarbon recovery applications
CN114450262B (zh) * 2019-08-09 2024-03-15 埃克森美孚化学专利公司 制备聚α-烯烃的方法及其分析方法和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5045219A (en) 1988-01-19 1991-09-03 Coastal Mud, Incorporated Use of polyalphalolefin in downhole drilling
US5171905A (en) 1990-07-19 1992-12-15 Ethyl Corporation Olefin dimer products
JPH09503017A (ja) * 1993-09-29 1997-03-25 モービル・オイル・コーポレーション 無毒性、生物分解性の坑井流体
WO2007011459A1 (en) * 2005-07-19 2007-01-25 Exxonmobil Chemical Patents Inc. Polyalpha-olefin compositions and processes to produce the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5189012A (en) * 1990-03-30 1993-02-23 M-I Drilling Fluids Company Oil based synthetic hydrocarbon drilling fluid
US6680417B2 (en) * 2002-01-03 2004-01-20 Bp Corporation North America Inc. Oligomerization using a solid, unsupported metallocene catalyst system
US20050187418A1 (en) * 2004-02-19 2005-08-25 Small Brooke L. Olefin oligomerization
JP4667901B2 (ja) * 2005-02-18 2011-04-13 出光興産株式会社 不飽和炭化水素化合物の製造方法
JP4731181B2 (ja) * 2005-02-21 2011-07-20 出光興産株式会社 不飽和炭化水素化合物の製造方法
JP4933089B2 (ja) * 2005-05-12 2012-05-16 出光興産株式会社 潤滑油組成物の製造方法
US7902415B2 (en) * 2007-12-21 2011-03-08 Chevron Phillips Chemical Company Lp Processes for dimerizing or isomerizing olefins
US8168838B2 (en) * 2009-01-21 2012-05-01 Shell Oil Company Hydrocarbon compositions useful as lubricants

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5045219A (en) 1988-01-19 1991-09-03 Coastal Mud, Incorporated Use of polyalphalolefin in downhole drilling
US5171905A (en) 1990-07-19 1992-12-15 Ethyl Corporation Olefin dimer products
JPH09503017A (ja) * 1993-09-29 1997-03-25 モービル・オイル・コーポレーション 無毒性、生物分解性の坑井流体
WO2007011459A1 (en) * 2005-07-19 2007-01-25 Exxonmobil Chemical Patents Inc. Polyalpha-olefin compositions and processes to produce the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2357216A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012054369A2 (en) * 2010-10-19 2012-04-26 Shell Oil Company A drilling fluid
WO2012054369A3 (en) * 2010-10-19 2012-06-28 Shell Oil Company A drilling fluid
WO2013164908A1 (ja) * 2012-05-02 2013-11-07 出光興産株式会社 オレフィンオリゴマーの製造方法
KR20170004993A (ko) * 2014-05-08 2017-01-11 이네오스 유에스에이 엘엘씨 시추 유체 및 이의 제조 방법
JP2017519063A (ja) * 2014-05-08 2017-07-13 イネオス ユーエスエイ リミテッド ライアビリティ カンパニー 掘削流体及びその製造方法
KR102509857B1 (ko) 2014-05-08 2023-03-13 이네오스 유에스에이 엘엘씨 시추 유체 및 이의 제조 방법

Also Published As

Publication number Publication date
MX2011004439A (es) 2011-06-20
CN102216414A (zh) 2011-10-12
US20110251445A1 (en) 2011-10-13
JPWO2010058769A1 (ja) 2012-04-19
EP2357216A4 (en) 2013-07-03
EP2357216A1 (en) 2011-08-17

Similar Documents

Publication Publication Date Title
WO2010058769A1 (ja) 石油掘削油用基油および石油掘削油組成物
KR101673043B1 (ko) 메탈로센-ssa 촉매시스템을 이용한 알파 올레핀 올리고머화 및 윤활제 블렌드 제조를 위한 생성된 폴리알파올레핀의 용도
CN1184240C (zh) 烯烃的生产
JP4342307B2 (ja) アルファ−オレフィンの三量化法
US10927052B2 (en) Decene oligomers
CA2779627C (en) Manufacture of oligomers from nonene
EP2666760A1 (en) Process for production of alpha-olefin unsaturated dimer
US5315053A (en) Normally liquid alpha-olefin oligomers useful as base stocks and viscosity index improvers, and lubricating oils containing same
CN106380529A (zh) 剪切稳定的高粘度聚α‑烯烃
JP5400865B2 (ja) デセンオリゴマー水素化物からなる潤滑油用基油、潤滑油組成物およびデセンオリゴマー水素化物の製造方法
CN109369836A (zh) 一种含杂环结构的茂稀土金属催化剂组合物及其应用
CN110944966A (zh) 提高α-烯烃含量的方法
JP7525491B2 (ja) 飽和脂肪族炭化水素化合物組成物、潤滑油組成物及び飽和脂肪族炭化水素化合物組成物の製造方法
CN109701648B (zh) 一种催化剂组合物及应用
JP5101194B2 (ja) 極微量給油式金属加工油組成物
CN109701643B (zh) 一种催化剂组合物及其应用
CN109701647B (zh) 一种催化剂组合物及其应用
CN109701649B (zh) 一种催化剂组合物及其应用
CN109701641B (zh) 一种催化剂组合物及其应用
CN109701663B (zh) 一种催化剂组合物及其应用
CN109701651B (zh) 一种催化剂组合物及其应用
CN109701661B (zh) 一种催化剂组合物及其应用
CN118304935A (zh) 一种合成低黏度pao的催化剂及其应用
CN105503504B (zh) 一种乙烯齐聚连续反应方法
CN116041130A (zh) 一种乙烯齐聚催化工艺

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980145967.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09827550

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010539230

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2009827550

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: MX/A/2011/004439

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13121710

Country of ref document: US