WO2010058487A1 - 油脂類を原料とする脂肪酸エステルの製造方法 - Google Patents
油脂類を原料とする脂肪酸エステルの製造方法 Download PDFInfo
- Publication number
- WO2010058487A1 WO2010058487A1 PCT/JP2008/071482 JP2008071482W WO2010058487A1 WO 2010058487 A1 WO2010058487 A1 WO 2010058487A1 JP 2008071482 W JP2008071482 W JP 2008071482W WO 2010058487 A1 WO2010058487 A1 WO 2010058487A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- reaction
- alcohol
- raw material
- temperature
- fatty acid
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11C—FATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
- C11C3/00—Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
- C11C3/003—Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fatty acids with alcohols
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C67/00—Preparation of carboxylic acid esters
- C07C67/03—Preparation of carboxylic acid esters by reacting an ester group with a hydroxy group
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/02—Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/02—Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only
- C10L1/026—Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only for compression ignition
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/10—Biofuels, e.g. bio-diesel
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P30/00—Technologies relating to oil refining and petrochemical industry
- Y02P30/20—Technologies relating to oil refining and petrochemical industry using bio-feedstock
Definitions
- the present invention relates to a useful method for producing a fatty acid ester by transesterification by reacting triglyceride contained in fats and oils with alcohol.
- Palm oil, rapeseed oil, etc. that are usually obtained from plants are mainly composed of triglycerides, so the viscosity is higher than that of light oil. Not always appropriate. For this reason, a transesterification reaction is performed with triglycerides using an alkyl alcohol to produce a diesel fuel equivalent to light oil by using a fatty acid alkyl ester, and most commonly an alkali catalyst is used. The method is in practical use.
- the catalyst is contained in glycerin as a by-product and is difficult to separate, so it is usually recovered as a low-value added by-product, and metal soap is produced if there are free fatty acids in the raw material.
- problems such as subsequent steps are hindered, and a considerable number of extra steps are required due to problems such as the need for removal.
- a method using a solid catalyst, a method using a high activity of a chemical species in a supercritical state without a catalyst, and the like have been proposed, but are widely put into practical use in terms of cost, operability or safety. It has not reached.
- the reaction is carried out at normal pressure and without a catalyst, the reaction rate is slow, so a considerably high temperature is required compared to the catalytic method, and it has been difficult to put it to practical use in terms of energy cost.
- a plant-derived alkyl ester fuel that is comparable to light oil in terms of performance and price, and that is pressureless and non-catalytic.
- a plant Be able to respond flexibly to fluctuations in the required throughput (a system capable of both continuous and semi-continuous production);
- the quality of the product is not affected by fluctuations in the quality of the raw materials,
- a high quality product can be obtained as a fuel without a special purification step, and by-product glycerin can be collected as a product;
- the safety of operation is high due to atmospheric pressure reaction, and energy consumption is low, e.
- the present inventors have made the following invention.
- (1) When producing a fatty acid ester from fats and oils and a monohydric alcohol (hereinafter simply referred to as alcohol), the reaction product is mixed with superheated vaporized vapor (gas phase reaction product and superheated vaporized alcohol
- an excess of alcohol hereinafter referred to as excess alcohol
- excess alcohol an excess of alcohol exceeding the theoretical chemical equivalent required at the time of reaction is superheated and vaporized alcohol (pressure of the alcohol).
- reaction process mainly consisting of equipment for reaction of fats and oils with monohydric alcohol, reaction by heat exchange
- the process mainly consists of equipment for cooling products and raising the temperature of raw alcohol and raw oils and fats, and equipment for separating and acquiring reaction products.
- the superheated vaporized alcohol circulation path connecting all of the above is provided, the circulation path is a closed system including a raw material supply means and a product acquisition means, and the capacity of the circulation path is an excess alcohol required for the reaction.
- a method for producing a fatty acid ester which is sufficient to supply (2)
- the superheated vaporized alcohol hereinafter referred to as reaction gas
- reaction gas the superheated vaporized alcohol
- the sensible heat part and the latent heat part of the reaction gas are separated and heat exchange is performed,
- the method for producing a fatty acid ester according to (1), (3)
- a process for performing sensible heat exchange between the reaction gas and the raw material hereinafter referred to as a high temperature heat exchange process
- / or a process for performing heat exchange between the latent heat of condensation of the reaction product and the raw material hereinafter referred to as condensation).
- a heat recovery step) and / or a step for separating the condensed reaction product from the superheated vaporized alcohol (hereinafter referred to as a reaction product separation step) and / or a superheated vaporized alcohol separated from the reaction product (hereinafter referred to as a reaction product).
- a process for performing sensible heat exchange between the recycle alcohol and the raw alcohol and / or cooling water (hereinafter referred to as a temperature control heat exchange process) and / or a process for adiabatic cooling of the recycle alcohol with the raw alcohol. (Hereinafter referred to as an adiabatic cooling step).
- the method for producing a fatty acid ester according to (1).
- the method for producing a fatty acid ester according to (1) comprising means for giving latent heat of vaporization to the reaction product during the reaction step, vaporizing the reaction product and transferring it to superheated vaporized alcohol. .
- the fats and oils are heated in a plurality of stages, and the temperature is raised to a required reaction temperature immediately before the reaction, A method for producing a fatty acid ester.
- the manufacturing method of the fatty acid ester as described in (1) characterized by providing the 2nd high temperature heat exchanger which is a kind.
- the condensation heat recovery step is provided with a first condensation heat exchanger in which the high temperature side is the reaction gas and the low temperature side is the reaction raw material alcohol, and a second condensation heat exchanger in which the high temperature side is the reaction gas and the low temperature side is the raw material fats and oils.
- the manufacturing method of the fatty acid ester characterized by the above-mentioned.
- a temperature control heat exchanger is provided in the temperature control heat exchange step, wherein the high temperature side is a circulating alcohol and the low temperature side is a raw oil or fat.
- the adiabatic cooling step is provided with an adiabatic cooler in which the high temperature side is circulating alcohol and the low temperature side is raw alcohol.
- the high temperature heat exchange step includes a first high temperature heat exchanger in which the high temperature side is the reaction gas and the low temperature side is the reaction raw material alcohol; A second high-temperature heat exchanger having a reaction gas on the side and a raw oil and fat on the low-temperature side is provided, and in the condensation heat recovery step, the first condensation heat exchanger in which the high-temperature side is the reaction gas and the low-temperature side is the reaction raw material alcohol, The gas is provided with a second condensing heat exchanger whose low temperature side is raw material fats and oils, and in the temperature control heat exchanging step, a high temperature side is provided with a circulating alcohol and the low temperature side is raw material fats and oils, and a heat insulating cooling step is provided.
- a heat recovery system provided with an adiabatic cooler in which the high temperature side is circulating alcohol and the low temperature side is raw alcohol, and the first and second high temperature heat exchangers are divided by bifurcating the high temperature reaction gas from the reaction step. put in The reaction gas at the intermediate temperature of each branch exiting each high-temperature heat exchanger is placed in the first and second condensation heat exchangers, and the low-temperature reaction gas exiting each condensation heat exchanger is merged to produce a reaction product. In the separation step, the reaction product is separated as a condensate, and the obtained circulating alcohol is sequentially put into a temperature control heat exchanger and an adiabatic cooler to further lower the temperature, and the required raw alcohol is added in the adiabatic cooler.
- Reacting raw material alcohol is sent to the low temperature side of the first condensing heat exchanger and the first high temperature heat exchanger, heated and heated to be used for the reaction, while the raw fats and oils are sequentially heated to the temperature controlled heat exchanger and the second heat exchanger.
- the method for producing a fatty acid ester according to (1) comprising a heat exchange step of heating and raising the temperature through the low temperature side of the condensation heat exchanger / second high temperature heat exchanger and using it for the reaction.
- (16) The method for producing a fatty acid ester according to (1), wherein in the high-temperature heat exchange step, heat exchange is performed between the reaction gas and the reaction raw material alcohol using the raw material fats and oils as a heat medium.
- a high-temperature heat exchanger in which the high-temperature side is the reaction gas and the low-temperature side is the heat medium (raw oils), and alcohol heating in which the high-temperature side is the heat medium (raw oils and fats) and the low-temperature side is the reaction raw material alcohol
- the heat exchanger inlet on the low temperature side of the exchanger is connected by a conduit to form a circulation circuit of the heat medium, and a circulation pump and a high-temperature heat medium (raw oil and fat) take-out means are provided in the middle of the circulation circuit.
- a mixed adiabatic cooler provided with raw material alcohol (liquid) supply means and gas stirring means is provided in the middle of the superheated vaporized alcohol circulation path from the temperature control heat exchange step to the condensation heat recovery step.
- the recovered alcohol is subjected to adiabatic cooling according to (1).
- the condensation heat recovery step the reaction products in the reaction gas are condensed at one time, and the superheated vapor containing the condensate is sent to the reaction product separation step, and the reaction product is provided with a condensate separation means such as a filter medium.
- the condensate and the superheated alcohol are separated through a product separation device, the collected condensate is sent to a product separation process, and put into a product separation device equipped with product separation means such as specific gravity separation, and fatty acid ester and glycerin And the method for producing a fatty acid ester according to (1).
- the reaction residue generated in the reaction step is sent to a step (hereinafter referred to as a reaction residue incineration step) where incineration is performed by an incinerator such as a heat medium boiler, and the heat medium is heated by heat generated during the incineration.
- a reaction residue incineration step where incineration is performed by an incinerator such as a heat medium boiler, and the heat medium is heated by heat generated during the incineration.
- the heat generated by the reaction gas is recovered by heat exchange, the raw material is preheated and the reaction products are condensed at once, and the fatty acid ester and glycerin are separated and collected from the resulting condensate, and the reaction that occurs in the reaction process
- the residue is sent to the reaction residue incineration process, used as a fuel for heating the heating medium used in the final preheating process, and the shortage of the fuel is compensated with a part of the raw oils and fats. It is characterized by constructing a system that generates electricity from a part of the acid ester and can operate the entire plant without obtaining fuel and power supply from the outside, and does not discharge hazardous waste outside the plant.
- FIG. 1 is a conceptual diagram of a process for producing a fatty acid ester linked by a superheated vapor circulation means, which is the center of the first embodiment.
- a reaction process 1 As the most preferred mode, a reaction process 1, a high-temperature heat exchange process 2, The condensing heat recovery process 3, the product separation process 4, the temperature control heat exchange process 5, the adiabatic cooling process 6 and the final preheating process 7 are shown.
- the superheated alcohol circulation means 14a is subjected to the reaction step 1, the high temperature heat exchange step 2, the condensation heat recovery step 3, the product separation step 4, the temperature control heat exchange step 5, and the adiabatic cooling step 6, and again the condensation heat recovery step 3, Through the high temperature heat exchange step 2 and further through the final heat preheating step 7, the catalyst reaction step 1 is reached to form a circulation path.
- the temperature of the circulating (superheated vaporization) methanol flowing through the circulation path is the highest in that it exits the reaction step 1 as the reaction gas 13 accompanied by the reaction product, and the temperature is lowered by sequential heat exchange, and the reaction product separation step 4
- the reaction product is separated at the point of exiting and becomes the circulation (superheated vaporization) alcohol 14, and at the point of exiting the adiabatic cooling step 6, it becomes the minimum temperature as the reaction raw material (superheated vaporization) alcohol accompanied by the raw material alcohol, and the heat of condensation again.
- the temperature is raised through the recovery process 3 and the high-temperature heat exchange process 2, the required temperature is obtained by the final preheating process 7, and the process returns to the reaction process 1.
- the raw material fats and oils 11 are sequentially heated through a temperature control heat exchange process 5, a condensation heat recovery process 3 and a high temperature heat exchange process 2, and a required temperature is obtained by a final heating process 7 and supplied to the reaction process 1.
- the raw material methanol (liquid) 12 is vaporized in the alcohol adiabatic cooling step 6 and then merged with the circulating methanol 14 to become a reaction raw material methanol 16, which is further subjected to a condensation heat recovery step 3 and a high temperature heat exchange step 2.
- the temperature is raised successively, and a required temperature is obtained in the final preheating step 7 and supplied to the reaction step 1.
- FIG. 2 is a conceptual diagram for more specifically explaining the superheated vapor alcohol circulating means of FIG.
- reaction step 1 methanol (superheated vaporized state) is always kept in an excess state exceeding the theoretical chemical equivalent with respect to fats and oils, and the methanol and fats and oils interact with each other under sufficient contact by contact means. In addition, some of them also react in the gas phase part above the liquid.
- the reaction product (fatty acid ester and glycerin) is transferred into excess superheated vaporized methanol and discharged together with the superheated vaporized methanol as a reaction gas 13 from the reaction step 1 and divided into two parts, and the reaction raw material methanol in the high temperature heat exchange step 2 respectively.
- the condensation heat recovery step 3 while branching, and exchanges heat with the reaction raw material methanol and the raw material fats and oils, respectively. State) and condensed into a liquid phase (droplet), followed by methanol (superheated vaporized state) and exiting the condensation heat recovery step.
- the two-branched superheated vapor methanol accompanied by droplets of the reaction product joins and enters the reaction product separation step 4, and the reaction product (liquid) 15 is separated from the methanol, and further separated into fatty acid ester and glycerin. To be the final product.
- the methanol separated from the reaction product is sent to the temperature-controlled heat exchange step 5 as circulating methanol (superheated vaporized state) 14 to exchange heat with the raw oils and fats 11 and, if necessary, the cooling water 18 to the next step. It is adjusted to a suitable temperature and enters the adiabatic cooling step 6 where it is adiabatically cooled by the mist of the raw material methanol (liquid) 12 to lower the temperature and ensure a temperature difference in return heat exchange, while the raw material methanol obtains latent heat of vaporization.
- the reaction raw material methanol 16 Into the gas phase, and accompanied by the circulating methanol, enters the condensation heat recovery process 3 and the high-temperature heat exchange process 2 as the reaction raw material methanol 16, and countercurrently reacts with the reaction gas 13 to perform heat exchange to obtain a necessary temperature and finally The preheating step 7 and the reaction step 1 are reached to form a superheated vaporization methanol circulation path.
- the raw material alcohol 12 is supplied in an amount corresponding to the amount taken out as the reaction product 15.
- Raw material fats and oils supply the quantity corresponding to the part taken out as the reaction product 15 and the reaction residue 13.
- the reaction residue 17 is sent to the waste liquid incineration step 8 and incinerated with a heat medium boiler or the like to produce a high-temperature heat medium used in the final heat exchange step 7.
- FIGS. 3 and 4 are the main parts of the second embodiment, the superheated vaporized methanol (reaction raw material methanol) and the feed means of the raw oil and fat, the superheated vaporized alcohol (reactive gas) containing the reaction products and the discharge of the reaction residue.
- FIG. 3 shows a reaction raw material methanol supply means 20, raw material fats and oils supply means 21, reaction gas discharge means 22, and reaction residue discharge means 23 outside the reaction vessel 19.
- the heating means 24 and the means for contacting the fats and oils with the reaction raw material methanol (contact means for the catalyst, fats and oils and reaction raw material methanol in the case of using a catalyst) 25 are installed.
- the contact means is provided with any stirring means 26 as required.
- the target of the heating means is either or both of the reaction raw material methanol and the raw material fats and oils, and if necessary, the contact means and / or the catalyst is also heated, and the contact means and / or the catalyst is used as the reaction raw material methanol and the raw material fats and oils And / or function as a heating means for the reaction product.
- this reaction step a state in which vaporized alcohol bubbles are present in the fats and oils and a state in which vaporized fats and oils are present in the vaporized alcohol are mixed, and these are in contact with a solid (contact means or catalyst). Since the reaction takes place, local temperature changes are likely to occur.
- a heating means is provided in the reaction vessel, and necessary heating is performed immediately before methanol and / or raw oils and fats reach the contact means, and further, heating by the catalyst and / or the contact means is performed. Solved the problem.
- the heating means since the reaction product is discharged as a gas phase together with superheated vaporized methanol, the heating means provides not only the temperature required for the reaction but also the supply of latent heat of vaporization to the reaction product.
- the above-mentioned means is used to raise the temperature to a required temperature immediately before the reaction. Settled.
- it is effective to prevent deterioration of fats and oils by coexisting methanol at any stage (including multiple stages) of temperature rise of raw oils and fats and performing subsequent heating in a reducing atmosphere in which methanol coexists. it is conceivable that.
- FIG. 4 shows that the heating means is installed outside the reaction vessel because of the simplification of the apparatus or the necessity of the shape of the reaction apparatus incorporating the contact means.
- An example of a preferable reactor equipped with contact means is as follows.
- FIG. 5 is a schematic diagram showing an example of a gas suction type reaction apparatus. A draft tube 34 is provided in the reaction vessel 19, and an impeller 33 for sucking the liquid in the draft tube downward is provided at the lower portion.
- the drive shaft and the drive motor 36 are arranged on the central axis of the tube, and the stirring means 26 is attached to the drive shaft.
- Contact means 35 (catalyst when using a catalyst) which is detachable for maintenance is installed between the outer upper portion of the draft tube and the reaction vessel wall.
- the raw material fats and oils 11 pass through the raw material fats and oils supply means 21 and the heating means 24b from the upper side to the inside of the tube, and the reaction raw material methanol 16 passes through the reaction raw material alcohol supply means 20 and the heating device 24a to the upper part of the raw material fats and oils inside the tube. Supplied.
- raw material fats and oils are always stored up to the liquid level 52 higher than the upper end of the tube, and the gas-liquid mixed phase flow 53 of the raw material fats and reaction gas bubbles in the tube is lowered by the impeller and then outside the draft tube And a circulating flow is formed which passes through the contact means 35 (a catalyst when a catalyst is used) and returns from the upper end of the draft tube into the tube.
- FIG. 6 is a schematic diagram showing an example of an oil spray / gas suction type reaction apparatus.
- the raw oil / fat 11 is sprayed and supplied downward as a mist through the spray head 28.
- the contact opportunity with the reaction raw material methanol is further increased.
- FIG. 5 shows an example in which a drive motor is arranged at the lower part of the reaction vessel and the contact means (catalyst when using a catalyst) 35 is also heated by the heating means 24c.
- Such arrangement of the heating means or the drive motor can be similarly performed in the method of FIG.
- FIG. 7 is a schematic diagram showing an example of a packed tower / oil external heating type reactor, in which raw material fats and oils are stored below 35 (a catalyst layer when using a catalyst) provided in an intermediate part of the packed tower.
- the raw material fats and oils 11 are supplied to the raw material fats and oils through the raw material fats and oils supply means 21, taken out together with the unreacted raw material fats and oils to the outside by the liquid feed pump 37, heated by the heating means 24b and contact means ( Or, it is fed into the tower from above the catalyst packed bed).
- FIG. 6 shows a mold in which heated raw material fats and oils are supplied as mist through the spray head 28 to increase the chance of contact with the reaction raw material methanol.
- the reaction raw material methanol 16 is supplied from the bottom of the tower through the reaction raw material methanol supply means 20 and the heating means 24a through the blowing nozzle 20a, passes through the raw material fats and oils as bubbles, and then contacts with the inside of the contact means (or catalyst layer) 35.
- FIG. 8 is a schematic view showing an example of a dip pipe type reaction apparatus, in which a plurality of gas blowing nozzles 20a are provided in a reaction vessel, and the reaction temperature is raised to a required temperature via a supply means 20 and a heating means 24a.
- the raw material alcohol 16 is blown into the raw material fats and oils stored in the reaction vessel, and the reaction raw material alcohol rises as the bubbles to form the foam layer 41a on the upper part of the liquid surface 52, and the foams burst.
- reaction vessel is divided into two chambers by a separator 47, and a part of the raw material fats and oils into which the reaction raw material alcohol is blown in the left chamber enters the right chamber through the gap below the separator, and further, A two-stage apparatus receiving blow was shown. The number of reaction stages can be increased as necessary.
- FIG. 8 is a schematic diagram showing an example of a dip pipe type reactor similar to FIG. 8, in which a contact means (or catalyst) 35 is added to the apparatus of FIG. 8.
- a contact means (or catalyst) 35 is added to the apparatus of FIG. 8.
- the contact means (or catalyst) is provided on the top of the foam layer, and the foam (a state in which a very thin oil film is in contact with the superheated alcohol) touches the packed layer of, for example, a honeycomb or ring-shaped material (or catalyst). The case of passing while showing. It is also possible to apply a heating means to the packed bed so that the reaction raw material has a required high temperature only at the time of contact.
- the location of the contact means (or catalyst) is not limited to the upper part of the foam layer, but can be installed in any part of the raw oil or fat to the upper part of the foam layer as necessary, and may be installed in multiple locations. I can do it. FIG.
- FIG. 10 is a schematic diagram showing an example of a multi-heat pipe type reactor, and the right portion of the figure shows the arrangement of the heat pipe 60 by a cross section perpendicular to the heat pipe.
- a predetermined temperature is given to the plurality of heat pipes 60 installed horizontally in the reaction vessel through the heat medium 45 heated by the heating device 24c, and raw material fats and oils are dropped from the upper spray head 28a.
- a reaction is caused with the reaction raw material alcohol 16 introduced from below through the supply means 20 and the heating means 24a, and the reaction product is excessive superheated vaporized methanol. At the same time, it is discharged from the discharge means 22 as a reaction gas.
- the reaction raw material alcohol passes through the raw material fats and oils stored in the lower part of the reaction vessel as bubbles before reaching the heat pipe.
- the raw material fats and oils 11 are supplied to the lower part of the reaction vessel through the supply means 21 through the supply means 21 and fed to the upper part by the liquid feed pump 37 through the discharge means 21a together with the raw material fats and oils that have fallen unreacted.
- the temperature is raised to the required temperature through the means 21 and the heating means 24b and supplied to the spray head 28a.
- a metal-based solid catalyst is added to the surface of the heat pipe.
- FIG. 11 is a schematic view showing an example of a single reaction tube type reaction apparatus, in which the reaction raw material methanol 16 sent by the air feed pump 38 enters the mixing means 39 after being heated by the heating means 24a and similarly heated. Mixing with the raw material fats and oils 11 heated by the means 24b and entering the mixing means, it becomes a gas-liquid mixed phase flow, passes through the reaction tube 40 having the required length and maintained at the required temperature by the heating means 24d, The reaction gas 13 is discharged from the discharge means 22. When using the catalyst, the contact with the catalyst is carried out in the mixing means and / or in the reaction tube, if necessary.
- FIG. 12 is a schematic view showing an example of a fluidized bed type reaction apparatus, in which raw material fats and oils stored in the reaction vessel 19 are held with contact means (or catalyst) 35 such as granular or flake form, The reaction raw material gas 16 and the raw material fats and oils 11 heated by the heating means 24a and 24b are respectively supplied from the lower part of the reaction vessel to generate a three-part mixed fluidized bed of the reaction gas bubbles 41, the raw material fats and oils and the catalyst particles 35.
- contact means (or catalyst) 35 such as granular or flake form
- FIG. 13 is a schematic view showing an example of a multi-reaction tube type reaction apparatus, in which a contact means (or catalyst) 35 is filled in a reaction tube 40 installed in a reaction vessel 19, and the outside of the reaction tube is heated.
- a heating means 24c for the heating medium is provided, and the reaction raw material gas 16 heated by the heating means 24a is supplied from below, and the raw fats and oils 11 heated by the heating means 24b are supplied from above, A reaction is caused in the heated catalyst, and the reaction gas 13 is discharged from the upper part of the container.
- Each of the above reactors can be adapted to batch, semi-batch and continuous production methods, and the raw oils and fats existing in the lower part of the reaction vessel or the raw oils and fats containing some reaction gas bubbles are the same or
- a multistage reaction apparatus can be configured by supplying raw material oils to different types of reaction apparatuses.
- reaction conditions in each reactor were mild as described above, with a pressure of 0.090 to 0.405 MPa (preferably 0.102 to 0.150 MPa) and a temperature of 350 to 150 ° C. (preferably 290 to 180 ° C.).
- the reactor structure and materials do not require special considerations such as supercritical reactions.
- methanol preferably more than 3 times the theoretical chemical equivalent
- the above pressure is a numerical value of a liquid column type or a Purdon tube type pressure gauge installed on the reaction vessel wall, and the temperature is the temperature of the contact means by thermistor type or resistance type or the surface of the catalyst (or an internal point close to the surface). It is a measured value.
- the metal in the catalyst can be lead, zinc, tin or steel containing molybdenum / chromium / nickel or vanadium, all of which do not pollute the reaction products and require special measures for recovery. And not.
- This embodiment is a system for efficiently exchanging heat between a reaction gas and a raw material, and FIG. 14 shows a conceptual diagram thereof.
- the reaction gas 13 discharged from the reaction apparatus 1a in the reaction step 1 is divided into two parts and enters the high temperature side of the high temperature heat exchangers 2a and 2b in the high temperature heat exchange step 2, respectively.
- Countercurrent heat exchange with the fats and oils 11 is performed and then introduced into the condensation heat recovery step 3 with two branches.
- One of the halved reaction gases passes through the high temperature side of the condensation heat exchanger 3a to exchange heat with the reaction raw material methanol, and then enters the reaction product separation step 4.
- the other of the halved reaction gas enters the high temperature side of the condensation heat exchanger 3b, performs countercurrent heat exchange with the raw oils and fats 11, and then merges with the branched reaction gas that has exited 3a to produce a reaction product.
- the separation step 4 is entered.
- all reaction products other than methanol condense into a liquid phase and give latent heat to methanol.
- the reaction product separation step 4 the reaction product accompanying as droplets is separated from methanol by the reaction product separation device 4 a using a filter, a collision plate, etc., and the methanol is temperature-controlled heat exchange as circulating methanol 14.
- Step 5 the separated reaction product 15 is sent to the product sorting device 4b using specific gravity separation to sort the fatty acid ester 49 and glycerin 48 to obtain a final product.
- the circulating methanol 14 passes through the high temperature side of the temperature control heat exchange step 5 (temperature control heat exchanger 5a), performs countercurrent heat exchange with the raw oils and fats 11 and the cooling water 18, and is adjusted to a required temperature.
- the adiabatic cooling step 6 (alcohol adiabatic cooler 6a) and is adiabatic cooled by the spray mist of the raw material methanol 12 (liquid), lowers the temperature to ensure the temperature difference of return heat exchange, and vaporizes in the adiabatic cooler
- the raw material methanol obtained by obtaining the latent heat is combined into the reaction raw material methanol 16 and sequentially enters the low temperature side of the condensation heat recovery step 3 (condensation heat exchanger 3a) and the high temperature heat exchange step 2 (high temperature heat exchanger 2a). Heat exchange is performed by counterflowing with the reaction gas, and a necessary temperature is obtained in the final heat preheating step 7 (heating device 7b) and sent to the reaction step 1.
- the superheated vaporized methanol is circulated by an air feed pump 38.
- the amount of raw material methanol 12 taken out from the raw material storage tank 10 is supplied to the adiabatic cooling step 6 (alcohol adiabatic cooler 6a) corresponding to the amount collected as a reaction product, and the adiabatic cooling of the circulating methanol 14 as a spray mist.
- the process When the process is performed, it obtains vaporization latent heat, vaporizes, merges with the circulating alcohol 14 to become the reaction raw material alcohol 16, and is supplied to the reaction step 1 at the required temperature via the preheating path.
- the raw material fats and oils 11 taken out from the raw material storage tank 9 are first put into the low temperature side of the temperature control heat exchanger 5a and counterflowed with the circulating alcohol 14 in an amount corresponding to the amount taken out as reaction products and reaction residues. Then, it is preheated, and then supplied to the reaction step 1 at the required temperature via the condensation heat exchanger 3b, the high temperature heat exchanger 2b and the heating device 7a of the final heat exchange step 7.
- the reaction residue 13 is sent to the residue incineration step 8 and incinerated by a residue incinerator 8a such as a heat medium boiler, and a high-temperature heat medium 8b for the final preheating step is produced by the obtained heat.
- methanol and fats and oils are placed under the required reaction temperature conditions in the reaction step, and heating to give latent heat of vaporization to the reaction product is necessary.
- the above heat exchange system Provide most of the heat required for the reaction by preheating raw methanol, circulating methanol and raw oils and fats in the cooling / condensation process, and using a high-temperature heating medium by incineration of the reaction residue. I can do it.
- Hot water obtained by the cooling water 18 is used as a plant utility.
- the present embodiment is a heat exchange system in which heat exchange by gas / gas is avoided and heat exchange efficiency is improved by using a liquid heat medium (raw oils and fats) in a high-temperature heat exchange process. The figure is shown.
- the high temperature side is a reaction gas
- the low temperature side is a liquid heat transfer medium (raw oil and fat)
- a high temperature heat exchanger 2c the high temperature side is a liquid heat transfer medium (raw oil and fat)
- the low temperature side is a high temperature heat exchanger 2d that is a reaction raw material gas.
- the reaction gas 13 taken out from the reaction process enters the high temperature side of the high-temperature heat exchanger 2c, performs counter-current heat exchange with the low-temperature side liquid heat transfer medium (raw oils and fats), and is divided into two parts to each of the condensation heat exchangers 3c. Enters the high temperature side of 3d and circulates by the route described in the third embodiment.
- the low temperature side of the high temperature heat exchanger 2c and the high temperature side of the high temperature heat exchanger 2d are a conduit 11d provided with a liquid heat medium (raw oil and fat) circulating means (blower) 11p and a high temperature heat medium (raw oil and fat) taking-out means 11v.
- a circulation path is formed by a conduit 11e provided with a raw material fat supply port 11f, and a liquid heat medium (raw material fat) obtains a high temperature by gas / liquid heat exchange in the high temperature heat exchanger 2c, and in the high temperature heat exchanger 2d Heats the reaction raw material methanol 16 by liquid / gas heat exchange as a heat source.
- the raw material fats and oils 11a preheated by the temperature control heat exchanger as in the third embodiment are heated through the low temperature side of the condensing heat exchanger 3d, and the liquid heat medium (raw material) is discharged at the outlet of the high temperature heat exchanger 2d. Oil and fat) and is heated by the high-temperature heat exchanger 2c.
- the necessary amount of raw material fats and oils that have obtained a high temperature is sent from the high-temperature liquid heat medium (raw material fats and oils) take-out means 11v to the final heating device 7a and then supplied to the reaction step 1.
- the reaction raw material methanol 16 is sequentially heated by the condensation heat exchanger 3c and the high temperature heat exchanger 2d, and is supplied to the reaction step 1 through the final heating device 7b.
- the volume of the high-temperature heat exchanger can be reduced (about 20% reduction), and the temperature of the raw oil and fats is increased.
- the heating load in the final heating step and the reaction step can be reduced.
- 16 is a schematic diagram of an example of the adiabatic cooler 6 a used in the adiabatic cooling step 6 of the circulating methanol 14, and an introduction means 29 of the circulating methanol 14, the raw material methanol (liquid) 12 is provided at one end of the cylindrical container 27.
- a reaction means methanol 16 take-out means 31 at the other end a stirring means 32 (static mixer) is provided below the spray head in the container, and a temperature control heat exchange process
- the circulating methanol exiting the tank is introduced into a cylindrical container, and the methanol is adiabatically cooled by spraying the liquid raw material methanol into the methanol, while the liquid raw material methanol (liquid) is vaporized by obtaining latent heat of vaporization, together with the circulating methanol. Then, it is taken out from 31 as the reaction raw material methanol 16 in which the temperature difference necessary for the return heat exchange is ensured.
- the impingement plate 43 and the filter medium 44 are droplet collecting means provided in the case where the reaction product is not completely removed in the preceding product separation step 4, and the collected reaction product 15. (Liquid) is taken out via the reaction product discharge means 46b.
- the collision plate and the filter medium can be omitted, and conversely, the product separation step 4 can be omitted and the reaction product can be collected only by this apparatus.
- the raw material methanol is introduced into the reaction step by the circulation flow of excess superheated vaporized methanol, it is necessary to heat and vaporize the raw material methanol.
- the vaporization can be performed using heat exchange accompanying adiabatic cooling, and no special heating device is required.
- FIG. 17 is a schematic diagram showing an example of a reaction product separation device for separating a reaction product from recovered methanol containing droplets of the condensation reaction product obtained in the condensation heat exchange step. In principle, it is the same as that shown in FIG. 16, and includes droplets of reaction products introduced from the reaction gas introduction means 41 by a mist eliminator composed of the filter medium 44 and the collision plate 43.
- FIG. 18 is a schematic diagram of an example of a product sorting device that continuously sorts fatty acid esters and glycerin by specific gravity separation, and is a mixture of fatty acid esters and glycerin introduced by the reaction product introducing means. Is divided up and down by the difference in specific gravity on the left side of the separator, and the glycerin that sinks below is stored on the right side of the tank through the lower part of the separator.
- the reaction product is collected as a gas phase, and the temperature is controlled to 350 ° C., preferably 290 ° C. Therefore, all the high boiling components remain as reaction residues in the reaction vessel, and the reaction product is separated. Since the temperature of the process is maintained at 90 ° C. or higher, methanol exists as a gas phase. Therefore, the reaction product is a mixture of only glycerin and a fatty acid ester containing a trace amount of water. The fatty acid ester with few impurities can be separated and collected from glycerin containing a small amount of water without providing it. Seventh embodiment This embodiment corresponds to the solving means (20) and (21).
- the resulting reaction residue is a high-boiling component containing an oxidation / polymerization product of fats and oils, which is taken out from the bottom of the reaction vessel. As described above with reference to FIG. 14, it is used as fuel oil for the residue incinerator (heat medium boiler) 8a.
- the generated high-temperature heat medium 8b is branched into two and sent to the final heat exchange step, and is used in the final heat exchange devices 7a and 7b for heating the raw material fats and the reaction raw material methanol, respectively.
- the amount of reaction residue generated and the amount of heat generated vary depending on the type of raw oil and fat.
- the best mode of the plant configuration according to the present invention includes a series of manufacturing processes 1 to 8, a tank group 55 such as a raw material storage tank / product storage tank, and a power supply facility 54.
- the amount of heat required for the plant is superheated by catalytic reaction step 1, high-temperature heat exchange step 2, condensation heat recovery step 3, reaction product separation step 4, temperature control heat exchange step 5, adiabatic cooling step 6 and final heating step 7. Since the raw material can be preheated by heat exchange with the reaction gas by the alcohol circulation means, the heat medium 8b for the final heating step by the reaction residue incineration step 8 (reaction residue incinerator 8a) can be used. It can be almost covered by acquisition.
- the amount of heat obtained by incineration of the reaction residue is unstable, but if necessary, stable operation is maintained by supplementing 5% or less of the raw material fats and oils.
- a generator 57 is operated by a diesel engine 56 using 2 to 5% of 49 to cover the power used by all plants. Hot water obtained from the cooling water 18 is used as a utility of the plant.
- the amount of reaction product obtained from the second device was 2 to 3 times that of the first device.
- the raw material rapeseed oil was supplied to the first container in an amount of about 1.7 ml / min corresponding to consumption by the reaction.
- the superheated methanol was recovered by cooling and condensing after separating the reaction product.
- This apparatus was continuously reacted for 3.9 hours to obtain about 400 ml of a reaction product, and allowed to stand to separate glycerin and esterified product to obtain about 25 ml of glycerin and about 375 ml of esterified product.
- the obtained esterified product was a pale yellow transparent liquid, and the kinematic viscosity was 10.4 mm 2 / sec.
- a bench test using a catalyst was performed by the manufacturing method of FIG.
- the specifications of the equipment used and the raw materials used are as follows.
- the reaction residue was not incinerated.
- Reactor Cylindrical, 200 mm in diameter, filled height 1000 mm, filled with steel Raschig ring 20 ⁇ 20 mm, attached with 0.5 m 2 heat exchanger (circulation pump 100 l / hr).
- Heat exchanger High temperature heat exchanger 2d (reaction raw material methanol heating); 4 m 2 , final heater 7a (reaction raw material methanol heating); 0.4 m 2 , high temperature heat exchanger 2c (raw material fats and oils heating); 3.0 m 2 , final heater 7b (heating raw material fats and oils); 0.3 m 2 , condensation heat exchanger 3c; 1.0 m 2 , condensation heat exchanger 3d; 0.6 m 2 , temperature control heat exchanger; 0.3 m 2 , Adiabatic cooler; cylindrical, diameter 80 mm, length 300 mm.
- the average reaction temperature was 287 ° C
- the circulating superheated vaporized methanol was 19.4 kg / hr in circulation
- the supply temperature to the reactor was 292 ° C
- the amount of electricity used for heating the reactor was 1.1 kW. It was.
- Table 1 shows main components and properties of the obtained fatty acid ester.
- the present invention produces plant-derived diesel fuel at low cost under normal pressure and safe operating conditions by an extremely heat-efficient system without producing hazardous waste such as chemical catalysts,
- the construction of a self-sufficient / pollution-free plant enables location in various environments, and is expected to be used on a large scale from the viewpoint of CO2 emission regulations.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Fats And Perfumes (AREA)
Abstract
過熱気化アルコールの密閉循環管路により各工程を連結して効率的な熱利用を実現し、かつ過剰に使用される原料アルコールの処理を容易にした脂肪酸エステルの製造方法である。この方法では、簡易な装置による無触媒・常圧反応が採用可能であるため、装置・操業の低コスト化と安全性の向上が図られ、反応生成物を気相として採取することにより特段の精製工程なしに原料品質に影響されぬ高品質の製品を得、原料・製品の一部ならびに反応残渣を燃料として利用することでエネルギー自給を可能となる。
Description
本発明は、油脂類に含まれるトリグリセリドをアルコールと反応させてエステル交換により脂肪酸エステルを製造するための有用な方法に関するものである。
炭酸ガス排出規制に対応する取り組みの一つとして、化石燃料に代えて植物起源の燃料を利用する試みが盛んに行われている。通常植物から得られるパーム油、菜種油等はトリグリセリドを主体とするため、軽油に比べて粘度が高く、また、融点の関係から寒冷地では凝固する等のため、そのままではディーゼルエンジンに使用することは必ずしも適当でない。このため、アルキルアルコールを用いてトリグリセリドとの間でエステル交換反応を行い、脂肪酸アルキルエステルとすることによって軽油と同等のディーゼル燃料を製造することが行われ、最も一般的にはアルカリ触媒を使用する方法が実用化している。しかしながらこの方法においては、触媒が副成するグリセリン中に含まれ、分離が困難なため、通常付加価値の低い副製品として回収されており、また、原料中に遊離脂肪酸があると金属セッケンが生成して以後の工程に支障をきたすため、その除去を必要とする等の問題のため、相当数の余分な工程が発生する。このため、固体触媒を使用する方法、無触媒で超臨界状態における化学種の高活性を利用する方法等が提案されているが、コスト・操業性或いは安全性の面から、広く実用化されるには至っていない。これに対し、常圧・無触媒で反応を行う場合には、反応速度が遅いため触媒法に比べて相当に高い温度を必要とし、エネルギーコストの面で実用化が困難であった。
本発明においては、上記の諸問題を解決するため、常圧・無触媒で、性能・価格とも軽油に匹敵する植物起源のアルキルエステル燃料を提供しようとする。具体的には、プラントとして、a.要求処理量の変動に対して柔軟に対応出来ること(連続・半連続生産がとも可能なシステムであること)、b.原料の品質の変動によって製品の質が影響を受けないこと、c.格別の精製工程を設けずに燃料として高品質な製品が得られ、副生グリセリンを商品として採取出来ること、d.常圧反応で操業の安全度が高く、エネルギー消費が少ないこと、e.無公害でエネルギー自給が可能であることを実現し得る製造方法を提案する。
本発明者らは上記の目的を達成するため、以下のような発明を行った。
(1)油脂類と一価アルコール(以下単にアルコールと言う)とから脂肪酸エステルを製造するに際し、反応生成物を過熱気化アルコールとの混合気相流(気相の反応生成物と過熱気化アルコールとの混合物若しくはこれに液滴状の反応生成物を伴うもの)として取得する方法において、反応時に必要な理論化学当量よりも過剰のアルコール(以下過剰アルコールと言う)を過熱気化アルコール(該アルコールの圧力に対応する沸点よりも高温の状態に保持されたアルコール)の状態で使用し、所要の工程(油脂類と一価アルコールとの反応を行うための装置を主体とする反応工程、熱交換により反応生成物の冷却と原料アルコール及び原料油脂類の昇温とを行うための装置を主体とする工程及び反応生成物を分離・取得するための装置を主体とする工程)間をすべて連結する該過熱気化アルコールの循環経路を設け、該循環経路を原料供給手段及び生成物取得手段を備えた密閉系とし、該循環経路の容量を反応時に必要な過剰アルコールを供給するに足るものとすることを特徴とする、脂肪酸エステルの製造方法。
(2)熱交換により反応生成物の冷却と原料の昇温とを行うための工程において、反応工程から取り出された、反応生成物を含む過熱気化アルコール(以下反応ガスと言う)と原料との熱交換に際し、反応ガスの顕熱部と潜熱部とを分離して熱交換を行うことを特徴とする、(1)記載の脂肪酸エステルの製造方法。
(3)反応ガスと原料との顕熱熱交換を行うための工程(以下高温熱交換工程と言う)及び/又は反応生成物の凝縮潜熱と原料との熱交換を行うための工程(以下凝縮熱回収工程と言う)及び/又は凝縮した反応生成物と過熱気化アルコールとを分離するための工程(以下反応生成物分離工程と言う)及び/又は反応生成物と分離された過熱気化アルコール(以下循環アルコールと言う)と原料アルコール及び/又は冷却水との顕熱熱交換を行うための工程(以下温調熱交換工程と言う)及び/又は原料アルコールによる循環アルコールの断熱冷却を行うための工程(以下断熱冷却工程と言う)を含むことを特徴とする、(1)記載の脂肪酸エステルの製造方法。
(4)反応工程の直前に、原料を昇温するための工程(以下最終予熱工程と言う)を設けることを特徴とする、(1)記載の脂肪酸エステルの製造方法。
(5)過熱気化アルコール循環経路に過熱気化アルコールを循環させ、製造工程への原料又は原料の一部の供給及び製造工程からの反応生成物の取得を該循環過熱気化アルコール(以下循環アルコールと言う)を介して行うことを特徴とする、(1)記載の脂肪酸エステルの製造方法。
(6)反応工程中において反応生成物に気化潜熱を与え、該反応生成物を気化させて過熱気化アルコール中に移行させる手段を備えることを特徴とする、(1)記載の脂肪酸エステルの製造方法。
(7)油脂類とアルコールとから脂肪酸エステルを製造する方法において、油脂類の昇温を複数段階で行い、反応直前に所要の反応温度に昇温することを特徴とする、(1)記載の脂肪酸エステルの製造方法。
(8)原料油脂類の昇温の何れかの段階において、液状及び/又は気化状態のアルコールを原料油脂類と共存させ、爾後の原料油脂類の昇温をアルコールとの共存状態(アルコールの原料油脂類中への溶解状態及び/又は液滴分散状態及び/又は気泡分散状態及び/又はアルコール中への原料油脂類の気相及び/又は液相としての混合・分散状態)において行うことを特徴とする、(7)記載の脂肪酸エステルの製造方法。
(9)油脂類の反応直前の加熱を、過熱気化アルコールの還元性雰囲気中で行うことを特徴とする、(7)記載の脂肪酸エステルの製造方法。
(10)熱交換により反応生成物の冷却と原料の昇温とを行うための工程において、反応装置から取り出された反応生成物及び/又は循環アルコールと、原料油脂類及び/又は原料アルコール及び/又は循環アルコールとの間で熱交換を行い、反応生成物を一括凝縮させ、得られた凝縮物から脂肪酸エステルとグリセリンとを分離・採取する手段を備えることを特徴とする、(1)記載の脂肪酸エステルの製造方法。
(11)高温熱交換工程に、高温側が反応ガスで低温側が原料アルコールを随伴する循環アルコール(以下反応原料アルコールと言う)である第1高温熱交換器と、高温側が反応ガスで低温側が原料油脂類である第2高温熱交換器とを設けることを特徴とする、(1)記載の脂肪酸エステルの製造方法。
(12)凝縮熱回収工程に、高温側が反応ガスで低温側が反応原料アルコールである第1凝縮熱交換器と、高温側が反応ガスで低温側が原料油脂類である第2凝縮熱交換器とを設けることを特徴とする、(1)記載の脂肪酸エステルの製造方法。
(13)温調熱交換工程に、高温側が循環アルコールで低温側が原料油脂類である温調熱交換器を設けることを特徴とする、(1)記載の脂肪酸エステルの製造方法。
(14)断熱冷却工程に、高温側が循環アルコールで低温側が原料アルコールである断熱冷却器を設けることを特徴とする、(1)記載の脂肪酸エステルの製造方法。
(15)熱交換により反応生成物の冷却と原料の予熱とを行うための工程において、高温熱交換工程に、高温側が反応ガスで低温側が反応原料アルコールである第1高温熱交換器と、高温側が反応ガスで低温側が原料油脂類である第2高温熱交換器とを設け、凝縮熱回収工程に、高温側が反応ガスで低温側が反応原料アルコールである第1凝縮熱交換器と、高温側が反応ガスで低温側が原料油脂類である第2凝縮熱交換器とを設け、温調熱交換工程に、高温側が循環アルコールで低温側が原料油脂類である温調熱交換器を設け、断熱冷却工程に、高温側が循環アルコールで低温側が原料アルコールである断熱冷却器を設けた熱回収システムを構築し、反応工程を出た高温度の反応ガスを2分岐させてそれぞれ第1及び第2高温熱交換器に入れ、各高温熱交換器を出た各分岐の中間温度の反応ガスをそれぞれ第1及び第2凝縮熱交換器に入れ、各凝縮熱交換器を出た低温度の反応ガスを合流させて反応生成物分離工程に入れ、反応生成物を凝縮物として分離し、得られた循環アルコールを順次温調熱交換器及び断熱冷却器に入れて更に温度を下げ、断熱冷却器において所要の原料アルコールを加えて反応原料アルコールとし、順次第1凝縮熱交換器及び第1高温熱交換器の低温側に送り、加熱・昇温して反応に使用し、一方原料油脂類を順次温調熱交換器・第2凝縮熱交換器・第2高温熱交換器の低温側を通して加熱・昇温して反応に使用する熱交換工程を含むことを特徴とする、(1)記載の脂肪酸エステルの製造方法。
(16)高温熱交換工程において、原料油脂類を熱媒として反応ガスと反応原料アルコールとの間で熱交換を行うことを特徴とする、(1)記載の脂肪酸エステルの製造方法。
(17)高温熱交換工程において、高温側が反応ガスで低温側が熱媒(原料油脂類)である高温熱交換器と、高温側が熱媒(原料油脂類)で低温側が反応原料アルコールであるアルコール加熱用高温熱交換器とを設け、高温熱交換器低温側の熱媒出口とアルコール加熱用高温熱交換器高温側の熱媒入口、アルコール加熱用高温熱交換器高温側の熱媒出口と高温熱交換器低温側の熱媒入口とを導管で連結して熱媒の循環回路を形成し、該循環回路の途中に循環ポンプと高温熱媒(原料油脂類)取り出し手段とを備え、反応ガスの熱によって反応原料アルコールを加熱することを特徴とする、(16)記載の脂肪酸エステルの製造方法。
(18)温調熱交換工程から凝縮熱回収工程に至る過熱気化アルコール循環経路の中間に、原料アルコール(液体)供給手段とガス攪拌手段とを備えた混合断熱冷却器を設け、原料アルコール(液体)により回収アルコールを断熱冷却することを特徴とする、(1)記載の脂肪酸エステルの製造方法。
(19)凝縮熱回収工程において反応ガス中の反応生成物を一括凝縮させ、該凝縮物を含む過熱気化アルコールを反応生成物分離工程に送り、濾過材等の凝縮物分離手段を備えた反応生成物分離装置に通して該凝縮物と過熱気化アルコールとを分離し、採取した該凝縮物を製品分離工程に送り、比重分離等の製品分離手段を備えた製品分離装置に入れて脂肪酸エステルとグリセリンとを分取することを特徴とする、(1)記載の脂肪酸エステルの製造方法。
(20)反応工程で生ずる反応残渣を、熱媒ボイラー等の焼却装置により焼却処理を行う工程(以下反応残渣焼却工程と言う)に送り、焼却の際に発生する熱によって熱媒を加熱して高温熱源を得ることを特徴とする、(1)記載の脂肪酸エステルの製造方法。
(21)反応残渣焼却工程において得られる高温熱源(熱媒)を最終予熱工程に送り、反応原料アルコール及び原料油脂類と熱交換を行うことを特徴とする、(1)記載の脂肪酸エステルの製造方法。
(22)反応工程、高温熱交換工程、凝縮熱回収工程、反応生成物分離工程、温調熱交換工程、断熱冷却工程、最終予熱工程、過熱気化アルコール循環手段、製品分離工程及び反応残渣焼却工程を主工程として構成され、反応工程、高温熱交換工程、凝縮熱回収工程、反応生成物分離工程、温調熱交換工程、断熱冷却工程及び最終予熱工程の全てを連結する過熱気化アルコール循環経路を有し、熱交換により反応ガスの持つ熱を回収して原料の予熱を行うと共に反応生成物を一括凝縮させ、得られた凝縮物から脂肪酸エステルとグリセリンとを分離採取し、反応工程で生ずる反応残渣を反応残渣焼却工程に送り、最終予熱工程に使用する熱媒の加熱のための燃料として使用し、該燃料の不足分を原料油脂類の一部を以って補い、生産された脂肪酸エステルの一部により発電を行い、外部からの燃料及び電力の供給を得ることなく全プラントの稼動が可能であり、且つ有害廃棄物をプラント外に出さないシステムを構築することを特徴とする、(1)記載の脂肪酸エステルの製造方法。
(1)油脂類と一価アルコール(以下単にアルコールと言う)とから脂肪酸エステルを製造するに際し、反応生成物を過熱気化アルコールとの混合気相流(気相の反応生成物と過熱気化アルコールとの混合物若しくはこれに液滴状の反応生成物を伴うもの)として取得する方法において、反応時に必要な理論化学当量よりも過剰のアルコール(以下過剰アルコールと言う)を過熱気化アルコール(該アルコールの圧力に対応する沸点よりも高温の状態に保持されたアルコール)の状態で使用し、所要の工程(油脂類と一価アルコールとの反応を行うための装置を主体とする反応工程、熱交換により反応生成物の冷却と原料アルコール及び原料油脂類の昇温とを行うための装置を主体とする工程及び反応生成物を分離・取得するための装置を主体とする工程)間をすべて連結する該過熱気化アルコールの循環経路を設け、該循環経路を原料供給手段及び生成物取得手段を備えた密閉系とし、該循環経路の容量を反応時に必要な過剰アルコールを供給するに足るものとすることを特徴とする、脂肪酸エステルの製造方法。
(2)熱交換により反応生成物の冷却と原料の昇温とを行うための工程において、反応工程から取り出された、反応生成物を含む過熱気化アルコール(以下反応ガスと言う)と原料との熱交換に際し、反応ガスの顕熱部と潜熱部とを分離して熱交換を行うことを特徴とする、(1)記載の脂肪酸エステルの製造方法。
(3)反応ガスと原料との顕熱熱交換を行うための工程(以下高温熱交換工程と言う)及び/又は反応生成物の凝縮潜熱と原料との熱交換を行うための工程(以下凝縮熱回収工程と言う)及び/又は凝縮した反応生成物と過熱気化アルコールとを分離するための工程(以下反応生成物分離工程と言う)及び/又は反応生成物と分離された過熱気化アルコール(以下循環アルコールと言う)と原料アルコール及び/又は冷却水との顕熱熱交換を行うための工程(以下温調熱交換工程と言う)及び/又は原料アルコールによる循環アルコールの断熱冷却を行うための工程(以下断熱冷却工程と言う)を含むことを特徴とする、(1)記載の脂肪酸エステルの製造方法。
(4)反応工程の直前に、原料を昇温するための工程(以下最終予熱工程と言う)を設けることを特徴とする、(1)記載の脂肪酸エステルの製造方法。
(5)過熱気化アルコール循環経路に過熱気化アルコールを循環させ、製造工程への原料又は原料の一部の供給及び製造工程からの反応生成物の取得を該循環過熱気化アルコール(以下循環アルコールと言う)を介して行うことを特徴とする、(1)記載の脂肪酸エステルの製造方法。
(6)反応工程中において反応生成物に気化潜熱を与え、該反応生成物を気化させて過熱気化アルコール中に移行させる手段を備えることを特徴とする、(1)記載の脂肪酸エステルの製造方法。
(7)油脂類とアルコールとから脂肪酸エステルを製造する方法において、油脂類の昇温を複数段階で行い、反応直前に所要の反応温度に昇温することを特徴とする、(1)記載の脂肪酸エステルの製造方法。
(8)原料油脂類の昇温の何れかの段階において、液状及び/又は気化状態のアルコールを原料油脂類と共存させ、爾後の原料油脂類の昇温をアルコールとの共存状態(アルコールの原料油脂類中への溶解状態及び/又は液滴分散状態及び/又は気泡分散状態及び/又はアルコール中への原料油脂類の気相及び/又は液相としての混合・分散状態)において行うことを特徴とする、(7)記載の脂肪酸エステルの製造方法。
(9)油脂類の反応直前の加熱を、過熱気化アルコールの還元性雰囲気中で行うことを特徴とする、(7)記載の脂肪酸エステルの製造方法。
(10)熱交換により反応生成物の冷却と原料の昇温とを行うための工程において、反応装置から取り出された反応生成物及び/又は循環アルコールと、原料油脂類及び/又は原料アルコール及び/又は循環アルコールとの間で熱交換を行い、反応生成物を一括凝縮させ、得られた凝縮物から脂肪酸エステルとグリセリンとを分離・採取する手段を備えることを特徴とする、(1)記載の脂肪酸エステルの製造方法。
(11)高温熱交換工程に、高温側が反応ガスで低温側が原料アルコールを随伴する循環アルコール(以下反応原料アルコールと言う)である第1高温熱交換器と、高温側が反応ガスで低温側が原料油脂類である第2高温熱交換器とを設けることを特徴とする、(1)記載の脂肪酸エステルの製造方法。
(12)凝縮熱回収工程に、高温側が反応ガスで低温側が反応原料アルコールである第1凝縮熱交換器と、高温側が反応ガスで低温側が原料油脂類である第2凝縮熱交換器とを設けることを特徴とする、(1)記載の脂肪酸エステルの製造方法。
(13)温調熱交換工程に、高温側が循環アルコールで低温側が原料油脂類である温調熱交換器を設けることを特徴とする、(1)記載の脂肪酸エステルの製造方法。
(14)断熱冷却工程に、高温側が循環アルコールで低温側が原料アルコールである断熱冷却器を設けることを特徴とする、(1)記載の脂肪酸エステルの製造方法。
(15)熱交換により反応生成物の冷却と原料の予熱とを行うための工程において、高温熱交換工程に、高温側が反応ガスで低温側が反応原料アルコールである第1高温熱交換器と、高温側が反応ガスで低温側が原料油脂類である第2高温熱交換器とを設け、凝縮熱回収工程に、高温側が反応ガスで低温側が反応原料アルコールである第1凝縮熱交換器と、高温側が反応ガスで低温側が原料油脂類である第2凝縮熱交換器とを設け、温調熱交換工程に、高温側が循環アルコールで低温側が原料油脂類である温調熱交換器を設け、断熱冷却工程に、高温側が循環アルコールで低温側が原料アルコールである断熱冷却器を設けた熱回収システムを構築し、反応工程を出た高温度の反応ガスを2分岐させてそれぞれ第1及び第2高温熱交換器に入れ、各高温熱交換器を出た各分岐の中間温度の反応ガスをそれぞれ第1及び第2凝縮熱交換器に入れ、各凝縮熱交換器を出た低温度の反応ガスを合流させて反応生成物分離工程に入れ、反応生成物を凝縮物として分離し、得られた循環アルコールを順次温調熱交換器及び断熱冷却器に入れて更に温度を下げ、断熱冷却器において所要の原料アルコールを加えて反応原料アルコールとし、順次第1凝縮熱交換器及び第1高温熱交換器の低温側に送り、加熱・昇温して反応に使用し、一方原料油脂類を順次温調熱交換器・第2凝縮熱交換器・第2高温熱交換器の低温側を通して加熱・昇温して反応に使用する熱交換工程を含むことを特徴とする、(1)記載の脂肪酸エステルの製造方法。
(16)高温熱交換工程において、原料油脂類を熱媒として反応ガスと反応原料アルコールとの間で熱交換を行うことを特徴とする、(1)記載の脂肪酸エステルの製造方法。
(17)高温熱交換工程において、高温側が反応ガスで低温側が熱媒(原料油脂類)である高温熱交換器と、高温側が熱媒(原料油脂類)で低温側が反応原料アルコールであるアルコール加熱用高温熱交換器とを設け、高温熱交換器低温側の熱媒出口とアルコール加熱用高温熱交換器高温側の熱媒入口、アルコール加熱用高温熱交換器高温側の熱媒出口と高温熱交換器低温側の熱媒入口とを導管で連結して熱媒の循環回路を形成し、該循環回路の途中に循環ポンプと高温熱媒(原料油脂類)取り出し手段とを備え、反応ガスの熱によって反応原料アルコールを加熱することを特徴とする、(16)記載の脂肪酸エステルの製造方法。
(18)温調熱交換工程から凝縮熱回収工程に至る過熱気化アルコール循環経路の中間に、原料アルコール(液体)供給手段とガス攪拌手段とを備えた混合断熱冷却器を設け、原料アルコール(液体)により回収アルコールを断熱冷却することを特徴とする、(1)記載の脂肪酸エステルの製造方法。
(19)凝縮熱回収工程において反応ガス中の反応生成物を一括凝縮させ、該凝縮物を含む過熱気化アルコールを反応生成物分離工程に送り、濾過材等の凝縮物分離手段を備えた反応生成物分離装置に通して該凝縮物と過熱気化アルコールとを分離し、採取した該凝縮物を製品分離工程に送り、比重分離等の製品分離手段を備えた製品分離装置に入れて脂肪酸エステルとグリセリンとを分取することを特徴とする、(1)記載の脂肪酸エステルの製造方法。
(20)反応工程で生ずる反応残渣を、熱媒ボイラー等の焼却装置により焼却処理を行う工程(以下反応残渣焼却工程と言う)に送り、焼却の際に発生する熱によって熱媒を加熱して高温熱源を得ることを特徴とする、(1)記載の脂肪酸エステルの製造方法。
(21)反応残渣焼却工程において得られる高温熱源(熱媒)を最終予熱工程に送り、反応原料アルコール及び原料油脂類と熱交換を行うことを特徴とする、(1)記載の脂肪酸エステルの製造方法。
(22)反応工程、高温熱交換工程、凝縮熱回収工程、反応生成物分離工程、温調熱交換工程、断熱冷却工程、最終予熱工程、過熱気化アルコール循環手段、製品分離工程及び反応残渣焼却工程を主工程として構成され、反応工程、高温熱交換工程、凝縮熱回収工程、反応生成物分離工程、温調熱交換工程、断熱冷却工程及び最終予熱工程の全てを連結する過熱気化アルコール循環経路を有し、熱交換により反応ガスの持つ熱を回収して原料の予熱を行うと共に反応生成物を一括凝縮させ、得られた凝縮物から脂肪酸エステルとグリセリンとを分離採取し、反応工程で生ずる反応残渣を反応残渣焼却工程に送り、最終予熱工程に使用する熱媒の加熱のための燃料として使用し、該燃料の不足分を原料油脂類の一部を以って補い、生産された脂肪酸エステルの一部により発電を行い、外部からの燃料及び電力の供給を得ることなく全プラントの稼動が可能であり、且つ有害廃棄物をプラント外に出さないシステムを構築することを特徴とする、(1)記載の脂肪酸エステルの製造方法。
1 反応工程
1a 反応装置
2 高温熱交換工程
2a 高温熱交換器
2b 高温熱交換器
2c 高温熱交換器
2d 高温熱交換器
3 凝縮熱交換工程
3a 凝縮熱交換器
3b 凝縮熱交換器
3c 凝縮熱交換器
3d 凝縮熱交換器
4 反応生成物分離工程
4a 反応生成物分離装置
4b 製品分取装置
5 温調熱交換工程
5a 温調熱交換器
6 断熱冷却工程
6a 断熱冷却器
7 最終予換工程
7a 最終加熱装置
7b 最終加熱装置
8 残渣焼却工程
8a 残渣焼却装置
8b 熱媒
9 原料貯蔵タンク(油脂類)
10 原料貯蔵タンク(アルコール)
11 原料油脂類
11a 温調熱交換器によって予熱された原料油脂類
11b 凝縮熱交換器・高温熱交換器によって予熱された原料油脂類
11d 高温熱媒(原料油脂類)取出し手段を備えた導管
11e 原料油脂類供給口を備えた導管
11f 原料油脂類供給口
11p 高温熱媒(原料油脂類)循環手段
11v 高温熱媒(原料油脂類)取出し手段
12 原料アルコール
13 反応ガス(過熱気化アルコール、脂肪酸エステル、グリセリン混合物)
14 循環アルコール
15 反応生成物(液相)
16 反応原料アルコール(循環アルコール、原料アルコール混合物)
17 反応残渣
18 冷却水
19 反応容器
20 反応原料アルコール供給手段
20a 反応原料アルコール吹込ノズル
21 原料油脂類供給手段
21a 原料油脂類排出手段
22 反応ガス排出手段
23 残渣排出手段
24 加熱手段
24a 加熱手段
24b 加熱手段
24c 加熱手段
24d 加熱手段
24e 加熱手段
25 固体(触媒)・液体(原料油脂類)・気体(反応ガス)接触手段
(無触媒の場合には原料油脂類と反応ガスとの接触手段)
26 攪拌手段
27 円筒容器
28 スプレーヘッド
28a 散液ヘッド
29 循環メタノール導入手段
30 液体メタノール導入手段
31 反応原料メタノール取り出し手段
32 攪拌手段
33 インペラー
34 ドラフトチューブ
35 気液接触手段又は触媒
36 駆動モーター
37 送油ポンプ
38 送気ポンプ
39 気液混合手段
40 反応管
41 反応原料アルコール気泡
41a 反応原料アルコール泡沫
42 分離槽
43 衝突板
44 濾過材(グラスウール等)
45 熱媒
46a 反応生成物導入手段
46b 反応生成物排出手段
47 セパレータ
48 グリセリン
49 脂肪酸エステル
50 グリセリン排出手段
51 脂肪酸エステル排出手段
52 液面
53 気泡・液混相流の流れ
54 電力供給工程
55 貯蔵タンク類
56 ディーゼルエンジン
57 発電機
58 供給電力
59 燃焼用空気
60 熱パイプ
発明の効果
本発明にかかる、過熱気化アルコール循環手段を備えた一連の製造工程による高い熱回収効率により、所要の熱エネルギーが大幅に低減され、超臨界反応の如き高圧を必要とせず、アルカリ触媒法に比べ工程が著しく簡素化され、操業の安全性、設備費・運転経費の低減を期待することが出来る。また、反応にあたって使用される過剰アルコールが密閉系内で常に一定容量として保持・循環されるため、反応工程にのみ過剰アルコールを供給する場合と異なり、特段の回収・再使用の工程を必要としない。本法においては脂肪酸エステルおよびグリセリンは気相として採取されるため、高沸点の夾雑物を含まず、特段の精製工程を必要とせず、原料の変動によって品質が左右されにくい。反応残渣は全て製造工程の加熱用燃料として使用されるので廃棄物は殆どなく、原料油脂類及び製品(脂肪酸エステル)の小部分を燃料補助に用いることによりエネルギー自給型プラントを構成することが可能である。
1a 反応装置
2 高温熱交換工程
2a 高温熱交換器
2b 高温熱交換器
2c 高温熱交換器
2d 高温熱交換器
3 凝縮熱交換工程
3a 凝縮熱交換器
3b 凝縮熱交換器
3c 凝縮熱交換器
3d 凝縮熱交換器
4 反応生成物分離工程
4a 反応生成物分離装置
4b 製品分取装置
5 温調熱交換工程
5a 温調熱交換器
6 断熱冷却工程
6a 断熱冷却器
7 最終予換工程
7a 最終加熱装置
7b 最終加熱装置
8 残渣焼却工程
8a 残渣焼却装置
8b 熱媒
9 原料貯蔵タンク(油脂類)
10 原料貯蔵タンク(アルコール)
11 原料油脂類
11a 温調熱交換器によって予熱された原料油脂類
11b 凝縮熱交換器・高温熱交換器によって予熱された原料油脂類
11d 高温熱媒(原料油脂類)取出し手段を備えた導管
11e 原料油脂類供給口を備えた導管
11f 原料油脂類供給口
11p 高温熱媒(原料油脂類)循環手段
11v 高温熱媒(原料油脂類)取出し手段
12 原料アルコール
13 反応ガス(過熱気化アルコール、脂肪酸エステル、グリセリン混合物)
14 循環アルコール
15 反応生成物(液相)
16 反応原料アルコール(循環アルコール、原料アルコール混合物)
17 反応残渣
18 冷却水
19 反応容器
20 反応原料アルコール供給手段
20a 反応原料アルコール吹込ノズル
21 原料油脂類供給手段
21a 原料油脂類排出手段
22 反応ガス排出手段
23 残渣排出手段
24 加熱手段
24a 加熱手段
24b 加熱手段
24c 加熱手段
24d 加熱手段
24e 加熱手段
25 固体(触媒)・液体(原料油脂類)・気体(反応ガス)接触手段
(無触媒の場合には原料油脂類と反応ガスとの接触手段)
26 攪拌手段
27 円筒容器
28 スプレーヘッド
28a 散液ヘッド
29 循環メタノール導入手段
30 液体メタノール導入手段
31 反応原料メタノール取り出し手段
32 攪拌手段
33 インペラー
34 ドラフトチューブ
35 気液接触手段又は触媒
36 駆動モーター
37 送油ポンプ
38 送気ポンプ
39 気液混合手段
40 反応管
41 反応原料アルコール気泡
41a 反応原料アルコール泡沫
42 分離槽
43 衝突板
44 濾過材(グラスウール等)
45 熱媒
46a 反応生成物導入手段
46b 反応生成物排出手段
47 セパレータ
48 グリセリン
49 脂肪酸エステル
50 グリセリン排出手段
51 脂肪酸エステル排出手段
52 液面
53 気泡・液混相流の流れ
54 電力供給工程
55 貯蔵タンク類
56 ディーゼルエンジン
57 発電機
58 供給電力
59 燃焼用空気
60 熱パイプ
発明の効果
本発明にかかる、過熱気化アルコール循環手段を備えた一連の製造工程による高い熱回収効率により、所要の熱エネルギーが大幅に低減され、超臨界反応の如き高圧を必要とせず、アルカリ触媒法に比べ工程が著しく簡素化され、操業の安全性、設備費・運転経費の低減を期待することが出来る。また、反応にあたって使用される過剰アルコールが密閉系内で常に一定容量として保持・循環されるため、反応工程にのみ過剰アルコールを供給する場合と異なり、特段の回収・再使用の工程を必要としない。本法においては脂肪酸エステルおよびグリセリンは気相として採取されるため、高沸点の夾雑物を含まず、特段の精製工程を必要とせず、原料の変動によって品質が左右されにくい。反応残渣は全て製造工程の加熱用燃料として使用されるので廃棄物は殆どなく、原料油脂類及び製品(脂肪酸エステル)の小部分を燃料補助に用いることによりエネルギー自給型プラントを構成することが可能である。
以下に原料アルコールとしてメタノールを用い、圧力0.090~0.405MPa(好ましくは0.102~0.150MPa)、温度350~150℃(好ましくは290~180℃)の条件下で、油脂類に対し必要な理論化学当量よりも過剰な過熱気化メタノールを反応に使用し、無触媒で反応を行う際の、本発明を実施するための最良の形態を例示し、図を参照しながら説明する。
第1の実施形態
図1は第1の実施形態の中心である、過熱気化アルコール循環手段によって連結された脂肪酸エステルの製造工程の概念図であって、その最も好ましい形態として、反応工程1・高温熱交換工程2・凝縮熱回収工程3・生成物分離工程4・温調熱交換工程5・断熱冷却工程6及び最終予熱工程7を連結したものを示した。
過熱気化アルコール循環手段14aは、反応工程1、高温熱交換工程2、凝縮熱回収工程3、生成物分離工程4、温調熱交換工程5、断熱冷却工程6を経て再び凝縮熱回収工程3、高温熱交換工程2、更に最終熱予熱工程7を通って触媒反応工程1に至り循環経路を形成する。該循環経路を流れる循環(過熱気化)メタノールの温度は、反応生成物を随伴する反応ガス13として反応工程1を出た点で最も高く、順次熱交換により降温して、反応生成物分離工程4を出た点で反応生成物を分離して循環(過熱気化)アルコール14となり、断熱冷却工程6を出た点で原料アルコールを随伴する反応原料(過熱気化)アルコールとして最低温度となり、再度凝縮熱回収工程3、高温熱交換工程2を通って昇温され、最終予熱工程7によって所要の温度を得て反応工程1に戻る。
原料油脂類11は温調熱交換工程5・凝縮熱回収工程3・高温熱交換工程2を経て順次昇温され、最終加熱工程7によって所要の温度を得て反応工程1に供給される。
原料メタノール(液体)12は、アルコール断熱冷却工程6において気化した後循環メタノール14と合流して反応原 料メタノール16となり、該反応原料メタノールは更に凝縮熱回収工程3・高温熱交換工程2を経て順次昇温され、最終予熱工程7によって所要の温度を得て反応工程1に供給される。
図2は、図1の過熱気化アルコール循環手段をより具体的に説明するための概念図であり、併せて残渣焼却工程8による熱回収の位置付けをも示した。反応工程1においては、メタノール(過熱気化状態)は油脂類に対し常に理論化学等量を越えた過剰の状態に保たれ、該メタノールと油脂類とは、接触手段による十分な接触の下で相互に作用し、更に一部は液上の気相部においても反応する。反応生成物(脂肪酸エステルとグリセリン)は過剰の過熱気化メタノール中に移行して該過熱気化メタノールと共に反応ガス13として反応工程1から排出され、2分されて高温熱交換工程2でそれぞれ反応原料メタノール16及び原料油脂類11と熱交換後、分岐したまま凝縮熱回収工程3に入り、それぞれ反応原料メタノール及び原料油脂類と熱交換を行い、この結果、反応生成物は潜熱をすべてメタノール(過熱気化状態)に与え、凝縮して液相(液滴)となり、メタノール(過熱気化状態)に随伴されて凝縮熱回収工程を出る。
反応生成物の液滴を随伴した2分岐の過熱気化メタノールは合流して反応生成物分離工程4に入り、反応生成物(液体)15は該メタノールから分離され、さらに脂肪酸エステルとグリセリンとに分離されて最終製品となる。
一方反応生成物と分離されたメタノールは、循環メタノール(過熱気化状態)14として温調熱交換工程5に送られて原料油脂類11及び必要に応じ冷却水18と熱交換を行い、次工程に適した温度に調整されて断熱冷却工程6に入り、原料メタノール(液体)12のミストにより断熱冷却されて温度を低下させ、戻り熱交換の温度差を確保し、一方原料メタノールは気化潜熱を得て気相となり、循環メタノールに随伴されて反応原料メタノール16として凝縮熱回収工程3及び高温熱交換工程2に入り、反応ガス13と向流して熱交換を行い、必要な温度を得て順次最終予熱工程7、反応工程1に 至って過熱気化メタノール循環経路を形成する。
原料アルコール12は、反応生成物15として取り出される分に対応した量を供給する。
原料油脂類は、反応生成物15及び反応残渣13として取り出される分に対応した量を供給する。
反応残渣17は廃液焼却工程8に送り、熱媒ボイラ等により焼却して最終熱交換工程7で使用する高温熱媒をつくる。
本実施形態は、過剰な過熱気化メタノールと油脂類とを十分に接触させ、高い収率で反応生成物を得、かつ反応生成物を過熱気化メタノールと共に気相採取する形態を利用して、各工程間を連結する定常的な過熱気化メタノールの密閉循環流を形成し、反応で消費される分の原料メタノールのみを該循環流に供給することにより、一定量のメタノールで反応時に必要なメタノール過剰の条件を確保することを可能にしたものである。
また、該循環流の形成により、生成物の凝縮分離のための冷却工程と原料の加熱工程とを相互の熱交換によって行うことが容易になり、多少の反応効率の変動を吸収して経済的なプラントを構成することを可能にしている。本発明は無触媒を念頭においたものであるが、反応工程においては固体触媒等を使用することも可能である。
第2の実施の形態
本実施形態は反応工程に対応するものである。図3及び図4は、第2の実施形態の中心である、過熱気化メタノール(反応原料メタノール)及び原料油脂類の供給手段、反応生成物を含む過熱気化アルコール(反応ガス)と反応残渣の排出手段、液体(原料油脂類)・気体(過熱気化アルコール)2相若しくは固体(触媒)をも含めた3相の接触手段及 び該2相若しくは固体(接触手段及び/又は触媒)をも含めた3相のうちの1または2、或いは3相すべての加熱手段により構成される反応工程の基本概念図である。
図3は、反応容器19の外部に反応原料メタノールの供給手段20、原料油脂類の供給手段21、反応ガスの排出手段22、反応残渣の排出手段23を備え、反応容器19の内部に前項に述べた加熱手段24と油脂類と反応原料メタノールとの接触手段(触媒使用の場合には触媒・油脂類・反応原料メタノールの接触手段)25とを設置したものである。該接触手段には、必要に応じ何らかの攪拌手段26を設ける。該加熱手段の対象は反応原料メタノール・原料油脂類の双方または何れか一方であり、必要に応じ接触手段及び/又は触媒をも加熱し、接触手段及び/又は触媒を反応原料メタノール・原料油脂類及び/又は反応生成物の加熱手段として機能させる。
本反応工程においては、油脂類中に気化アルコール気泡が存在する状態と気化アルコール中に油脂類の気化物が存在する状態とが混在し、更にこれらが固体(接触手段または触媒)と接触しつつ反応が行われるため、局所的な温度変化が生じやすい。従って反応工程に先立つ最終予熱工程による加温のみでは反応時の必要温度を確保することは困難で、反応工程内で反応直前に加温を行い、設定された温度条件を満足させることが必要である。本発明にかかる反応工程においては、反応容器内に加熱手段を設け、メタノール及び/又は原料油脂類が接触手段に至る直前に必要な加熱を行い、更には触媒及び/又は接触手段による加熱を行うことにより問題を解決した。本発明においては反応生成物を気相として過熱気化メタノールと共に排出するため、該加熱手段は反応に必要な温度を与えるほか、反応生成物に気化潜熱を供給する役割をも持っている。
原料油脂類の反応温度を上げることは脂肪酸エステルの製造に有利であるが、同時に原料油脂類の劣化も促 進される。このため、原料油脂類を高温に保つ時間を極力短くすることが必要であり、本発明にかかる反応工程においては、上記のごとき手段により、反応直前に所要の温度に昇温することで問題を解決した。また、原料油脂類の昇温の何れかの段階(複数段階を含む)においてメタノールを共存させ、爾後の加熱をメタノールが共存する還元性雰囲気中で行うことは油脂類の劣化防止に有効であると考えられる。両者の共存形態としては、メタノールの原料油脂類中への溶解及び/又は液相(液滴)分散及び/又は気相(気泡)分散か、原料油脂類のメタノール中への気相及び/又は液相としての混合・分散であり、必要に応じ攪拌手段を使用する。特に触媒もしくは接触手段を加熱手段とする場合には、原料油脂類の反応直前の最高温度への加熱を過剰の過熱気化メタノール雰囲気中で行うことが出来る。反応直前の昇温の幅は使用原料油脂の種類等によって調整の必要があるが、本発明においては原料油脂類の予熱・昇温を多段階で行い、且つ反応工程直前に最終予熱工程を設けることによってこれを解決した。
図4は装置の簡素化若しくは接触手段を内蔵する反応装置の形状上の必要から、加熱手段を反応容器の外部に設置したものである。
接触手段を備えた反応装置として好ましいものを例示すれば、次の通りである。図5はガス吸込型の反応装置の一例を示す模式図であって、反応容器19の中にドラフトチューブ34を設け、下部にドラフトチューブ内の液体を下方に吸い込むためのインペラー33を備え、ドラフトチューブの中心軸線上にその駆動軸と駆動モーター36とを配置し、駆動軸には攪拌手段26を付随させる。ドラフトチューブの外側上部と反応容器壁との間にはメンテナンスのために着脱可能とした接触手段35(触媒使用の際は触媒)を設置する。原料油脂類11は原料油脂類供給手段21、加熱手段24bを通ってチューブ内側へ上方から、反応原料メタノール16は反応原料アルコール供給手段20、加熱装置24aを通ってチューブ内部の原料油脂類上部へ供給さ れる。反応容器内には常時原料油脂類がチューブ上端よりも高い液面52まで貯留されており、チューブ内の原料油脂類と反応ガス気泡との気液混相流53はインペラーによって下降、次いでドラフトチューブ外側を上昇し、接触手段35(触媒使用の際は触媒)を通過してドラフトチューブ上端からチューブ内に戻る循環流を形成する。反応原料メタノールはこの循環流に乗ってチューブ内を下降しつつ攪拌され、微小気泡となって原料油脂類と混和し、チューブ外側を上昇、接触手段(触媒使用の際は触媒)を通過する過程において反応し、反応生成物は過剰の気化メタノールと共に反応ガス13となり、反応ガス排出手段22から外部へ排出される。
図6は油スプレー・ガス吸込型の反応装置の一例を示す模式図であって、図4に示したガス吸込型において、原料油脂類11をスプレーヘッド28を介してミストとして下方に噴射・供給し、反応原料メタノールとの接触機会を更に増加させたものである。図5においては駆動モーターを反応容器下部に配し、加熱手段24cによって接触手段(触媒使用の際は触媒)35をも加熱する例を示した。このような加熱手段ないし駆動モーターの配置は、図4の方式においても同様に行うことが出来る。
図7は充填塔・油外部加熱型の反応装置の一例を示す模式図であって、充填塔の中間部に設けた35(触媒使用の際は触媒層)の下方に原料油脂類を貯留し、該原料油脂類に原料油脂類供給手段21を通して原料油脂類11を供給し、落下する未反応原料油脂類と共に送液ポンプ37によって塔の外部に取り出し、加熱手段24bによって加熱して接触手段(又は触媒充填層)の上方から塔内に供給する。図6では加熱された原料油脂類をスプレーヘッド28を介してミストとして供給し、反応原料メタノールとの接触機会の増大を図った型を示した。反応原料メタノール16は反応原料メタノール供給手段20・加熱手段24aを通して塔下部から吹込ノズル20aを介して供給され、原料油脂類中を気泡として通過後、接触手段(又は触媒層)35内 部及び接触手段(又は触媒層)上方で原料油脂類と接触する過程において反応し、反応生成物は過熱気化メタノールと共に反応ガス13として排出手段22から排出される。
図8はデイップパイプ型の反応装置の一例を示す模式図であって、反応容器内に複数のガス吹き込みノズル20aを設け、供給手段20・加熱手段24aを介して所要温度に昇温された反応原料アルコール16を該反応容器に貯留された原料油脂類中に吹き込み、該反応原料アルコールが気泡として該原料油脂類を上昇し、液面52の上部に泡沫層41aを形成し、該泡沫が破裂して泡沫層上部の反応ガス中に入る過程において反応を生起させる。生成した反応ガス13は、排出手段22を介して取り出される。原料油脂類11は、反応によって失われる分を導入手段21・加熱手段24bを介して所要温度に昇温して供給する。図8には反応容器をセパレータ47によって2室に仕切り、左室で反応原料アルコールを吹き込まれた原料油脂類の一部が、セパレータ下方の間隙を通って右室に入り、更に反応原料アルコールの吹き込みを受ける2段型の装置を示した。該反応段数は必要に応じ増加することが出来る。吹き込みノズル先端の液深は、生成される反応原料アルコールの気泡径が反応に最適になるように設定され、必要に応じノズル先端部若しくは反応容器内に気泡径制御手段を設ける。図8に示した反応装置は、既存の反応装置例えば泡鐘塔に改造を加えることによっても実現が可能である。
図9は図8と同様デイップパイプ型の反応装置の一例を示す模式図であって、図8の装置に接触手段(又は触媒)35を付加したものである。図9には該接触手段(又は触媒)が泡沫層上部に設けられ、泡沫(極めて薄い油膜が過熱気化アルコールと接した状態)が例えばハニカム状或いはリング状物(又は触媒)の充填層に触れながら通過する場合を示した。充填層には加熱手段を付与し、反応原料が接触時にのみ所要の高温になるようにすることも可能である。また、接触手段(又は触媒)の設置個所は、泡沫 層上部に限らず、必要に応じ原料油脂類中~泡沫層上部のいずれの個所にも設置が可能であり、複数箇所に設置することも出来る。
図10はマルチ熱パイプ型の反応装置の一例を示す模式図であって、図の右方部分は、熱パイプに垂直な断面により、熱パイプ60の配置状態を示す。反応容器内に水平に設置された複数の熱パイプ60に加熱装置24cによって昇温された熱媒45を通して所要の温度を与え、上部の散液ヘッド28aから原料油脂類を滴下し、該原料油脂類が熱パイプ表面を膜状となって流下する状態で、下方から供給手段20・加熱手段24aを介して導入された反応原料アルコール16と反応を生起させ、反応生成物は過剰の過熱気化メタノールと共に反応ガスとして排出手段22から排出される。反応原料アルコールは該熱パイプに至る前に、気泡として反応容器下部に貯留された原料油脂類を通過させる。原料油脂類11は反応によって失われる分を供給手段21を介して反応容器下部に供給し、未反応のまま落下した原料油脂類と共に排出手段21aを介して送液ポンプ37により上部に送り、供給手段21・加熱手段24bを通して所要温度に昇温し、散液ヘッド28aに供給する。触媒を使用する場合には、熱パイプ表面に金属系固体触媒を付加する。
図11は単反応管型の反応装置の一例を示す模式図であって、送気ポンプ38によって送られる反応原料メタノール16は、加熱手段24aで加熱された後混合手段39に入り、同様に加熱手段24bで加熱されて混合手段に入った原料油脂類11と混和して気液混相流となり、必要な長さを持ち、加熱手段24dによって所要の温度に維持された反応管40を通過し、反応ガス13となって排出手段22から排出される。触媒使用の際には、触媒との接触は必要に応じ混合手段内及び/又は反応管内で行われる。混合手段としては、スタチックミキサのような簡易なものの他、他の反応装置を用いて、得られる反応ガスと原料油脂類との気液混合物若しくは原料油脂類の 飛沫を同伴した反応ガスを反応管に供給するような方法がある。
図12は流動層型の反応装置の一例を示す模式図であって、反応容器19内に貯留された原料油脂類に粒状・薄片状等の接触手段(又は触媒)35を保持させ、これにそれぞれ加熱手段24a、24bで加熱された反応原料ガス16及び原料油脂類11を反応容器下部から供給し、反応ガス気泡41、原料油脂類及び触媒粒子35の3者の混合流動層を生起して反応させ、反応ガス13を容器上部の排出手段22から取り出すものである。流動層は反応容器内部の加熱手段24eによって必要な温度に維持される。流動は反応原料ガスのバブリングによって行われるが、必要があれば適宜の攪拌手段を設ける。
図13はマルチ反応管型の反応装置の一例を示す模式図であって、反応容器19内に設置された反応管40の内部に接触手段(又は触媒)35を充填し、反応管外部は熱媒45によって満たされ、熱媒に対する加熱手段24cを設け、加熱手段24aで加熱された反応原料ガス16を下方から、加熱手段24bで加熱された原料油脂類11を上方から供給し、反応管内の加熱された触媒中で反応を生起させ、反応ガス13を容器上部から排出するものである。
上記各反応装置は、いずれもバッチ・セミバッチ・連続の各生産方法に適応が可能であり、また、反応容器下部に存在する原料油脂類若しくは一部反応ガス気泡を含む原料油脂類を、同種若しくは異種の別の反応装置に対して原料油脂類として供給し、多段反応装置を構成することが出来る。
各反応装置における反応条件は、前述の如く圧力0.090~0.405MPa(好ましくは0.102~0.150MPa)、温度350~150℃(好ましくは290~180℃)のマイルドなものであって、反応装置の構造・材料については超臨界反応に対するような特別な配慮を必要としない。反応時には原料油脂類に対し過剰のメタノール(好ましくは理論化学当量の3倍以上)の存在を有利とするが、この条件は、前述の如く常時一定量の過熱気 化メタノールが密閉経路中を循環するシステムにより、容易に達成される。経路内の反応ガス等の漏洩防止には、必要に応じ経路内を大気圧に対し若干負圧に保することが有効である。上記の圧力は反応容器壁に設置した液柱型又はプルドン管型圧力計の数値であり、温度はサーミスタ式若しくは抵抗式による接触手段又は触媒の表面(若しくは表面に近い内部の点)の温度の測定値である。
本発明においては、反応時に触媒を使用することなく経済的に成立可能な製造工程を構築することが出来るが、必要に応じ反応装置等に大きな変更を加えることなく金属系固体触媒を使用することが出来る。該触媒中の金属としては鉛、亜鉛、錫或いはモリブデン・クロム・ニッケル又はバナジュウムを含む鋼を用いることが出来、いずれも反応生成物を汚損することはなく、回収のための特別な措置を必要としない。なお、触媒の使用形態等については、特願2003−436641、特願2004−40565及び特願2004−40566に記載された関連事項が適用される。
第3の実施の形態
本実施形態は反応ガスと原料との熱交換を効率的に行うためのシステムであり、図14にその概念図を示す。反応工程1の反応装置1aから排出された反応ガス13は、2分されてそれぞれ高温熱交換工程2の高温熱交換器2a、2bの高温側に入り、2aにおいて反応原料メタノール16、2bにおいて原料油脂類11と向流熱交換を行い、次いで2分岐のまま凝縮熱回収工程3に導入される。
2分された反応ガスの一方は、凝縮熱交換器3aの高温側を通って反応原料メタノールと向流熱交換を行い、次いで反応生成物分離工程4に入る。2分された反応ガスの他方は、凝縮熱交換器3bの高温側に入って原料油脂類11と向流熱交換を行い、次いで3aを出た先の分岐反応ガスと合流して反応生成物分離工程4に入る。凝縮熱回収工程3 においては、メタノール以外の反応生成物はすべて凝縮して液相となり、潜熱をメタノールに与える。
反応生成物分離工程4においては、フイルター・衝突板等を使用した反応生成物分離装置4aにより、液滴として随伴された反応生成物をメタノールから分離し、メタノールは循環メタノール14として温調熱交換工程5に入り、分離された反応生成物15は比重分離を利用した製品分取装置4bに送って脂肪酸エステル49とグリセリン48とを分取し、最終製品を得る。
他方、循環メタノール14は、温調熱交換工程5(温調熱交換器5a)の高温側を通って原料油脂類11及び冷却水18と向流熱交換を行い、所要の温度に調整されて断熱冷却工程6(アルコール断熱冷却器6a)に入って原料メタノール12(液体)のスプレーミストによって断熱冷却され、温度を低下させて戻り熱交換の温度差を確保し、該断熱冷却器内で気化潜熱を得て気化した原料メタノールを併せて反応原料メタノール16となって順次凝縮熱回収工程3(凝縮熱交換器3a)及び高温熱交換工程2(高温熱交換器2a)の低温側に入り、反応ガスと向流して熱交換を行い、更に最終熱予熱工程7(加熱装置7b)で必要な温度を得て反応工程1に送られる。過熱気化メタノールの循環は、送気ポンプ38によって行われる。
原料貯蔵タンク10から取り出された原料メタノール12は、反応生成物として採取される分に対応した量が断熱冷却工程6(アルコール断熱冷却器6a)に供給され、スプレーミストとして循環メタノール14の断熱冷却を行う際に自身は気化潜熱を得て気化し、循環アルコール14と合流して反応原料アルコール16となり、上記の予熱経路を経て所要温度で反応工程1に供給される。
原料貯蔵タンク9から取り出された原料油脂類11は、反応生成物及び反応残渣として取り出される分に対応した量を最初に温調熱交換器5aの低温側に入れて循環アルコール14と向流させて予熱し、次いで上記の凝縮熱交換器3b、高温熱交換器2b及び最終熱交換 工程7の加熱装置7aを経て所要温度で反応工程1に供給される。
反応残渣13は残渣焼却工程8に送り、熱媒ボイラ等の残渣焼却装置8aにより焼却し、得られる熱によって最終予熱工程用の高温熱媒8bをつくる。
本発明では、反応工程でメタノールと油脂類とを所要の反応温度条件下に置き、且つ反応生成物に気化潜熱を与えるための加熱が必要であるが、上記熱交換システムにおいて、反応生成物の冷却・凝縮工程で原料メタノール、循環メタノール及び原料油脂類とを予熱することと、反応残渣の焼却による高温熱媒を利用することとによって、反応に必要な加熱のための熱量の殆どを賄うことが出来る。冷却水18によって得られる温水は、プラントのユーテリテイとして使用する。
第4の実施の形態
本実施形態は、高温熱交換工程において、気体/気体による熱交換を避け、液体熱媒(原料油脂類)を使用して熱交換効率を向上させた熱交換システムであり、図15にその概念図を示す。該実施形態は高温側が反応ガス、低温側が液体熱媒(原料油脂類)である高温熱交換器2c、高温側が液体熱媒(原料油脂類)、低温側が反応原料ガスである高温熱交換器2d、高温側が反応ガスで低温側が反応原料メタノールである凝縮熱交換器3c、高温側が反応ガスで低温側が原料油脂類である凝縮熱交換器3d、液体熱媒(原料油脂類)循環手段(ブロワー)11p、原料油脂類供給口11fを備えた導管11e及び高温熱媒(原料油脂類)取り出し手段11vを備えた導管11dによって構成される。
反応工程から取り出された反応ガス13は高温熱交換器2cの高温側に入り、低温側の液体熱媒(原料油脂類)と向流熱交換を行い、2分されてそれぞれ凝縮熱交換器3c・3dの高温側に入り、以下上記第3の実施形態に述べた経路によって循環する。
高温熱交換器2cの低温側と高温熱交換器2dの高温側とは液体熱媒(原料油脂類)循環手段(ブロワー)11p、高温熱媒(原料油脂類)取り出し手段11vを備えた導管11d及び原料油脂類供給口11fを備えた導管11eによって循環路を形成し、液体熱媒(原料油脂類)は高温熱交換器2cで気/液熱交換により高温を得、高温熱交換器2dにおいては熱源として液/気熱交換により反応原料メタノール16を加熱する。
上記第3の実施形態と同様温調熱交換器によって予熱された原料油脂類11aは、凝縮熱交換器3dの低温側を通って加熱され、高温熱交換器2dの出口で液体熱媒(原料油脂類)と合流し、高温熱交換器2cによって加熱される。高温を得た原料油脂類は、高温液体熱媒(原料油脂類)取り出し手段11vから必要量が最終加熱装置7aに送られ、次いで反応工程1に供給される。
反応原料メタノール16は、凝縮熱交換器3c、高温熱交換器2dにより順次昇温され、最終加熱装置7bを経て反応工程1に供給される。
本実施形態によれば、液体熱媒(原料油脂類)の使用による伝熱効率の向上の結果、高温熱交換器の容積を縮小(約20%減)することが出来、原料油脂類の昇温も大きく、最終加熱工程及び反応工程における加熱の負荷を軽減させることが可能である。
反応ガス中の反応生成物の各成分(脂肪酸エステルとグリセリン)の凝縮の様態は、反応ガス中の濃度と温度に依存し、凝縮部分と未凝縮部分とでは熱的性質が異なるので伝熱係数は大幅に変化する。従って、安定な熱交換を行うためには、反応ガスの顕熱と潜熱とを区分して利用することが必要である。本発明においては、上記の各実施形態に示した如く高温熱交換工程と凝縮熱交換工程とを直列して設けることによってこの問題を解決しており、本実施形態においてもこのことは同様である。
第5の実施の形態
本実施形態は解決手段(18)に対応するものである。図16は、循環メタノール14の断熱冷却工程6に使用される断熱冷却器6aの1例の模式図であって、円筒容器27の一端に循環メタノール14の導入手段29、原料メタノール(液体)12の導入手段30とそれに接続されたスプレーヘッド28を備え、他端に反応原料メタノール16の取り出し手段31、容器内のスプレーヘッド下手に攪拌手段32(スタチックミキサ)を設け、温調熱交換過程を出た循環メタノールを円筒容器に導入し、該メタノール中に液体原料メタノールをスプレーすることによって該メタノールを断熱冷却し、他方液体原料メタノール(液体)は蒸発潜熱を得て気化し、循環メタノールとともに、戻り熱交換に必要な温度差が確保された反応原料メタノール16として31から取り出される。衝突板43及び濾過材44(グラスウール等)は、反応生成物が前段の生成物分離工程4で取り切れなかった場合に備えた液滴捕集手段であって、捕集された反応生成物15(液体)は反応生成物排出手段46bを介して取り出される。衝突板及び濾過材は省略が可能であり、逆に、生成物分離工程4を省略して本装置のみで反応生成物を捕集することも出来る。
本発明においては過剰の過熱気化メタノールの循環流によって原料メタノールを反応工程に導入するため、原料メタノールを加熱して気化させることが必要であるが、本実施形態により、簡易な装置で回収メタノールの断熱冷却に伴う熱交換を利用して該気化を行うことが出来、特別な加熱装置は不要である。
過熱気化メタノールの循環量に比べて原料メタノール(液体)のスプレー量は少ないので、該原料メタノールの気化は完全に行われ、未蒸発の液滴処理のためのミストエリミネータ等は必要でない。
第6の実施の形態
本実施形態は解決手段(19)に対応するものである。図17は、凝縮熱交換工程で得られた、凝縮反応生成物の液滴を含む回収メタノールから反応生成物を分離するための反応生成物分離装置の1例を示す模式図である。原理的には図16に示したところと同様であって、濾過材44と衝突板43とで構成されるミストエリミネーターにより、反応ガス導入手段41から導入される、反応生成物の液滴を含む反応ガス13から反応生成物15を分離し、該反応生成物を反応生成物排出手段46bを通して製品分取装置に送り、他方メタノールを循環メタノール14として温調熱交換工程5に送るものである。
図18は、製品分取装置として、比重分離により脂肪酸エステルとグリセリンとを連続的に分取するものの一例の模式図であって、反応生成物導入手段によって導入された脂肪酸エステルとグリセリンとの混合物は、セパレーターの左側で比重差によって上下に分かれ、下に沈んだグリセリンはセパレーターの下部を通って槽の右側に貯留される。
本発明においては、反応生成物は気相として採取され、温度を350℃好ましくは290℃までに制御しているため、高沸点成分はすべて反応残渣となって反応容器に残り、反応生成物分離工程の温度は90℃以上に保持されるのでメタノールは気相として存在し、従って該反応生成物は微量の水分を含むグリセリンと脂肪酸エステルとのみの混合物であり、比重分離により、特に精製工程を設けることなく不純物の少ない脂肪酸エステルを微量の水を含むグリセリンから分離・採取することが出来る。
第7の実施の形態
本実施形態は解決手段(20)及び(21)に対応するものである。本発明の反応工程では、目的とする反応生成物は気相として次工程に送られるため、生ずる反応残渣は油脂類の酸化・重合 物を含む高沸点成分であり、これを反応容器底部から取り出し、先に図14において説明した如く、残渣焼却装置(熱媒ボイラー)8aの燃料油として利用する。生成された高温熱媒8bは、2分岐されて最終熱交換工程に送られ、最終熱交換装置7a、7bにおいてそれぞれ原料油脂類及び反応原料メタノールの加熱に循環使用される。
反応残渣の発生量と発熱量は、原料油脂類の種類によって異なる。原料としてバージンのパーム油・菜種油等を使用した場合には残渣は少量であり、廃油等使用暦のあるものでは発生量が多くかつ質・量の変動も大きい。従って、どの程度の熱量を取得出来るかは予測が困難であるが、高温熱媒の温度を350℃として試算すれば、原料油換算で生産に使用される量の2~5%に対応する熱量が得られれば、効率的な熱交換と相俟って全プラントの熱エネルギーをまかなうことが可能である。反応残渣は植物起源であるので、その焼却は二酸化炭素の増加には繋がらない。
第8の実施の形態
本実施形態は解決手段(22)に対応するものである。本発明にかかるプラント構成の最良の形態は、図19に示したように、1~8の一連の製造工程と原料貯蔵タンク・製品貯蔵タンク等のタンク群55ならびに電力供給施設54とから成る。プラントに必要な熱量は、触媒反応工程1、高温熱交換工程2、凝縮熱回収工程3、反応生成物分離工程4、温調熱交換工程5、断熱冷却工程6及び最終加熱工程7を過熱気化アルコール循環手段によって連結し、反応ガスとの熱交換による原料の予熱をきわめて効果的に行うことが出来るため、反応残渣焼却工程8(反応残渣焼却装置8a)による最終加熱工程用の熱媒8bの取得によってほぼまかなうことが出来る。反応残渣の焼却によって得られる熱量は不安定であるが、必要に応じ原料油脂類の5%以下を補足することで安定な操業が保持され、更に電力供給工程54を設け、生産 された脂肪酸エステル49の2~5%を用いてディーゼルエンジン56により発電機57を稼動させ、全プラントの使用電力をまかなう。冷却水18によって得られる温水はプラントのユーテリテイとして利用する。これらの方策によって、本発明においては、外部からの燃料及び電力の供給を必要としない自給システムが構築される。脂肪酸エステルによるディーゼル発電は、二酸化炭素の増加には繋がらない。
本発明にかかる製造方法において生ずる廃棄物はほぼ反応残渣のみであり、これを焼却して熱を回収することにより、実質的にゼロエミッションを達成することが出来る。このようなエネルギー自給・ゼロエミッションのプラントは、通常の工業環境にも望ましいことは無論であるが、特に、十分なユーテリテイを期待し得ない原料生産地に立地して原料運搬費の削減を図るような場合には、特に有用である。
第1の実施形態
図1は第1の実施形態の中心である、過熱気化アルコール循環手段によって連結された脂肪酸エステルの製造工程の概念図であって、その最も好ましい形態として、反応工程1・高温熱交換工程2・凝縮熱回収工程3・生成物分離工程4・温調熱交換工程5・断熱冷却工程6及び最終予熱工程7を連結したものを示した。
過熱気化アルコール循環手段14aは、反応工程1、高温熱交換工程2、凝縮熱回収工程3、生成物分離工程4、温調熱交換工程5、断熱冷却工程6を経て再び凝縮熱回収工程3、高温熱交換工程2、更に最終熱予熱工程7を通って触媒反応工程1に至り循環経路を形成する。該循環経路を流れる循環(過熱気化)メタノールの温度は、反応生成物を随伴する反応ガス13として反応工程1を出た点で最も高く、順次熱交換により降温して、反応生成物分離工程4を出た点で反応生成物を分離して循環(過熱気化)アルコール14となり、断熱冷却工程6を出た点で原料アルコールを随伴する反応原料(過熱気化)アルコールとして最低温度となり、再度凝縮熱回収工程3、高温熱交換工程2を通って昇温され、最終予熱工程7によって所要の温度を得て反応工程1に戻る。
原料油脂類11は温調熱交換工程5・凝縮熱回収工程3・高温熱交換工程2を経て順次昇温され、最終加熱工程7によって所要の温度を得て反応工程1に供給される。
原料メタノール(液体)12は、アルコール断熱冷却工程6において気化した後循環メタノール14と合流して反応原 料メタノール16となり、該反応原料メタノールは更に凝縮熱回収工程3・高温熱交換工程2を経て順次昇温され、最終予熱工程7によって所要の温度を得て反応工程1に供給される。
図2は、図1の過熱気化アルコール循環手段をより具体的に説明するための概念図であり、併せて残渣焼却工程8による熱回収の位置付けをも示した。反応工程1においては、メタノール(過熱気化状態)は油脂類に対し常に理論化学等量を越えた過剰の状態に保たれ、該メタノールと油脂類とは、接触手段による十分な接触の下で相互に作用し、更に一部は液上の気相部においても反応する。反応生成物(脂肪酸エステルとグリセリン)は過剰の過熱気化メタノール中に移行して該過熱気化メタノールと共に反応ガス13として反応工程1から排出され、2分されて高温熱交換工程2でそれぞれ反応原料メタノール16及び原料油脂類11と熱交換後、分岐したまま凝縮熱回収工程3に入り、それぞれ反応原料メタノール及び原料油脂類と熱交換を行い、この結果、反応生成物は潜熱をすべてメタノール(過熱気化状態)に与え、凝縮して液相(液滴)となり、メタノール(過熱気化状態)に随伴されて凝縮熱回収工程を出る。
反応生成物の液滴を随伴した2分岐の過熱気化メタノールは合流して反応生成物分離工程4に入り、反応生成物(液体)15は該メタノールから分離され、さらに脂肪酸エステルとグリセリンとに分離されて最終製品となる。
一方反応生成物と分離されたメタノールは、循環メタノール(過熱気化状態)14として温調熱交換工程5に送られて原料油脂類11及び必要に応じ冷却水18と熱交換を行い、次工程に適した温度に調整されて断熱冷却工程6に入り、原料メタノール(液体)12のミストにより断熱冷却されて温度を低下させ、戻り熱交換の温度差を確保し、一方原料メタノールは気化潜熱を得て気相となり、循環メタノールに随伴されて反応原料メタノール16として凝縮熱回収工程3及び高温熱交換工程2に入り、反応ガス13と向流して熱交換を行い、必要な温度を得て順次最終予熱工程7、反応工程1に 至って過熱気化メタノール循環経路を形成する。
原料アルコール12は、反応生成物15として取り出される分に対応した量を供給する。
原料油脂類は、反応生成物15及び反応残渣13として取り出される分に対応した量を供給する。
反応残渣17は廃液焼却工程8に送り、熱媒ボイラ等により焼却して最終熱交換工程7で使用する高温熱媒をつくる。
本実施形態は、過剰な過熱気化メタノールと油脂類とを十分に接触させ、高い収率で反応生成物を得、かつ反応生成物を過熱気化メタノールと共に気相採取する形態を利用して、各工程間を連結する定常的な過熱気化メタノールの密閉循環流を形成し、反応で消費される分の原料メタノールのみを該循環流に供給することにより、一定量のメタノールで反応時に必要なメタノール過剰の条件を確保することを可能にしたものである。
また、該循環流の形成により、生成物の凝縮分離のための冷却工程と原料の加熱工程とを相互の熱交換によって行うことが容易になり、多少の反応効率の変動を吸収して経済的なプラントを構成することを可能にしている。本発明は無触媒を念頭においたものであるが、反応工程においては固体触媒等を使用することも可能である。
第2の実施の形態
本実施形態は反応工程に対応するものである。図3及び図4は、第2の実施形態の中心である、過熱気化メタノール(反応原料メタノール)及び原料油脂類の供給手段、反応生成物を含む過熱気化アルコール(反応ガス)と反応残渣の排出手段、液体(原料油脂類)・気体(過熱気化アルコール)2相若しくは固体(触媒)をも含めた3相の接触手段及 び該2相若しくは固体(接触手段及び/又は触媒)をも含めた3相のうちの1または2、或いは3相すべての加熱手段により構成される反応工程の基本概念図である。
図3は、反応容器19の外部に反応原料メタノールの供給手段20、原料油脂類の供給手段21、反応ガスの排出手段22、反応残渣の排出手段23を備え、反応容器19の内部に前項に述べた加熱手段24と油脂類と反応原料メタノールとの接触手段(触媒使用の場合には触媒・油脂類・反応原料メタノールの接触手段)25とを設置したものである。該接触手段には、必要に応じ何らかの攪拌手段26を設ける。該加熱手段の対象は反応原料メタノール・原料油脂類の双方または何れか一方であり、必要に応じ接触手段及び/又は触媒をも加熱し、接触手段及び/又は触媒を反応原料メタノール・原料油脂類及び/又は反応生成物の加熱手段として機能させる。
本反応工程においては、油脂類中に気化アルコール気泡が存在する状態と気化アルコール中に油脂類の気化物が存在する状態とが混在し、更にこれらが固体(接触手段または触媒)と接触しつつ反応が行われるため、局所的な温度変化が生じやすい。従って反応工程に先立つ最終予熱工程による加温のみでは反応時の必要温度を確保することは困難で、反応工程内で反応直前に加温を行い、設定された温度条件を満足させることが必要である。本発明にかかる反応工程においては、反応容器内に加熱手段を設け、メタノール及び/又は原料油脂類が接触手段に至る直前に必要な加熱を行い、更には触媒及び/又は接触手段による加熱を行うことにより問題を解決した。本発明においては反応生成物を気相として過熱気化メタノールと共に排出するため、該加熱手段は反応に必要な温度を与えるほか、反応生成物に気化潜熱を供給する役割をも持っている。
原料油脂類の反応温度を上げることは脂肪酸エステルの製造に有利であるが、同時に原料油脂類の劣化も促 進される。このため、原料油脂類を高温に保つ時間を極力短くすることが必要であり、本発明にかかる反応工程においては、上記のごとき手段により、反応直前に所要の温度に昇温することで問題を解決した。また、原料油脂類の昇温の何れかの段階(複数段階を含む)においてメタノールを共存させ、爾後の加熱をメタノールが共存する還元性雰囲気中で行うことは油脂類の劣化防止に有効であると考えられる。両者の共存形態としては、メタノールの原料油脂類中への溶解及び/又は液相(液滴)分散及び/又は気相(気泡)分散か、原料油脂類のメタノール中への気相及び/又は液相としての混合・分散であり、必要に応じ攪拌手段を使用する。特に触媒もしくは接触手段を加熱手段とする場合には、原料油脂類の反応直前の最高温度への加熱を過剰の過熱気化メタノール雰囲気中で行うことが出来る。反応直前の昇温の幅は使用原料油脂の種類等によって調整の必要があるが、本発明においては原料油脂類の予熱・昇温を多段階で行い、且つ反応工程直前に最終予熱工程を設けることによってこれを解決した。
図4は装置の簡素化若しくは接触手段を内蔵する反応装置の形状上の必要から、加熱手段を反応容器の外部に設置したものである。
接触手段を備えた反応装置として好ましいものを例示すれば、次の通りである。図5はガス吸込型の反応装置の一例を示す模式図であって、反応容器19の中にドラフトチューブ34を設け、下部にドラフトチューブ内の液体を下方に吸い込むためのインペラー33を備え、ドラフトチューブの中心軸線上にその駆動軸と駆動モーター36とを配置し、駆動軸には攪拌手段26を付随させる。ドラフトチューブの外側上部と反応容器壁との間にはメンテナンスのために着脱可能とした接触手段35(触媒使用の際は触媒)を設置する。原料油脂類11は原料油脂類供給手段21、加熱手段24bを通ってチューブ内側へ上方から、反応原料メタノール16は反応原料アルコール供給手段20、加熱装置24aを通ってチューブ内部の原料油脂類上部へ供給さ れる。反応容器内には常時原料油脂類がチューブ上端よりも高い液面52まで貯留されており、チューブ内の原料油脂類と反応ガス気泡との気液混相流53はインペラーによって下降、次いでドラフトチューブ外側を上昇し、接触手段35(触媒使用の際は触媒)を通過してドラフトチューブ上端からチューブ内に戻る循環流を形成する。反応原料メタノールはこの循環流に乗ってチューブ内を下降しつつ攪拌され、微小気泡となって原料油脂類と混和し、チューブ外側を上昇、接触手段(触媒使用の際は触媒)を通過する過程において反応し、反応生成物は過剰の気化メタノールと共に反応ガス13となり、反応ガス排出手段22から外部へ排出される。
図6は油スプレー・ガス吸込型の反応装置の一例を示す模式図であって、図4に示したガス吸込型において、原料油脂類11をスプレーヘッド28を介してミストとして下方に噴射・供給し、反応原料メタノールとの接触機会を更に増加させたものである。図5においては駆動モーターを反応容器下部に配し、加熱手段24cによって接触手段(触媒使用の際は触媒)35をも加熱する例を示した。このような加熱手段ないし駆動モーターの配置は、図4の方式においても同様に行うことが出来る。
図7は充填塔・油外部加熱型の反応装置の一例を示す模式図であって、充填塔の中間部に設けた35(触媒使用の際は触媒層)の下方に原料油脂類を貯留し、該原料油脂類に原料油脂類供給手段21を通して原料油脂類11を供給し、落下する未反応原料油脂類と共に送液ポンプ37によって塔の外部に取り出し、加熱手段24bによって加熱して接触手段(又は触媒充填層)の上方から塔内に供給する。図6では加熱された原料油脂類をスプレーヘッド28を介してミストとして供給し、反応原料メタノールとの接触機会の増大を図った型を示した。反応原料メタノール16は反応原料メタノール供給手段20・加熱手段24aを通して塔下部から吹込ノズル20aを介して供給され、原料油脂類中を気泡として通過後、接触手段(又は触媒層)35内 部及び接触手段(又は触媒層)上方で原料油脂類と接触する過程において反応し、反応生成物は過熱気化メタノールと共に反応ガス13として排出手段22から排出される。
図8はデイップパイプ型の反応装置の一例を示す模式図であって、反応容器内に複数のガス吹き込みノズル20aを設け、供給手段20・加熱手段24aを介して所要温度に昇温された反応原料アルコール16を該反応容器に貯留された原料油脂類中に吹き込み、該反応原料アルコールが気泡として該原料油脂類を上昇し、液面52の上部に泡沫層41aを形成し、該泡沫が破裂して泡沫層上部の反応ガス中に入る過程において反応を生起させる。生成した反応ガス13は、排出手段22を介して取り出される。原料油脂類11は、反応によって失われる分を導入手段21・加熱手段24bを介して所要温度に昇温して供給する。図8には反応容器をセパレータ47によって2室に仕切り、左室で反応原料アルコールを吹き込まれた原料油脂類の一部が、セパレータ下方の間隙を通って右室に入り、更に反応原料アルコールの吹き込みを受ける2段型の装置を示した。該反応段数は必要に応じ増加することが出来る。吹き込みノズル先端の液深は、生成される反応原料アルコールの気泡径が反応に最適になるように設定され、必要に応じノズル先端部若しくは反応容器内に気泡径制御手段を設ける。図8に示した反応装置は、既存の反応装置例えば泡鐘塔に改造を加えることによっても実現が可能である。
図9は図8と同様デイップパイプ型の反応装置の一例を示す模式図であって、図8の装置に接触手段(又は触媒)35を付加したものである。図9には該接触手段(又は触媒)が泡沫層上部に設けられ、泡沫(極めて薄い油膜が過熱気化アルコールと接した状態)が例えばハニカム状或いはリング状物(又は触媒)の充填層に触れながら通過する場合を示した。充填層には加熱手段を付与し、反応原料が接触時にのみ所要の高温になるようにすることも可能である。また、接触手段(又は触媒)の設置個所は、泡沫 層上部に限らず、必要に応じ原料油脂類中~泡沫層上部のいずれの個所にも設置が可能であり、複数箇所に設置することも出来る。
図10はマルチ熱パイプ型の反応装置の一例を示す模式図であって、図の右方部分は、熱パイプに垂直な断面により、熱パイプ60の配置状態を示す。反応容器内に水平に設置された複数の熱パイプ60に加熱装置24cによって昇温された熱媒45を通して所要の温度を与え、上部の散液ヘッド28aから原料油脂類を滴下し、該原料油脂類が熱パイプ表面を膜状となって流下する状態で、下方から供給手段20・加熱手段24aを介して導入された反応原料アルコール16と反応を生起させ、反応生成物は過剰の過熱気化メタノールと共に反応ガスとして排出手段22から排出される。反応原料アルコールは該熱パイプに至る前に、気泡として反応容器下部に貯留された原料油脂類を通過させる。原料油脂類11は反応によって失われる分を供給手段21を介して反応容器下部に供給し、未反応のまま落下した原料油脂類と共に排出手段21aを介して送液ポンプ37により上部に送り、供給手段21・加熱手段24bを通して所要温度に昇温し、散液ヘッド28aに供給する。触媒を使用する場合には、熱パイプ表面に金属系固体触媒を付加する。
図11は単反応管型の反応装置の一例を示す模式図であって、送気ポンプ38によって送られる反応原料メタノール16は、加熱手段24aで加熱された後混合手段39に入り、同様に加熱手段24bで加熱されて混合手段に入った原料油脂類11と混和して気液混相流となり、必要な長さを持ち、加熱手段24dによって所要の温度に維持された反応管40を通過し、反応ガス13となって排出手段22から排出される。触媒使用の際には、触媒との接触は必要に応じ混合手段内及び/又は反応管内で行われる。混合手段としては、スタチックミキサのような簡易なものの他、他の反応装置を用いて、得られる反応ガスと原料油脂類との気液混合物若しくは原料油脂類の 飛沫を同伴した反応ガスを反応管に供給するような方法がある。
図12は流動層型の反応装置の一例を示す模式図であって、反応容器19内に貯留された原料油脂類に粒状・薄片状等の接触手段(又は触媒)35を保持させ、これにそれぞれ加熱手段24a、24bで加熱された反応原料ガス16及び原料油脂類11を反応容器下部から供給し、反応ガス気泡41、原料油脂類及び触媒粒子35の3者の混合流動層を生起して反応させ、反応ガス13を容器上部の排出手段22から取り出すものである。流動層は反応容器内部の加熱手段24eによって必要な温度に維持される。流動は反応原料ガスのバブリングによって行われるが、必要があれば適宜の攪拌手段を設ける。
図13はマルチ反応管型の反応装置の一例を示す模式図であって、反応容器19内に設置された反応管40の内部に接触手段(又は触媒)35を充填し、反応管外部は熱媒45によって満たされ、熱媒に対する加熱手段24cを設け、加熱手段24aで加熱された反応原料ガス16を下方から、加熱手段24bで加熱された原料油脂類11を上方から供給し、反応管内の加熱された触媒中で反応を生起させ、反応ガス13を容器上部から排出するものである。
上記各反応装置は、いずれもバッチ・セミバッチ・連続の各生産方法に適応が可能であり、また、反応容器下部に存在する原料油脂類若しくは一部反応ガス気泡を含む原料油脂類を、同種若しくは異種の別の反応装置に対して原料油脂類として供給し、多段反応装置を構成することが出来る。
各反応装置における反応条件は、前述の如く圧力0.090~0.405MPa(好ましくは0.102~0.150MPa)、温度350~150℃(好ましくは290~180℃)のマイルドなものであって、反応装置の構造・材料については超臨界反応に対するような特別な配慮を必要としない。反応時には原料油脂類に対し過剰のメタノール(好ましくは理論化学当量の3倍以上)の存在を有利とするが、この条件は、前述の如く常時一定量の過熱気 化メタノールが密閉経路中を循環するシステムにより、容易に達成される。経路内の反応ガス等の漏洩防止には、必要に応じ経路内を大気圧に対し若干負圧に保することが有効である。上記の圧力は反応容器壁に設置した液柱型又はプルドン管型圧力計の数値であり、温度はサーミスタ式若しくは抵抗式による接触手段又は触媒の表面(若しくは表面に近い内部の点)の温度の測定値である。
本発明においては、反応時に触媒を使用することなく経済的に成立可能な製造工程を構築することが出来るが、必要に応じ反応装置等に大きな変更を加えることなく金属系固体触媒を使用することが出来る。該触媒中の金属としては鉛、亜鉛、錫或いはモリブデン・クロム・ニッケル又はバナジュウムを含む鋼を用いることが出来、いずれも反応生成物を汚損することはなく、回収のための特別な措置を必要としない。なお、触媒の使用形態等については、特願2003−436641、特願2004−40565及び特願2004−40566に記載された関連事項が適用される。
第3の実施の形態
本実施形態は反応ガスと原料との熱交換を効率的に行うためのシステムであり、図14にその概念図を示す。反応工程1の反応装置1aから排出された反応ガス13は、2分されてそれぞれ高温熱交換工程2の高温熱交換器2a、2bの高温側に入り、2aにおいて反応原料メタノール16、2bにおいて原料油脂類11と向流熱交換を行い、次いで2分岐のまま凝縮熱回収工程3に導入される。
2分された反応ガスの一方は、凝縮熱交換器3aの高温側を通って反応原料メタノールと向流熱交換を行い、次いで反応生成物分離工程4に入る。2分された反応ガスの他方は、凝縮熱交換器3bの高温側に入って原料油脂類11と向流熱交換を行い、次いで3aを出た先の分岐反応ガスと合流して反応生成物分離工程4に入る。凝縮熱回収工程3 においては、メタノール以外の反応生成物はすべて凝縮して液相となり、潜熱をメタノールに与える。
反応生成物分離工程4においては、フイルター・衝突板等を使用した反応生成物分離装置4aにより、液滴として随伴された反応生成物をメタノールから分離し、メタノールは循環メタノール14として温調熱交換工程5に入り、分離された反応生成物15は比重分離を利用した製品分取装置4bに送って脂肪酸エステル49とグリセリン48とを分取し、最終製品を得る。
他方、循環メタノール14は、温調熱交換工程5(温調熱交換器5a)の高温側を通って原料油脂類11及び冷却水18と向流熱交換を行い、所要の温度に調整されて断熱冷却工程6(アルコール断熱冷却器6a)に入って原料メタノール12(液体)のスプレーミストによって断熱冷却され、温度を低下させて戻り熱交換の温度差を確保し、該断熱冷却器内で気化潜熱を得て気化した原料メタノールを併せて反応原料メタノール16となって順次凝縮熱回収工程3(凝縮熱交換器3a)及び高温熱交換工程2(高温熱交換器2a)の低温側に入り、反応ガスと向流して熱交換を行い、更に最終熱予熱工程7(加熱装置7b)で必要な温度を得て反応工程1に送られる。過熱気化メタノールの循環は、送気ポンプ38によって行われる。
原料貯蔵タンク10から取り出された原料メタノール12は、反応生成物として採取される分に対応した量が断熱冷却工程6(アルコール断熱冷却器6a)に供給され、スプレーミストとして循環メタノール14の断熱冷却を行う際に自身は気化潜熱を得て気化し、循環アルコール14と合流して反応原料アルコール16となり、上記の予熱経路を経て所要温度で反応工程1に供給される。
原料貯蔵タンク9から取り出された原料油脂類11は、反応生成物及び反応残渣として取り出される分に対応した量を最初に温調熱交換器5aの低温側に入れて循環アルコール14と向流させて予熱し、次いで上記の凝縮熱交換器3b、高温熱交換器2b及び最終熱交換 工程7の加熱装置7aを経て所要温度で反応工程1に供給される。
反応残渣13は残渣焼却工程8に送り、熱媒ボイラ等の残渣焼却装置8aにより焼却し、得られる熱によって最終予熱工程用の高温熱媒8bをつくる。
本発明では、反応工程でメタノールと油脂類とを所要の反応温度条件下に置き、且つ反応生成物に気化潜熱を与えるための加熱が必要であるが、上記熱交換システムにおいて、反応生成物の冷却・凝縮工程で原料メタノール、循環メタノール及び原料油脂類とを予熱することと、反応残渣の焼却による高温熱媒を利用することとによって、反応に必要な加熱のための熱量の殆どを賄うことが出来る。冷却水18によって得られる温水は、プラントのユーテリテイとして使用する。
第4の実施の形態
本実施形態は、高温熱交換工程において、気体/気体による熱交換を避け、液体熱媒(原料油脂類)を使用して熱交換効率を向上させた熱交換システムであり、図15にその概念図を示す。該実施形態は高温側が反応ガス、低温側が液体熱媒(原料油脂類)である高温熱交換器2c、高温側が液体熱媒(原料油脂類)、低温側が反応原料ガスである高温熱交換器2d、高温側が反応ガスで低温側が反応原料メタノールである凝縮熱交換器3c、高温側が反応ガスで低温側が原料油脂類である凝縮熱交換器3d、液体熱媒(原料油脂類)循環手段(ブロワー)11p、原料油脂類供給口11fを備えた導管11e及び高温熱媒(原料油脂類)取り出し手段11vを備えた導管11dによって構成される。
反応工程から取り出された反応ガス13は高温熱交換器2cの高温側に入り、低温側の液体熱媒(原料油脂類)と向流熱交換を行い、2分されてそれぞれ凝縮熱交換器3c・3dの高温側に入り、以下上記第3の実施形態に述べた経路によって循環する。
高温熱交換器2cの低温側と高温熱交換器2dの高温側とは液体熱媒(原料油脂類)循環手段(ブロワー)11p、高温熱媒(原料油脂類)取り出し手段11vを備えた導管11d及び原料油脂類供給口11fを備えた導管11eによって循環路を形成し、液体熱媒(原料油脂類)は高温熱交換器2cで気/液熱交換により高温を得、高温熱交換器2dにおいては熱源として液/気熱交換により反応原料メタノール16を加熱する。
上記第3の実施形態と同様温調熱交換器によって予熱された原料油脂類11aは、凝縮熱交換器3dの低温側を通って加熱され、高温熱交換器2dの出口で液体熱媒(原料油脂類)と合流し、高温熱交換器2cによって加熱される。高温を得た原料油脂類は、高温液体熱媒(原料油脂類)取り出し手段11vから必要量が最終加熱装置7aに送られ、次いで反応工程1に供給される。
反応原料メタノール16は、凝縮熱交換器3c、高温熱交換器2dにより順次昇温され、最終加熱装置7bを経て反応工程1に供給される。
本実施形態によれば、液体熱媒(原料油脂類)の使用による伝熱効率の向上の結果、高温熱交換器の容積を縮小(約20%減)することが出来、原料油脂類の昇温も大きく、最終加熱工程及び反応工程における加熱の負荷を軽減させることが可能である。
反応ガス中の反応生成物の各成分(脂肪酸エステルとグリセリン)の凝縮の様態は、反応ガス中の濃度と温度に依存し、凝縮部分と未凝縮部分とでは熱的性質が異なるので伝熱係数は大幅に変化する。従って、安定な熱交換を行うためには、反応ガスの顕熱と潜熱とを区分して利用することが必要である。本発明においては、上記の各実施形態に示した如く高温熱交換工程と凝縮熱交換工程とを直列して設けることによってこの問題を解決しており、本実施形態においてもこのことは同様である。
第5の実施の形態
本実施形態は解決手段(18)に対応するものである。図16は、循環メタノール14の断熱冷却工程6に使用される断熱冷却器6aの1例の模式図であって、円筒容器27の一端に循環メタノール14の導入手段29、原料メタノール(液体)12の導入手段30とそれに接続されたスプレーヘッド28を備え、他端に反応原料メタノール16の取り出し手段31、容器内のスプレーヘッド下手に攪拌手段32(スタチックミキサ)を設け、温調熱交換過程を出た循環メタノールを円筒容器に導入し、該メタノール中に液体原料メタノールをスプレーすることによって該メタノールを断熱冷却し、他方液体原料メタノール(液体)は蒸発潜熱を得て気化し、循環メタノールとともに、戻り熱交換に必要な温度差が確保された反応原料メタノール16として31から取り出される。衝突板43及び濾過材44(グラスウール等)は、反応生成物が前段の生成物分離工程4で取り切れなかった場合に備えた液滴捕集手段であって、捕集された反応生成物15(液体)は反応生成物排出手段46bを介して取り出される。衝突板及び濾過材は省略が可能であり、逆に、生成物分離工程4を省略して本装置のみで反応生成物を捕集することも出来る。
本発明においては過剰の過熱気化メタノールの循環流によって原料メタノールを反応工程に導入するため、原料メタノールを加熱して気化させることが必要であるが、本実施形態により、簡易な装置で回収メタノールの断熱冷却に伴う熱交換を利用して該気化を行うことが出来、特別な加熱装置は不要である。
過熱気化メタノールの循環量に比べて原料メタノール(液体)のスプレー量は少ないので、該原料メタノールの気化は完全に行われ、未蒸発の液滴処理のためのミストエリミネータ等は必要でない。
第6の実施の形態
本実施形態は解決手段(19)に対応するものである。図17は、凝縮熱交換工程で得られた、凝縮反応生成物の液滴を含む回収メタノールから反応生成物を分離するための反応生成物分離装置の1例を示す模式図である。原理的には図16に示したところと同様であって、濾過材44と衝突板43とで構成されるミストエリミネーターにより、反応ガス導入手段41から導入される、反応生成物の液滴を含む反応ガス13から反応生成物15を分離し、該反応生成物を反応生成物排出手段46bを通して製品分取装置に送り、他方メタノールを循環メタノール14として温調熱交換工程5に送るものである。
図18は、製品分取装置として、比重分離により脂肪酸エステルとグリセリンとを連続的に分取するものの一例の模式図であって、反応生成物導入手段によって導入された脂肪酸エステルとグリセリンとの混合物は、セパレーターの左側で比重差によって上下に分かれ、下に沈んだグリセリンはセパレーターの下部を通って槽の右側に貯留される。
本発明においては、反応生成物は気相として採取され、温度を350℃好ましくは290℃までに制御しているため、高沸点成分はすべて反応残渣となって反応容器に残り、反応生成物分離工程の温度は90℃以上に保持されるのでメタノールは気相として存在し、従って該反応生成物は微量の水分を含むグリセリンと脂肪酸エステルとのみの混合物であり、比重分離により、特に精製工程を設けることなく不純物の少ない脂肪酸エステルを微量の水を含むグリセリンから分離・採取することが出来る。
第7の実施の形態
本実施形態は解決手段(20)及び(21)に対応するものである。本発明の反応工程では、目的とする反応生成物は気相として次工程に送られるため、生ずる反応残渣は油脂類の酸化・重合 物を含む高沸点成分であり、これを反応容器底部から取り出し、先に図14において説明した如く、残渣焼却装置(熱媒ボイラー)8aの燃料油として利用する。生成された高温熱媒8bは、2分岐されて最終熱交換工程に送られ、最終熱交換装置7a、7bにおいてそれぞれ原料油脂類及び反応原料メタノールの加熱に循環使用される。
反応残渣の発生量と発熱量は、原料油脂類の種類によって異なる。原料としてバージンのパーム油・菜種油等を使用した場合には残渣は少量であり、廃油等使用暦のあるものでは発生量が多くかつ質・量の変動も大きい。従って、どの程度の熱量を取得出来るかは予測が困難であるが、高温熱媒の温度を350℃として試算すれば、原料油換算で生産に使用される量の2~5%に対応する熱量が得られれば、効率的な熱交換と相俟って全プラントの熱エネルギーをまかなうことが可能である。反応残渣は植物起源であるので、その焼却は二酸化炭素の増加には繋がらない。
第8の実施の形態
本実施形態は解決手段(22)に対応するものである。本発明にかかるプラント構成の最良の形態は、図19に示したように、1~8の一連の製造工程と原料貯蔵タンク・製品貯蔵タンク等のタンク群55ならびに電力供給施設54とから成る。プラントに必要な熱量は、触媒反応工程1、高温熱交換工程2、凝縮熱回収工程3、反応生成物分離工程4、温調熱交換工程5、断熱冷却工程6及び最終加熱工程7を過熱気化アルコール循環手段によって連結し、反応ガスとの熱交換による原料の予熱をきわめて効果的に行うことが出来るため、反応残渣焼却工程8(反応残渣焼却装置8a)による最終加熱工程用の熱媒8bの取得によってほぼまかなうことが出来る。反応残渣の焼却によって得られる熱量は不安定であるが、必要に応じ原料油脂類の5%以下を補足することで安定な操業が保持され、更に電力供給工程54を設け、生産 された脂肪酸エステル49の2~5%を用いてディーゼルエンジン56により発電機57を稼動させ、全プラントの使用電力をまかなう。冷却水18によって得られる温水はプラントのユーテリテイとして利用する。これらの方策によって、本発明においては、外部からの燃料及び電力の供給を必要としない自給システムが構築される。脂肪酸エステルによるディーゼル発電は、二酸化炭素の増加には繋がらない。
本発明にかかる製造方法において生ずる廃棄物はほぼ反応残渣のみであり、これを焼却して熱を回収することにより、実質的にゼロエミッションを達成することが出来る。このようなエネルギー自給・ゼロエミッションのプラントは、通常の工業環境にも望ましいことは無論であるが、特に、十分なユーテリテイを期待し得ない原料生産地に立地して原料運搬費の削減を図るような場合には、特に有用である。
図8に示したデイップパイプ型について、過熱気化アルコールの吹き込みノズルを1本だけにした簡略な装置により、菜種油の無触媒エステル化実験を行った。直径40mm、高400mmのガラス製円筒容器に、菜種油(純度92%)を底部から約100mmの高さまで満たして290℃に保ち、底部から20mmの点に直径25mmのステンレスの邪魔板を設け、内径1.5mmのステンレス管を吹込ノズルとして開口端を邪魔板の中央下方2mmの点に上向きに設置し、290℃の過熱気化メタノール(純度99.8%)を流速2.6ml/minで吹き込み、菜種油表面に高さ約10~20mmの泡沫層を存在させ、容器上端から反応ガスを取りだし、冷却して反応生成物を採取した。2段階反応を模すため、別に同様の装置を1基用意し、両装置の容器下端を内径5mmのガラス管で連通し、第2の装置ではメタノールを同じく2.6ml/minの流速で吹き込み、同様に上端から反応ガスを取り出し、冷却して反応生成物を 採取した。第2の装置から得られる反応生成物の量は、第1の装置の2~3倍であった。原料の菜種油は、反応による消費に対応して、約1.7ml/minの量を第1の容器に補給した。過熱気化メタノールは反応生成物を分離後、冷却・凝縮させて回収した。この装置により3.9時間連続反応を行い、約400mlの反応生成物を得、静置してグリセリンとエステル化物とを分離し、グリセリン約25ml、エステル化物約375mlを得た。得られたエステル化物は淡黄色透明の液体で、動粘度は10.4mm2/secであった。
図14の製造方法により、触媒を使用したベンチテストを行った。使用装置の諸元ならびに使用原料は次の通りである。反応残渣の焼却は実施しなかった。
反応器:円筒形、直径200mm、充填高さ1000mm、鋼製ラシヒリング20×20mmを充填、外置き0.5m2の熱交換器(循環ポンプ100l/hr)を付属。
熱交換器:高温熱交換器2d(反応原料メタノール加熱);4m2、最終加熱器7a(反応原料メタノール加熱);0.4m2、高温熱交換器2c(原料油脂類加熱);3.0m2、最終加熱器7b(原料油脂類加熱);0.3m2、凝縮熱交換器3c;1.0m2、凝縮熱交換器3d;0.6m2、温調熱交換器;0.3m2、断熱冷却器;円筒形、直径80mm、長さ300mm。
比重分離槽容量:10l
原料メタノール:純度99.8%
原料油脂類:菜種油、純度92%
上記の装置及び原料を用い、菜種油供給量5kg/hr・メタノール供給量0.6kg/hrに対し、脂肪酸エステル分(反応生成物よりグリセリンを分離して得られたもの)4.8kg/hr、グリセリン0.48kg/hr、反応残渣1.2kg/hrを得た。触媒は鉛薄板(厚さ0.3mm)20×20mm約800枚を、ラシヒリングに混在させて使用した。平均反応温度287℃、循 環過熱気化メタノールは循環量19.4kg/hr、反応器への供給温度は292℃で、このときの反応器の加熱のための電気使用量は1.1kwであった。
得られた脂肪酸エステルの主要成分ならびに性質を表1に示す。
反応器:円筒形、直径200mm、充填高さ1000mm、鋼製ラシヒリング20×20mmを充填、外置き0.5m2の熱交換器(循環ポンプ100l/hr)を付属。
熱交換器:高温熱交換器2d(反応原料メタノール加熱);4m2、最終加熱器7a(反応原料メタノール加熱);0.4m2、高温熱交換器2c(原料油脂類加熱);3.0m2、最終加熱器7b(原料油脂類加熱);0.3m2、凝縮熱交換器3c;1.0m2、凝縮熱交換器3d;0.6m2、温調熱交換器;0.3m2、断熱冷却器;円筒形、直径80mm、長さ300mm。
比重分離槽容量:10l
原料メタノール:純度99.8%
原料油脂類:菜種油、純度92%
上記の装置及び原料を用い、菜種油供給量5kg/hr・メタノール供給量0.6kg/hrに対し、脂肪酸エステル分(反応生成物よりグリセリンを分離して得られたもの)4.8kg/hr、グリセリン0.48kg/hr、反応残渣1.2kg/hrを得た。触媒は鉛薄板(厚さ0.3mm)20×20mm約800枚を、ラシヒリングに混在させて使用した。平均反応温度287℃、循 環過熱気化メタノールは循環量19.4kg/hr、反応器への供給温度は292℃で、このときの反応器の加熱のための電気使用量は1.1kwであった。
得られた脂肪酸エステルの主要成分ならびに性質を表1に示す。
本発明は化学触媒の如き有害廃棄物を生ずることなく、きわめて熱効率の高いシステムによって、常圧で安全な操業条件の下に植物起源のディーゼル燃料を低コストで生産するものであり、また、エネルギー自給・無公害のプラントの構築により、種種の環境での立地が可能となるので、炭酸ガス排出規制の観点から、大規模な利用が期待される。
Claims (22)
- 油脂類と一価アルコール(以下単にアルコールと言う)とから脂肪酸エステルを製造するに際し、反応生成物を過熱気化アルコールとの混合気相流(気相の反応生成物と過熱気化アルコールとの混合物若しくはこれに液滴状の反応生成物を伴うもの)として取得する方法において、反応時に必要な理論化学当量よりも過剰のアルコール(以下過剰アルコールと言う)を過熱気化アルコール(該アルコールの圧力に対応する沸点よりも高温の状態に保持されたアルコール)の状態で使用し、所要の工程(油脂類と一価アルコールとの反応を行うための装置を主体とする反応工程、熱交換により反応生成物の冷却と原料アルコール及び原料油脂類の昇温とを行うための装置を主体とする工程及び反応生成物を分離・取得するための装置を主体とする工程)間をすべて連結する該過熱気化アルコールの循環経路を設け、該循環経路を原料供給手段及び生成物取得手段を備えた密閉系とし、該循環経路の容量を反応時に必要な過剰アルコールを供給するに足るものとすることを特徴とする、脂肪酸エステルの製造方法。
- 熱交換により反応生成物の冷却と原料の昇温とを行うための工程において、反応工程から取り出された、反応生成物を含む過熱気化アルコール(以下反応ガスと言う)と原料との熱交換に際し、反応ガスの顕熱部と潜熱部とを分離して熱交換を行うことを特徴とする、1記載の脂肪酸エステルの製造方法。
- 反応ガスと原料との顕熱熱交換を行うための工程(以下高温熱交換工程と言う)及び/又は反応生成物の凝縮潜熱と原料との熱交換を行うための工程(以下凝縮熱回収工程と言う)及び/又は凝縮した反応生成物と過熱気化アルコールとを分離するための工程(以下反応生成物分離工程と言う)及び/又は反応生成物と分離された過熱気化アルコール(以下循環アルコールと言う)と原料アルコール及び/又は冷却水との顕熱熱交換を行うための工程(以下温調熱交換工程と言う)及び/又は原料ア ルコールによる循環アルコールの断熱冷却を行うための工程(以下断熱冷却工程と言う)を含むことを特徴とする、1記載の脂肪酸エステルの製造方法。
- 反応工程の直前に、原料を昇温するための工程(以下最終予熱工程と言う)を設けることを特徴とする、1記載の脂肪酸エステルの製造方法。
- 過熱気化アルコール循環経路に過熱気化アルコールを循環させ、製造工程への原料又は原料の一部の供給及び製造工程からの反応生成物の取得を該循環過熱気化アルコール(以下循環アルコールと言う)を介して行うことを特徴とする、1記載の脂肪酸エステルの製造方法。
- 反応工程中において反応生成物に気化潜熱を与え、該反応生成物を気化させて過熱気化アルコール中に移行させる手段を備えることを特徴とする、1記載の脂肪酸エステルの製造方法。
- 油脂類とアルコールとから脂肪酸エステルを製造する方法において、油脂類の昇温を複数段階で行い、反応直前に所要の反応温度に昇温することを特徴とする、1記載の脂肪酸エステルの製造方法。
- 原料油脂類の昇温の何れかの段階において、液状及び/又は気化状態のアルコールを原料油脂類と共存させ、爾後の原料油脂類の昇温をアルコールとの共存状態(アルコールの原料油脂類中への溶解状態及び/又は液滴分散状態及び/又は気泡分散状態及び/又はアルコール中への原料油脂類の気相及び/又は液相としての混合・分散状態)において行うことを特徴とする、7記載の脂肪酸エステルの製造方法。
- 油脂類の反応直前の加熱を、過熱気化アルコールの還元性雰囲気中で行うことを特徴とする、7記載の脂肪酸エステルの製造方法。
- 熱交換により反応生成物の冷却と原料の昇温とを行うための工程において、反応装置から取り出された反応生成物及び/又は循環アルコールと、原料油脂類及び/又は原料アルコール 及び/又は循環アルコールとの間で熱交換を行い、反応生成物を一括凝縮させ、得られた凝縮物から脂肪酸エステルとグリセリンとを分離・採取する手段を備えることを特徴とする、1記載の脂肪酸エステルの製造方法。
- 高温熱交換工程に、高温側が反応ガスで低温側が原料アルコールを随伴する循環アルコール(以下反応原料アルコールと言う)である第1高温熱交換器と、高温側が反応ガスで低温側が原料油脂類である第2高温熱交換器とを設けることを特徴とする、1記載の脂肪酸エステルの製造方法。
- 凝縮熱回収工程に、高温側が反応ガスで低温側が反応原料アルコールである第1凝縮熱交換器と、高温側が反応ガスで低温側が原料油脂類である第2凝縮熱交換器とを設けることを特徴とする、1記載の脂肪酸エステルの製造方法。
- 温調熱交換工程に、高温側が循環アルコールで低温側が原料油脂類である温調熱交換器を設けることを特徴とする、1記載の脂肪酸エステルの製造方法。
- 断熱冷却工程に、高温側が循環アルコールで低温側が原料アルコールである断熱冷却器を設けることを特徴とする、1記載の脂肪酸エステルの製造方法。
- 熱交換により反応生成物の冷却と原料の予熱とを行うための工程において、高温熱交換工程に、高温側が反応ガスで低温側が反応原料アルコールである第1高温熱交換器と、高温側が反応ガスで低温側が原料油脂類である第2高温熱交換器とを設け、凝縮熱回収工程に、高温側が反応ガスで低温側が反応原料アルコールである第1凝縮熱交換器と、高温側が反応ガスで低温側が原料油脂類である第2凝縮熱交換器とを設け、温調熱交換工程に、高温側が循環アルコールで低温側が原料油脂類である温調熱交換器を設け、断熱冷却工程に、高温側が循環アルコールで低 温側が原料アルコールである断熱冷却器を設けた熱回収システムを構築し、反応工程を出た高温度の反応ガスを2分岐させてそれぞれ第1及び第2高温熱交換器に入れ、各高温熱交換器を出た各分岐の中間温度の反応ガスをそれぞれ第1及び第2凝縮熱交換器に入れ、各凝縮熱交換器を出た低温度の反応ガスを合流させて反応生成物分離工程に入れ、反応生成物を凝縮物として分離し、得られた循環アルコールを順次温調熱交換器及び断熱冷却器に入れて更に温度を下げ、断熱冷却器において所要の原料アルコールを加えて反応原料アルコールとし、順次第1凝縮熱交換器及び第1高温熱交換器の低温側に送り、加熱・昇温して反応に使用し、一方原料油脂類を順次温調熱交換器・第2凝縮熱交換器・第2高温熱交換器の低温側を通して加熱・昇温して反応に使用する熱交換工程を含むことを特徴とする、1記載の脂肪酸エステルの製造方法。
- 高温熱交換工程において、原料油脂類を熱媒として反応ガスと反応原料アルコールとの間で熱交換を行うことを特徴とする、1記載の脂肪酸エステルの製造方法。
- 高温熱交換工程において、高温側が反応ガスで低温側が熱媒(原料油脂類)である高温熱交換器と、高温側が熱媒(原料油脂類)で低温側が反応原料アルコールであるアルコール加熱用高温熱交換器とを設け、高温熱交換器低温側の熱媒出口とアルコール加熱用高温熱交換器高温側の熱媒入口、アルコール加熱用高温熱交換器高温側の熱媒出口と高温熱交換器低温側の熱媒入口とを導管で連結して熱媒の循環回路を形成し、該循環回路の途中に循環ポンプと高温熱媒(原料油脂類)取り出し手段とを備え、反応ガスの熱によって反応原料アルコールを加熱することを特徴とする、15記載の脂肪酸エステルの製造方法。
- 温調熱交換工程から凝縮熱回収工程に至る過熱気化アルコール循環経路の中間に、原料アルコール(液 体)供給手段とガス攪拌手段とを備えた混合断熱冷却器を設け、原料アルコール(液体)により回収アルコールを断熱冷却することを特徴とする、1記載の脂肪酸エステルの製造方法。
- 凝縮熱回収工程において反応ガス中の反応生成物を一括凝縮させ、該凝縮物を含む過熱気化アルコールを反応生成物分離工程に送り、濾過材等の凝縮物分離手段を備えた反応生成物分離装置に通して該凝縮物と過熱気化アルコールとを分離し、採取した該凝縮物を製品分離工程に送り、比重分離等の製品分離手段を備えた製品分離装置に入れて脂肪酸エステルとグリセリンとを分取することを特徴とする、1記載の脂肪酸エステルの製造方法。
- 反応工程で生ずる反応残渣を、熱媒ボイラー等の焼却装置により焼却処理を行う工程(以下反応残渣焼却工程と言う)に送り、焼却の際に発生する熱によって熱媒を加熱して高温熱源を得ることを特徴とする、1記載の脂肪酸エステルの製造方法。
- 反応残渣焼却工程において得られる高温熱源(熱媒)を最終予熱工程に送り、反応原料アルコール及び原料油脂類と熱交換を行うことを特徴とする、1記載の脂肪酸エステルの製造方法。
- 反応工程、高温熱交換工程、凝縮熱回収工程、反応生成物分離工程、温調熱交換工程、断熱冷却工程、最終予熱工程、過熱気化アルコール循環手段、製品分離工程及び反応残渣焼却工程を主工程として構成され、反応工程、高温熱交換工程、凝縮熱回収工程、反応生成物分離工程、温調熱交換工程、断熱冷却工程及び最終予熱工程の全て或いはそのうちの複数工程を連結する過熱気化アルコール循環経路を有し、熱交換により反応ガスの持つ熱を回収して原料の予熱を行うと共に反応生成物を一括凝縮させ、得られた凝縮物から脂肪酸エステルとグリセリンとを分離採取し、反応工程で生ずる反応残渣を反応残渣焼却工程に送り、最終予熱工程に使用する熱媒の加熱のための燃料として使用し、該燃料の不足分を原料油 脂類の一部を以って補い、生産された脂肪酸エステルの一部により発電を行い、外部からの燃料及び電力の供給を得ることなく全プラントの稼動が可能であり、且つ有害廃棄物をプラント外に出さないシステムを構築することを特徴とする、1記載の脂肪酸エステルの製造方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2008/071482 WO2010058487A1 (ja) | 2008-11-19 | 2008-11-19 | 油脂類を原料とする脂肪酸エステルの製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2008/071482 WO2010058487A1 (ja) | 2008-11-19 | 2008-11-19 | 油脂類を原料とする脂肪酸エステルの製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010058487A1 true WO2010058487A1 (ja) | 2010-05-27 |
Family
ID=42197934
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2008/071482 WO2010058487A1 (ja) | 2008-11-19 | 2008-11-19 | 油脂類を原料とする脂肪酸エステルの製造方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2010058487A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113710639A (zh) * | 2019-07-04 | 2021-11-26 | 株式会社Lg化学 | 热交换系统及包括其的二酯基组合物的制备系统 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006028146A (ja) * | 2004-07-12 | 2006-02-02 | Ics Kk | 油脂類を原料とする脂肪酸エステルの製造方法 |
-
2008
- 2008-11-19 WO PCT/JP2008/071482 patent/WO2010058487A1/ja active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006028146A (ja) * | 2004-07-12 | 2006-02-02 | Ics Kk | 油脂類を原料とする脂肪酸エステルの製造方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113710639A (zh) * | 2019-07-04 | 2021-11-26 | 株式会社Lg化学 | 热交换系统及包括其的二酯基组合物的制备系统 |
CN113710639B (zh) * | 2019-07-04 | 2023-07-18 | 株式会社Lg化学 | 热交换系统及包括其的二酯基组合物的制备系统 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7452515B1 (en) | System for creating a biofuel | |
US7531688B2 (en) | Method for recovering unreacted alcohol from biodiesel product streams by flash purification | |
US20100173370A1 (en) | Fuel Production | |
CN106085469B (zh) | 用于原料向油和气的弹性转化的系统和方法 | |
US4241722A (en) | Pollutant-free low temperature combustion process having carbonaceous fuel suspended in alkaline aqueous solution | |
WO2007049979A1 (en) | Method of biodiesel production | |
JP4849387B2 (ja) | 油脂類を原料とする脂肪酸エステルの製造方法 | |
CN110155953A (zh) | 一种处理低浓度酸性气体进行硫磺回收的装置及工艺 | |
CN105586154A (zh) | 利用废弃油脂制备生物柴油的连续酯化方法 | |
CN104986740A (zh) | 一种克劳斯尾气处理系统以及处理方法 | |
CN112044105A (zh) | 一种利用气体含湿差进行蒸发的装置 | |
CN100392045C (zh) | 一种采用固定床气相酯化制备脂肪酸甲酯的方法 | |
WO2010058487A1 (ja) | 油脂類を原料とする脂肪酸エステルの製造方法 | |
CA2824448C (en) | Heat exchanger for the cooling of hot gases and heat exchange system | |
US20110016772A1 (en) | Acid Esterification Through Nano Reactor | |
CN101954198A (zh) | 偏苯三甲酸连续生产中的高压脱水塔 | |
RU2501600C1 (ru) | Устройство для получения серы | |
KR20160021604A (ko) | 고산가 동식물유지를 활용한 바이오연료 제조장치 | |
CN102203041A (zh) | 二羧酸的综合联产 | |
JP7222174B2 (ja) | ジエステル系物質の製造ユニットおよびこれを含むジエステル系物質の製造システム | |
CN201129934Y (zh) | 用于煤或生物质热解液化的喷雾与降膜复合式冷凝装置 | |
CN208406934U (zh) | 偏三甲苯氧化分离装置 | |
CN102203045A (zh) | 采用自供燃料氧化性分解制备二羧酸 | |
CN201272776Y (zh) | 一种中性油脂连续制备生物柴油的装置 | |
CN205011386U (zh) | 一种克劳斯尾气处理系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08878284 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 08878284 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |