WO2010050564A1 - N-保護アミノ酸の製造法 - Google Patents

N-保護アミノ酸の製造法 Download PDF

Info

Publication number
WO2010050564A1
WO2010050564A1 PCT/JP2009/068611 JP2009068611W WO2010050564A1 WO 2010050564 A1 WO2010050564 A1 WO 2010050564A1 JP 2009068611 W JP2009068611 W JP 2009068611W WO 2010050564 A1 WO2010050564 A1 WO 2010050564A1
Authority
WO
WIPO (PCT)
Prior art keywords
amino acid
dehydrogenase
producing
acid
solution
Prior art date
Application number
PCT/JP2009/068611
Other languages
English (en)
French (fr)
Inventor
義則 平井
克治 前原
忠 諸島
博幸 金丸
晃 岩崎
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to CN200980143174.0A priority Critical patent/CN102203269B/zh
Priority to EP09823674.8A priority patent/EP2345733A4/en
Priority to JP2010535837A priority patent/JPWO2010050564A1/ja
Publication of WO2010050564A1 publication Critical patent/WO2010050564A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/06Alanine; Leucine; Isoleucine; Serine; Homoserine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C269/00Preparation of derivatives of carbamic acid, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C269/04Preparation of derivatives of carbamic acid, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups from amines with formation of carbamate groups
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids

Definitions

  • the present invention relates to a method for producing an N-protected amino acid useful as an intermediate for pharmaceuticals or agricultural chemicals.
  • Amino acids whether natural or non-natural, are very useful compounds that are widely used as raw materials or intermediates for pharmaceuticals and agricultural chemicals.
  • a protective group is introduced into the carboxyl group and / or amino group present in the molecule before the desired reaction, in order to suppress side reactions in the reaction.
  • Non-Patent Document 1 In this protective group introduction, in the case of protecting an amino group, an N-protected amino acid can be obtained quickly and almost quantitatively by using a protective agent in a theoretical equivalent to a small excess amount under basic conditions. Is possible (Non-Patent Document 1, Patent Document 1).
  • amino acids are often produced using biocatalysts.
  • the production of amino acids using biocatalysts is usually carried out in an aqueous system.
  • separation of water-soluble inorganic salts coexisting with amino acids having high solubility in water separation of amino acids, bacterial cells and protein components
  • the isolation and purification is inefficient and difficult because the complicated operation of separation is required.
  • these amino acids that cannot be recovered by isolation and purification are disadvantageous in terms of cost. Therefore, when the objective is to obtain a protected amino acid, it is desirable to protect the amino group using the reaction solution as it is from the viewpoint of production efficiency and cost.
  • the N-protected amino acid can be quantitatively determined only by using an equivalent to a small excess of a protective agent in the conventional method. It was found that there are cases where it cannot be manufactured. In particular, this tendency becomes stronger when the amino group is directly protected without isolating and purifying the obtained amino acid. Surprisingly, even if an excessive protective agent is present, the protection reaction proceeds. I found it difficult to do. These are considered to reduce production efficiency and increase costs in production on a commercial scale, and hinder the supply of useful amino acid protectors to the market at a low cost.
  • the present invention is to provide a method for efficiently producing a high-quality N-protected amino acid.
  • the present invention performs an acidification treatment so that a reaction product containing an amino acid has a pH of 4 or less without isolating the amino acid produced using a biocatalyst, and then the amino group under basic conditions.
  • the present invention relates to a method for producing an N-protected amino acid which performs a protective reaction.
  • amino acids that can be used in the present invention are not particularly limited, and specifically include glycine, alanine, 3-chloroalanine, ⁇ -alanine, valine, norvaline, leucine, norleucine, isoleucine, alloisoleucine, tert-leucine, phenylalanine, Homophenylalanine, tyrosine, diiodotyrosine, threonine, allothreonine, serine, homoserine, isoserine, proline, hydroxyproline, 3,4-dehydroproline, tryptophan, thyroxine, methionine, homomethionine, cystine, homocystine, ⁇ -aminobutyric acid, ⁇ -aminobutyric acid, ⁇ -aminobutyric acid, ⁇ -aminoisobutyric acid, aspartic acid, aspartic acid- ⁇ -cyclohexyl ester, as
  • amino acids other than glycine have optical isomers and stereoisomers, but the present invention can be used regardless of their steric form, and needless to say, they may be a mixture or a racemate.
  • carboxyl group of these amino acids may be converted to other functional groups, and specifically, it can be suitably used even if it is converted to an amide or ester form.
  • amino acids using the biocatalyst used in the present invention can be carried out, for example, by the following method, but is not particularly limited thereto.
  • Amino acid dehydrogenase or a culture of a microorganism capable of producing the enzyme is allowed to act on the corresponding keto acid to selectively aminate the D-form or L-form.
  • amino acid dehydrogenases used in this reaction include leucine dehydrogenase, alanine dehydrogenase, phenylalanine dehydrogenase, glutamate dehydrogenase, valine dehydrogenase, lysine dehydrogenase, aspartate dehydrogenase.
  • Aminotransferase or a culture of a microorganism capable of producing the enzyme is allowed to act on the corresponding keto acid to selectively aminate the D-form or L-form.
  • a DL-amino acid alkyl ester is allowed to act on esterase or a culture of a microorganism capable of producing the enzyme to selectively hydrolyze D-form or L-form.
  • An L-N-acylamino acid is allowed to act on acylase or a culture of a microorganism capable of producing the enzyme to selectively hydrolyze D-form or L-form.
  • Amidase or a culture of a microorganism capable of producing the enzyme is allowed to act on DL-amino acid amide to selectively hydrolyze D-form or L-form.
  • a hydantoinase, a culture of a microorganism capable of producing the enzyme, or a treated product thereof is allowed to act on the 5-substituted hydantoin to selectively hydrolyze D-form or L-form.
  • a nitrilase or a microorganism culture capable of producing the enzyme is allowed to act on the ⁇ -amino nitrile compound to selectively hydrolyze D-form or L-form.
  • a microorganism culture that selectively degrades D-form or L-form is allowed to act on DL-amino acid to degrade one of the three-dimensional amino acids.
  • the DL-amino acid is allowed to act on a D or L-amino acid oxidase, an amino acid dehydrogenase, and an enzyme capable of coenzyme regeneration, or a culture of a microorganism capable of producing the enzyme, resulting in a theoretical yield of 100%.
  • DL-amino acid is converted to D-form or L-form amino acid.
  • the “biocatalyst” as used in the present invention means an enzyme such as the above-mentioned amino acid dehydrogenase, a culture of microorganisms capable of producing the enzyme, or a processed product thereof, which is used for the production of amino acids.
  • the “microorganism culture” means a culture solution or culture containing cells
  • the “treated product” means disruption of the cells obtained by crushing with a physical method or enzyme. It means a crude extract obtained by removing insoluble components from a product or crushed material by centrifugation or the like, freeze-dried cells, acetone-dried cells and the like.
  • Examples of the “enzyme used for amino acid production” include amino acid dehydrogenase, aminotransferase, esterase, acylase, amidase, hydantoinase, and nitrilase.
  • amino acid dehydrogenases examples include leucine dehydrogenase, alanine dehydrogenase, phenylalanine dehydrogenase, glutamate dehydrogenase, valine dehydrogenase, lysine dehydrogenase, and aspartate dehydrogenase.
  • the amino acid to be produced is an aliphatic amino acid such as valine, leucine, isoleucine, norvaline, norleucine or tert-leucine
  • leucine dehydrogenase and valine dehydrogenase are preferable as the amino acid dehydrogenase.
  • the amino acid to be produced is an aromatic amino acid such as phenylalanine, tyrosine, homophenylalanine or adamantylglycine
  • phenylalanine dehydrogenase is preferred as the amino acid dehydrogenase used.
  • glutamic acid, 6-hydroxynorleucine or the like glutamic acid dehydrogenase is preferable.
  • amino acid to be produced is ⁇ -aminobutyric acid, ⁇ -aminovaleric acid, serine, glycine, 3-chloroalanine, 3-fluoroalanine or the like, alanine dehydrogenase is preferable.
  • any leucine dehydrogenase can be used as long as it has the enzyme activity.
  • Bacillus, Thermoactinomyces, Clostridium, Coryne And enzymes derived from Corynebacterium microorganisms preferably Bacillus sphaericus, Bacillus stearothermophilus, Bacillus celeus, Bacillus subtilis (Bacillus). subtilis), Thermoactinomyces intermedis, Clostridium umthermoaceticum, more preferably an enzyme derived from Bacillus sphaericus NBRC3341 strain.
  • Any phenylalanine dehydrogenase can be used as long as it has the enzyme activity.
  • Any other dehydrogenase having a desired enzyme activity can be used.
  • microorganisms can be obtained from a patent microorganism depositary or other research institute.
  • the microorganism identified by the NBRC number is available from the Center for Biological Genetic Resources, National Institute of Technology and Evaluation
  • the microorganism identified by the IAM number is available from the Cell Function Information Research Center, Institute for Molecular Cell Biology, the University of Tokyo. is there.
  • microorganism capable of producing an enzyme used for amino acid production may be either a wild strain or a mutant strain. Alternatively, there may be a microorganism induced by a genetic technique such as genetic manipulation.
  • Examples of the genetically engineered microorganism include a transformant transformed with a vector having a DNA encoding an enzyme used for the production of the amino acid.
  • a microorganism having an ability to produce an enzyme having the ability to regenerate a coenzyme on which the enzyme depends is preferable.
  • a transformant transformed with a vector having a DNA encoding the enzyme and a DNA encoding the enzyme having the ability to regenerate the coenzyme on which the enzyme depends and preferably an enzyme having the ability to regenerate the coenzyme
  • the above transformant derived from Bacillus megaterium can be mentioned.
  • the host into which the vector is introduced include bacteria, yeast, filamentous fungi, plant cells, and animal cells. Bacteria are preferred from the viewpoint of ease of transformation and enzyme expression efficiency, and Escherichia coli is particularly preferred.
  • the microorganism used as the biocatalyst is preferably a transformant transformed with a vector having a DNA encoding leucine dehydrogenase, preferably And a transformant transformed with a vector having a DNA encoding leucine dehydrogenase and a DNA encoding the formate dehydrogenase.
  • leucine dehydrogenase Bacillus sphaericus NBRC3341 Examples include Escherichia coli HB101 (pFTLB) described in WO2007 / 015511 using an enzyme derived from a strain.
  • keto acid or the like When the enzyme or microorganism culture is allowed to act on keto acid or the like, for example, it can be performed as follows. However, it is not limited to the following method.
  • the corresponding keto acid, inorganic salts containing formic acid and ammonia such as ammonium formate and ammonium sulfate, coenzymes such as NAD + , and the above amino acid dehydrogenase and formate dehydrogenase can be produced.
  • a culture solution of the above microorganisms or a cultured microbial cell obtained from the culture solution is added, and the mixture is reacted with stirring under pH adjustment.
  • Keto acid may be added at a feed concentration of 0.1% to 60% (w / w), preferably 1% to 30% (w / w). Keto acids may be added all at once or in divided portions.
  • the reaction product containing an amino acid produced as described above is usually obtained in the form of an aqueous solution, but an organic solvent may coexist and an inorganic salt may coexist.
  • the protection reaction may be carried out in the form of a solution or slurry containing the amino acid without isolating the obtained amino acid.
  • An operation for the purpose of purification such as filtration may be performed.
  • operations that can be routed include filtration of insoluble matter such as proteins, solvent distillation, activated carbon treatment, cell separation by centrifugal sedimentation, removal of inorganic salts by ion exchange resin, and the like. Note that these operations are not necessarily performed before the acidification treatment, and can be suitably performed after the acidification treatment, and a plurality of treatments can be combined.
  • This treatment can increase the production efficiency of N-protected amino acids.
  • the acid that can be used in the acidification treatment is not particularly limited, but usually, for example, a mineral acid such as hydrochloric acid, sulfuric acid, or nitric acid, or an organic acid such as methanesulfonic acid or ethanesulfonic acid is used. These acids may be used alone or in combination.
  • the addition form of the acid is not particularly limited, and only the acid may be added or the acid may be diluted with water and / or an organic solvent.
  • the organic solvent is not particularly limited as long as it does not react with the acid. Specifically, methanol, ethanol, 2-propanol, toluene and the like can be used as organic solvents that can be used.
  • the pH of the solution is adjusted to 4 or less, preferably 3 or less, more preferably 2 or less by adding these acids. This makes it possible to efficiently obtain an N-protected amino acid even when using a theoretical equivalent to a small excess of a protective reagent.
  • the time for maintaining the pH of the solution is preferably 5 minutes or more, more preferably 30 minutes or more. Needless to say, since holding for a long time impairs manufacturing efficiency, an optimal holding time may be set by a simple experiment.
  • the series of operating temperatures is not particularly specified, but is usually set within the range of 0 to 50 ° C in order to obtain simple operability.
  • An amino acid that has undergone such an acidification treatment can protect an amino group quickly and almost quantitatively by using a theoretical equivalent to a small excess of a protective reagent.
  • the protective agent used for protecting the amino group is not particularly limited, and known ones can be used.
  • an N-alkoxycarbonylating agent, an N-carbamoylating agent, and an N-acylating agent can be used.
  • alkyl haloformates, dialkyl dicarbonates, alkyl isocyanates, carboxylic anhydrides, and alkylcarbonyl halides are preferably used.
  • methyl chloroformate, ethyl chloroformate, benzyl chloroformate, Dimethyl carbonate, diethyl dicarbonate, di-tert-butyl dicarbonate, tert-butyl isocyanate, isopropyl isocyanate, phenyl isocyanate, benzoyl chloride, acetyl chloride and acetic anhydride are particularly preferably used.
  • Protecting reaction conditions can be known conditions. Optimum conditions vary depending on the combination of amino acid and protective agent used, and therefore cannot be defined unconditionally. Usually, the reaction is performed under basic conditions, and the reaction pH is 8 to 14, preferably 9 to 14. The temperature is ⁇ 5 to 90 ° C., preferably 0 to 50 ° C.
  • the protective agent is usually 0.95 equivalents or more and 1.20 equivalents or less, preferably 0.98 equivalents or more and 1.10 equivalents or less, more preferably 0.99 equivalents or more and 1.05 equivalents or less. .
  • N-protected amino acid produced by such a protection reaction can then be purified and isolated by a general method such as crystallization, fractional distillation, column chromatography or the like.
  • the mixture After inoculating the transformant Escherichia coli HB101 (pFTLB) having leucine dehydrogenase and formate dehydrogenase activities obtained according to the method described in WO2007 / 015511, the mixture is shaken at 37 ° C. for 30 hours. And aerobically cultured to obtain a culture solution of microorganisms having leucine dehydrogenase and formate dehydrogenase activities. The cells were collected from the culture broth by centrifugation and suspended in the culture supernatant so that the cell concentration was 20 times that of the culture broth.
  • pFTLB transformant Escherichia coli HB101
  • a 1 L separable flask was charged with 40 g of 3,3-dimethyl-2-oxo-butanoic acid (DMOB), adjusted to pH 7.3 with a 30 wt% aqueous sodium hydroxide solution, and then 19.4 g of ammonium formate. Then, 8.2 g of ammonium sulfate, 40 mg of zinc sulfate heptahydrate, 61 mg of NAD, 256 g of ion exchange water and 3200 u of formate dehydrogenase activity were added to the above cell suspension, and the mixture was stirred under 55 wt% sulfuric acid. The reaction was carried out at 33 ° C. for 19 hours while controlling the pH at 7.3.
  • DMOB 3,3-dimethyl-2-oxo-butanoic acid
  • the optical purity was 100% e.e. e.
  • a bacterial cell reaction solution containing 38.8 g of L-tert-leucine was obtained. Further, the bacterial cells were removed from a part of the obtained bacterial cell reaction solution by centrifugation to obtain an aqueous solution containing L-tert-leucine.
  • the protein content was 0.0-1.1 mg / L.
  • SUMICHIRAL OA-5000 (4.6 mm ⁇ 150 mm, manufactured by Sumika Analysis Center Co., Ltd.) was used as a column, and as a moving layer, a 2 mM copper sulfate aqueous solution and methanol were mixed at a volume ratio of 95: 5.
  • the flow rate was 1.0 mL / min
  • the column temperature was 40 ° C.
  • the detection was performed at 210 nm.
  • Example 1 A bacterial cell reaction solution containing 2.48 g (18.4 mmol) of L-tert-leucine obtained according to Reference Example was adjusted to pH 4.0 with concentrated hydrochloric acid. After stirring for 2 hours, the pH was adjusted to 7.0 with a 30% by weight aqueous sodium hydroxide solution, and the bacterial cell components were separated by centrifugal sedimentation.
  • the obtained supernatant was adjusted to pH 10.6 with a 30 wt% aqueous sodium hydroxide solution. Then, it concentrated under reduced pressure, maintaining 40 degrees C or less, and adjusted the amount of solutions to 30.1g.
  • Conversion rate (%) (generated N-protection-amino acid peak area value) / (amino acid peak area value + generated N-protection-amino acid peak area value) ⁇ 100
  • CAPCELLPAKSCX 250 mm X 4.6 mm id
  • Analysis was performed using a solution, a flow rate of 1.0 mL / min, a column temperature of 35 ° C., and a differential refractometer as a detector.
  • Example 2 An aqueous solution containing 3.01 g (23.0 mmol) of L-tert-leucine obtained according to the reference example was adjusted to pH 2.0 with concentrated hydrochloric acid, and held for 2 hours. Next, after adjusting the pH to 10.6 with a 30 wt% aqueous sodium hydroxide solution, the solution was concentrated under reduced pressure while maintaining the temperature at 40 ° C or lower to adjust the amount of the solution to 29.7 g.
  • Example 3 A bacterial cell reaction solution containing 1.96 g (14.9 mmol) of L-tert-leucine obtained according to Reference Example was adjusted to pH 4.0 with concentrated hydrochloric acid. After stirring for 1 hour, the bacterial cell components were separated by centrifugal sedimentation.
  • the obtained supernatant was adjusted to pH 10.6 with a 30 wt% aqueous sodium hydroxide solution. Then, it concentrated under reduced pressure, maintaining 40 degrees C or less, and adjusted the amount of solutions to 20.1g.
  • Example 4 An aqueous solution containing 2.05 g (15.6 mmol) of L-tert-leucine obtained according to the reference example was adjusted to pH 2.0 with concentrated sulfuric acid and then kept for 30 minutes. Next, after adjusting the pH to 10.7 with a 30% by weight aqueous sodium hydroxide solution, the solution was concentrated under reduced pressure while maintaining the temperature at 40 ° C. or lower to adjust the solution amount to 19.8 g.
  • Example 5 An aqueous solution containing 2.03 g (15.5 mmol) of L-tert-leucine obtained according to the reference example was adjusted to pH 2.0 with concentrated sulfuric acid and then held for 30 minutes. Next, after adjusting the pH to 10.7 with a 30 wt% aqueous sodium hydroxide solution, the solution was concentrated under reduced pressure while maintaining the temperature at 40 ° C or lower to adjust the amount of the solution to 19.6 g.

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

 本願では、微生物菌体や酵素等の生体触媒を用いて製造されたアミノ酸を単離する事無く、アミノ酸を含む反応物がpH4以下になるように酸性化処理を行い、その後、塩基性条件下にアミノ基の保護反応を行ってN-保護アミノ酸を得る。これにより、生体触媒を用いて製造されたアミノ酸に対して、直接(アミノ酸を単離することなく)保護反応を行う場合であっても、当量~小過剰量の保護試剤の使用で、定量的に効率よく高品質のN-保護アミノ酸を製造することが可能である。

Description

N-保護アミノ酸の製造法
 本発明は、医薬品または農薬の中間体として有用なN-保護アミノ酸の製造法に関する。
 アミノ酸は天然・非天然を問わず、医薬品や農薬の原料または中間体として汎用的に利用されている非常に有用な化合物である。
 これらアミノ酸を原料または中間体として利用する場合、所望の反応に供する前に、当該反応での副反応を抑えるため、分子内に存在するカルボキシル基または/及びアミノ基に保護基を導入する。
 この保護基導入においては、アミノ基の保護の場合、通常、塩基性条件下で、保護試剤を理論当量~小過剰量用いることにより、速やか、かつ、ほぼ定量的にN-保護アミノ酸を得ることが可能である(非特許文献1、特許文献1)。
特開2007-131589公報
日本化学会編 第5版実験科学講座16、221-226頁
 高い光学純度の光学活性アミノ酸が得られる等の理由から、しばしば、生体触媒を用いてアミノ酸の製造が行われる。生体触媒を用いるアミノ酸の製造は通常水系で行われるが、水系で反応を行った場合、水への溶解性が高いアミノ酸と共存する水溶性の無機塩の分離、アミノ酸と菌体・蛋白成分の分離という煩雑な操作が必要となる等の理由から、その単離精製は非効率で困難である。また、これらの単離精製で回収できないアミノ酸がコスト面に不利を招くことは言うまでもない。従って、アミノ酸の保護体を得ることを目的とした場合、生産効率や費用等の観点から、反応液をそのまま用いてアミノ基の保護を行うことが望ましい。
 しかし、発明者らの検討によれば、生体触媒を用いて製造されたアミノ酸の場合、従来の方法では、当量~小過剰量の保護試剤を使用するだけでは、定量的にN-保護アミノ酸が製造できない場合があることがわかった。特に、得られたアミノ酸を単離精製することなく、直接そのアミノ基の保護を行う際にこの傾向は強くなり、意外にも、過剰の保護試剤を存在させたとしても、当該保護反応が進行しにくくなることがわかった。これらは商業的な規模での生産において、製造効率の低下、高コスト化を招き、有用なアミノ酸保護体を安価に市場に供給する事を阻害するものと考えられる。
 本発明は、上記に鑑み、効率よく高品質のN-保護アミノ酸を製造する方法を提供することにある。
 本発明者らは、この技術課題について鋭意検討した結果、生体触媒を用いて製造されたアミノ酸から効率よくN-保護アミノ酸を製造する為には、保護反応の前に酸性化処理を経る事が非常に有効であることを見出した。
 すなわち、本発明は、生体触媒を用いて製造されたアミノ酸を単離する事無く、アミノ酸を含む反応物がpH4以下になるように酸性化処理を行い、その後、塩基性条件下にアミノ基の保護反応を行うN-保護アミノ酸の製造法に関する。
 本発明にかかる方法によれば、生体触媒を用いて製造されたアミノ酸に対して、直接(アミノ酸を単離することなく)保護反応を行う場合であっても、当量~小過剰量の保護試剤の使用で、定量的に効率よく高品質のN-保護アミノ酸を製造することが可能である。
 まず、本発明で使用するアミノ酸について説明する。
 本発明において使用できるアミノ酸としては、特に制約なく、具体的には、グリシン、アラニン、3-クロロアラニン、β-アラニン、バリン、ノルバリン、ロイシン、ノルロイシン、イソロイシン、アロイソロイシン、tert-ロイシン、フェニルアラニン、ホモフェニルアラニン、チロシン、ジヨードチロシン、トレオニン、アロトレオニン、セリン、ホモセリン、イソセリン、プロリン、ヒドロキシプロリン、3,4-デヒドロプロリン、トリプトファン、チロキシン、メチオニン、ホモメチオニン、シスチン、ホモシスチン、α-アミノ酪酸、β-アミノ酪酸、γ-アミノ酪酸、α-アミノイソ酪酸、アスパラギン酸、アスパラギン酸-β-シクロヘキシルエステル、アスパラギン酸-β-メチルエステル、アスパラギン酸-β-イソプロピルエステル、アスパラギン酸-β-ベンジルエステル、グルタミン酸、グルタミン酸-γ-シクロヘキシルエステル、グルタミン酸-γ-メチルエステル、グルタミン酸-γ-イソプロピルエステル、グルタミン酸-γ-ベンジルエステル、リジン、ヒドロキシリジン、オルニチン、ヒドロキシオルニチン、アルギニン、ヒスチジン、アンチカプシン、アダマンチルグリシン、タウリン、γ-ホルミル-N-メチルノルバリン、Ng-トシルアルギニン、O-ベンジルセリン、O-ベンジルトレオニン、Nin-ホルミルトリプトファン、2-(2-アミノ-4-チアゾリル)-2-ヒドロキシイミノ酢酸、2-(2-アミノ-4-チアゾリル)-2-メトキシイミノ酢酸、2-(2-アミノ-4-チアゾリル)-2-グリオキシ酢酸、2-(2-アミノ-4-チアゾリル)-2-ペンテン酸、3-アミノ-2-ヒドロキシ-4-フェニル酪酸、3-アミノ-3-フェニルプロピオン酸、フェニルグリシン、4-ヒドロキシフェニルグリシン、4-クロロフェニルグリシン、4-クロロフェニルアラニン、シクロヘキシルアラニン、シクロヘキシルグリシン、3-(1-ナフチル)アラニン、3-(2-ナフチル)アラニン、クレアチン、アゼチジン-2-カルボン酸、オルシルアラニン、エルゴチオネイン、ランチオニン、1-メチルヒスチジン、3-メチルヒスチジン等を挙げることができる。
 グリシンを除くアミノ酸には、光学異性体や立体異性体が存在するが、本発明はその立体を問わずに使用することができ、言うまでもなく、それらの混合物や、ラセミ体であっても良い。
 また、これらアミノ酸のカルボキシル基については他の官能基に変換されていても良く、具体的には、アミド体やエステル体に変換されていても好適に使用することが出来る。
 本発明で使用する生体触媒を用いたアミノ酸の製造は、たとえば以下の方法で実施することが出来るが、これらに特に限定されるものではない。
1)対応するケト酸に、アミノ酸脱水素酵素、または該酵素の生産能を有する微生物の培養物を作用させ、D体またはL体選択的にアミノ化する。本反応に使用されるアミノ酸脱水素酵素としては、例えば、ロイシン脱水素酵素、アラニン脱水素酵素、フェニルアラニン脱水素酵素、グルタミン酸脱水素酵素、バリン脱水素酵素、リシン脱水素酵素、アスパラギン酸脱水素酵素などが挙げられる。
2)対応するケト酸に、アミノ基転移酵素、または該酵素の生産能を有する微生物の培養物を作用させ、D体またはL体選択的にアミノ化する。
3)DL-アミノ酸アルキルエステルに、エステラーゼまたは該酵素の生産能を有する微生物の培養物を作用させ、D体またはL体を選択的に加水分解する。
4)L-N-アシルアミノ酸にアシラーゼまたは該酵素の生産能を有する微生物の培養物を作用させ、D体またはL体を選択的に加水分解する。
5)DL-アミノ酸アミドにアミダーゼ、または該酵素の生産能を有する微生物の培養物を作用させ、D体またはL体を選択的に加水分解する。
6)5-置換ヒダントインにヒダントイナーゼ、または該酵素の生産能を有する微生物の培養物あるいはその処理物を作用させ、D体またはL体を選択的に加水分解する。
7)α-アミノニトリル化合物にニトリラーゼ、または該酵素の生産能を有する微生物培養物を作用させ、D体またはL体を選択的に加水分解する。
8)DL-アミノ酸に、D体又はL体を選択的に分解する微生物の培養物を作用させ、一方の立体のアミノ酸を分解する。
9)DL-アミノ酸にDまたはL-アミノ酸オキシダーゼ、アミノ酸脱水素酵素、および補酵素再生能を有する酵素、または該酵素の生産能を有する微生物の培養物を作用させて、理論収率100%にてDL-アミノ酸をD体またはL体のアミノ酸へと変換する。
 尚、本発明で言う「生体触媒」とは、アミノ酸の製造に利用される、上述のアミノ酸脱水素酵素等の酵素や、当該酵素の産生能を有する微生物の培養物またはその処理物を意味する。ここで、「微生物の培養物」とは、菌体を含む培養液或いは培養菌体を意味し、「その処理物」とは、物理的手法、酵素などで破砕して得た菌体の破砕物、破砕物から遠心分離などで不溶成分を除去して得た粗抽出液、凍結乾燥菌体、アセトン乾燥菌体等を意味する。
 「アミノ酸の製造に利用される酵素」としては、例えば、アミノ酸脱水素酵素、アミノ基転移酵素、エステラーゼ、アシラーゼ、アミダーゼ、ヒダントイナーゼ、ニトリラーゼが挙げられる。
 アミノ酸脱水素酵素としては、例えば、ロイシン脱水素酵素、アラニン脱水素酵素、フェニルアラニン脱水素酵素、グルタミン酸脱水素酵素、バリン脱水素酵素、リシン脱水素酵素、アスパラギン酸脱水素酵素が挙げられる。
 具体的には、製造するアミノ酸がバリン、ロイシン、イソロイシン、ノルバリン、ノルロイシンやtert-ロイシンなどの脂肪族アミノ酸の場合、アミノ酸脱水素酵素としては、ロイシン脱水素酵素、バリン脱水素酵素が好適である。製造するアミノ酸がフェニルアラニン、チロシンやホモフェニルアラニン、アダマンチルグリシンなどの芳香族アミノ酸の場合、使用するアミノ酸脱水素酵素としてはフェニルアラニン脱水素酵素が好適である。製造するアミノ酸がグルタミン酸、6-ヒドロキシノルロイシンなどの場合、グルタミン酸脱水素酵素が好適である。製造するアミノ酸がα-アミノ酪酸、α-アミノ吉草酸、セリン、グリシン、3-クロロアラニン、3-フルオロアラニンなどの場合、アラニン脱水素酵素が好適である。
 このうち、ロイシン脱水素酵素としては、当該酵素活性を有するものであれば、いずれも利用できるが、例えば、バシラス属(Bacillus)、サーモアクチノマイセス属(Thermoactinomyces)、クロストリジウム属(Clostridium)、コリネバクテリウム属(Corynebacterium)微生物由来の酵素が挙げられ、好ましくは、バシラス・スファエリカス(Bacillus sphaericus)、バシラス・ステアロサーモフィラス(Bacillus stearothermophilus)、バシラス・セレウス(Bacillus celeus)、バシラス・サブチルス(Bacillus subtilis)、サーモアクチノマイセス・インターメディス(Thermoactinomyces intermedis)、クロストリジウム・サーモセチカム(Clostridium thermoaceticum)、さらに好ましくはバシラス・スファエリカス(Bacillus sphaericus)NBRC3341株由来の酵素が挙げられる。
 フェニルアラニン脱水素酵素としては、当該酵素活性を有するものであれば、いずれも利用できるが、例えば、バシルス属(Bacillus)、スポロサルシナ属(Sporosarcina)、ロドコッカス属(Rhodococcus)、サーモアクチノマイセス属(Thermoactinomyces)、ブレビバクテリウム属(Brevibacterium)、ノカルディア属(Nocardia)、ミクロバクテリウム属(Microbacterium)微生物由来の酵素が挙げられる。好ましくは、バシラス・バディウス(Bacillus badius)、バシラス・スファエリカス(Bacillus sphaericus)、スポロサルシナ・ウレアエ(Sporosarcina ureae)、ロドコッカス・マリス(Rhodococcus maris)、サーモアクチノマイセス・インターメディウス(Thermoactinomyces intermedius)、さらに好ましくは、バシラス・バディウス(Bacillus badius)IAM11059株由来の酵素が挙げられる。
 他の脱水素酵素等についても、所望の酵素活性を有するものであればいずれも使用することができる。
 なお、上記の各微生物は、特許微生物寄託機関やその他研究機関から入手可能である。例えば、NBRC番号で特定される微生物は、独立行政法人製品評価技術基盤機構生物遺伝資源部門、IAM番号で特定される微生物は、東京大学分子細胞生物学研究所細胞機能情報研究センターより入手可能である。
 上記「アミノ酸の製造に利用される酵素の産生能を有する微生物」としては、野生株または変異株のいずれでもあり得る。あるいは、遺伝子操作などの遺伝学的手法により誘導された微生物もあり得る。
 遺伝子操作された微生物としては、例えば、上記アミノ酸の製造に利用される酵素をコードするDNAを有するベクターで形質転換された形質転換体が挙げられる。
 アミノ酸の製造に利用される酵素がアミノ酸脱水素酵素の場合、該酵素とともに、該酵素が依存する補酵素を再生する能力を有する酵素の産生能を有する微生物が好ましく、例えば、アミノ酸脱水素酵素をコードするDNA、および該酵素が依存する補酵素を再生する能力を有する酵素をコードするDNAを有するベクターで形質転換された形質転換体が挙げられ、好ましくは、補酵素再生する能力を有する酵素がギ酸脱水素酵素、またはグルコース脱水素酵素である形質転換体が挙げられ、さらに好ましくは、前記ギ酸脱水素酵素がチオバチラス エスピー(Thiobacillus sp.)由来である上記形質転換体、前記グルコース脱水素酵素がバシラス・メガテリウム(Bacillus megaterium)由来である上記形質転換体が挙げられる。ベクターを導入する宿主としては、細菌、酵母、糸状菌、植物細胞、動物細胞が挙げられ、形質転換の容易さや酵素の発現効率の観点からは細菌が好ましく、大腸菌が特に好ましい。
 例えば、アミノ酸の製造に利用される酵素がロイシン脱水素酵素の場合、生体触媒として使用される微生物としては、ロイシン脱水素酵素をコードするDNAを有するベクターで形質転換された形質転換体、好ましくは、ロイシン脱水素酵素をコードするDNAと上記ギ酸脱水素酵素をコードするDNAを有するベクターで形質転換された形質転換体が挙げられ、例えば、ロイシン脱水素酵素として、バシラス・スファエリカス(Bacillus sphaericus)NBRC3341株由来の酵素を使用したWO2007/015511号記載のエシェリヒア コリ(Escherichia coli)HB101(pFTLB)が挙げられる。
 上記酵素や微生物の培養物を、ケト酸等に作用させる際は、例えば、以下のようにして行うことができる。ただし、以下の方法に限定されるものではない。
 水などの適当な溶媒中に、対応するケト酸、ギ酸アンモニウムや硫酸アンモニウムなどのギ酸およびアンモニアを含む無機塩類、NADなどの補酵素、および上記アミノ酸脱水素酵素およびギ酸脱水素酵素の生産能を有する上記微生物の培養液またはその培養液から取得した培養菌体を添加して、pH調整下、攪拌して反応する。
 この反応は10~70℃、好ましくは20~60℃の温度で行われ、反応液のpHは4~12、好ましくは6~10に維持する。ケト酸は0.1%~60%(w/w)、好ましくは1%~30%(w/w)の仕込み濃度で添加するとよい。また、ケト酸は一括添加してもよいし、分割添加してもよい。
 上記のようにして製造されたアミノ酸を含む反応物は、通常、水溶液の形態で得られるが、有機溶剤が共存していてもよく、更には、無機塩が共存していてもよい。また、本発明にかかる方法おいては、得られたアミノ酸を単離することなく、アミノ酸を含む溶液やスラリーの形態で保護反応を行えばよいが、直接保護反応に供せずとも、不溶物の濾過等の精製を目的とした操作を経てもかまわない。具体的には、経由可能な操作としては、蛋白質等不溶物の濾過、溶媒留去、活性炭処理、遠心沈降による菌体分離、イオン交換樹脂による無機塩類の除去などが挙げられる。尚、これらの操作は必ずしも酸性化処理の前に行う必要は無く、酸性化処理の後でも好適に実施でき、更に複数の処理を組み合わせることも可能である。
 次に酸性化処理について説明する。この処理によれば、N-保護アミノ酸の製造効率を高めることが可能である。
 酸性化処理で使用できる酸としては、特に制限は無いが、通常は、例えば、塩酸、硫酸、硝酸等の鉱酸や、メタンスルホン酸、エタンスルホン酸等の有機酸を使用する。これらの酸は、単独で使用しても混合して使用しても良い。
 酸の添加形態については特に問わず、酸のみを添加しても、酸を水及び/または有機溶剤で希釈して用いてもよい。酸を有機溶剤で希釈して用いる場合、該有機溶剤は、酸と反応しないものであれば、特に制限はない。具体的には、メタノール、エタノール、2-プロパノール、トルエン等が使用可能な有機溶剤として挙げられる。
 なお、これらの酸は、局部的に強酸性にならないように、攪拌等に注意して混合するのが好ましい。
 本発明では、これら酸の添加により、溶液pHを4以下、好ましくは3以下、さらに好ましくは2以下に調整する。これにより、理論当量~小過剰量の保護試剤の使用においても、N-保護アミノ酸を効率よく得ることが可能になる。
 溶液のpHを保持する時間は、好ましくは5分以上、更に好ましくは30分以上である。言うまでもなく、長時間の保持は製造効率を損なうことから、最適な保持時間を容易な実験によって設定すればよい。
 一連の操作温度は特に規定されないが、簡便な操作性を得るために、通常は0~50℃の範囲内に設定する。
 このような酸性化処理を経たアミノ酸は、理論当量~小過剰量の保護試剤を用いることで、速やか、かつ、ほぼ定量的にアミノ基の保護を行うことが出来る。
 アミノ基の保護に用いる保護試剤としては、特に制限はなく、公知のものが使用でき、例えばN-アルコキシカルボニル化剤、N-カルバモイル化剤、N-アシル化剤を用いることができる。より具体的には、ハロギ酸アルキル、二炭酸ジアルキル、アルキルイソシアネート、無水カルボン酸、アルキルカルボニルハライドが好適に使用され、中でも汎用性の観点からはクロロギ酸メチル、クロロギ酸エチル、クロロギ酸ベンジル、二炭酸ジメチル、二炭酸ジエチル、二炭酸ジ-tert-ブチル、tert-ブチルイソシアネート、イソプロピルイソシアネート、フェニルイソシアネート、塩化ベンゾイル、塩化アセチル、無水酢酸が特に好適に使用される。
 保護反応条件は公知の条件が適用できる。最適な条件は、アミノ酸と用いる保護試剤の組み合わせによって異なる為、一概には規定できないが、通常は、塩基性条件下に行い、反応pHについては8~14、好ましくは9~14であり、反応温度については、-5~90℃、好ましくは0~50℃である。
 また、保護試剤は、通常0.95当量以上1.20当量以下になるようにし、好ましくは0.98当量以上1.10当量以下、更に好ましくは0.99当量以上1.05当量以下である。
 以上のようにして、生体触媒を用いて製造されたアミノ酸から効率よくN-保護アミノ酸を製造することが可能である。
 なお、このような保護反応によって製造されたN-保護アミノ酸は、その後、晶析、分別蒸留、カラムクロマトグラフィー等の一般的な方法によって精製・単離することが出来る。
 以下に本発明の実施例を記載するが、本発明はこれら実施例に限定されるものではない
 (参考例1)ロイシン脱水素酵素活性を有する微生物の培養菌体を用いたL-tert-ロイシンの製造
 バクト・トリプトン1.6%(w/v)、バクト・イーストエキス1.0%(w/v)、NaCl0.5%(w/v)の組成からなる2xYT培地(pH7)50mlを500ml容坂口フラスコに分注し、120℃で20分間蒸気殺菌を行った。
 WO2007/015511号に記載の方法に従って得たロイシン脱水素酵素およびギ酸脱水素酵素活性を有する形質転換体エシェリヒア コリ(Escherichia coli)HB101(pFTLB)を植菌後、37℃で30時間、振とうして好気的に培養し、ロイシン脱水素酵素およびギ酸脱水素酵素活性を有する微生物の培養液を得た。培養液から遠心分離により菌体を集菌し、培養液上清にて菌体濃度が培養液の20倍になるように懸濁した。1L容のセパラブルフラスコに、3,3-ジメチル-2-オキソ-ブタン酸(DMOB)40gを入れ、30重量%水酸化ナトリウム水溶液にてpHを7.3に調整後、ギ酸アンモニウム19.4g、硫酸アンモニウム8.2g、硫酸亜鉛・7水和物40mg、NAD61mg、イオン交換水256gおよびギ酸脱水素酵素活性3200u分の上記菌体懸濁液を添加し、攪拌条件下、55重量%硫酸にてpHを7.3にコントロールしながら33℃にて、19時間反応を行った。生成したL-tert-ロイシンの光学純度、含量を高速液体クロマトグラフィー(HPLC)にて分析した結果、光学純度100%e.e.のL-tert-ロイシン38.8gを含有する菌体反応液が得られた。更に、得られた菌体反応液の一部から、遠心分離により菌体を除去し、L-tert-ロイシンを含む水溶液を得た。参考までに、蛋白含量は0.0~1.1mg/Lであった。
 HPLC分析は、カラムとして、SUMICHIRAL OA-5000(4.6mm×150mm、住化分析センター社製)を用い、移動層としては、2mM硫酸銅水溶液とメタノールを容量比で95:5に混合した溶液を用い、流速は1.0mL/minとし、カラム温度は40℃とし、検出は210nmにて分析を行った。
 (実施例1)
 参考例に従って得られたL-tert-ロイシン2.48g(18.4mmol)を含む菌体反応液を、濃塩酸でpH4.0に調整した。2時間攪拌した後、30重量%水酸化ナトリウム水溶液によりpH7.0とし、遠心沈降により菌体成分を分離した。
 次に、得られた上澄み液を、30重量%水酸化ナトリウム水溶液でpH10.6に調整した。その後、40℃以下を維持しつつ減圧濃縮し、溶液量を30.1gに調整した。
 この溶液に対して、氷冷攪拌下、クロロギ酸メチル1.78g(18.8mmol、1.02当量)をゆっくりと加えた。この時、クロロギ酸メチルを添加するに従いpHが低下したが、30重量%水酸化ナトリウム水溶液を並行して添加することにより、溶液のpHは9.5~10.5に維持した。クロロギ酸メチルの添加終了後、1時間撹拌した後、HPLC分析をした結果、変換率は98%であった。
 なお、変換率は、以下の計算式を用いて計算した。
変換率(%)=(生成したN-保護-アミノ酸のピーク面積値)/(アミノ酸のピーク面積値+生成したN-保護-アミノ酸のピーク面積値)×100
 HPLC分析は、カラムとして、CAPCELLPAKSCX(250mm X 4.6mm i.d.)を用い、移動相としては、リン酸緩衝液(pH=3.3)とアセトニトリルを容量比で95:5に混合した溶液を用い、流速は1.0mL/minとし、カラム温度は、35℃とし、検出器として、示差屈折率計を用いて、分析を行った。
 以下の実施例においても同様の計算を行った。
 (実施例2)
 参考例に従って得られたL-tert-ロイシン3.01g(23.0mmol)を含む水溶液を、濃塩酸でpH2.0に調整した後、2時間保持した。次に、30重量%水酸化ナトリウム水溶液でpH10.6に調整した後、40℃以下を維持しつつ減圧濃縮し、溶液量を29.7gに調整した。
 この溶液に対して、氷冷攪拌下、クロロギ酸メチル2.19g(23.1mmol、1.01当量)をゆっくりと加えた。この時、クロロギ酸メチルを添加するに従いpHが低下したが、30重量%水酸化ナトリウム水溶液を並行して添加することにより、溶液のpHは9.8~12.9に維持した。クロロギ酸メチルの添加終了後、2時間撹拌した後、HPLC分析をした結果、変換率は99%であった。
 (実施例3)
 参考例に従って得られたL-tert-ロイシン1.96g(14.9mmol)を含む菌体反応液を、濃塩酸でpH4.0に調整した。1時間攪拌した後、遠心沈降により菌体成分を分離した。
 次に、得られた上澄み液を、30重量%水酸化ナトリウム水溶液でpH10.6に調整した。その後、40℃以下を維持しつつ減圧濃縮し、溶液量を20.1gに調整した。
 この溶液に対して、氷冷攪拌下、クロロギ酸エチル1.63g(15.0mmol、1.01当量)をゆっくりと加えた。この時、クロロギ酸エチルを添加するに従いpHが低下したが、30重量%水酸化ナトリウム水溶液を並行して添加することにより、溶液のpHは8.9~12.8に維持した。クロロギ酸エチルの添加終了後、2時間撹拌した後、HPLC分析をした結果、変換率は96%であった。
 (実施例4)
 参考例に従って得られたL-tert-ロイシン2.05g(15.6mmol)を含む水溶液を、濃硫酸でpH2.0に調整した後、30分保持した。次に、30重量%水酸化ナトリウム水溶液でpH10.7に調整した後、40℃以下を維持しつつ減圧濃縮し、溶液量を19.8gに調整した。
 この溶液に対して、攪拌下、25℃以下を維持しつつ、クロロギ酸ベンジル2.70g(15.8mmol、1.00当量)をゆっくりと加えた。この時、クロロギ酸ベンジルを添加するに従いpHが低下したが、30重量%水酸化ナトリウム水溶液を並行して添加することにより、溶液のpHは9.9~12.5に維持した。クロロギ酸ベンジルの添加終了後、2時間撹拌した後、HPLC分析をした結果、変換率は97%であった。
 (実施例5)
 参考例に従って得られたL-tert-ロイシン2.03g(15.5mmol)を含む水溶液を、濃硫酸でpH2.0に調整した後、30分保持した。次に、30重量%水酸化ナトリウム水溶液でpH10.7に調整した後、40℃以下を維持しつつ減圧濃縮し、溶液量を19.6gに調整した。
 この溶液に対して、攪拌下、室温で、二炭酸ジ-tert-ブチル3.41g(15.6mmol、1.00当量)をゆっくりと加えた。この時、ジ-tert-ジカーボネートを添加するに従いpHが低下したが、30重量%水酸化ナトリウム水溶液を並行して添加することにより、溶液のpHは9.5~10.5に維持した。二炭酸ジ-tert-ブチルの添加終了後、2.5時間撹拌した後、HPLC分析をした結果、変換率は99%であった。
 (比較例1)
 参考例に従って得られたL-tert-ロイシン3.01g(23.0mmol)を含む水溶液を、30重量%水酸化ナトリウム水溶液でpH10.6に調整した後、40℃以下を維持しつつ減圧濃縮し、溶液量を30.3gに調整した。
 この溶液に対して、氷冷攪拌下、クロロギ酸メチル2.20g(23.3mmol、1.01当量)をゆっくりと加えた。この時、クロロギ酸メチルを添加するに従いpHが低下したが、30重量%水酸化ナトリウム水溶液を並行して添加することにより、溶液のpHは10.0~13.0に維持した。クロロギ酸メチルの添加終了後、2時間撹拌した後、HPLC分析をした結果、変換率は86%であった。
 (比較例2)
 参考例に従って得られたL-tert-ロイシン3.01g(23.0mmol)を含む水溶液を、30重量%水酸化ナトリウム水溶液でpH10.6に調整した後、40℃以下を維持しつつ減圧濃縮し、溶液量を30.3gに調整した。
 この溶液に対して、氷冷攪拌下、クロロギ酸メチル2.20g(23.3mmol、1.01当量)をゆっくりと加えた。この時、クロロギ酸メチルを添加するに従いpHが低下したが、30重量%水酸化ナトリウム水溶液を並行して添加することにより、溶液のpHは10.0~13.0に維持した。クロロギ酸メチルの添加終了後、2時間撹拌した後、HPLC分析をした結果、変換率は86%であった。
 この反応液のpHを、30重量%水酸化ナトリウム水溶液を並行添加してpH10.0~13.0に維持しつつ、クロロギ酸メチル0.59gを更に追加した(総使用量2.79g、計29.5mmol、1.28当量)。添加終了後、2時間攪拌し、HPLC分析した結果、変換率は90%であった。
 さらに同様に、クロロギ酸メチル1.28gを追加した(総使用量4.07g、計43.1mmol、1.87当量)。添加終了後、2時間攪拌した後、HPLC分析した結果、変換率は94%であった。
 この結果から、酸性化処理を行わない場合、過剰の保護試剤を存在させたとしても、保護反応が十分進行しないことがわかる。
 (比較例3)
 参考例に従って得られたL-tert-ロイシン2.05g(15.6mmol)を含む水溶液を、濃硫酸でpH5.1に調整した後、30分保持した。次に、30重量%水酸化ナトリウム水溶液でpH10.6に調整した後、40℃以下に維持しつつ減圧濃縮し、溶液量を19.5gに調整した。
 この溶液に対して、氷冷攪拌下、クロロギ酸メチル1.49g(15.8mmol、1.01当量)をゆっくりと加えた。この時、クロロギ酸メチルを添加するに従いpHが低下したが、30重量%水酸化ナトリウム水溶液を並行して添加することにより、溶液のpHは9.9~11.4に維持した。クロロギ酸メチルの添加終了後、2時間撹拌した後、
HPLC分析をした結果、変換率は89%であった。
 (比較例4)
 参考例に従って得られたL-tert-ロイシン1.52g(11.6mmol)を含む水溶液を、30重量%水酸化ナトリウム水溶液でpH10.6に調整した後、40℃以下に維持しつつ減圧濃縮し、溶液量を15.7gに調整した。
 この溶液に対して、攪拌下、室温で、二炭酸ジ-tert-ブチル2.63g(12.1mmol、1.04当量)をゆっくりと加えた。この時、二炭酸ジ-tert-ブチルを添加するに従いpHが低下したが、30重量%水酸化ナトリウム水溶液を並行して添加することにより、溶液のpHは9.6~10.5に維持した。二炭酸ジ-tert-ブチルの添加終了後、2.5時間撹拌した後、HPLC分析をした結果、変換率は92%であった。

Claims (8)

  1.  生体触媒を用いて製造されたアミノ酸を単離すること無く、アミノ酸を含む反応物がpH4以下になるように酸性化処理を行い、その後、塩基性条件下にアミノ基の保護反応を行うことを特徴とする、N-保護アミノ酸の製造法。
  2.  アミノ酸が、tert-ロイシンであることを特徴とする、請求項1記載のN-保護アミノ酸の製造法。
  3.  アミノ基の保護に用いる保護試剤が、N-アルコキシカルボニル化剤、N-カルバモイル化剤、またはN-アシル化剤であることを特徴とする、請求項1または2記載のN-保護アミノ酸の製造法。
  4.  アミノ基の保護に用いる保護試剤が、クロロギ酸メチル、クロロギ酸エチル、クロロギ酸ベンジル、二炭酸ジ-tert-ブチルのいずれかであることを特徴とする請求項3記載のN-保護アミノ酸の製造法。
  5.  生体触媒が、アミノ酸脱水素酵素、アミノ基転移酵素、エステラーゼ、アシラーゼ、アミダーゼ、ヒダントイナーゼ、ニトリラーゼ、または該酵素の生産能を有する微生物の培養物である請求項1~4のいずれかに記載のN-保護アミノ酸の製造法。
  6.  生体触媒が、アミノ酸脱水素酵素、または該酵素の生産能を有する微生物の培養物である請求項5記載のN-保護アミノ酸の製造法。
  7.  アミノ酸脱水素酵素が、ロイシン脱水素酵素、アラニン脱水素酵素、フェニルアラニン脱水素酵素、グルタミン酸脱水素酵素、バリン脱水素酵素、リシン脱水素酵素、またはアスパラギン酸脱水素酵素であることを特徴とする請求項6記載のN-保護アミノ酸の製造法。
  8.  アミノ酸脱水素酵素がバシラス・スファエリカス(Bacillus sphaericus)由来である事を特徴とする請求項7記載のN-保護アミノ酸の製造法。
PCT/JP2009/068611 2008-10-31 2009-10-29 N-保護アミノ酸の製造法 WO2010050564A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN200980143174.0A CN102203269B (zh) 2008-10-31 2009-10-29 N-保护氨基酸的制造方法
EP09823674.8A EP2345733A4 (en) 2008-10-31 2009-10-29 PROCESS FOR PREPARING N-PROTECTED AMINO ACID
JP2010535837A JPWO2010050564A1 (ja) 2008-10-31 2009-10-29 N−保護アミノ酸の製造法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-281662 2008-10-31
JP2008281662 2008-10-31

Publications (1)

Publication Number Publication Date
WO2010050564A1 true WO2010050564A1 (ja) 2010-05-06

Family

ID=42128923

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/068611 WO2010050564A1 (ja) 2008-10-31 2009-10-29 N-保護アミノ酸の製造法

Country Status (4)

Country Link
EP (1) EP2345733A4 (ja)
JP (1) JPWO2010050564A1 (ja)
CN (1) CN102203269B (ja)
WO (1) WO2010050564A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9080192B2 (en) 2010-02-10 2015-07-14 Codexis, Inc. Processes using amino acid dehydrogenases and ketoreductase-based cofactor regenerating system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2010101135A (ru) * 2010-01-15 2011-07-20 Закрытое акционерное общество "Научно-исследовательский институт "Аджиномото-Генетика" (ЗАО АГРИ) (RU) Бактерия семейства enterobacteriaceae - продуцент l-аспартата или метаболитов, производных l-аспартата, и способ получения l-аспартата или метаболитов, производных l-аспартата
CN105085321B (zh) * 2012-03-07 2017-11-24 浙江九洲药业股份有限公司 一种n‑甲氧羰基‑l‑叔亮氨酸的制备方法
CN114216972A (zh) * 2021-11-02 2022-03-22 广东药科大学 一种二棕榈酰羟脯氨酸的含量测定方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3147302A (en) * 1960-08-20 1964-09-01 Kyowa Hakko Kogyo Kk Separation of glutamic acid from a fermented liquor
US3205261A (en) * 1961-09-28 1965-09-07 Kyowa Hakko Kogyo Kk Method for separation of glutamic acid
JP2004175703A (ja) * 2002-11-26 2004-06-24 Mitsubishi Rayon Co Ltd N−アルコキシカルボニル−tert−ロイシンの製造方法
WO2007015511A1 (ja) 2005-08-02 2007-02-08 Kaneka Corporation D-アミノ酸オキシダーゼ、およびl-アミノ酸、2-オキソ酸、又は環状イミンの製造方法。
JP2007131589A (ja) * 2005-11-11 2007-05-31 Mitsubishi Rayon Co Ltd N−アルコキシカルボニルアミノ酸の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR890002412A (ko) * 1987-07-17 1989-04-10 오그덴 에이취.웹스터 높은 pH에서의 중성 아미노산 회수
US20050202542A1 (en) * 2004-03-12 2005-09-15 Ajinomoto Co., Inc. Production method of D-alloisoleucine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3147302A (en) * 1960-08-20 1964-09-01 Kyowa Hakko Kogyo Kk Separation of glutamic acid from a fermented liquor
US3205261A (en) * 1961-09-28 1965-09-07 Kyowa Hakko Kogyo Kk Method for separation of glutamic acid
JP2004175703A (ja) * 2002-11-26 2004-06-24 Mitsubishi Rayon Co Ltd N−アルコキシカルボニル−tert−ロイシンの製造方法
WO2007015511A1 (ja) 2005-08-02 2007-02-08 Kaneka Corporation D-アミノ酸オキシダーゼ、およびl-アミノ酸、2-オキソ酸、又は環状イミンの製造方法。
JP2007131589A (ja) * 2005-11-11 2007-05-31 Mitsubishi Rayon Co Ltd N−アルコキシカルボニルアミノ酸の製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Jikken Kagaku Koza", THE CHEMICAL SOCIETY OF JAPAN, pages: 221 - 226
KOICHI YAMADA: "Amino-san Hakko (Ue) Soron", 20 February 1972, KYORITSU SHUPPAN CO., LTD, pages: 342, XP008142095 *
See also references of EP2345733A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9080192B2 (en) 2010-02-10 2015-07-14 Codexis, Inc. Processes using amino acid dehydrogenases and ketoreductase-based cofactor regenerating system
US9394551B2 (en) 2010-02-10 2016-07-19 Codexis, Inc. Processes using amino acid dehydrogenases and ketoreductase-based cofactor regenerating system
US9714439B2 (en) 2010-02-10 2017-07-25 Codexis, Inc. Processes using amino acid dehydrogenases and ketoreductase-based cofactor regenerating system
US10196667B2 (en) 2010-02-10 2019-02-05 Codexis, Inc. Processes using amino acid dehydrogenases and ketoreductase-based cofactor regenerating system
US10604781B2 (en) 2010-02-10 2020-03-31 Codexis, Inc. Processes using amino acid dehydrogenases and ketoreductase-based cofactor regenerating system
US11193157B2 (en) 2010-02-10 2021-12-07 Codexis, Inc. Processes using amino acid dehydrogenases and ketoreductase-based cofactor regenerating system

Also Published As

Publication number Publication date
EP2345733A1 (en) 2011-07-20
CN102203269A (zh) 2011-09-28
CN102203269B (zh) 2015-03-18
JPWO2010050564A1 (ja) 2012-03-29
EP2345733A4 (en) 2013-09-04

Similar Documents

Publication Publication Date Title
US11193157B2 (en) Processes using amino acid dehydrogenases and ketoreductase-based cofactor regenerating system
Bommarius et al. Comparison of different chemoenzymatic process routes to enantiomerically pure amino acids
Nakajima et al. Enantioselective synthesis of various D-amino acids by a multi-enzyme system
WO2010050564A1 (ja) N-保護アミノ酸の製造法
Baek et al. New thermostable D-methionine amidase from Brevibacillus borstelensis BCS-1 and its application for D-phenylalanine production
US20050009151A1 (en) Methods for the stereospecific and enantiomeric enrichment of beta-amino acids
EP0330695A1 (en) Process for preparation of organic chemicals
Kamphuis et al. New developments in the synthesis of natural and unnatural amino acids
US7776570B2 (en) L-amino acid amide asymmetric hydrolase and DNA encoding the same
Sharma et al. Microbial transformations: production of D-amino acids using hydantoinase
JPS61274690A (ja) D−α−アミノ酸の製造方法
JP4596098B2 (ja) 光学活性α−アミノ酸の製造方法
KR100433134B1 (ko) 신규한 호열성 미생물 및 이를 이용한 방향족l-아미노산의 제조 방법
US20100105111A1 (en) Method for production of optically active amino acid
JP2674078B2 (ja) D−α−アミノ酸の製造法
Asano et al. Recent Developments in Aminopeptidases, Racemases, and Oxidases
JP2007254439A (ja) 光学活性アミノ酸の製造方法
Tanaka et al. Enzymatic Preparation of Optically Active Silicon-containing Ami no Acids
Skepu Characterization of amide bond hydrolysis in novel hydantoinase-producing bacteria

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980143174.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09823674

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010535837

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009823674

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 3943/DELNP/2011

Country of ref document: IN