WO2010050132A1 - 試験装置および回路モジュール - Google Patents

試験装置および回路モジュール Download PDF

Info

Publication number
WO2010050132A1
WO2010050132A1 PCT/JP2009/005393 JP2009005393W WO2010050132A1 WO 2010050132 A1 WO2010050132 A1 WO 2010050132A1 JP 2009005393 W JP2009005393 W JP 2009005393W WO 2010050132 A1 WO2010050132 A1 WO 2010050132A1
Authority
WO
WIPO (PCT)
Prior art keywords
test
circuit
board
substrate
back surface
Prior art date
Application number
PCT/JP2009/005393
Other languages
English (en)
French (fr)
Inventor
剛 安高
昭二 小島
Original Assignee
株式会社アドバンテスト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アドバンテスト filed Critical 株式会社アドバンテスト
Priority to KR1020117005308A priority Critical patent/KR101214036B1/ko
Priority to CN200980142610.2A priority patent/CN102197313B/zh
Priority to JP2010535637A priority patent/JP5683961B2/ja
Publication of WO2010050132A1 publication Critical patent/WO2010050132A1/ja
Priority to US13/082,386 priority patent/US8773141B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2855Environmental, reliability or burn-in testing
    • G01R31/2872Environmental, reliability or burn-in testing related to electrical or environmental aspects, e.g. temperature, humidity, vibration, nuclear radiation
    • G01R31/2874Environmental, reliability or burn-in testing related to electrical or environmental aspects, e.g. temperature, humidity, vibration, nuclear radiation related to temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer

Definitions

  • the present invention relates to a test apparatus and a circuit module.
  • FIG. 12 shows a conventional method for cooling a test substrate on which an electric circuit element such as a semiconductor device is mounted.
  • a multilayer test substrate 100 has a plurality of insulating plates 102 and 103 such as epoxy resin bonded together with a prepreg 104 such as a glass fiber base material. Electrical circuit elements including the semiconductor device 106 are mounted on both surfaces of the test substrate 100.
  • the test board 100 is connected to another test board via the connector 108.
  • a fluid case 110 is attached to the test substrate 100, and the semiconductor device 106 is filled in a sealed space 112 between the test substrate 100 and the fluid case 110. Cooled by a coolant such as fluorinated liquid.
  • FIG. 13 is an enlarged view of the vicinity of the connector 108 in FIG.
  • the semiconductor device 106 includes a first wiring 116 formed of a copper foil or the like on the surface layer of the insulating plate 102, a through-through hole 120, a second wiring 118 formed in the inner layer of the insulating plate 102, a through-through hole. It is connected to the terminal 114 of the connector 108 via the hole 121, the third wiring 117 formed on the surface layer of the insulating plate 102, and the connection terminal 122.
  • the wiring 119 is also formed in the inner layer of the insulating plate 103. When the wiring 118 and the wiring 119 are close to each other, crosstalk occurs between the wiring 118 and the wiring 119.
  • the wiring 118 and the wiring 119 are formed not inside the boundary surface between the insulating plate 102 and the insulating plate 103 and the prepreg 104 but inside the insulating plate 102 and the insulating plate 103. ing.
  • an object of one aspect of the present invention is to provide a test apparatus and a circuit module that can solve the above-described problems. This object is achieved by a combination of features described in the independent claims.
  • the dependent claims define further advantageous specific examples of the present invention.
  • the first test substrate and the second test substrate that are arranged to face each other, and provided on the surface of the first test substrate that faces the second test substrate, A first test circuit that tests the device under test; a second test circuit that is provided on a surface of the second test substrate facing the first test substrate and that tests the device under test;
  • FIG. 1 is an example of a configuration of a semiconductor device test apparatus 1 that is one embodiment of a test apparatus.
  • 2 is a perspective view of a part of a circuit module 30.
  • FIG. 4 is a side view of a part of the circuit module 30.
  • FIG. 2 is an example of a configuration of a circuit module 30.
  • 3 is a side view of the circuit module 30.
  • FIG. It is the figure which expanded the screwing part of the circuit module 30.
  • FIG. FIG. 5 is a side view showing a second embodiment of a circuit module 30. 5 is a side view showing a third embodiment of a circuit module 30.
  • FIG. 6 is a side view showing a fourth embodiment of a circuit module 30.
  • FIG. 6 is a side view showing a fifth embodiment of a circuit module 30.
  • FIG. FIG. 10 is a side view showing a sixth embodiment of a circuit module 30. It is a side view of the conventional circuit module 30. It is an enlarged view of the conventional circuit module
  • FIG. 1 is an example of a configuration of a semiconductor device test apparatus 1 which is one embodiment of a test apparatus.
  • the semiconductor device test apparatus 1 includes a handler 10, a test head 15, and a control unit 20.
  • the handler 10 has a socket substrate 12 on which a socket 14 for mounting a device under test is mounted.
  • the socket substrate 12 is connected to the test head 15 via the first cable 16.
  • the test head 15 is connected to the handler 10 via the performance board 21 and the first cable 16, and is connected to the control unit 20 via the back board 23 and the second cable 19.
  • a plurality of circuit modules 30 are accommodated in the test head 15.
  • Each circuit module 30 has two test boards, a first test board 32 and a second test board 34, on which elements such as semiconductor devices constituting an electric circuit are mounted. It is connected to the handler 10 via the cable 26, the performance board 21, and the first cable 16. In addition, the circuit module 30 is connected to the control unit 20 via the connector 24, the backboard 23, and the second cable 19. The control unit 20 controls the test circuit included in the test board via the second cable 19. In the example shown in FIG. 1, six circuit modules 30 are housed in the test head 15, but the number may be increased or decreased according to the number of sockets 14 in the handler 10.
  • FIG. 2 is a perspective view of the periphery of the connector 22 of the circuit module 30.
  • FIG. 3 is a side view of the region shown in FIG. 2 and 3, the first test board 32 and the second test board 34 are provided with a back surface wiring 60 on the back surface of the surface on which the first test circuit 36 and the second test circuit 37 are provided.
  • the first test substrate 32 has a first through hole 74 penetrating from the surface on which the test circuit is provided to the surface on which the back surface wiring 60 is provided.
  • the first through hole 74 electrically connects the first test circuit 36 and the back surface wiring 60.
  • the same back surface wiring 61 and the first through hole 75 are formed.
  • the first test circuit 36 and the second test circuit 37 input a signal to the device under test and measure a signal to which the device under test responds.
  • the first test circuit 36 and the second test circuit 37 may include a pattern generator, a formatter, a comparator, and a logic circuit.
  • the end portions of the first test substrate 32 and the second test substrate 34 are formed to extend to the outside of the region surrounded by the sealing portion 38.
  • the back surface wiring 60 and the back surface wiring 61 are extended from a region corresponding to the inside of the sealed portion 38 to a region corresponding to the outside of the sealed portion 38 on the back surfaces of the first test substrate 32 and the second test substrate 34.
  • a first test circuit 36 and a second test circuit 37 are provided in a region corresponding to the inside of the sealed portion 38, and a connector 22 is provided in a region corresponding to the outside of the sealed portion 38.
  • the sealing portion 38 is fixed to the first test board 32 and the second test board 34 by screws 52.
  • the first test board 32 is provided with a connection terminal 72 that is electrically connected to an external circuit on the outside of the sealing portion 38 on the surface on which the first test circuit 36 is provided.
  • the first test substrate 32 is formed with a second through hole 76 penetrating from the surface on which the connection terminal 72 is provided to the surface on which the back surface wiring 60 is provided.
  • the second through hole 76 electrically connects the connection terminal 72 and the back surface wiring 60.
  • the connection terminals 73 and the second through holes 77 are formed in the second test board 34.
  • the second through holes 77 are connected to the connection terminals 73 and the back surface wiring 61. And electrically connect.
  • the connector 22 is inserted between the first test board 32 and the second test board 34 at the ends of the first test board 32 and the second test board 34.
  • the terminals 56 and 57 of the connector 22 come into contact with the connection terminals 72 and 73 provided on the first test board 32 and the second test board 34, so that the first test circuit 36 and the second test circuit 36 are connected.
  • the test circuit 37 is electrically connected to a circuit outside the circuit module 30.
  • FIG. 4 is an example of the configuration of the circuit module 30.
  • FIG. 4A is a perspective view when the circuit module 30 is viewed from a direction perpendicular to the test board having the circuit module 30.
  • FIG. 4B is a cross-sectional view of the circuit module 30 as viewed from the direction of the handler 10 or the control unit 20.
  • FIG. 4C is a cross-sectional view of the circuit module 30 as viewed from the front side or the back side of the test head 15.
  • the first test board 32 and the second test board 34 are arranged to face each other.
  • a first test circuit 36 for testing the device under test is provided on the surface of the first test substrate 32 that faces the second test substrate 34.
  • a second test circuit 37 for testing the device under test is provided on the surface of the second test substrate 34 that faces the first test substrate 32.
  • the first test circuit 36 includes semiconductor devices arranged in a matrix on the first test substrate 32.
  • the second test circuit 37 includes semiconductor devices arranged in a matrix on the second test substrate 34.
  • the connector 22 and the sealing portion 38 are provided between the first test board 32 and the second test board 34.
  • the sealing part 38 is provided between the first test board 32 and the second test board 34, and an opening is provided at an end part on the first test board 32 side and an end part on the second test board 34 side. It has a cylindrical shape.
  • the circuit module 30 has a coolant channel space 40 filled with a coolant, which is formed by sandwiching the sealed portion 38 between the first test substrate 32 and the second test substrate 34. That is, by sealing the space between the first test board 32 and the second test board 34 by the sealing portion 38, the first test circuit 36 and the second test circuit 37 are made into a common coolant channel space 40. Seal.
  • a partition wall 39 that extends from the first test substrate 32 to the second test substrate 34 and forms a coolant channel filled in the coolant channel space 40 is provided inside the sealed portion 38. It has been.
  • the partition wall 39 extends from one surface of the sealing portion 38 in the horizontal direction (a direction parallel to the backboard 23) toward the other surface and before reaching the other surface. Furthermore, the odd-numbered partition walls 39 and the even-numbered partition walls 39 are alternately extended from one side in different horizontal directions from the side of the sealing portion 38 in the vertical direction (the direction perpendicular to the backboard 23).
  • the partition walls 39 may be arranged at every arrangement interval of the semiconductor devices arranged in a matrix. With such an arrangement, it becomes possible to arrange one or more semiconductor devices in the width direction of the flow path formed by alternately stretching, and the coolant indicated by the arrow in FIG. A flow path is formed.
  • the partition wall 39 may be fixed by a first test board 32 and a second test board 34 and a fixing part having a member such as a screw to be described later. Since the first test board 32 and the second test board 34 are fixed to the partition wall 39 by the fixing portion, the occurrence of deflection in the first test board 32 and the second test board 34 is prevented.
  • you may comprise the sealing part 38 and the partition 39 with electroconductive materials, such as a metal.
  • the common coolant channel space 40 is filled with a coolant, and the coolant flows from the coolant inlet 42 toward the coolant outlet 44 as shown in FIG.
  • the first test circuit Elements such as semiconductor devices included in 36 and the second test circuit 37 are cooled.
  • the coolant can be circulated by attaching a coolant circulation device to the coolant inlet 42 and the coolant outlet 44, for example.
  • the coolant circulation device is a device that allows the coolant to flow in from the coolant inlet 42 and allows the coolant to flow out of the coolant outlet 44, and the configuration thereof is not particularly limited.
  • FIG. 5 is an enlarged cross-sectional view of the circuit module 30 and shows a fixing method of the sealing portion 38.
  • the first test board 32 and the second test board 34 are arranged in such a direction that the first test circuit 36 and the second test circuit 37 are accommodated in the coolant channel space 40, and then the connector 22, the connector 24 and the sealing portion 38 are opposed to each other.
  • the sealing portion 38 is fixed to the first test board 32 and the second test board 34 by screws 52.
  • FIG. 6 is an enlarged view of a fixing portion that connects the first test substrate 32 and the sealing portion 38.
  • a packing 54 is provided between the sealing portion 38 and the first test board 32 so that no gap is formed between the coolant passage space 40 side and the connector 22 side of the sealing portion 38, and the first test board is provided. 32, the packing 54, and the sealing portion 38 are fastened together with screws 52.
  • a connection part between the second test substrate 34 and the sealing part 38 may have the same structure.
  • substrate 34 is good also as the same structure.
  • a conductive material may be used as the packing 54.
  • a metal foil such as a copper foil may be formed in a region in contact with the sealing portion 38 and the partition wall 39.
  • the back surface wiring 60 and the back surface wiring 61 do not come close to each other. As a result, crosstalk between the back surface wiring 60 and the back surface wiring 61 can be prevented. Furthermore, since it is not necessary to form wiring in the intermediate layer of the first test board 32 and the second test board 34, the first test circuit 36 and the back surface wiring 60, and the second test circuit 37 and the back surface wiring Even if it connects with 61 by a through-through hole, there exists an effect that a stub does not arise.
  • FIG. 7 shows a configuration example of the circuit module 30 according to the second embodiment.
  • the first test substrate 32 is provided with an insulating layer 80 covering the back surface wiring on the surface on which the back surface wiring is formed.
  • the back surface wiring 60 of the first test substrate 32 is exposed on the surface. As a result, electromagnetic waves generated by the current flowing in the backside wiring are radiated around the first test substrate 32 as noise.
  • a signal waveform on an electric circuit in another circuit module 30 accommodated in the test head 15 may be distorted, resulting in a data error.
  • an insulating layer 80 covering the back surface wiring is formed, the radiation of electromagnetic waves can be reduced. Radiation of electromagnetic waves may be further reduced by forming a ground electrode layer to which a ground potential is applied on the surface of the insulating layer 80.
  • the insulating layer 80 may cover the entire surfaces of the first test substrate 32 and the second test substrate 34, or may partially cover them.
  • the first test substrate 32 may have a region where the insulating layer 80 is not formed within a certain range from the connection point between the back surface wiring 60 and the first through hole 74. By providing a region where the insulating layer 80 is not formed in this way, the waveform of the signal on the back surface wiring 60 can be observed using a probe such as a measuring instrument.
  • connection terminal 72 for connecting the terminal 56 of the connector 22 and the first test board 32 may be provided in a region where the insulating layer 80 is not formed.
  • the first test circuit 36 is connected to an external electric circuit through the first through hole 74, the back surface wiring 60, the connection terminal 72, the terminal 56, and the connector 22.
  • the second test circuit 37 is also connected to an external electric circuit with the same configuration.
  • the first test circuit 36 and the second test circuit 37 may be connected to the handler 10 via the first cable 16 and the performance board 21.
  • the terminal 56 of the connector 24 may contact a surface of the first test board 32 or the second test board 34 on which the first test circuit 36 or the second test circuit 37 is mounted.
  • FIG. 8 shows a configuration example of the circuit module 30 according to the third embodiment.
  • the first test circuit 36 of this example is connected to an external electric circuit via the first through hole 74, the back surface wiring 60, the second through hole 76, the connection terminal 72, the terminal 56, and the connector 22. May be.
  • the second test circuit 37 may also be connected to an external electric circuit with the same configuration.
  • FIG. 9 shows a configuration example of the circuit module 30 according to the fourth embodiment.
  • a first test circuit 36 is placed on the first test board 32.
  • a surface wiring 82 that is electrically connected to the terminals of the first test circuit 36 is formed on the surface of the circuit mounting layer 84 on which the first test circuit 36 is mounted. Then, a microstrip line layer is formed.
  • a ground layer 86 is formed on the circuit mounting layer 84 so as to cover the surface wiring 82. That is, the surface wiring 82 forms a stripline layer, and the stripline layer is extended from the inside to the outside of the sealing portion 38.
  • the ground layer 86 includes a dielectric having a metal foil on the surface not in contact with the surface wiring 82, and the metal foil is grounded.
  • the front surface wiring 82 may be connected to a connection terminal 72 provided on the back surface of the first test substrate 32 through the second through hole 76.
  • the first test circuit 36 mounted on the circuit mounting layer 84 includes the surface wiring 82 covered with the ground layer 86, the second through hole 76, the connection terminal 72, the terminal 56, and The connector 22 is connected to an external electric circuit via the connector 22.
  • the connection terminal 72 and the terminal 56 of the connector 22 may be connected by soldering.
  • the ground layer 86 may cover the entire surface of the first test substrate 32 or a part thereof.
  • the ground layer 86 may not be provided in a certain region centered on the contact point between the surface wiring 82 and the second through hole 76.
  • IVH internal via hole
  • a step is generated between the circuit mounting layer 84 on which the first test circuit 36 is mounted and the ground layer 86.
  • a COB (Chip-on-Board) mask technique may be used.
  • COB mask technology it is possible to print a solder paste after generating a metal mask having unevenness according to the unevenness of the first test substrate 32 and the second test substrate 34.
  • the position in the height direction of the periphery of the connection terminal 72 on the back surface of the first test board 32 has a level difference with the position in the height direction of other areas on the back surface of the first test board 32. is doing. Since the first test substrate 32 has a step on the back surface, the back surface position of the first test substrate 32 and the position of the end portion of the connector 22 can be made substantially equal.
  • FIG. 10 shows a configuration example of the circuit module 30 according to the fifth embodiment.
  • the first test substrate 32 does not have the second through hole 76, and the connection terminal 72 is formed at the end of the surface wiring 82.
  • the terminal 56 of the connector 22 contacts the connection terminal 72, the first test circuit 36 is connected to an external electric circuit.
  • FIG. 11 shows a configuration example of the circuit module 30 according to the sixth embodiment.
  • the first test substrate 32 and the second test substrate 34 form the coolant channel space 40 filled with the coolant by sandwiching the sealing portion 38 therebetween. .
  • the sealing portion 38 in FIG. 11 has a cylindrical shape in which the cross-sectional shape of the through hole is substantially the same as the outer shape of the first test substrate 32 and the second test substrate 34.
  • the first test board 32 and the second test board 34 face each other in the direction in which the first test circuit 36 and the second test circuit 37 are accommodated in the coolant flow path space 40. Arranged.
  • the end portions of the first test substrate 32 and the second test substrate 34 are fixed to the inner wall of the through hole of the sealing portion 38 by packing 92 and screws 94. Also with the above configuration, the test circuits provided on the first test board 32 and the second test board 34 can be cooled by the coolant.
  • SYMBOLS 1 Semiconductor device test apparatus, 10 ... Handler, 12 ... Socket board

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Tests Of Electronic Circuits (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)

Abstract

 向かい合わせて配置された第1の試験基板および第2の試験基板と、第1の試験基板において第2の試験基板に対向する面に設けられ、被試験デバイスを試験する第1の試験回路と、第2の試験基板において第1の試験基板に対向する面に設けられ、被試験デバイスを試験する第2の試験回路と、第1の試験基板および第2の試験基板の間の空間を密閉することで、第1の試験回路および第2の試験回路を共通の空間に密閉し、且つ、共通の空間に冷却材が充填される密閉部を設ける。

Description

試験装置および回路モジュール
 本発明は、試験装置および回路モジュールに関する。
 電子回路を構成する半導体デバイスは、動作に伴って発熱する。近年の半導体デバイスの動作速度の高速化、あるいは、回路の集積化等に伴い、半導体デバイスの発熱量は増大している。その結果、多数の半導体デバイスを実装した試験基板においては、半導体デバイスを冷却することが不可欠になってきている。たとえば、半導体試験装置においては、半導体デバイス等の電気回路素子を搭載した多層試験基板に流体ケースをかぶせた上で、流体ケースの中に冷却材を流通させることによって、試験基板上の半導体デバイスを冷却している(特許文献1参照)。
 図12は、半導体デバイス等の電気回路素子が実装された試験基板を冷却する従来の方法を示す。同図に示すように、多層の試験基板100は、エポキシ樹脂等の複数の絶縁板102、103が、ガラス繊維基材等のプリプレグ104で貼り合せられている。試験基板100の両面には、半導体デバイス106を始めとする電気回路素子が実装されている。また、試験基板100は、コネクタ108を介して他の試験基板と接続される。半導体デバイス106の発熱による温度上昇を緩和するために、試験基板100には流体ケース110が装着されており、半導体デバイス106は、試験基板100と流体ケース110との間の密閉空間112に充填されたフッ素系液体などの冷却材により冷却される。
 図13は、図12のコネクタ108付近を拡大した図である。同図において、半導体デバイス106は、絶縁板102の表層に銅箔などで形成された第1の配線116、貫通スルーホール120、絶縁板102の内層に形成された第2の配線118、貫通スルーホール121、絶縁板102の表層に形成された第3の配線117、および、接続端子122を経由して、コネクタ108の端子114に接続される。同様に、絶縁板103の内層にも、配線119が形成される。配線118と配線119とが近接していると、配線118と配線119との間でクロストークが生じる。そこで、配線118と配線119が近接しないことを目的として、配線118および配線119は絶縁板102および絶縁板103とプリプレグ104との境界面ではなく、絶縁板102および絶縁板103の内部に形成されている。
特開2002-280507号公報
 ところが、配線118を絶縁板102の内部に形成すると、貫通スルーホール120と配線118との交点、および、貫通スルーホール120とプリプレグ104との接点の間にスタブが形成されることになる。スタブが形成されると、貫通スルーホール120の端部で生じる反射の影響により信号波形が歪むという問題が生じる。
 また、歪みにより生じる高周波成分が、試験基板100の外部にノイズとして放射されるという問題も生じる。特に、伝送する信号の周波数が2GHz以上になると、スタブによって生じる上記問題は顕著になる。表面ビアホール(SVH)、内部ビアホール(IVH)を使うことで、クロストークの発生を防ぐと共に、スタブの発生も解消することができる。しかし、SVH、IVHを用いると試験基板のコストが増大するという問題が生じる。
 そこで本発明の1つの側面においては、上記の課題を解決することのできる試験装置および回路モジュールを提供することを目的とする。この目的は請求の範囲における独立項に記載の特徴の組み合わせにより達成される。また従属項は本発明の更なる有利な具体例を規定する。
 本発明の第1の態様によると、向かい合わせて配置された第1の試験基板および第2の試験基板と、前記第1の試験基板において前記第2の試験基板に対向する面に設けられ、前記被試験デバイスを試験する第1の試験回路と、前記第2の試験基板において前記第1の試験基板に対向する面に設けられ、前記被試験デバイスを試験する第2の試験回路と、前記第1の試験基板および前記第2の試験基板の間の空間を密閉することで、前記第1の試験回路および前記第2の試験回路を共通の空間に密閉し、且つ、前記共通の空間に冷却材が充填される密閉部を備える試験装置を提供する。
 なお、上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではなく、これらの特徴群のサブコンビネーションもまた、発明となりうる。
試験装置の実施形態の一つである半導体デバイス試験装置1の構成の一例である。 回路モジュール30の一部の斜視図である。 回路モジュール30の一部の側面視図である。 回路モジュール30の構成の一例である。 回路モジュール30の側面視図である。 回路モジュール30のネジ留め部を拡大した図である。 回路モジュール30の第2の実施の形態を示す側面視図である。 回路モジュール30の第3の実施の形態を示す側面視図である。 回路モジュール30の第4の実施の形態を示す側面視図である。 回路モジュール30の第5の実施の形態を示す側面視図である。 回路モジュール30の第6の実施の形態を示す側面視図である。 従来の回路モジュール30の側面視図である。 従来の回路モジュール30の拡大図である。
 以下、発明の実施の形態を通じて本発明の(一)側面を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではなく、また実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
 図1は、試験装置の実施形態の一つである半導体デバイス試験装置1の構成の一例である。半導体デバイス試験装置1は、ハンドラ10、テストヘッド15、および、制御部20を備える。ハンドラ10は、被試験デバイスを搭載するソケット14を実装したソケット基板12を有している。ソケット基板12は、第1のケーブル16を介して、テストヘッド15に接続される。テストヘッド15は、パフォーマンスボード21および第1のケーブル16を介してハンドラ10と接続されると共に、バックボード23および第2のケーブル19を介して制御部20と接続される。テストヘッド15には、複数の回路モジュール30が収容されている。
 それぞれの回路モジュール30は、電気回路を構成する半導体デバイス等の素子が実装された第1の試験基板32および第2の試験基板34の2枚の試験基板を有しており、コネクタ22、接続ケーブル26、パフォーマンスボード21、および、第1のケーブル16を介して、ハンドラ10に接続される。また、回路モジュール30は、コネクタ24、バックボード23、および、第2のケーブル19を介して、制御部20に接続される。制御部20は、第2のケーブル19を介して、試験基板に含まれる試験回路を制御する。なお、図1に示す例では、テストヘッド15の中に6枚の回路モジュール30を収納しているが、ハンドラ10内のソケット14の数に応じて、枚数を増減してもよい。
 図2は、回路モジュール30のコネクタ22周辺部の斜視図である。図3は、図2に示す領域の側面視図である。図2および図3において、第1の試験基板32および第2の試験基板34には、第1の試験回路36および第2の試験回路37が設けられる面の裏面に、裏面配線60が設けられている。また、第1の試験基板32には、試験回路が設けられる面から裏面配線60が設けられる面まで貫通する、第1のスルーホール74が形成されている。第1のスルーホール74は、第1の試験回路36および裏面配線60を電気的に接続する。第2の試験基板34においても、同様の裏面配線61および第1のスルーホール75が形成されている。なお、第1の試験回路36および第2の試験回路37は、被試験デバイスに信号を入力すると共に、被試験デバイスが応答する信号を計測する。第1の試験回路36および第2の試験回路37は、パターン発生器、フォーマッタ、コンパレータ、論理回路を有してもよい。
 第1の試験基板32および第2の試験基板34の端部は、密閉部38により囲まれる領域の外側まで延伸して形成されている。裏面配線60および裏面配線61は、第1の試験基板32および第2の試験基板34の裏面において、密閉部38の内側に対応する領域から、密閉部38の外側に対応する領域まで延伸して設けられる。なお、密閉部38の内側に対応する領域には、第1の試験回路36および第2の試験回路37が設けられており、密閉部38の外側に対応する領域には、コネクタ22が設けられている。密閉部38は、ネジ52により、第1の試験基板32および第2の試験基板34に固定される。
 第1の試験基板32には、第1の試験回路36が設けられる面のうち、密閉部38の外側に、外部の回路と電気的に接続される接続端子72が設けられる。また、第1の試験基板32には、接続端子72が設けられる面から裏面配線60が設けられる面まで貫通する、第2のスルーホール76が形成されている。第2のスルーホール76は、接続端子72と裏面配線60とを電気的に接続する。第2の試験基板34にも、第1の試験基板32と同様に、接続端子73および第2のスルーホール77が形成されており、第2のスルーホール77は、接続端子73と裏面配線61とを電気的に接続する。
 第1の試験基板32および第2の試験基板34の端部においては、第1の試験基板32および第2の試験基板34の間にコネクタ22が挿入される。コネクタ22の端子56および端子57が、第1の試験基板32および第2の試験基板34に設けられた接続端子72および接続端子73に接触することにより、第1の試験回路36および第2の試験回路37が、回路モジュール30の外部の回路と電気的に接続される。
 図4は、回路モジュール30の構成の一例である。図4(a)は、回路モジュール30を有する試験基板に対して垂直方向から回路モジュール30を見た場合の透視図である。図4(b)は、回路モジュール30をハンドラ10または制御部20の向きから見た断面図である。図4(c)は、回路モジュール30をテストヘッド15の手前側または奥側から見た断面図である。
 図4に示すように、回路モジュール30においては、第1の試験基板32および第2の試験基板34が、向かい合わせて配置される。第1の試験基板32において第2の試験基板34に対向する面には、被試験デバイスを試験する第1の試験回路36が設けられる。また、第2の試験基板34において第1の試験基板32に対向する面には、被試験デバイスを試験する第2の試験回路37が設けられる。図4の例においては、第1の試験回路36は、第1の試験基板32にマトリクス状に配置された半導体デバイスを有する。第2の試験回路37も同様に、第2の試験基板34にマトリクス状に配置された半導体デバイスを有する。
 また、第1の試験基板32と第2の試験基板34との間には、コネクタ22、密閉部38が設けられる。密閉部38は、第1の試験基板32および第2の試験基板34の間に設けられ、第1の試験基板32側の端部および第2の試験基板34側の端部において開口が設けられた筒形状を有している。
 さらに、回路モジュール30は、密閉部38を第1の試験基板32と第2の試験基板34とによって挟むことにより形成する、冷却材を充填する冷却材流路空間40を有している。つまり、第1の試験基板32および第2の試験基板34の間を密閉部38により密閉することにより、第1の試験回路36および第2の試験回路37を共通の冷却材流路空間40に密閉する。
 密閉部38の内側には、第1の試験基板32から第2の試験基板34まで延伸して設けられ、冷却材流路空間40に充填される冷却材の流路を形成する隔壁39が設けられている。隔壁39は、密閉部38の水平方向(バックボード23と平行な方向)の一つの面から他方の面に向けて、他方の面に到達する手前まで延伸される。さらに、密閉部38の垂直方向(バックボード23と垂直な方向)の辺から奇数番目の隔壁39と偶数番目の隔壁39とは、互い違いに異なる水平方向の一つの面から延伸される。
 隔壁39は、マトリクス状に配置された半導体デバイスの配置間隔ごとに配置されてもよい。このような配置にすることにより、互い違いに延伸されて形成される流路の幅方向に1個以上の半導体デバイスを配置することが可能になり、図4(a)の矢印が示す冷却材の流路が形成される。
 また、隔壁39は、第1の試験基板32および第2の試験基板34と、後述するネジ等の部材を有する固定部によって固定されてもよい。第1の試験基板32および第2の試験基板34が固定部により隔壁39に固定されることにより、第1の試験基板32および第2の試験基板34におけるたわみの発生が防止される。なお、密閉部38および隔壁39とは、金属などの導電性材料により構成してよい。
 共通の冷却材流路空間40には冷却材が充填されており、図4(a)に示すように、冷却材流入口42から冷却材流出口44に向かって冷却材が流れる。密閉部38と隔壁39により形成される冷却材流路空間40に沿って、第1の試験回路36と第2の試験回路37との間を冷却材が流通することにより、第1の試験回路36および第2の試験回路37に含まれる半導体デバイス等の素子が冷却される。
 冷却材の流通は、たとえば、冷却材流入口42および冷却材流出口44に冷却材循環装置を取り付けることによって行うことができる。冷却材循環装置は、冷却材流入口42から冷却材を流入させ、冷却材流出口44から冷却材を流出させることができる装置であり、その構成は特に限定されるものではない。
 図5は、回路モジュール30の断面図を拡大した図であり、密閉部38の固定方法を示す。第1の試験基板32と第2の試験基板34は、第1の試験回路36と第2の試験回路37とが冷却材流路空間40に収まる向きに配置された上で、コネクタ22、コネクタ24、および、密閉部38を挟んで対向している。密閉部38は、ネジ52により、第1の試験基板32および第2の試験基板34に固定される。
 図6は、第1の試験基板32と密閉部38とを接続する固定部を拡大した図である。密閉部38の冷却材流路空間40側とコネクタ22側の間に隙間が生じないように、密閉部38と第1の試験基板32の間にはパッキン54が設けられ、第1の試験基板32、パッキン54、および、密閉部38をネジ52で共締めする構造になっている。第2の試験基板34と密閉部38との接続部も同様の構造としてよい。また、隔壁39と第1の試験基板32、および、隔壁39と第2の試験基板34との接続部も同様の構造としてよい。
 なお、パッキン54として導電性を有する材料を使用してもよい。さらに、第1の試験基板32と第2の試験基板34とにおいては、密閉部38および隔壁39と接触する領域に、銅箔等の金属箔を形成してもよい。このような構成にすることにより、導電性のパッキン54を介して、第1の試験基板32と第2の試験基板34とは、密閉部38および隔壁39と電気的に結合される。その結果、第1の試験回路36および第2の試験回路37で生じる電磁波が、回路モジュール30の外部に漏れにくくなる。
 以上説明したように、本実施の形態においては、第1の試験回路36と第2の試験回路37とを対向して配置したので、裏面配線60と裏面配線61とが近接しない。その結果、裏面配線60と裏面配線61との間のクロストークを防ぐことができる。さらに、第1の試験基板32および第2の試験基板34の中間層に配線を形成しなくともよいので、第1の試験回路36と裏面配線60、および、第2の試験回路37と裏面配線61とを貫通スルーホールで接続しても、スタブが生じないという効果を奏する。
 図7は、第2の実施形態に係る回路モジュール30の構成例を示す。第1の試験基板32は、裏面配線が形成される面に、裏面配線を覆う絶縁層80が設けられている。図2および図3に示した構成においては、第1の試験基板32の裏面配線60が表面に露出している。その結果、裏面配線に流れる電流によって生じる電磁波が、ノイズとして第1の試験基板32の周囲に放射される。
 ノイズが放射されると、テストヘッド15に収容されている他の回路モジュール30内の電気回路上の信号波形が歪み、データ誤りが生じる可能性がある。これに対して、図7に示すように、裏面配線を覆う絶縁層80を形成すれば、電磁波の放射を低減することができる。絶縁層80の表面に、接地電位が与えられる接地電極層を形成することにより、電磁波の放射をさらに低減してもよい。
 なお、絶縁層80は、第1の試験基板32および第2の試験基板34の全面を覆ってよく、一部を覆ってもよい。たとえば、第1の試験基板32は、裏面配線60と第1のスルーホール74との接続点から一定の範囲内に、絶縁層80を形成しない領域を有してもよい。このように絶縁層80を形成しない領域を設けることにより、測定器等のプローブを用いて、裏面配線60上の信号の波形を観測することができる。
 また、絶縁層80を形成しない領域に、コネクタ22の端子56と第1の試験基板32とを接続する接続端子72を設けてもよい。第1の試験回路36は、第1のスルーホール74、裏面配線60、接続端子72、端子56、および、コネクタ22を介することにより、外部の電気回路に接続される。
 第2の試験回路37も、同様の構成により、外部の電気回路に接続される。たとえば、第1の試験回路36および第2の試験回路37は、第1のケーブル16およびパフォーマンスボード21を経由して、ハンドラ10に接続されてもよい。さらに、コネクタ24の端子56は、第1の試験基板32または第2の試験基板34における、第1の試験回路36または第2の試験回路37が搭載されている面に接触してもよい。
 図8は、第3の実施形態に係る回路モジュール30の構成例を示す。本例の第1の試験回路36は、第1のスルーホール74、裏面配線60、第2のスルーホール76、接続端子72、端子56、および、コネクタ22を介して、外部の電気回路に接続されてもよい。第2の試験回路37も、同様の構成により、外部の電気回路に接続されてよい。
 図9は、第4の実施形態に係る回路モジュール30の構成例を示す。第1の試験基板32には第1の試験回路36が載置されている。第1の試験回路36が載置されている回路載置層84の表面には、第1の試験回路36の端子と電気的に接続される表面配線82が形成されており、表面配線82は、マイクロストリップライン層を形成する。
 これに対して、第1の試験回路36が形成されない領域においては、回路載置層84の上層に、表面配線82を覆うように接地層86が形成される。つまり、表面配線82は、ストリップライン層を形成し、ストリップライン層は密閉部38の内側から外側まで延伸される。なお、接地層86は、表面配線82に接しない面に金属箔を有する誘電体を含み、金属箔は接地される。
 さらに、表面配線82は、第2のスルーホール76を介して第1の試験基板32の裏面に設けられる接続端子72に接続されてもよい。このような構成により、回路載置層84上に実装される第1の試験回路36は、接地層86に覆われた表面配線82、第2のスルーホール76、接続端子72、端子56、および、コネクタ22を経由して、外部の電気回路と接続される。なお、接続端子72とコネクタ22の端子56とを半田付けにより接続してもよい。
 なお、接地層86は、第1の試験基板32の全面を覆ってよく、一部を覆ってもよい。たとえば、表面配線82と第2のスルーホール76との接点を中心とする一定の領域には、接地層86を設けないでもよい。表面配線82と第2のスルーホール76との接点を接地層86で覆う場合、スタブの発生を防ぐには高価な内部ビアホール(IVH)を使用する必要がある。そこで、接地層86を設けないで表面配線82を露出させることにより、内部ビアホール(IVH)を使用することなく、表面配線82が接続端子72と接続される。
 図9の構成をとる場合には、第1の試験回路36を載置する回路載置層84と接地層86との間に段差が生じる。このような段差が生じている状態で第1の試験回路36を実装するためには、COB(Chip on Board)マスク技術を利用してもよい。COBマスク技術を利用することにより、第1の試験基板32および第2の試験基板34の凹凸に合わせて凹凸のあるメタルマスクを生成した上で、ソルダーペーストを印刷することができる。
 なお、第1の試験基板32の裏面における、接続端子72周辺部の高さ方向の位置は、第1の試験基板32の裏面におけるその他の領域の高さ方向の位置との間で段差を有している。第1の試験基板32が裏面に段差を有することにより、第1の試験基板32の裏面位置とコネクタ22端部の位置とを略等しくすることができる。
 図10は、第5の実施形態に係る回路モジュール30の構成例を示す。本例においては、第1の試験基板32は第2のスルーホール76を有しておらず、表面配線82の端部に接続端子72が形成される。コネクタ22の端子56が、接続端子72に接触することにより、第1の試験回路36は、外部の電気回路と接続される。
 図11は、第6の実施形態に係る回路モジュール30の構成例を示す。第1の実施形態においては、第1の試験基板32と第2の試験基板34とが、密閉部38を挟むことにより、冷却材を充填する冷却材流路空間40を形成するものであった。
 これに対して、図11における密閉部38は、貫通孔の断面の形状が、第1の試験基板32および第2の試験基板34の外形と略同一となる筒形状を有している。第1の試験基板32と第2の試験基板34とは、第1の試験回路36と第2の試験回路37とが冷却材流路空間40に収まる向きに、それぞれの試験基板が対向して配される。さらに、第1の試験基板32および第2の試験基板34の端部は、密閉部38の貫通孔の内壁に、パッキン92とネジ94とによって固定される。以上の構成によっても、第1の試験基板32および第2の試験基板34に設けられた試験回路を、冷却材により冷却することができる。
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。
 請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。
1・・・半導体デバイス試験装置、10・・・ハンドラ、12・・・ソケット基板、14・・・ソケット、15・・・テストヘッド、16、19・・・ケーブル、20・・・制御部、21・・・パフォーマンスボード、22・・・コネクタ、23・・・バックボード、24・・・コネクタ、26・・・接続ケーブル、30・・・回路モジュール、32・・・第1の試験基板、34・・・第2の試験基板、36・・・第1の試験回路、37・・・第2の試験回路、38・・・密閉部、39・・・隔壁、40・・・冷却材流路空間、42・・・冷却材流入口、44・・・冷却材流出口、52・・・ネジ、54・・・パッキン、56・・・端子、57・・・端子、60・・・裏面配線、61・・・裏面配線、72・・・接続端子、73・・・接続端子、74・・・第1のスルーホール、75・・・第1のスルーホール、76・・・第2のスルーホール、77・・・第2のスルーホール、80・・・絶縁層、82・・・表面配線、84・・・回路載置層、86・・・接地層、92・・・パッキン、94・・・ネジ、100・・・試験基板、102、103・・絶縁板、104・・・プリプレグ、106・・・半導体デバイス、108・・・コネクタ、110・・・流体ケース、112・・・密閉空間、114・・・端子、116、117、118、119・・・配線、120、121・・・貫通スルーホール、122・・・接続端子

Claims (13)

  1.  被試験デバイスを試験する試験装置であって、
     向かい合わせて配置された第1の試験基板および第2の試験基板と、
     前記第1の試験基板において前記第2の試験基板に対向する面に設けられ、前記被試験デバイスを試験する第1の試験回路と、
     前記第2の試験基板において前記第1の試験基板に対向する面に設けられ、前記被試験デバイスを試験する第2の試験回路と、
     前記第1の試験基板および前記第2の試験基板の間の空間を密閉することで、前記第1の試験回路および前記第2の試験回路を共通の空間に密閉し、且つ、前記共通の空間に冷却材が充填される密閉部と
     を備える試験装置。
  2.  前記密閉部は、前記第1の試験基板および前記第2の試験基板の間に設けられ、前記第1の試験基板側の端部および前記第2の試験基板側の端部において開口が設けられた筒形状を有し、
     前記第1の試験基板および前記第2の試験基板は、前記密閉部を挟むように設けられる
     請求項1に記載の試験装置。
  3.  前記密閉部は、貫通孔の断面の形状が、前記第1の試験基板および前記第2の試験基板の外形と略同一となる筒形状を有し、
     前記第1の試験基板および前記第2の試験基板は、それぞれの基板の端部が、前記貫通孔の内壁に固定される
     請求項1に記載の試験装置。
  4.  前記第1の試験基板および前記第2の試験基板のそれぞれの試験基板には、
     前記第1の試験回路および前記第2の試験回路のうち、対応する試験回路が設けられる面の裏面に形成された裏面配線と、
     前記試験回路が設けられる面から前記裏面配線が設けられる面まで貫通して形成され、前記試験回路および前記裏面配線を電気的に接続する第1のスルーホールと
     が形成される請求項1または2に記載の試験装置。
  5.  前記第1の試験基板および前記第2の試験基板の端部は、前記密閉部により囲まれる領域の外側まで延伸して形成され、
     前記裏面配線は、前記裏面において、前記密閉部の内側に対応する領域から、前記密閉部の外側に対応する領域まで延伸して設けられ、
     前記試験基板には、
     前記試験回路が設けられる面のうち前記密閉部の外側に設けられ、外部の回路と電気的に接続される接続端子と、
     前記接続端子が設けられる面から前記裏面配線が設けられる面まで貫通して形成され、前記接続端子および前記裏面配線を電気的に接続する第2のスルーホールと
     が形成される請求項4に記載の試験装置。
  6.  前記第1の試験基板および前記第2の試験基板の端部において、前記第1の試験基板および前記第2の試験基板の間に挿入されることで、前記接続端子と電気的に接続されるコネクタを更に備える
     請求項5に記載の試験装置。
  7.  それぞれの前記試験基板には、前記裏面配線が形成される面に、前記裏面配線を覆う絶縁層が形成される
     請求項5または6に記載の試験装置。
  8.  前記絶縁層の表面には、接地電位が与えられる接地電極層が形成される
     請求項7に記載の試験装置。
  9.  前記第1の試験基板および前記第2の試験基板のそれぞれの試験基板は、
     前記第1の試験回路および前記第2の試験回路のうち、対応する試験回路が載置され、前記試験回路の端子と電気的に接続される表面配線が表面に形成される回路載置層と、
     前記試験回路が形成されない領域において、前記回路載置層の上層に、前記表面配線を覆うように形成され、表面に接地層が形成されるストリップライン層と
     を有する請求項1に記載の試験装置。
  10.  前記ストリップライン層は、前記密閉部の内側から外側まで延伸して形成される
     請求項9に記載の試験装置。
  11.  前記密閉部の内側において、前記第1の試験基板から前記第2の試験基板まで延伸して設けられ、前記冷却材の流路を形成する隔壁と、
     前記隔壁、および、前記第1の試験基板および前記第2の試験基板のそれぞれを固定する固定部と
     を更に備える請求項1から10のいずれかに記載の試験装置。
  12.  前記第1の試験回路および前記第2の試験回路のそれぞれの試験回路を制御する制御部を更に備える
     請求項1から11のいずれかに記載の試験装置。
  13.  入力信号に応じた出力信号を出力する回路モジュールであって、
     向かい合わせて配置された第1の回路基板および第2の回路基板と、
     前記第1の回路基板において前記第2の回路基板に対向する面に設けられ、前記入力信号に応じた前記出力信号を出力する第1の動作回路と、
     前記第2の回路基板において前記第1の回路基板に対向する面に設けられ、前記入力信号に応じた前記出力信号を出力する第2の動作回路と、
     前記第1の回路基板および前記第2の回路基板の間の空間を密閉することで、前記第1の動作回路および前記第2の動作回路を共通の空間に密閉し、且つ、前記共通の空間に冷却材が充填される密閉部と
     を備える回路モジュール。
PCT/JP2009/005393 2008-10-28 2009-10-15 試験装置および回路モジュール WO2010050132A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020117005308A KR101214036B1 (ko) 2008-10-28 2009-10-15 시험 장치 및 회로 모듈
CN200980142610.2A CN102197313B (zh) 2008-10-28 2009-10-15 测试装置及电路模块
JP2010535637A JP5683961B2 (ja) 2008-10-28 2009-10-15 試験装置および回路モジュール
US13/082,386 US8773141B2 (en) 2008-10-28 2011-04-07 Test apparatus and circuit module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008276899 2008-10-28
JP2008-276899 2008-10-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/082,386 Continuation-In-Part US8773141B2 (en) 2008-10-28 2011-04-07 Test apparatus and circuit module

Publications (1)

Publication Number Publication Date
WO2010050132A1 true WO2010050132A1 (ja) 2010-05-06

Family

ID=42128505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/005393 WO2010050132A1 (ja) 2008-10-28 2009-10-15 試験装置および回路モジュール

Country Status (6)

Country Link
US (1) US8773141B2 (ja)
JP (1) JP5683961B2 (ja)
KR (1) KR101214036B1 (ja)
CN (1) CN102197313B (ja)
TW (1) TWI397704B (ja)
WO (1) WO2010050132A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013002946A (ja) * 2011-06-16 2013-01-07 Advantest Corp 基板組立体、電子部品試験装置、及びウォータジャケット
TWI846309B (zh) * 2023-02-03 2024-06-21 旺矽科技股份有限公司 用於半導體測試之電路板及其製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8779789B2 (en) * 2012-04-09 2014-07-15 Advanced Inquiry Systems, Inc. Translators coupleable to opposing surfaces of microelectronic substrates for testing, and associated systems and methods
JP7206140B2 (ja) * 2019-03-22 2023-01-17 株式会社ヨコオ 検査装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03139899A (ja) * 1989-10-25 1991-06-14 Fujitsu Ltd 冷却構造
JP2002043488A (ja) * 2000-07-27 2002-02-08 Advantest Corp 浸漬液冷型のボード冷却構造及びこれを用いる半導体試験装置
JP2002280507A (ja) * 2001-03-19 2002-09-27 Advantest Corp 発熱素子冷却装置および発熱素子実装装置
JP2003079593A (ja) * 2001-09-05 2003-03-18 Ge Medical Systems Global Technology Co Llc ボディコイル及びmr装置
JP2005265859A (ja) * 2003-09-30 2005-09-29 Hitachi Ltd 核医学診断装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0745761A (ja) * 1993-07-30 1995-02-14 Takeo Yoshino 液冷式ハイブリッドic
US6184053B1 (en) * 1993-11-16 2001-02-06 Formfactor, Inc. Method of making microelectronic spring contact elements
JPH07244116A (ja) * 1994-03-07 1995-09-19 Hitachi Chem Co Ltd 半導体特性測定用治具とその製造法並びにその使用方法
JP3178288B2 (ja) * 1995-02-03 2001-06-18 松下電器産業株式会社 冷却モジュールおよびその製造方法
WO2002001597A1 (fr) * 2000-06-27 2002-01-03 Ebara Corporation Appareil d'inspection a faisceau de particules chargees et procede de fabrication d'un dispositif utilisant cet appareil d'inspection
US6891385B2 (en) * 2001-12-27 2005-05-10 Formfactor, Inc. Probe card cooling assembly with direct cooling of active electronic components
TWI234218B (en) * 2002-03-29 2005-06-11 Toshiba Corp Semiconductor test device, contact substrate for testing semiconductor device, testing method of semiconductor device, semiconductor device and the manufacturing method thereof
KR100905133B1 (ko) * 2002-10-31 2009-06-29 주식회사 아도반테스토 피측정 디바이스 탑재보드 및 디바이스 인터페이스부
US20040193989A1 (en) * 2003-03-28 2004-09-30 Sun Microsystems, Inc. Test system including a test circuit board including through-hole vias and blind vias
AU2003246165A1 (en) * 2003-06-30 2005-01-21 Advantest Corporation Cover for cooling heat generating element, heat generating element mounter and test head
JP3863872B2 (ja) * 2003-09-30 2006-12-27 株式会社日立製作所 陽電子放出型断層撮影装置
JP4873517B2 (ja) * 2004-10-28 2012-02-08 オンセミコンダクター・トレーディング・リミテッド 半導体装置及びその製造方法
TWI345839B (en) * 2005-07-06 2011-07-21 Advanced Semiconductor Eng Method of testing integrated circuit (ic) package
US7863916B2 (en) * 2005-11-17 2011-01-04 Advantest Corporation Device mounted apparatus, test head, and electronic device test system
JP2007322372A (ja) * 2006-06-05 2007-12-13 Yokogawa Electric Corp Icテスタ
KR100874910B1 (ko) * 2006-10-30 2008-12-19 삼성전자주식회사 수직형 열방출 통로를 갖는 적층형 반도체 패키지 및 그제조방법
US7973387B2 (en) * 2007-06-08 2011-07-05 Continental Automotive Systems Us, Inc. Insulated gate bipolar transistor
US7911792B2 (en) * 2008-03-11 2011-03-22 Ford Global Technologies Llc Direct dipping cooled power module and packaging

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03139899A (ja) * 1989-10-25 1991-06-14 Fujitsu Ltd 冷却構造
JP2002043488A (ja) * 2000-07-27 2002-02-08 Advantest Corp 浸漬液冷型のボード冷却構造及びこれを用いる半導体試験装置
JP2002280507A (ja) * 2001-03-19 2002-09-27 Advantest Corp 発熱素子冷却装置および発熱素子実装装置
JP2003079593A (ja) * 2001-09-05 2003-03-18 Ge Medical Systems Global Technology Co Llc ボディコイル及びmr装置
JP2005265859A (ja) * 2003-09-30 2005-09-29 Hitachi Ltd 核医学診断装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013002946A (ja) * 2011-06-16 2013-01-07 Advantest Corp 基板組立体、電子部品試験装置、及びウォータジャケット
US9081054B2 (en) 2011-06-16 2015-07-14 Advantest Corporation Board assembly, electronic device test apparatus and water jacket
TWI509719B (zh) * 2011-06-16 2015-11-21 Advantest Corp Substrate set three-dimensional, electronic components testing equipment and water jacket
TWI846309B (zh) * 2023-02-03 2024-06-21 旺矽科技股份有限公司 用於半導體測試之電路板及其製造方法

Also Published As

Publication number Publication date
KR101214036B1 (ko) 2012-12-20
CN102197313B (zh) 2016-05-18
JPWO2010050132A1 (ja) 2012-03-29
TW201027095A (en) 2010-07-16
TWI397704B (zh) 2013-06-01
CN102197313A (zh) 2011-09-21
US8773141B2 (en) 2014-07-08
KR20110048549A (ko) 2011-05-11
JP5683961B2 (ja) 2015-03-11
US20120119752A1 (en) 2012-05-17

Similar Documents

Publication Publication Date Title
US8729918B2 (en) Test apparatus, circuit module and manufacturing method
JPH07202463A (ja) 電子回路モジュール
JP5683961B2 (ja) 試験装置および回路モジュール
KR102229847B1 (ko) 리셉터클 커넥터
US20140111239A1 (en) Localized printed circuit board layer extender apparatus for relieving layer congestion near high pin-count devices
JPH1041421A (ja) パッケージング・アセンブリ
TWI383161B (zh) Electrical connection construction, terminal fittings, sockets, and electronic component test devices
US20240235072A9 (en) Flexible printed circuit connection structure
CN111653551B (zh) 一种具有高抗电磁脉冲干扰能力的bga芯片封装结构
JP2018132515A (ja) プローブカード
US11470722B2 (en) Current introduction terminal, and pressure holding apparatus and X-ray image sensing apparatus therewith
JP2019219368A (ja) プローブカード
US20070114056A9 (en) Electrical isolation of PCBs gasketing using controlled depth drilling
US7354305B2 (en) Area array device test adapter
US7868608B2 (en) Detecting open ground connections in surface mount connectors
US8476919B2 (en) Prober unit
CN221531747U (zh) 一种电路板
TWI780813B (zh) 具有屏蔽效果的電性檢測載板裝置
JP2002043488A (ja) 浸漬液冷型のボード冷却構造及びこれを用いる半導体試験装置
JP4147436B2 (ja) ヒートシンクを挟んだ基板の接続方法と装置
JP2005201691A (ja) 半導体評価用テストボード
JP2014236077A (ja) 接続端子部材の実装構造
JP2011108387A (ja) 端子、同軸ケーブルモジュール、及びインタフェース装置
CN103548425A (zh) 具有散热片的电子元件和使用该元件的板
KR20090013383A (ko) 연장 모듈 및 모듈 연장판

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980142610.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09823247

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010535637

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20117005308

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09823247

Country of ref document: EP

Kind code of ref document: A1