WO2010050112A1 - 光源装置及びプロジェクタ - Google Patents

光源装置及びプロジェクタ Download PDF

Info

Publication number
WO2010050112A1
WO2010050112A1 PCT/JP2009/004690 JP2009004690W WO2010050112A1 WO 2010050112 A1 WO2010050112 A1 WO 2010050112A1 JP 2009004690 W JP2009004690 W JP 2009004690W WO 2010050112 A1 WO2010050112 A1 WO 2010050112A1
Authority
WO
WIPO (PCT)
Prior art keywords
source device
light source
light
fixing
sealing
Prior art date
Application number
PCT/JP2009/004690
Other languages
English (en)
French (fr)
Inventor
高戸雄二
竹澤武士
Original Assignee
セイコーエプソン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セイコーエプソン株式会社 filed Critical セイコーエプソン株式会社
Priority to US13/125,446 priority Critical patent/US20110242505A1/en
Publication of WO2010050112A1 publication Critical patent/WO2010050112A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/0025Combination of two or more reflectors for a single light source
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2026Gas discharge type light sources, e.g. arcs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/025Associated optical elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/208Homogenising, shaping of the illumination light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/84Lamps with discharge constricted by high pressure
    • H01J61/86Lamps with discharge constricted by high pressure with discharge additionally constricted by close spacing of electrodes, e.g. for optical projection

Definitions

  • the present invention relates to a light source device and a projector.
  • a light source device used for a projector is known (for example, see Patent Document 1).
  • a secondary mirror having a portion.
  • the secondary mirror is disposed on one side of one of the pair of sealing portions, and further includes a fixing portion for fixing the secondary mirror to the sealing portion.
  • the fixing part is fixed to the sealing part by an adhesive
  • the arc tube is fixed to the reflector by the adhesive.
  • one end of the reflector is deleted to reduce the thickness, while a secondary mirror is disposed so as to cover one side of the bulb portion and the light is emitted from the light emitting portion. Since light is used effectively, it is possible to reduce the thickness without reducing the luminance. Further, by providing such a light source device, it is possible to manufacture a high-brightness and thin projector.
  • the conventional light source device has a problem that the secondary mirror is easily dropped from the sealing portion and the impact resistance is low.
  • the present invention has been made to solve such a problem, and it is possible to reduce the thickness without reducing the luminance, and to provide a light source device having high impact resistance. With the goal. It is another object of the present invention to provide a projector that has such a light source device and has high brightness, a thin shape, and high impact resistance.
  • the light source device of the present invention When the light source device of the present invention is cut along a predetermined plane including a tube bulb portion including a light emitting portion and a pair of sealing portions, and a predetermined plane including a rotation center axis, at least an end portion on one side is deleted.
  • a reflector having a shape and reflecting light emitted from the light emitting part toward the illuminated region side, and arranged to cover the one side of the tube part, and emitting light from the light emitting part to the light emitting part
  • a secondary mirror having a reflective part that reflects toward the light source, wherein the secondary mirror further includes a fixing part for fixing the secondary mirror to the sealing part with an adhesive, and the fixing The part is configured to cover the outer periphery of at least one of the pair of sealing parts beyond a half circumference.
  • the light source device of the present invention one end of the reflector is deleted to reduce the thickness, while a secondary mirror is disposed so as to cover one side of the bulb portion, and from the light emitting portion. Since the emitted light can be effectively used, it is possible to reduce the thickness without reducing the luminance.
  • the fixing portion is configured to cover the outer periphery of the sealing portion beyond a half circumference
  • the sub-mirror is arranged with a large bonding area so as to cover the sealing portion. It is possible to fix it strongly. As a result, it is difficult for the secondary mirror to drop off from the sealing portion, and the impact resistance can be increased. That is, the light source device of the present invention can be reduced in thickness without lowering the luminance, and further becomes a light source device with high impact resistance.
  • the fixing portion is fixed to the sealing portion with cement.
  • the light source device of the present invention it becomes possible to strongly fix the secondary mirror to the arc tube with a large adhesive area so as to cover the sealing portion.
  • the secondary mirror can be fixed to the sealing portion with a fixing force. For this reason, since it becomes possible to fix a secondary mirror to a sealing part, without using a strong alkaline adhesive agent with high adhesive strength, on the other hand, it becomes possible to lengthen the lifetime of a light source device. .
  • one of the fixing portions is fixed to the reflector with cement.
  • the secondary mirror and the arc tube can be integrally fixed to the reflector, so that a light source device with higher impact resistance can be obtained.
  • the fixing part is configured such that the length of the fixing part along the longitudinal direction of the sealing part gradually decreases from the one side toward the other side. It is preferable.
  • Such a configuration makes it possible to fix the secondary mirror to the arc tube without hindering the light emitted from the light emitting portion to the reflector as much as possible.
  • the fixing portion covers the entire outer periphery of the sealing portion.
  • the secondary mirror can be strongly fixed to the arc tube with a large adhesion area so as to completely cover the sealing portion, so that the impact resistance can be further increased.
  • the inner surface of the reflecting portion has an aspherical shape, and that the light reflected by the reflecting portion is reflected toward the light emitting portion.
  • the projector of the present invention projects an illumination device including the light source device of the present invention, an electro-optic modulation device that modulates illumination light from the illumination device according to an information image, and modulated light from the electro-optic modulation device. And a projection lens.
  • the projector according to the present invention can be thinned without lowering the luminance. Further, since the light source device according to the present invention having high impact resistance is provided, the projector is high in luminance and thin, and further, It becomes a projector with high impact resistance.
  • FIG. 2 is a diagram for explaining a projector 1000 according to the first embodiment. It is a figure shown in order to demonstrate the illuminating device 100 which concerns on Embodiment 1. FIG. It is a figure shown in order to demonstrate the principal part of the light source device 10a which concerns on the modification 1. FIG. It is a figure shown in order to demonstrate the light source device 10b which concerns on the modification 2. As shown in FIG. It is a figure shown in order to demonstrate the light source device 10c which concerns on the modification 3. It is a figure shown in order to demonstrate the light source device 10d which concerns on the modification 4.
  • FIG. 1 is a diagram illustrating a light source device 10 according to the first embodiment.
  • 1A is a perspective view of the light source device 10
  • FIG. 1B is a longitudinal sectional view of the light source device 10.
  • FIG. 2 is a view for explaining the secondary mirror 40 in the light source device 10 according to the first embodiment.
  • 2A is a perspective view of the secondary mirror 40
  • FIG. 2B is a longitudinal sectional view of the secondary mirror 40
  • FIG. 2C shows the secondary mirror 40 fixed to the arc tube 20.
  • FIG. 1 is a diagram illustrating a light source device 10 according to the first embodiment.
  • 1A is a perspective view of the light source device 10
  • FIG. 1B is a longitudinal sectional view of the light source device 10.
  • FIG. 2 shows the secondary mirror 40 fixed to the arc tube 20.
  • the light source device 10 includes a light emitting tube 20 having a tube portion 22 and a pair of sealing portions 24 and 26 that contain a light emitting portion 28, and a predetermined center including a rotation center axis 30 ax. And a reflector 30 that reflects the light L1 emitted from the light emitting part 28 toward the illuminated area side, and one of the tube part 22 And a secondary mirror 40 having a reflecting portion 42 that is disposed so as to cover the side and reflects the light L2 emitted from the light emitting portion 28 toward the light emitting portion 28.
  • the secondary mirror 40 further includes a fixing portion 44 for fixing the secondary mirror 40 to the sealing portion 24 as shown in FIGS.
  • the fixing portion 44 is fixed to the sealing portion 24 with cement c.
  • the fixing portion 44 is fixed to the reflector 30 with cement c.
  • the fixing portion 44 is configured to cover the entire outer periphery of the sealing portion 24. Further, as shown in FIG. 2C, the fixing portion 44 has a length B along the longitudinal direction A of the sealing portion 24 in the fixing portion 44 that gradually decreases from one side to the other side. It is configured.
  • An angle formed between a straight line 45c connecting the base end portion 45a and the tip end portion 45b of the fixing portion 44 and an axis along the longitudinal direction A of the arc tube 28 is, for example, 45 °.
  • the inner surface of the reflecting portion 42 has an aspheric shape, and is configured such that the light L2 reflected by the reflecting portion 42 is reflected toward the light emitting portion 28.
  • the reflector 30 has, for example, a spheroidal reflecting surface.
  • the material of the secondary mirror 40 is, for example, quartz glass.
  • the manufacturing method of the light source device the arc tube 20, the reflector 30 and the secondary mirror 40 are prepared in advance, and after fixing the secondary mirror 40 to the luminous tube 20, first, the secondary mirror 40 is fixed.
  • the arc tube 20 is fixed to the reflector 40 at the portion 44.
  • the manufacturing method of the secondary mirror 40 is demonstrated in detail here.
  • FIG. 3 is a view for explaining a method of manufacturing the secondary mirror 40 in the light source device 10 according to the first embodiment.
  • FIG. 3A to FIG. 3G are process diagrams. In the actual process, a margin for cutting is generated, but the illustration is omitted in FIG.
  • tubular member preparation step First, a tubular member 50 having an inner diameter corresponding to the inner diameter of the fixing portion 44 (see FIG. 3G) is prepared (see FIG. 3A).
  • material of the tubular member 50 hard glass or quartz glass can be suitably used. Among these, it is more preferable to use quartz glass. This is because quartz glass has a low coefficient of thermal expansion and no internal strain, so that it is not necessary to perform an annealing process.
  • the tubular portion on the side where the fixing portion 44 is formed is denoted by 50a, and the opposite tubular portion is denoted by 50b.
  • the notch X2 is cut obliquely (45 °) from the other side toward the tubular portion 50a side end X1a of the notch X1 (see FIG. 3D).
  • the cut X2 is a single cut continuous from the front side to the back side (the same applies to the cuts X3 and X4 described later).
  • the reflective layer 60 is formed in the inner surface of the expansion part 52 (refer FIG.3 (g)).
  • a reflective layer made of a dielectric multilayer film of tantalum oxide (Ta 2 O 5 ) and silicon oxide (SiO 2 ) can be suitably used.
  • the reflection layer forming step is completed, the secondary mirror 40 is completed.
  • the manufactured secondary mirror 40 is fixed to the arc tube 20 at the fixing portion 44, and the arc tube 20 is fixed to the reflector 30 at the fixing portion 44, whereby the light source device 10 is completed.
  • FIG. 4 is a diagram illustrating an optical system of the projector 1000 according to the first embodiment.
  • FIG. 5 is a view for explaining the lighting device 100.
  • 4A is a longitudinal sectional view of the lighting device 100
  • FIG. 4B is a horizontal sectional view of the lighting device 100.
  • the projector 1000 separates the illumination device 100 and the illumination light flux from the illumination device 100 into three color lights of red light, green light, and blue light and guides them to the illumination area.
  • the three color liquid crystal devices 400R, 400G, and 400B as electro-optic modulation devices that modulate the light-separated color separation light guide optical system 200 and the three color lights separated by the color separation light guide optical system 200 according to image information.
  • a cross dichroic prism 500 that combines the color lights modulated by the three liquid crystal devices 400R, 400G, and 400B, and a projection optical system 600 that projects the light combined by the cross dichroic prism 500 onto a projection surface such as a screen SCR. It is a projector provided with.
  • the illuminating device 100 includes a light source device 10 that emits an illuminating light beam toward the illuminated region, a concave lens 90 that emits focused light from the light source device 10 as substantially parallel light, and a concave lens 90.
  • the first lens array 120 having a plurality of first small lenses 122 for dividing the illumination light beam emitted from the first partial light beam into a plurality of partial light beams, and a plurality of first lens elements corresponding to the plurality of first small lenses of the first lens array 120.
  • a second lens array 130 having two small lenses 132, a polarization conversion element 140 that converts each partial light beam from the second lens array 130 into substantially one type of linearly polarized light having a uniform polarization direction, and emits the polarized light, and polarization conversion And a superimposing lens 150 for superimposing the partial light beams emitted from the element 140 in the illuminated area.
  • the light source device 10 includes an ellipsoidal reflector 30 as a reflector, an arc tube 20 having a light emission center near the first focal point of the ellipsoidal reflector 30, and reflecting means. As a secondary mirror 40.
  • the light source device 10 emits a light beam having the illumination optical axis 100ax as a central axis.
  • the arc tube 20 includes a bulb portion 22 containing a pair of electrodes arranged along the illumination optical axis 100ax, and a pair of sealing portions 24 and 26 extending on both sides of the bulb portion 22. And a pair of metal foils sealed in the pair of sealing portions 24 and 26, respectively, and a pair of lead wires electrically connected to the pair of metal foils. And the outer surface of the tube part 22 and the outer surface of a pair of sealing parts 24 and 26 are connected smoothly. When a voltage is applied to the lead wire, a potential difference is generated between the pair of electrodes, discharge occurs, and an arc image is generated. This arc image is a light emitting part.
  • the tube portion 22 and the sealing portions 24 and 26 are made of, for example, quartz glass, and mercury or a rare gas is contained in the tube portion 22. And a small amount of halogen is enclosed.
  • the electrode is, for example, a tungsten electrode
  • the metal foil is, for example, a molybdenum foil.
  • the lead wire is made of, for example, molybdenum or tungsten.
  • various arc tubes that emit light with high luminance can be employed, for example, a high pressure mercury lamp, an ultra high pressure mercury lamp, a metal halide lamp, or the like.
  • the ellipsoidal reflector 30 reflects an opening for inserting and fixing the sealing portion 24 of the arc tube 20 and the light emitted from the arc tube 20 toward the second focal position. And a reflective surface.
  • the ellipsoidal reflector 30 is fixed to the sealing portion 24 side of the arc tube 20 with cement c filled in the opening of the ellipsoidal reflector 30.
  • crystallized glass, alumina (Al 2 O 3 ), or the like can be suitably used as the material for the base material constituting the reflecting surface.
  • a visible light reflecting layer made of a dielectric multilayer film of titanium oxide (TiO 2 ) and silicon oxide (SiO 2 ) is formed.
  • the secondary mirror 40 is disposed so as to cover one side of the tube portion 22, and includes a reflective portion 42 that reflects the light L 2 emitted from the light emitting portion 28 toward the light emitting portion 28, and the secondary mirror 40. And a fixing portion 44 for fixing the mirror 40 to the sealing portion 24.
  • the secondary mirror 40 is manufactured by the above-described secondary mirror manufacturing method.
  • the concave lens 90 is disposed on the illuminated area side of the ellipsoidal reflector 30 as shown in FIG. The light from the ellipsoidal reflector 30 is emitted toward the first lens array 120.
  • the first lens array 120 has a function as a light beam splitting optical element that splits light from the concave lens 90 into a plurality of partial light beams, and a plurality of first lens arrays 120 arranged in a matrix in a plane orthogonal to the illumination optical axis 30ax. It has a configuration provided with one small lens 122. Although not illustrated, the outer shape of the first small lens 122 is similar to the outer shape of the image forming area of the liquid crystal devices 400R, 400G, and 400B.
  • the second lens array 130 is an optical element that collects a plurality of partial light beams divided by the first lens array 120 described above, and in the same manner as the first lens array 120, a matrix is formed in a plane orthogonal to the illumination optical axis 100ax. And a plurality of second small lenses 132 arranged in a shape.
  • the polarization conversion element 140 is a polarization conversion element that emits the polarization direction of each partial light beam divided by the first lens array 120 as approximately one type of linearly polarized light having a uniform polarization direction.
  • the polarization conversion element 140 transmits one linear polarization component of the polarization component included in the illumination light beam from the light source device 10 as it is, and reflects the other linear polarization component in a direction perpendicular to the illumination optical axis 100ax. And the other linearly polarized light component reflected by the polarization separation layer in a direction parallel to the illumination optical axis 100ax, and the other linearly polarized light component reflected by the reflective layer is converted into one linearly polarized light component. And a retardation plate.
  • the superimposing lens 150 condenses a plurality of partial light beams that have passed through the first lens array 120, the second lens array 130, and the polarization conversion element 140, and superimposes them on the vicinity of the image forming regions of the liquid crystal devices 400R, 400G, and 400B. It is an element.
  • the superimposing lens 150 shown in FIG. 4 is comprised by one lens, you may be comprised by the compound lens which combined several lenses.
  • the color separation light guide optical system 200 includes dichroic mirrors 210 and 220, reflection mirrors 230, 240 and 250, and relay lenses 260 and 270.
  • the color separation light guide optical system 200 separates the illumination light beam emitted from the illumination device 100 into three color lights of red light, green light, and blue light, and the respective color lights are liquid crystal devices 400R, 400G, and 400 to be illuminated. It has a function of leading to 400B.
  • the dichroic mirrors 210 and 220 are optical elements on which a wavelength selection film that reflects a light beam in a predetermined wavelength region and transmits a light beam in another wavelength region is formed on a substrate.
  • the dichroic mirror 210 disposed in the front stage of the optical path is a mirror that reflects a red light component and transmits other color light components.
  • the dichroic mirror 220 disposed in the latter stage of the optical path is a mirror that reflects the green light component and transmits the blue light component.
  • the red light component reflected by the dichroic mirror 210 is bent by the reflecting mirror 230 and enters the image forming area of the liquid crystal device 400R for red light through the condenser lens 300R.
  • the condenser lens 300R is provided to convert each partial light beam from the superimposing lens 150 into a light beam substantially parallel to each principal ray.
  • the condensing lenses 300G and 300B disposed in the preceding stage of the optical path of the other liquid crystal devices 400G and 400B are configured in the same manner as the condensing lens 300R.
  • the green light component and blue light component that have passed through the dichroic mirror 210 the green light component is reflected by the dichroic mirror 220, passes through the condenser lens 300G, and enters the image forming area of the green light liquid crystal device 400G.
  • the blue light component is transmitted through the dichroic mirror 220, passes through the incident side lens 260, the incident side reflection mirror 240, the relay lens 270, the emission side reflection mirror 250, and the condensing lens 300B, and is a liquid crystal for blue light. The light enters the image forming area of the apparatus 400B.
  • the incident side lens 260, the relay lens 270, and the reflection mirrors 240 and 250 have a function of guiding the blue light component transmitted through the dichroic mirror 220 to the liquid crystal device 400B.
  • the reason that the incident side lens 260, the relay lens 270, and the reflection mirrors 240 and 250 are provided in the optical path of blue light is that the length of the optical path of blue light is longer than the length of the optical paths of other color lights. For this reason, a decrease in light use efficiency due to light divergence or the like is prevented.
  • the projector 1000 according to Embodiment 1 has such a configuration because the length of the optical path of blue light is long. However, the length of the optical path of red light is increased, and the incident side lens 260 and the relay lens 270 are configured. And the structure which uses the reflective mirrors 240 and 250 for the optical path of red light is also considered.
  • the liquid crystal devices 400 ⁇ / b> R, 400 ⁇ / b> G, and 400 ⁇ / b> B modulate the incident illumination light beam according to image information, and are the illumination target of the illumination device 100.
  • incident side polarizing plates are arranged between the condenser lenses 300R, 300G, and 300B and the liquid crystal devices 400R, 400G, and 400B, respectively, and the liquid crystal devices 400R, 400G, and 400B, Between the cross dichroic prism 500, an exit-side polarizing plate is disposed.
  • the incident-side polarizing plate, the liquid crystal devices 400R, 400G, and 400B and the exit-side polarizing plate modulate light of each incident color light.
  • the liquid crystal devices 400R, 400G, and 400B are a pair of transparent glass substrates in which a liquid crystal that is an electro-optical material is hermetically sealed.
  • a liquid crystal that is an electro-optical material is hermetically sealed.
  • a polysilicon TFT is used as a switching element and incident according to a given image signal. Modulates the polarization direction of one type of linearly polarized light emitted from the side polarizing plate.
  • the cross dichroic prism 500 is an optical element that forms a color image by synthesizing an optical image modulated for each color light emitted from the exit side polarizing plate.
  • the cross dichroic prism 500 has a substantially square shape in plan view in which four right-angle prisms are bonded together, and a dielectric multilayer film is formed on a substantially X-shaped interface in which the right-angle prisms are bonded together.
  • the dielectric multilayer film formed at one of the substantially X-shaped interfaces reflects red light, and the dielectric multilayer film formed at the other interface reflects blue light.
  • the color image emitted from the cross dichroic prism 500 is enlarged and projected by the projection optical system 600 to form an image on the screen SCR.
  • the light source device 10 according to the first embodiment is a light source device including the arc tube 20, the reflector 30, and the secondary mirror 40 as described above.
  • the projector 1000 according to the first embodiment is a projector including the illumination device 100 including the light source device 10 according to the first embodiment.
  • the end mirror 30 on one side of the reflector 30 is deleted to reduce the thickness, while the sub mirror 40 is covered so as to cover one side of the tube portion 22. Since the light emitted from the light emitting unit 28 can be effectively used by being disposed, it is possible to reduce the thickness without reducing the luminance. Moreover, according to the light source device 10 according to the first embodiment, since the fixing unit 44 is configured to cover the entire outer periphery of the sealing unit 24, the auxiliary unit with a large adhesion area so as to cover the sealing unit 24 is provided. The mirror 40 can be strongly fixed to the arc tube 20.
  • the secondary mirror 40 is less likely to drop off from the sealing portion 24, and the impact resistance can be increased. That is, the light source device 10 according to the first embodiment can be thinned without lowering the luminance, and further becomes a light source device with high impact resistance.
  • the secondary mirror 40 can be strongly fixed to the arc tube 20 with a large adhesion area so as to cover the sealing portion 24.
  • the sub mirror 40 can be fixed to the sealing portion 24 with a sufficient fixing force even by the cement c having a weak force. For this reason, since it becomes possible to fix a secondary mirror to a sealing part, without using a strong alkaline adhesive agent with high adhesive strength, on the other hand, it becomes possible to lengthen the lifetime of a light source device. .
  • the fixing portion 44 is fixed to the reflector 30 with cement c, the sub mirror 40 and the arc tube 20 can be fixed to the reflector 30 as a unit. Therefore, it is possible to obtain a light source device with higher impact resistance.
  • the fixing portion 44 has the length B along the longitudinal direction A of the sealing portion in the fixing portion 44 that gradually decreases from one side to the other side.
  • the secondary mirror 40 can be fixed to the arc tube 20 without hindering the light emitted from the light emitting unit 28 to the reflector 30 as much as possible.
  • the inner surface of the reflection unit 42 has an aspherical shape, and the light reflected by the reflection unit 42 is reflected toward the light emitting unit 28. Therefore, the light emitted from the secondary mirror 40 can be reflected to the center of the arc tube 20, and the emitted light from the light emitting unit 28 can be effectively used at a higher level.
  • a projector 1000 according to the first embodiment includes an illumination device 100 including the light source device 10 according to the first embodiment, and liquid crystal devices 400R and 400G as electro-optic modulation devices that modulate illumination light from the illumination device 100 according to an information image. , 400B and the projection lens 600 that projects the modulated light from the liquid crystal devices 400R, 400G, 400B, the thickness can be reduced without lowering the brightness, and the impact resistance is high. Since the light source device 10 of the present invention is provided, the projector is high-intensity, thin, and has high impact resistance.
  • FIG. 6 is a diagram illustrating a main part of the light source device 10a according to the first modification.
  • FIG. 6A is a perspective view showing the arc tube 20 with the secondary mirror 40a attached
  • FIG. 6B is a side view showing the arc tube 20 with the secondary mirror 40a attached.
  • the light source device 10a according to the first modification basically has the same configuration as the light source device 10 according to the first embodiment, but the structure of the secondary mirror is different from that of the light source device 10 according to the first embodiment. That is, in the light source device 10a according to the modified example 1, as shown in FIG. 6, the secondary mirror 40a covers the outer periphery of the sealing portion 24 over a half circumference, but does not cover the entire circumference.
  • the light source device 10a according to the modified example 1 is different from the light source device 10 according to the first embodiment in the structure of the secondary mirror, but is sealed in the same manner as the light source device 10 according to the first embodiment. Since it has the fixing
  • FIG. 7 is a longitudinal sectional view of a light source device 10b according to Modification 2.
  • the light source device 10b according to the modification 2 has basically the same configuration as the light source device 10 according to the first embodiment, but a fixing structure for fixing the arc tube to the reflector is the light source device 10 according to the first embodiment. It is different from the case of. That is, the light source device 10b according to the modified example 2 has a fixing structure that directly fixes the sealing portion 24 of the arc tube 20 to the reflector 30b as shown in FIG.
  • the light source device 10b according to the modified example 2 is the same as the light source device 10 according to the first embodiment although the fixing structure for fixing the arc tube to the reflector is different from that of the light source device 10 according to the first embodiment.
  • the fixing part 44b is configured to cover the outer periphery of the sealing part 24 over a half circumference, the secondary mirror can be strongly fixed to the arc tube with a large bonding area so as to cover the sealing part. It becomes possible. As a result, it is difficult for the secondary mirror to drop off from the sealing portion, and the impact resistance can be increased.
  • FIG. 8 is a longitudinal sectional view of a light source device 10c according to Modification 3.
  • the light source device 10c according to the modification 3 basically has the same configuration as the light source device 10 according to the first embodiment, but the type of the reflector is different from that of the light source device 10 according to the first embodiment. That is, the light source device 10c according to the modification 2 includes a parabolic reflector 30c as a reflector, as shown in FIG.
  • the light source device 10c according to the modified example 3 is different from the light source device 10 according to the first embodiment in the type of the reflector, but is similar to the light source device 10 according to the first embodiment. Since it has the fixing
  • FIG. 9 is a longitudinal sectional view of a light source device 10d according to Modification 4.
  • the light source device 10d according to the modification 4 basically has the same configuration as the light source device 10 according to the first embodiment, but the structure of the secondary mirror is different from that of the light source device 10 according to the first embodiment. That is, in the light source device 10d according to the modified example 4, the secondary mirror 40d has an extending part 48d on the opposite side of the fixed part 44d.
  • the light source device 10d according to the modified example 4 is sealed in the same manner as the light source device 10 according to the first embodiment, although the structure of the sub mirror is different from that of the light source device 10 according to the first embodiment. Since it has the fixing
  • the light source device and the projector according to the present invention have been described based on the above embodiment, but the present invention is not limited to this, and can be implemented without departing from the spirit of the present invention. The following modifications are possible.
  • cement is used as the adhesive, but the present invention is not limited to this.
  • a ceramic heat-resistant adhesive can be used as the adhesive.
  • the secondary mirror having a fixed portion configured so that the length along the longitudinal direction of the sealing portion gradually decreases from one side to the other side.
  • the invention is not limited to this.
  • the secondary mirror having a fixed part configured to cover the outer periphery of at least one sealing part of the pair of sealing parts over a half circumference is used. It is not limited to this. For example, it is possible to use a secondary mirror having a fixed portion configured to cover the outer periphery of both sealing portions of the pair of sealing portions beyond a half circumference.
  • the secondary mirror made of quartz glass is used, but the present invention is not limited to this.
  • a secondary mirror made of metal can be used.
  • the cutting process is performed in the order of the first cutting process to the fourth cutting process, but the present invention is not limited to this.
  • the order of the second cutting step and the third cutting step may be switched, or the fourth step may be performed first.
  • the present invention has been described by taking as an example the case where the rotation center axis of the reflector and the longitudinal direction of the arc tube are parallel, but the present invention is not limited to this.
  • the present invention can also be applied when the rotation center axis of the reflector and the longitudinal direction of the arc tube are not parallel.
  • the present invention is not limited to this.
  • the light source device of the present invention can be applied to other optical devices (for example, an optical disk device).
  • the lens integrator optical system including the first lens array and the second lens array is used as the light uniformizing optical system of the projector.
  • the present invention is not limited to this.
  • a rod integrator optical system including a light guide rod can be used.
  • the projector is a transmissive projector, but the present invention is not limited to this.
  • a reflective projector may be used.
  • transmission type means that an electro-optic modulation device as a light modulation means, such as a transmission type liquid crystal device, transmits light
  • reflection type means that an electro-optic modulation device as a light modulation means, such as a reflective liquid crystal device, is a type that reflects light. Even when the present invention is applied to a reflective projector, the same effect as that of a transmissive projector can be obtained.
  • the liquid crystal device is used as the electro-optic modulation device of the projector, but the present invention is not limited to this.
  • the electro-optic modulation device may be any device that modulates incident light in accordance with image information, and a micromirror light modulation device or the like may be used.
  • a DMD digital micromirror device
  • TI micromirror light modulator
  • the present invention is applied to a rear projection type projector that projects from a side opposite to the side that observes the projected image, even when applied to a front projection type projector that projects from the side that observes the projected image. Is also possible.
  • tubular part 50ax ... shaft of tubular member, 52 ... expansion part, 54a, 54b ... cut piece, 56 DESCRIPTION OF SYMBOLS ... Terminal part, 58 ... Secondary mirror base material, 60 ... Reflective layer, 100 ... Illumination device, 100ax ... Illumination optical axis, 120 ... First lens array, 122 ... First small lens, 130 ... Second lens array, 132 ... Second Lens: 140: Polarization conversion element, 150: Superposition lens, 200: Color separation light guide optical system, 210, 220: Dichroic mirror, 230, 240, 250: Reflection mirror, 260: Incident side lens, 270: Relay lens, 300R , 300G, 300B ...
  • Condensing lens 400R, 400G, 400B ... Liquid crystal device, 500 ... Cross dichroic prism, 600 ... Projection lens, 1000 ... Projector, c ... Cement, R1 ... Range including expansion part, L1, L2 ... Light , X1, X2, X3, X4 ... notches, X1a, X2a ... end, S ... predetermined plane, SCR ... screen

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Projection Apparatus (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Securing Globes, Refractors, Reflectors Or The Like (AREA)

Abstract

 輝度を低下させずに薄型化を図ることが可能であり、さらには、耐衝撃性の高い光源装置を提供する。  発光部28を内包する管球部22及び一対の封止部24,26を有する発光管20と、回転中心軸30axを含む所定の平面Sで切断したとき、一方側の少なくとも端部30zが削除された形状を有し、発光部28から射出される光を被照明領域側に反射するリフレクタ30と、管球部22における一方側を覆うように配置され、発光部28からの射出光を発光部28へ向けて反射する反射部42を有する副鏡40とを備える光源装置10であって、副鏡40は、セメントcによって副鏡40を封止部24に固定するための固定部44をさらに有し、固定部44は、一対の封止部24,26のうち少なくとも片方の封止部24の外周を半周を超えて覆うように構成されている光源装置。

Description

光源装置及びプロジェクタ
 本発明は、光源装置及びプロジェクタに関する。
 従来、プロジェクタに用いる光源装置が知られている(例えば、特許文献1参照。)。
 従来の光源装置においては、発光部を内包する管球部及び一対の封止部を有する発光管と、回転中心軸を含む所定の平面で切断したとき、一方側の端部が削除された形状を有し、発光部から射出される光を被照明領域側に反射するリフレクタと、管球部における一方側を覆うように配置され、発光部からの射出光を発光部へ向けて反射する反射部を有する副鏡とを備える。副鏡は、一対の封止部のうち片方における一方側に配置され、副鏡を封止部に固定するための固定部をさらに有する。固定部は接着剤によって封止部に固定されており、発光管は接着剤によってリフレクタに固定されている。
 このため、従来の光源装置によれば、リフレクタの一方側の端部を削除して薄型化を図る一方で、管球部における一方側を覆うように副鏡を配置して発光部からの射出光を有効利用することとしているため、輝度を低下させずに薄型化を図ることが可能となる。また、このような光源装置を備えることにより、高輝度かつ薄型のプロジェクタを製造することが可能となる。
特開2007-335196号公報
 しかしながら、本発明の発明者らの調査によれば、従来の光源装置においては、封止部から副鏡が脱落し易く、耐衝撃性が低いという問題があることがわかった。
 そこで、本発明は、このような問題を解決するためになされたもので、輝度を低下させずに薄型化を図ることが可能であり、さらには、耐衝撃性の高い光源装置を提供することを目的とする。また、このような光源装置を備えることにより、高輝度かつ薄型で、さらには耐衝撃性の高いプロジェクタを提供することを目的とする。
 本発明の光源装置は、発光部を内包する管球部及び一対の封止部を有する発光管と、回転中心軸を含む所定の平面で切断したとき、一方側の少なくとも端部が削除された形状を有し、前記発光部から射出される光を被照明領域側に反射するリフレクタと、前記管球部における前記一方側を覆うように配置され、前記発光部からの射出光を前記発光部へ向けて反射する反射部を有する副鏡とを備える光源装置であって、前記副鏡は、接着剤によって前記副鏡を前記封止部に固定するための固定部をさらに有し、前記固定部は、前記一対の封止部のうち少なくとも片方の封止部の外周を半周を超えて覆うように構成されていることを特徴とする。
 このため、本発明の光源装置によれば、リフレクタの一方側の端部を削除して薄型化を図る一方で、管球部における一方側を覆うように副鏡を配置して発光部からの射出光を有効利用することが可能となるため、輝度を低下させずに薄型化を図ることが可能となる。また、本発明の光源装置によれば、封止部の外周を半周を超えて覆うように構成されている固定部を有するため、封止部を覆うように大きな接着面積で副鏡を発光管に強力に固定することが可能となる。その結果、封止部から副鏡が脱落し難くなり、耐衝撃性を高くすることができる。すなわち、本発明の光源装置は、輝度を低下させずに薄型化を図ることが可能であり、さらには、耐衝撃性の高い光源装置となる。
 本発明の光源装置においては、前記固定部は、セメントによって前記封止部に固定されていることが好ましい。
 本発明の光源装置によれば、封止部を覆うように大きな接着面積で副鏡を発光管に強力に固定することが可能となるため、上記のように接着力が弱いセメントによっても十分な固定力でもって副鏡を封止部に固定することが可能となる。このため、接着力が強い反面腐食性の高い強アルカリ性の接着剤を使用することなく副鏡を封止部に固定することが可能となるため、光源装置の寿命を長くすることが可能となる。
 本発明の光源装置においては、前記固定部のうち一つは、セメントによって前記リフレクタに固定されていることが好ましい。
 このような構成とすることにより、副鏡と発光管とを一体としてリフレクタに固定することが可能となるため、より耐衝撃性の高い光源装置とすることが可能となる。
 本発明の光源装置においては、前記固定部は、前記固定部における前記封止部の長手方向に沿った長さが、前記一方側から他方側に向かって徐々に短くなるように構成されていることが好ましい。
 このような構成とすることにより、発光部からリフレクタに放射される光を極力阻害することなく副鏡を発光管に固定することが可能となる。
 本発明の光源装置においては、前記固定部は、前記封止部の外周を全周覆っていることが好ましい。
 このような構成とすることにより、封止部を完全に覆うように大きな接着面積で副鏡を発光管に強力に固定することが可能となるため、耐衝撃性をより高くすることができる。
 本発明の光源装置においては、前記反射部の内面は、非球面形状を有し、前記反射部で反射される光が前記発光部に向けて反射されるように構成されていることが好ましい。
 このような構成とすることにより、副鏡から射出された光を発光管の中心へ反射することが可能となり、発光部からの射出光をさらに高いレベルで有効利用することが可能となる。
 本発明のプロジェクタは、本発明の光源装置を備える照明装置と、前記照明装置からの照明光を情報画像に応じて変調する電気光学変調装置と、前記電気光学変調装置からの変調光を投写する投写レンズとを備えることを特徴とする。
 このため、本発明のプロジェクタは、輝度を低下させずに薄型化を図ることが可能であり、さらには、耐衝撃性の高い本発明の光源装置を備えるため、高輝度かつ薄型で、さらには耐衝撃性の高いプロジェクタとなる。
実施形態1に係る光源装置10を説明するために示す図である。 実施形態1に係る光源装置10における副鏡40を説明するために示す図である。 実施形態1に係る光源装置10における副鏡40の製造方法を説明するために示す図である。 実施形態1に係るプロジェクタ1000を説明するために示す図である。 実施形態1に係る照明装置100を説明するために示す図である。 変形例1に係る光源装置10aの要部を説明するために示す図である。 変形例2に係る光源装置10bを説明するために示す図である。 変形例3に係る光源装置10cを説明するために示す図である。 変形例4に係る光源装置10dを説明するために示す図である。
 以下、本発明の光源装置及びプロジェクタについて、図に示す実施の形態に基づいて説明する。
[実施形態1]
1.光源装置10の構成
 図1は、実施形態1に係る光源装置10を説明するために示す図である。図1(a)は光源装置10の斜視図であり、図1(b)は光源装置10の縦断面図である。
 図2は、実施形態1に係る光源装置10における副鏡40を説明するために示す図である。図2(a)は副鏡40の斜視図であり、図2(b)は副鏡40の縦断面図であり、図2(c)は発光管20に固定された状態の副鏡40を示す側面図である。
 実施形態1に係る光源装置10は、図1に示すように、発光部28を内包する管球部22及び一対の封止部24,26を有する発光管20と、回転中心軸30axを含む所定の平面Sで切断したとき、一方側の端部30zが削除された形状を有し、発光部28から射出される光L1を被照明領域側に反射するリフレクタ30と、管球部22における一方側を覆うように配置され、発光部28から射出される光L2を発光部28へ向けて反射する反射部42を有する副鏡40とを備える。
 副鏡40は、図1及び図2に示すように、副鏡40を封止部24に固定するための固定部44をさらに有する。固定部44は、セメントcによって封止部24に固定されている。固定部44は、セメントcによってリフレクタ30に固定されている。固定部44は、封止部24の外周を全周覆うように構成されている。また、固定部44は、図2(c)に示すように、固定部44における封止部24の長手方向Aに沿った長さBが、一方側から他方側に向かって徐々に短くなるように構成されている。固定部44の基端部45aと先端部45bとを結ぶ直線45cと、発光管28の長手方向Aに沿った軸とのなす角度は、例えば45°である。
 反射部42の内面は、非球面形状を有し、反射部42で反射される光L2が発光部28に向けて反射されるように構成されている。リフレクタ30は、例えば、回転楕円面の反射面を有する。副鏡40の材質は、例えば、石英ガラスである。
2.光源装置の製造方法
 光源装置の製造方法は、発光管20、リフレクタ30及び副鏡40をあらかじめ準備しておき、まず、このうち副鏡40を発光管20に固定した後、副鏡40の固定部44の部分で発光管20をリフレクタ40に固定する。このうち、発光管20及びリフレクタ30の製造方法はよく知られているので、ここでは、副鏡40の製造方法を詳細に説明する。
 図3は、実施形態1に係る光源装置10における副鏡40の製造方法を説明するために示す図である。図3(a)~図3(g)は各工程図である。なお、実際の工程では切断するときに切りしろが発生するが、図3においては図示を省略している。
(1)管状部材準備工程
 まず、固定部44(図3(g)参照。)の内径に対応する内径寸法を有する管状部材50を準備する(図3(a)参照。)。管状部材50の材料としては、硬質ガラスや石英ガラスを好適に用いることができる。なかでも、石英ガラスを用いることがより好ましい。石英ガラスは熱膨張率が低いうえに内部歪が残らないため、アニール処理をする必要がないからである。なお、この段階では見た目上の差異はないものの、便宜上、固定部44が形成される側の管状部を50aとし、その反対側の管状部を50bとする。
(2)膨張部形成工程
 次に、管状部材50を加熱して成形型(図示せず)に入れた後、不活性ガスにより内圧をかけ、管状部材50における一部の内面形状が反射部42に対応した所定の形状となるように膨張させ、膨張部52を形成する(図3(b)参照。)。不活性ガスとしては、例えば、アルゴンガスや窒素ガスを好適に用いることができる。
(3)切断工程
(3-1)第1切断工程
 次に、スライサを用いて、管状部材50の軸50axを含む平面に沿って、膨張部52を含む領域R1に切り込みX1を入れる((図3(c)参照。)。なお、図3(c)においては、切り込みX1を1本の線として示しているが、実際には膨張部52の紙面表側及び紙面裏側の双方にそれぞれ1本(合計2本)の切り込みを入れる。
(3-2)第2切断工程
 次に、切り込みX1の管状部50a側端部X1aに向かって他方側から斜め(45°)に切り込みX2を入れる((図3(d)参照。)。このとき、切り込みX2は、紙面表側から紙面裏側へ連続する1本の切り込みとなる(後述する切り込みX3,X4も同様である。)。
(3-3)第3切断工程
 次に、切り込みX1の管状部50b側端部X1bに向かって一方側から直角に切り込みX3を入れる(図3(e)参照。)。なお、第3切断工程が終了すると、管状部材50は2つの切断片54a,54bに分離されるため、これより後は、切断片54aに対して加工を行うこととする。
(3-4)第4切断工程
 次に、切り込みX4を入れて、切断片54aから管状部50aの末端部56を切り離し、固定部44を形成する(図3(f)参照。)。切断工程が終了すると、副鏡基材58が完成する。
(4)反射層形成工程
 次に、膨張部52の内面に反射層60を形成する(図3(g)参照。)。反射層60としては、例えば、酸化タンタル(Ta)と酸化シリコン(SiO)との誘電体多層膜からなる反射層を好適に用いることができる。反射層形成工程が終了すると、副鏡40が完成する。
 その後、製造された副鏡40を、固定部44のところで発光管20に固定するとともに、発光管20を固定部44のところでリフレクタ30に固定することにより、光源装置10が完成する。
3.プロジェクタの構成
 図4は、実施形態1に係るプロジェクタ1000の光学系を示す図である。
 図5は、照明装置100を説明するために示す図である。図4(a)は照明装置100の縦断面図であり、図4(b)は照明装置100の横断面図である。
 実施形態1に係るプロジェクタ1000は、図4に示すように、照明装置100と、照明装置100からの照明光束を赤色光、緑色光及び青色光の3つの色光に分離して被照明領域に導光する色分離導光光学系200と、色分離導光光学系200で分離された3つの色光のそれぞれを画像情報に応じて変調する電気光学変調装置としての3つの液晶装置400R,400G,400Bと、これら3つの液晶装置400R,400G,400Bによって変調された色光を合成するクロスダイクロイックプリズム500と、クロスダイクロイックプリズム500によって合成された光をスクリーンSCR等の投写面に投写する投写光学系600とを備えたプロジェクタである。
 照明装置100は、図4及び図5に示すように、被照明領域側に照明光束を射出する光源装置10と、光源装置10からの集束光を略平行光として射出する凹レンズ90と、凹レンズ90から射出される照明光束を複数の部分光束に分割するための複数の第1小レンズ122を有する第1レンズアレイ120と、第1レンズアレイ120の複数の第1小レンズに対応する複数の第2小レンズ132を有する第2レンズアレイ130と、第2レンズアレイ130からの各部分光束を偏光方向の揃った略1種類の直線偏光光に変換して射出する偏光変換素子140と、偏光変換素子140から射出される各部分光束を被照明領域で重畳させるための重畳レンズ150とを有する。
 実施形態1に係る光源装置10は、図4及び図5に示すように、リフレクタとしての楕円面リフレクタ30と、楕円面リフレクタ30の第1焦点近傍に発光中心を有する発光管20と、反射手段としての副鏡40とを有している。光源装置10は、照明光軸100axを中心軸とする光束を射出する。
 発光管20は、図5に示すように、照明光軸100axに沿って配置された一対の電極を内蔵する管球部22と、管球部22の両側に延びる一対の封止部24,26と、一対の封止部24,26内にそれぞれ封止された一対の金属箔と、一対の金属箔にそれぞれ電気的に接続された一対のリード線とを有している。そして、管球部22の外面と一対の封止部24,26の外面とは、滑らかに接続されている。リード線に電圧が印加されると、一対の電極間に電位差が発生し放電が生じアーク像が生成される。このアーク像が発光部である。
 なお、発光管20の構成要素の条件等を例示的に示すと、管球部22及び封止部24,26は、例えば石英ガラス製であり、管球部22内には、水銀、希ガス及び少量のハロゲンが封入されている。電極は、例えばタングステン電極であり、金属箔は、例えばモリブデン箔である。リード線は、例えばモリブデン又はタングステンから構成されている。
 また、発光管20としては、高輝度発光する種々の発光管を採用でき、例えば高圧水銀ランプ、超高圧水銀ランプ、メタルハライドランプ等を採用できる。
 楕円面リフレクタ30は、図5に示すように、発光管20の封止部24を挿通・固定するための開口部と、発光管20から放射された光を第2焦点位置に向けて反射する反射面とを有している。楕円面リフレクタ30は、楕円面リフレクタ30の開口部に充填されたセメントcによって発光管20の封止部24側に固着されている。
 反射面を構成する基材の材料としては、例えば、結晶化ガラスやアルミナ(Al)などを好適に用いることができる。反射面の内面には、例えば、酸化チタン(TiO)と酸化シリコン(SiO)との誘電体多層膜からなる可視光反射層が形成されている。
 なお、副鏡40は、上記したように、管球部22における一方側を覆うように配置され、発光部28から射出される光L2を発光部28へ向けて反射する反射部42と、副鏡40を封止部24に固定するための固定部44とを有する。また、副鏡40は、上記した副鏡の製造方法によって製造されたものである。
 凹レンズ90は、図5に示すように、楕円面リフレクタ30の被照明領域側に配置されている。そして、楕円面リフレクタ30からの光を第1レンズアレイ120に向けて射出するように構成されている。
 第1レンズアレイ120は、凹レンズ90からの光を複数の部分光束に分割する光束分割光学素子としての機能を有し、照明光軸30axと直交する面内にマトリクス状に配列される複数の第1小レンズ122を備えた構成を有している。図示による説明は省略するが、第1小レンズ122の外形形状は、液晶装置400R,400G,400Bの画像形成領域の外形形状に関して相似形である。
 第2レンズアレイ130は、上述した第1レンズアレイ120により分割された複数の部分光束を集光する光学素子であり、第1レンズアレイ120と同様に照明光軸100axに直交する面内にマトリクス状に配列される複数の第2小レンズ132を備えた構成を有している。
 偏光変換素子140は、第1レンズアレイ120により分割された各部分光束の偏光方向を、偏光方向の揃った略1種類の直線偏光光として射出する偏光変換素子である。
 偏光変換素子140は、光源装置10からの照明光束に含まれる偏光成分のうち一方の直線偏光成分をそのまま透過し、他方の直線偏光成分を照明光軸100axに垂直な方向に反射する偏光分離層と、偏光分離層で反射された他方の直線偏光成分を照明光軸100axに平行な方向に反射する反射層と、反射層で反射された他方の直線偏光成分を一方の直線偏光成分に変換する位相差板とを有している。
 重畳レンズ150は、第1レンズアレイ120、第2レンズアレイ130及び偏光変換素子140を経た複数の部分光束を集光して液晶装置400R,400G,400Bの画像形成領域近傍に重畳させるための光学素子である。なお、図4に示す重畳レンズ150は1枚のレンズで構成されているが、複数のレンズを組み合わせた複合レンズで構成されていてもよい。
 色分離導光光学系200は、図4に示すように、ダイクロイックミラー210,220と、反射ミラー230,240,250と、リレーレンズ260,270とを有している。色分離導光光学系200は、照明装置100から射出される照明光束を赤色光、緑色光及び青色光の3つの色光に分離して、それぞれの色光を照明対象となる液晶装置400R,400G,400Bに導く機能を有している。
 ダイクロイックミラー210,220は、基板上に所定の波長領域の光束を反射し、他の波長領域の光束を透過する波長選択膜が形成された光学素子である。光路前段に配置されるダイクロイックミラー210は、赤色光成分を反射し、その他の色光成分を透過するミラーである。光路後段に配置されるダイクロイックミラー220は、緑色光成分を反射し、青色光成分を透過するミラーである。
 ダイクロイックミラー210で反射された赤色光成分は、反射ミラー230により曲折され、集光レンズ300Rを介して赤色光用の液晶装置400Rの画像形成領域に入射する。
 集光レンズ300Rは、重畳レンズ150からの各部分光束を各主光線に対して略平行な光束に変換するために設けられている。他の液晶装置400G,400Bの光路前段に配設される集光レンズ300G,300Bも、集光レンズ300Rと同様に構成されている。
 ダイクロイックミラー210を通過した緑色光成分及び青色光成分のうち緑色光成分は、ダイクロイックミラー220によって反射され、集光レンズ300Gを通過して緑色光用の液晶装置400Gの画像形成領域に入射する。一方、青色光成分は、ダイクロイックミラー220を透過し、入射側レンズ260、入射側の反射ミラー240、リレーレンズ270、射出側の反射ミラー250及び集光レンズ300Bを通過して青色光用の液晶装置400Bの画像形成領域に入射する。入射側レンズ260、リレーレンズ270及び反射ミラー240,250は、ダイクロイックミラー220を透過した青色光成分を液晶装置400Bまで導く機能を有している。
 なお、青色光の光路にこのような入射側レンズ260、リレーレンズ270及び反射ミラー240,250が設けられているのは、青色光の光路の長さが他の色光の光路の長さよりも長いため、光の発散等による光の利用効率の低下を防止するためである。実施形態1に係るプロジェクタ1000においては、青色光の光路の長さが長いのでこのような構成とされているが、赤色光の光路の長さを長くして、入射側レンズ260、リレーレンズ270及び反射ミラー240,250を赤色光の光路に用いる構成も考えられる。
 液晶装置400R,400G,400Bは、入射した照明光束を画像情報に応じて変調するものであり、照明装置100の照明対象となる。なお、図示を省略したが、各集光レンズ300R,300G,300Bと各液晶装置400R,400G,400Bとの間には、それぞれ入射側偏光板が配置され、各液晶装置400R,400G,400Bとクロスダイクロイックプリズム500との間には、それぞれ射出側偏光板が配置されている。これら入射側偏光板、液晶装置400R,400G,400B及び射出側偏光板によって、入射する各色光の光変調が行われる。
 液晶装置400R,400G,400Bは、一対の透明なガラス基盤に電気光学物質である液晶を密閉封入したものであり、例えば、ポリシリコンTFTをスイッチング素子として、与えられた画像信号に応じて、入射側偏光板から射出された1種類の直線偏光の偏光方向を変調する。
 クロスダイクロイックプリズム500は、射出側偏光板から射出された色光毎に変調された光学像を合成してカラー画像を形成する光学素子である。このクロスダイクロイックプリズム500は、4つの直角プリズムを貼り合わせた平面視略正方形状をなし、直角プリズム同士を貼り合わせた略X字状の界面には、誘電体多層膜が形成されている。略X字状の一方の界面に形成された誘電体多層膜は、赤色光を反射するものであり、他方の界面に形成された誘電体多層膜は、青色光を反射するものである。これらの誘電体多層膜によって赤色光及び青色光は曲折され、緑色光の進行方向と揃えられることにより、3つの色光が合成される。
 クロスダイクロイックプリズム500から射出されたカラー画像は、投写光学系600によって拡大投写され、スクリーンSCR上で画像を形成する。
 このように、実施形態1に係る光源装置10は、上記したように、発光管20と、リフレクタ30と、副鏡40とを備える光源装置である。また、実施形態1に係るプロジェクタ1000は、実施形態1の光源装置10を備える照明装置100を備えるプロジェクタである。
 このため、実施形態1に係る光源装置10によれば、リフレクタ30の一方側の端部30zを削除して薄型化を図る一方で、管球部22における一方側を覆うように副鏡40を配置して発光部28からの射出光を有効利用することが可能となるため、輝度を低下させずに薄型化を図ることが可能となる。また、実施形態1に係る光源装置10によれば、封止部24の外周を全周覆うように構成されている固定部44を有するため、封止部24を覆うように大きな接着面積で副鏡40を発光管20に強力に固定することが可能となる。その結果、封止部24から副鏡40が脱落し難くなり、耐衝撃性を高くすることができる。すなわち、実施形態1に係る光源装置10は、輝度を低下させずに薄型化を図ることが可能であり、さらには、耐衝撃性の高い光源装置となる。
 また、実施形態1に係る光源装置10によれば、封止部24を覆うように大きな接着面積で副鏡40を発光管20に強力に固定することが可能となるため、上記のように接着力が弱いセメントcによっても十分な固定力でもって副鏡40を封止部24に固定することが可能となる。このため、接着力が強い反面腐食性の高い強アルカリ性の接着剤を使用することなく副鏡を封止部に固定することが可能となるため、光源装置の寿命を長くすることが可能となる。
 また、実施形態1に係る光源装置10によれば、固定部44は、セメントcによってリフレクタ30に固定されているため、副鏡40と発光管20とを一体としてリフレクタ30に固定することが可能となるため、より耐衝撃性の高い光源装置とすることが可能となる。
 また、実施形態1に係る光源装置10によれば、固定部44は、固定部44における封止部の長手方向Aに沿った長さBが、一方側から他方側に向かって徐々に短くなるように構成されているため、発光部28からリフレクタ30に放射される光を極力阻害することなく副鏡40を発光管20に固定することが可能となる。
 また、実施形態1に係る光源装置10によれば、反射部42の内面は、非球面形状を有し、反射部42で反射される光が発光部28に向けて反射されるように構成されているため、副鏡40から射出された光を発光管20の中心へ反射することが可能となり、発光部28からの射出光をさらに高いレベルで有効利用することが可能となる。
 実施形態1に係るプロジェクタ1000は、実施形態1に係る光源装置10を備える照明装置100と、照明装置100からの照明光を情報画像に応じて変調する電気光学変調装置としての液晶装置400R,400G,400Bと、液晶装置400R,400G,400Bからの変調光を投写する投写レンズ600とを備えるため、輝度を低下させずに薄型化を図ることが可能であり、さらには、耐衝撃性の高い本発明の光源装置10を備えるため、高輝度かつ薄型で、さらには耐衝撃性の高いプロジェクタとなる。
[変形例1]
 図6は、変形例1に係る光源装置10aの要部を示す図である。図6(a)は副鏡40aを取り付けた状態の発光管20を示す斜視図であり、図6(b)は副鏡40aを取り付けた状態の発光管20を示す側面図である。
 変形例1に係る光源装置10aは、基本的には実施形態1に係る光源装置10と同様の構成を有するが、副鏡の構造が実施形態1に係る光源装置10の場合とは異なる。すなわち、変形例1に係る光源装置10aにおいては、図6に示すように、副鏡40aは、封止部24の外周を半周を超えて覆っているが全周までは覆っていない固定部44aを有する。
 このように、変形例1に係る光源装置10aは、副鏡の構造が実施形態1に係る光源装置10の場合とは異なるが、実施形態1に係る光源装置10の場合と同様に、封止部24の外周を半周を超えて覆うように構成されている固定部44aを有するため、封止部を覆うように大きな接着面積で副鏡を管球部に強力に固定することが可能となる。その結果、封止部から副鏡が脱落し難くなり、耐衝撃性を高くすることができる。
[変形例2]
 図7は、変形例2に係る光源装置10bの縦断面図である。
 変形例2に係る光源装置10bは、基本的には実施形態1に係る光源装置10と同様の構成を有するが、発光管をリフレクタに固定するための固定構造が実施形態1に係る光源装置10の場合とは異なる。すなわち、変形例2に係る光源装置10bは、図7に示すように、発光管20の封止部24を直接リフレクタ30bに固定する固定構造を有する。
 このように、変形例2に係る光源装置10bは、発光管をリフレクタに固定するための固定構造が実施形態1に係る光源装置10の場合とは異なるが、実施形態1の光源装置10と同様に、封止部24の外周を半周を超えて覆うように構成されている固定部44bを有するため、封止部を覆うように大きな接着面積で副鏡を発光管に強力に固定することが可能となる。その結果、封止部から副鏡が脱落し難くなり、耐衝撃性を高くすることができる。
[変形例3]
 図8は、変形例3に係る光源装置10cの縦断面図である。
 変形例3に係る光源装置10cは、基本的には実施形態1に係る光源装置10と同様の構成を有するが、リフレクタの種類が実施形態1に係る光源装置10の場合とは異なる。すなわち、変形例2に係る光源装置10cは、図8に示すように、リフレクタとして、放物面リフレクタ30cを備える。
 このように、変形例3に係る光源装置10cは、リフレクタの種類が実施形態1に係る光源装置10の場合とは異なるが、実施形態1に係る光源装置10と同様に、封止部24の外周を半周を超えて覆うように構成されている固定部44cを有するため、封止部を覆うように大きな接着面積で副鏡を発光管に強力に固定することが可能となる。その結果、封止部から副鏡が脱落し難くなり、耐衝撃性を高くすることができる。
[変形例4]
 図9は、変形例4に係る光源装置10dの縦断面図である。
 変形例4に係る光源装置10dは、基本的には実施形態1に係る光源装置10と同様の構成を有するが、副鏡の構造が実施形態1に係る光源装置10の場合とは異なる。すなわち、変形例4に係る光源装置10dにおいては、副鏡40dは、固定部44dの反対側に延出部48dを有する。
 このように、変形例4に係る光源装置10dは、副鏡の構造が実施形態1に係る光源装置10の場合とは異なるが、実施形態1に係る光源装置10の場合と同様に、封止部24の外周を半周を超えて覆うように構成されている固定部44dを有し、さらに封止部26にセメントcで固定される延出部48dを有するため、より大きな接着面積で副鏡を発光管に強力に固定することが可能となる。その結果、封止部から副鏡が脱落し難くなり、耐衝撃性を高くすることができる。
 以上、本発明の光源装置及びプロジェクタを上記の実施形態に基づいて説明したが、本発明はこれに限定されるものではなく、その要旨を逸脱しない範囲において実施することが可能であり、例えば、次のような変形も可能である。
(1)上記実施形態においては、接着剤としてセメントを用いることとしたが、本発明はこれに限定されるものではない。例えば、接着剤としてセラミック系の耐熱接着剤などを用いることもできる。
(2)上記実施形態においては、封止部の長手方向に沿った長さが一方側から他方側に向かって徐々に短くなるように構成された固定部を有する副鏡を用いたが、本発明はこれに限定されるものではない。例えば、封止部の長手方向に沿った長さが一方側から他方側に向かって変化しないように構成された固定部を有する副鏡を用いることもできる。
(3)上記実施形態においては、一対の封止部のうち少なくとも片方の封止部の外周を半周を超えて覆うように構成されている固定部を有する副鏡を用いたが、本発明はこれに限定されるものではない。例えば、一対の封止部のうち両方の封止部の外周を半周を超えて覆うように構成されている固定部を有する副鏡を用いることもできる。
(4)上記実施形態においては、石英ガラスからなる副鏡を用いたが、本発明はこれに限定されるものではない。例えば、金属からなる副鏡を用いることもできる。
(5)上記実施形態においては、第1切断工程~第4切断工程の順序で切断工程を実施することとしたが、本発明はこれに限定されるものではない。例えば、第2切断工程と第3切断工程との順序を入れ替えてもよいし、第4工程を最初に行ってもよい。
(6)上記実施形態においては、リフレクタの回転中心軸と発光管の長手方向とが平行である場合を例にとって本発明を説明したが、本発明はこれに限定されるものではない。例えば、リフレクタの回転中心軸と発光管の長手方向とが平行でない場合に本発明を適用することもできる。
(7)上記実施形態においては、本発明の光源装置をプロジェクタに適用した例について説明したが、本発明はこれに限定されるものではない。例えば、本発明の光源装置を他の光学機器(例えば、光ディスク装置など。)に適用することもできる。
(8)上記実施形態においては、プロジェクタの光均一化光学系として、第1レンズアレイ及び第2レンズアレイからなるレンズインテグレータ光学系を用いたが、本発明はこれに限定されるものではない。例えば、導光ロッドからなるロッドインテグレータ光学系を用いることもできる。
(9)上記実施形態においては、プロジェクタは透過型のプロジェクタであるが、本発明はこれに限定されるものではない。例えば、反射型のプロジェクタであってもよい。ここで、「透過型」とは、透過型の液晶装置等のように光変調手段としての電気光学変調装置が光を透過するタイプであることを意味しており、「反射型」とは、反射型の液晶装置等のように光変調手段としての電気光学変調装置が光を反射するタイプであることを意味している。反射型のプロジェクタにこの発明を適用した場合にも、透過型のプロジェクタと同様の効果を得ることができる。
(10)上記実施形態においては、3つの液晶装置を用いたプロジェクタを例示して説明したが、本発明はこれに限定されるものではない。例えば、1つ、2つ又は4つ以上の液晶装置を用いたプロジェクタにも適用することができる。
(11)上記実施形態においては、プロジェクタの電気光学変調装置として液晶装置を用いているが、本発明はこれに限定されるものではない。電気光学変調装置としては、一般に、画像情報に応じて入射光を変調するものであればよく、マイクロミラー型光変調装置などを利用してもよい。マイクロミラー型光変調装置としては、例えば、DMD(デジタルマイクロミラーデバイス)(TI社の商標)を用いることができる。
(12)本発明は、投写画像を観察する側から投写するフロント投写型プロジェクタに適用する場合にも、投写画像を観察する側とは反対の側から投写するリア投写型プロジェクタに適用する場合にも可能である。
10,10a,10b,10c,10d…光源装置、20…発光管、22…管球部、24,26…封止部、28…発光部、30,30b,30c…リフレクタ、30ax,30bax,30cax…回転対称軸、40,40a,40b,40d…副鏡、42,42b,40d…反射部、44,44a,44b,44d…固定部、45a…基端部、45b…先端部、45c…直線、46,46a,46b,46d…接続部、48d…延出部、50…管状部材、50a,50b…管状部、50ax…管状部材の軸、52…膨張部、54a,54b…切断片、56…末端部、58…副鏡基材、60…反射層、100…照明装置、100ax…照明光軸、120…第1レンズアレイ、122…第1小レンズ、130…第2レンズアレイ、132…第2小レンズ、140…偏光変換素子、150…重畳レンズ、200…色分離導光光学系、210,220…ダイクロイックミラー、230,240,250…反射ミラー、260…入射側レンズ、270…リレーレンズ、300R,300G,300B…集光レンズ、400R,400G,400B…液晶装置、500…クロスダイクロイックプリズム、600…投写レンズ、1000…プロジェクタ、c…セメント、R1…膨張部を含む範囲、L1,L2…光、X1,X2,X3,X4…切り込み、X1a,X2a…端部、S…所定の平面、SCR…スクリーン

Claims (7)

  1.  発光部を内包する管球部及び一対の封止部を有する発光管と、
     回転中心軸を含む所定の平面で切断したとき、一方側の少なくとも端部が削除された形状を有し、前記発光部から射出される光を被照明領域側に反射するリフレクタと、
     前記管球部における前記一方側を覆うように配置され、前記発光部からの射出光を前記発光部へ向けて反射する反射部を有する副鏡とを備える光源装置であって、
     前記副鏡は、接着剤によって前記副鏡を前記封止部に固定するための固定部をさらに有し、前記固定部は、前記一対の封止部のうち少なくとも片方の封止部の外周を半周を超えて覆うように構成されていることを特徴とする光源装置。
  2.  請求項1に記載の光源装置において、
     前記固定部は、セメントによって前記封止部に固定されていることを特徴とする光源装置。
  3.  請求項1又は2に記載の光源装置において、
     前記固定部のうち一つは、セメントによって前記リフレクタに固定されていることを特徴とする光源装置。
  4.  請求項1~3のいずれかに記載の光源装置において、
     前記固定部は、前記固定部における前記封止部の長手方向に沿った長さが、前記一方側から他方側に向かって徐々に短くなるように構成されていることを特徴とする光源装置。
  5.  請求項1~4のいずれかに記載の光源装置において、
     前記固定部は、前記封止部の外周を全周覆っていることを特徴とする光源装置。
  6.  請求項1~5のいずれかに記載の光源装置において、
     前記反射部の内面は、非球面形状を有し、前記反射部で反射される光が前記発光部に向けて反射されるように構成されていることを特徴とする光源装置。
  7.  請求項1~6のいずれかに記載の光源装置を備える照明装置と、
     前記照明装置からの照明光を情報画像に応じて変調する電気光学変調装置と、
     前記電気光学変調装置からの変調光を投写する投写レンズとを備えることを特徴とするプロジェクタ。
PCT/JP2009/004690 2008-10-30 2009-09-17 光源装置及びプロジェクタ WO2010050112A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/125,446 US20110242505A1 (en) 2008-10-30 2009-09-17 Light source device and projector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-279332 2008-10-30
JP2008279332A JP2010108742A (ja) 2008-10-30 2008-10-30 光源装置及びプロジェクタ

Publications (1)

Publication Number Publication Date
WO2010050112A1 true WO2010050112A1 (ja) 2010-05-06

Family

ID=42128486

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/004690 WO2010050112A1 (ja) 2008-10-30 2009-09-17 光源装置及びプロジェクタ

Country Status (3)

Country Link
US (1) US20110242505A1 (ja)
JP (1) JP2010108742A (ja)
WO (1) WO2010050112A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003187604A (ja) * 2001-12-17 2003-07-04 Ushio Inc 光学装置
JP2005228711A (ja) * 2004-02-16 2005-08-25 Ushio Inc 光学装置
JP2008108701A (ja) * 2006-09-25 2008-05-08 Seiko Epson Corp プロジェクタ
JP2008226570A (ja) * 2007-03-12 2008-09-25 Seiko Epson Corp 光源装置及びプロジェクタ
JP2008234897A (ja) * 2007-03-19 2008-10-02 Seiko Epson Corp 光源装置及びプロジェクタ

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8395306B2 (en) * 2009-06-18 2013-03-12 Seiko Epson Corporation Light source unit and projector

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003187604A (ja) * 2001-12-17 2003-07-04 Ushio Inc 光学装置
JP2005228711A (ja) * 2004-02-16 2005-08-25 Ushio Inc 光学装置
JP2008108701A (ja) * 2006-09-25 2008-05-08 Seiko Epson Corp プロジェクタ
JP2008226570A (ja) * 2007-03-12 2008-09-25 Seiko Epson Corp 光源装置及びプロジェクタ
JP2008234897A (ja) * 2007-03-19 2008-10-02 Seiko Epson Corp 光源装置及びプロジェクタ

Also Published As

Publication number Publication date
JP2010108742A (ja) 2010-05-13
US20110242505A1 (en) 2011-10-06

Similar Documents

Publication Publication Date Title
JP5332242B2 (ja) プロジェクタ
EP1571468A1 (en) Method for manufacture of reflecting mirror, reflecting mirror, illumination device, and projector
WO2004086453A1 (ja) 照明装置及びこれを備えたプロジェクタ
JP4193063B2 (ja) ランプ装置およびそれを備えたプロジェクタ
JP4349366B2 (ja) 光源装置及びプロジェクタ
JP4289409B2 (ja) 発光管及びプロジェクタ
JP2007256423A (ja) 反射鏡の製造方法並びに光源装置及びプロジェクタ
WO2010050112A1 (ja) 光源装置及びプロジェクタ
JP4321580B2 (ja) 光学素子及びプロジェクタ
JP2008226570A (ja) 光源装置及びプロジェクタ
JP4678441B2 (ja) 光源装置およびプロジェクター
JP2013041760A (ja) 照明装置及びプロジェクター
JP2010108741A (ja) 副鏡の製造方法、光源装置及びプロジェクタ
JP2009176456A (ja) 光源装置及びプロジェクタ
JP2007227206A (ja) 光源装置及びプロジェクタ
JP2011181430A (ja) 光源装置およびプロジェクター
JP4380382B2 (ja) 光源装置、およびプロジェクタ
JP2008070618A (ja) プロジェクタ
JP2011099995A (ja) 光源装置及びプロジェクター
JP2008076964A (ja) プロジェクタ
JP2008117555A (ja) 光源装置及びプロジェクタ
JP2010129504A (ja) 発光管、光源装置及びプロジェクタ
JP2009158228A (ja) 反射鏡の製造方法並びに光源装置及びプロジェクタ
JP2011181432A (ja) 光源装置およびプロジェクター
JP2007164024A (ja) 光源装置及びプロジェクタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09823228

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13125446

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09823228

Country of ref document: EP

Kind code of ref document: A1