WO2010048884A1 - 一种波长锁定方法及其装置、系统 - Google Patents
一种波长锁定方法及其装置、系统 Download PDFInfo
- Publication number
- WO2010048884A1 WO2010048884A1 PCT/CN2009/074663 CN2009074663W WO2010048884A1 WO 2010048884 A1 WO2010048884 A1 WO 2010048884A1 CN 2009074663 W CN2009074663 W CN 2009074663W WO 2010048884 A1 WO2010048884 A1 WO 2010048884A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- signal
- wavelength
- different phases
- photodetector
- information
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 46
- 230000004043 responsiveness Effects 0.000 claims description 29
- 238000002347 injection Methods 0.000 claims description 22
- 239000007924 injection Substances 0.000 claims description 22
- 238000001914 filtration Methods 0.000 claims description 18
- 238000000605 extraction Methods 0.000 claims description 11
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 10
- 230000008054 signal transmission Effects 0.000 claims description 8
- 238000001514 detection method Methods 0.000 claims description 4
- 102100040678 Programmed cell death protein 1 Human genes 0.000 claims 6
- 101710089372 Programmed cell death protein 1 Proteins 0.000 claims 1
- 230000003287 optical effect Effects 0.000 abstract description 27
- 230000004044 response Effects 0.000 description 11
- 230000005540 biological transmission Effects 0.000 description 9
- 238000005070 sampling Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 238000004088 simulation Methods 0.000 description 2
- 235000019800 disodium phosphate Nutrition 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000005622 photoelectricity Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/50—Transmitters
- H04B10/572—Wavelength control
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/06—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
- H01S5/062—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
- H01S5/06209—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in single-section lasers
- H01S5/0622—Controlling the frequency of the radiation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/06—Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
- H01S5/068—Stabilisation of laser output parameters
- H01S5/0683—Stabilisation of laser output parameters by monitoring the optical output parameters
- H01S5/0687—Stabilising the frequency of the laser
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/40—Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
- H01S5/4025—Array arrangements, e.g. constituted by discrete laser diodes or laser bar
- H01S5/4087—Array arrangements, e.g. constituted by discrete laser diodes or laser bar emitting more than one wavelength
Definitions
- the present invention relates to the field of optical communication technologies, and in particular, to a wavelength adjustment method, an apparatus, and a system thereof. Background technique
- each optical module laser In order to prevent multiple wavelengths of optical crosstalk, the outgoing fiber of each optical module laser must operate at a specific wavelength.
- the wavelength of the laser varies with temperature.
- the scrambling technique is applied to the wavelength lock control process.
- the traditional scrambling method is that each laser is separately scrambled.
- the printed circuit board (PCB) area and the complexity of the control circuit will be greatly increased.
- Embodiments of the present invention provide a wavelength adjustment method, apparatus, and system thereof, which use multiple scramble signals having the same frequency and different phases to inject a wavelength channel corresponding to the phase to achieve multi-wavelength adjustment.
- the embodiment of the present invention provides a wavelength adjustment method, where the method includes:
- the photodetector PD signal is obtained;
- phase discrimination processing on the PD signal of the photodetector to obtain scramble information of different phases, where the scrambling information includes wavelength information of the wavelength channel;
- Wavelength adjustment is performed on wavelength channels of different phases according to the different drift amounts.
- the embodiment of the present invention further provides a wavelength adjustment device, where the device includes: an injection module, configured to respectively input a scrambled signal with the same frequency and different phases into a wavelength channel corresponding to the phase;
- phase discrimination processing module configured to perform phase discrimination processing on the photodetector PD signal to obtain scramble information of different phases, where the scramble information includes wavelength information of the wavelength channel;
- a wavelength drift discriminating module configured to perform wavelength drift determination on the scramble information of different phases obtained by the phase-detection processing module, to obtain different drift amounts corresponding to the wavelength information in the scramble information of the different phases;
- a wavelength control adjustment module configured to input wavelength channels of different phases according to the different drift amounts Line wavelength adjustment.
- the embodiment of the present invention further provides a wavelength adjustment system, where the system includes: a scrambling signal injection device, configured to generate a scrambled signal with the same frequency and different phases, and inject the scrambled signal into the same a wavelength channel corresponding to the phase;
- a scrambling signal injection device configured to generate a scrambled signal with the same frequency and different phases, and inject the scrambled signal into the same a wavelength channel corresponding to the phase;
- a signal transmission device configured to modulate and combine signals in a wavelength channel
- a split-wave lock device configured to perform splitting and wave-locking of the signal modulated by the signal transmission device to obtain a photodetector PD signal;
- a perturbation extraction device configured to perform phase discrimination processing on the photodetector PD signal to obtain scramble information of different phases, where the scramble information includes wavelength information of the wavelength channel; scrambling the different phases The information is subjected to determination of wavelength drift, and different drift amounts corresponding to the wavelength information in the scramble information of the different phases are obtained;
- the wavelength control adjusting device is configured to perform wavelength adjustment on the wavelength channels of different phases according to the different drift amounts.
- a plurality of wavelength channels having the same frequency and different phases are used to inject a wavelength channel corresponding to the phase, so as to achieve multi-wavelength adjustment, which greatly saves cost and PCB area, and reduces the complexity of the control circuit.
- 1 is a schematic structural view of a wavelength locking system in the prior art
- FIG. 2 is a schematic flow chart of a wavelength adjustment method according to an embodiment of the present invention.
- FIG. 3 is a schematic diagram of timing division of time-division scrambled signal injection according to an embodiment of the present invention
- FIG. 4 is a schematic structural diagram of a wavelength adjustment apparatus according to an embodiment of the present invention
- 5 is a schematic structural view of a first embodiment of a wavelength adjustment system of the present invention
- FIG. 6 is a schematic structural view of a second embodiment of the wavelength adjustment system of the present invention.
- FIG. 2 is a schematic flowchart of a wavelength adjustment method according to an embodiment of the present invention. As shown in FIG. 2, the method includes:
- 201 modulate a signal in a wavelength channel corresponding to the phase by using a scrambled signal with the same frequency and different phases;
- 201 into one includes:
- the signal of the wavelength channel is modulated according to the scrambled signal.
- the modulated optical signals are also combined.
- the scrambled signals with the same frequency and different phases may be injected into the wavelength channel corresponding to the phase in a time-sharing manner.
- the process uses the time division phase scrambling signal injection timing shown in FIG. 3 to inject the scrambled signals of different phases into the wavelength channel corresponding to the phase, and the time-sharing control timing ensures that the interference is performed in a high-level time interval.
- different wavelength channels are respectively injected with scramble signals of different phases, and finally modulated into high-speed electrical signals. If the wavenumber required for wavelength locking is N, the phase of each channel wavelength should be sequentially spaced by 360 ° /N.
- the phase-detecting capability in the subsequent perturbation extraction process when the channel is increased, the phase needs to be phased according to the maximum phase-detecting capability.
- Reasonable allocation of difference when the maximum phase discrimination ability is exceeded, You can use time-sharing, gp: the first time slice adjusts the first set of wavelengths, the second time slice adjusts the second set of wavelengths, and so on.
- the optical signal after the 201 multiplexed beam is split, and a certain proportion of the optical signal can be separated, and the optical signal obtained by the splitting is subjected to a lock process to obtain a PD signal, and the PD signal includes the first photodetector signal PD1.
- the signal and the second photodetector signal PD2 signal both PD1 signals represent the first photodetector signal, and the PD2 signal represents the second photodetector signal
- the PD1 signal is not processed by the terabyte
- the PD2 signal passes
- the signal wavelength responsivity is obtained by processing with the LT, which is the signal wavelength responsiveness obtained by modulating the signal in the wavelength channel by the scrambled signal and changing the signal after the transmission process.
- the Ethernet is a grating array, which is sensitive to the wavelength response of the signal, and the wavelength response curve can be obtained.
- the method further includes:
- the PD signal includes a PD1 signal and a PD2 signal, and the PD1 signal is not processed by Ethernet, and the PD2 signal is processed by Etheron to obtain signal wavelength responsivity.
- the process of filtering the PD signal outputted by the ether locker of the Ethernet can include:
- the digital signal is again filtered by a digital filter.
- the scrambling information includes wavelength information of the wavelength channel; the scrambling information is a signal of the injected scrambled signal to the wavelength channel.
- the signal is included after a change in the transmission process.
- 204 Perform wavelength wavelength determination on the scramble information of the different phases, and obtain different drift amounts corresponding to the wavelength information in the scramble information of the different phases; Among them, 204 into one includes:
- the pre-stored signal wavelength responsivity may be saved after the scrambled signal is modulated in the wavelength channel in 201, and optionally, the signal wavelength responsivity is saved in a predetermined table, for the method embodiment.
- the wavelength drift in the determination is used.
- the wavelength of the wavelength channel corresponding to the phase is adjusted by the wavelength feedback signal carrying different drift amounts.
- the first embodiment of the method of the present invention can achieve multi-wavelength adjustment by using a plurality of scramble signals with the same frequency and different phases to inject the wavelength channel corresponding to the phase, thereby greatly reducing cost and PCB area, and reducing the control circuit. the complexity.
- the apparatus includes:
- the injection module 1 is configured to respectively input the scramble signals with the same frequency and different phases into the wavelength channel corresponding to the phase; in this embodiment, the scrambling signals with the same frequency and different phases are generated by the injection module 1 and The scrambling signals of the same frequency and different phases are respectively injected into the wavelength channel corresponding to the phase of the scrambled signal by the injection module 1.
- the sampling module 1 injects the scrambled signal into the phase of the scrambled signal. After the corresponding wavelength channel, the signal in the wavelength channel is modulated by the laser or the modulator, and the modulated signal is combined by the combiner.
- the optical splitter When passing through the splitter, the optical splitter inputs a certain proportion of the optical signal to the ether-containing In the wave locker of the dragon, the optical signal input into the wave locker is divided into two paths, one light signal does not pass through the Ethernet, one light signal passes through the Ethernet, and the two optical signals are photoelectrically converted to output the PD signal.
- One of them is an electrical signal that is directly output after photoelectric conversion without processing, and the subsequent wavelength shift of the signal directly output by photoelectric conversion will be determined. Used as a reference signal, the other way is processed by Ethereum and converted by photoelectric conversion Electrical signal.
- the scrambled signals of different phases may be injected into a wavelength channel corresponding to the phase in a time-sharing manner.
- the process uses the time division phase scrambling signal injection timing of FIG. 3 to inject the scrambled signals of different phases into the wavelength channel corresponding to the phase, and the time-sharing control timing ensures that the scrambled signal is performed in a high-level time interval.
- injecting different wavelength channels are respectively injected with scramble signals of different phases, and finally modulated into high-speed electrical signals. If the wavenumber required for wavelength locking is N, then the phase of each channel wavelength should be sequentially spaced by 360 ° /N.
- phase-detecting capability of the phase detector in the back-end perturbation extraction when the channel is increased, it is necessary to use the phase detector.
- the maximum phase-detecting capability allows a reasonable distribution of the phase difference.
- the time-sharing method can be used.
- the first time slice adjusts and locks the first group of wavelengths, and the second time slice pairs The two sets of wavelengths are adjusted and locked, and so on.
- the phase-detection processing module 2 is configured to perform phase-detection processing on the photodetector PD signal to obtain scramble information of different phases, where the scrambling information includes wavelength information of the wavelength channel; the scrambling information is scrambling of the injection After the signal is modulated on the signal in the wavelength channel, the signal is included in the transmission process.
- the phase discrimination processing module 2 extracts the scrambling information in the PD signal.
- the phase processing module 2 can be a phase detector.
- the wavelength drift discriminating module 3 is configured to perform wavelength drift determination on the scramble information of different phases obtained by the phase detecting processing module 2, and obtain different drift amounts corresponding to the wavelength information in the scramble information of the different phases;
- the wavelength drift discrimination module 3 may include:
- a comparing unit configured to compare the wavelength responsiveness of the signal with a pre-stored signal wavelength responsiveness to obtain a responsiveness difference value
- an obtaining unit configured to obtain different drift amounts corresponding to the wavelength information in the scramble information of the different phases according to the responsiveness difference value.
- the wavelength responsiveness of the pre-stored signal may be saved after the signal in the wavelength channel is modulated by the scrambled signal. Alternatively, the signal wavelength responsiveness is saved in a predetermined table for the method embodiment.
- the wavelength drift is determined to be used.
- the wavelength control adjustment module 4 is configured to perform wavelength adjustment on the wavelength channels of different phases according to the different drift amounts. In a specific implementation, the wavelength control adjustment module 4 adjusts the wavelength of the wavelength channel corresponding to the phase by using the wavelength feedback signal to carry different drift amounts.
- the multiple lasers are arranged in an array requiring wavelength locking, and each laser shares a wavelength control adjustment module 4.
- the injection module 1 and the wavelength control adjustment are performed.
- Module 4 can be integrated into a scrambling injection and wavelength control unit, and can add scrambled signals with the same frequency and different phases according to different wavelengths.
- the wavelength adjustment device may further include a filter processing module, where the filter processing module is respectively connected to the wave locker and the phase discrimination processing module 2, and is configured to filter the PD signal outputted by the wave locker containing the Ethernet
- the PD signal includes a PD1 signal that is not processed by Ethernet, and the PD2 signal is processed by Etheron to obtain signal wavelength responsiveness.
- the filter comprises a small signal amplifying unit, which amplifies the weak small signal outputted by the wave locker, and then performs filtering processing to filter out-of-band noise.
- the filter used in the embodiment of the present invention may be any one of an analog filter and a digital filter or a combination of the two.
- the frequency of the filter is the same as the frequency of the scrambled signal. Due to the characteristics of the op amp, the analog filtering bandwidth cannot be narrowed, and the scrambled signal can be extracted more effectively, so that the adjustment of the wavelength is more precise, and the A/D sampling can be converted into a digital signal after the analog filter. , using a digital filter for further filtering.
- the implementation of digital filters can be programmed by programmable devices such as Field Programmable Gate Array (FPGA), Application Specific Interlated Circuits (ASIC), and Central Processing Unit (Central Processing Unit). CPU), and Digital Signal Processor (DSP). In order to obtain better filtering effect, simulation is needed.
- A/D sampling can use dedicated high-speed ADC.
- Digital filter can choose finite impulse response (Finite Impulse Response, FIR) and Infinite Impulse Response (IR). The filter or a combination of the two, the order of which can be adjusted by the relevant parameters.
- FIR Finite Impulse Response
- IR Infinite Impulse Response
- the wavelength adjusting device of the embodiment of the present invention implements multi-wavelength adjustment by using a plurality of scramble signals with the same frequency and different phases to inject the wavelength channel corresponding to the phase, thereby greatly reducing cost and PCB area, and reducing the complexity of the control circuit.
- the time-frequency splitting method is used to realize the single-frequency disturbance injection to adjust the wavelength to achieve the wavelength locking function; in the same time slice, the wavelength adjustment can be performed on multiple channels at the same time.
- FIG. 5 is a schematic structural diagram of a first embodiment of a wavelength adjustment system according to the present invention. As shown in FIG. 5, the system includes:
- the scrambling signal injection device 5 is configured to generate a scrambled signal with the same frequency and different phases, and respectively inject the scrambled signal into a wavelength channel corresponding to the phase;
- the signal transmission device 6 is configured to modulate and combine signals in the wavelength channel.
- the signal transmission device 6 includes a laser/modulator and a combiner;
- the split optical lock device 7 is configured to perform splitting and wave locking on the signal modulated by the signal transmission device 6 to obtain a photodetector PD signal.
- the optical split lock device 7 includes a beam splitter and an ether.
- the wave locker of the dragon wherein the beam splitter is used for splitting the light signal after splitting, and can split a certain proportion of the light signal; and the wave locker performs wave lock processing on the optical signal obtained by splitting the splitter to obtain the PD signal.
- the PD signal includes a PD1 signal and a PD2 signal, and the PD1 signal is not processed by Ethernet, and the PD2 signal is processed by the Ethernet to obtain a signal wavelength responsivity, and the signal wavelength responsivity is in the wavelength channel through the scrambled signal.
- the signal is modulated, and the signal wavelength responsiveness obtained by the Ethernet is obtained after the transmission process signal changes.
- the Ethereum is a grating array that is sensitive to the wavelength response of the signal, and the wavelength response curve can be obtained.
- the perturbation extraction device 8 is configured to perform phase discrimination processing on the PD signal to obtain scrambling information of different phases, where the scrambling information includes wavelength information of the wavelength channel; and performing scrambling information of the different phases
- the wavelength drift is determined, and different drift amounts corresponding to the wavelength information in the scramble information of the different phases are obtained.
- the perturbation extracting device 8 can be used to compare the wavelength responsivity of the signal with the wavelength responsiveness of the pre-stored signal. Responsivity difference; obtained according to the responsiveness difference Different drift amounts corresponding to the wavelength information in the scramble information of different phases.
- the wavelength responsiveness of the pre-stored signal may be saved after the signal in the wavelength channel is modulated by the scrambled signal. Alternatively, the signal wavelength responsiveness is saved in a predetermined table for the method embodiment. The wavelength drift is determined to be used.
- the wavelength control adjusting device 9 is configured to perform wavelength adjustment on the wavelength channels of different phases according to the different drift amounts. Specifically, the wavelength control adjusting means 9 adjusts the wavelength of the wavelength channel corresponding to the phase by the wavelength feedback signal carrying different drift amounts.
- the perturbation extracting device 8 may further include:
- the PD signal includes a PD1 signal and a PD2 signal, the PD1 signal is not processed by Ethernet, and the PD2 signal is processed by Etheron Processing to obtain signal wavelength responsiveness;
- phase detector for performing phase discrimination processing on the PD signal after the filter filtering process to obtain scramble information of different phases
- a wavelength drift discriminator configured to determine a wavelength drift of the scramble information of the different phases, and obtain different drift amounts corresponding to the wavelength information in the scramble information of the different phases.
- Fig. 6 is a block diagram showing the second embodiment of the wavelength adjustment system of the present invention.
- the perturbation extraction circuit of FIG. 6 is equivalent to the perturbation extraction device 8 of FIG. 5, and the laser/modulator and the combiner are combined with the signal transmission device 6, the spectroscope and the wave lock of FIG. The combination is equivalent to the split-wave lock device 7 in FIG.
- the scrambled signal is generated by the scrambled signal injection device, and is injected into the multi-channel wavelength channel by the scrambled signal injection device.
- the laser/modulator passes the scrambled signals with the same frequency and different phases to each channel.
- the signal of the corresponding wavelength channel is modulated, and the combiner combines the modulated multiple signals to obtain an optical signal of the multi-wavelength combined wave output, and the optical signal of a certain proportion of the combined wave is input to the wave lock through the optical splitter.
- the wave locker contains an Ethernet
- the PD signal is output by the wave locker: the PD signal includes a PD1 signal and a PD2 signal, and the PD1 signal is not processed by the Ethernet.
- the PD2 signal is processed by the Ethernet to obtain a signal wavelength responsivity, which is a signal obtained by modulating a signal in the wavelength channel by the scrambled signal and changing the signal after the transmission process.
- Wavelength responsivity is a signal obtained by modulating a signal in the wavelength channel by the scrambled signal and changing the signal after the transmission process.
- the Ethernet is a grating array, which is sensitive to the wavelength response of the signal, and the wavelength response curve can be obtained.
- the PD signal includes the injected scrambling information, which is included after the injected scrambled signal modulates the signal in the wavelength channel, and the signal is included in the transmission process, and needs to be extracted by a special perturbation extraction circuit. Come out and use for wavelength adjustment lock.
- the perturbation extraction circuit includes a filter, a phase detector, and a wavelength drift discriminator.
- the filter contains a small signal amplifying unit that amplifies the weak small signal output from the wave locker, and then performs filtering processing to filter out-of-band noise.
- the filter used in the embodiment of the present invention may be any one of an analog filter, a digital filter, or a combination of the two, and the frequency of the filter is the same as the frequency of the scrambled signal. Due to the characteristics of the op amp, the analog filter bandwidth cannot be narrowed. In order to obtain a better filter effect, the scrambled signal can be extracted more effectively, and the adjustment of the wavelength can be more precise, which can be behind the analog filter.
- A/D sampling is performed to convert to a digital signal, and a digital filter is used for further filtering processing.
- Digital filter implementations can be programmed with programmable devices such as FPGAs, ASICs, CPUs, and DSPs. In order to obtain better filtering effect, simulation is needed.
- A/D sampling can use dedicated high-speed ADC.
- the digital filter can choose finite impulse response, infinite impulse response filter or a combination of the two. The order can pass relevant parameters. Make adjustments. When the disturbance frequency changes, it is only necessary to change the corresponding parameters of the digital filter; when it is necessary to increase the steepness of the edge of the filtering window, it is only necessary to increase the order of the digital filter; the commissioning process is performed by means of a specific programming device. JTAG or other interface is fine.
- the phase detector mainly distinguishes different channel wavelengths by discriminating the phase, so as to perform corresponding wavelength adjustment and lock the wavelength.
- the filter and the phase detector output the PD signal filtered out of the out-of-band noise to the wavelength drift discriminator, and the wavelength drift discriminator determines the wavelength drift of the scrambled signals of different phases to obtain the scrambling of the different phases.
- the different amount of drift corresponding to the signal here, the wavelength drift discriminator can be compared Determining a responsiveness difference between the signal wavelength responsivity and the pre-stored signal wavelength responsiveness; obtaining different drift amounts corresponding to the wavelength information in the scramble information of the different phases according to the responsiveness difference value.
- the wavelength responsiveness of the pre-stored signal may be saved after the signal in the wavelength channel is modulated by the scrambled signal. Alternatively, the signal wavelength responsiveness is saved in a predetermined table for the method embodiment. The wavelength drift is determined to be used.
- the wavelength control adjusting device sends different DA control signals to the corresponding laser driver and control circuit to adjust the wavelength according to the difference in the amount of drift, thereby locking the wavelength.
- the wavelength control adjusting means adjusts the wavelength of the wavelength channel corresponding to the phase by the wavelength feedback signal carrying different drift amounts.
- the scramble signal injection module can inject the scrambled signals of different phases into the wavelength channel corresponding to the phase in a time division manner.
- the process uses the time division phase scrambling signal injection timing of FIG. 3 to inject the scrambled signals of different phases into the wavelength channel corresponding to the phase, and the time-sharing control timing ensures that the scrambled signal is performed in a high-level time interval.
- injecting different wavelength channels are respectively injected with scramble signals of different phases, and finally modulated into high-speed electrical signals. If the wavenumber required for wavelength locking is N, the phase of each channel wavelength should be sequentially spaced by 360° / N.
- phase-detecting capability of the phase detector in the back-end perturbation extraction when the channel is increased, it is necessary to use the phase detector.
- the maximum phase-detecting capability allows a reasonable distribution of the phase difference.
- the time-sharing method can be used.
- BP The first time slice adjusts and locks the first group of wavelengths, and the second time slice pairs the second. The group wavelength is adjusted and locked, and so on.
- the method and device of the embodiments of the present invention can be applied to a multi-wavelength system composed of a separate optical module and a laser.
- the optical integrated device PID/PIC can also perform wavelength adjustment using the embodiment of the present invention to achieve the purpose of locking the wavelength.
- a plurality of wavelength channels having the same frequency and different phases are used to inject a wavelength channel corresponding to the phase, so as to achieve multi-wavelength adjustment, which greatly saves cost and PCB area, and reduces the complexity of the control circuit.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Optical Communication System (AREA)
- Semiconductor Lasers (AREA)
Description
一种波长锁定方法及其装置、 系统 本申请要求 2008年 10月 31 日递交的申请号为 200810218820.2、发明名 称为 "一种波长调整方法及其装置、 系统" 的中国专利申请的优先权, 其全 部内容通过引用结合在本申请中。 技术领域
本发明涉及光通信技术领域, 具体地涉及一种波长调整方法及其装置、 系统。 背景技术
随着通信业务的不断发展, 通信网络对传输带宽和传输容量的要求越来 越大, 密集波分系统被广泛地应用。 为了防止多波长的光串扰, 每个光模块 激光器的出纤光波必须工作在特定的波长上。 激光器的波长随着温度的变化 而变化, 在一般的光模块中都存在一个系统对波长进行锁定和控制, 使波长 控制在要求范围内。 加扰技术被应用于波长锁定控制过程中, 传统的加扰方 式是每个激光器分别进行加扰。 在多波长密集波分应用中, 如果采用传统的 每路激光器加扰的方式,势必大幅增加印刷电路板(Printed Circuit Board, PCB) 面积和控制电路的复杂度。
在现有的对多波长的控制和锁定的技术中, 进行多路 "加扰"处理, 以 区分当前控制和锁定的波长, 每波扰动提取方式由模数转换器 (Analog-Digital Converter , ADC) 采样到数字信号, 通过微处理器进行快 速傅立叶变换 (Fast Fourier Transformation, FFT) 进行不同波的不同扰 动频率的提取, 如图 1所示。但是, 每一波都必须加入一个唯一的扰动频率, 同时波锁器响应度较小, 由波锁器输出的光电探测器 (Photoelectricity Detector , PD) 信号直接进入 ADC采样, 对 ADC的精度要求很高。 随着波数
的增加,带来硬件和软件资源都会成倍增加,对数模转换(Digital / Analog, DA) 通道数目, 微处理器处理能力等关键资源带来挑战。 发明内容
本发明实施例提供一种波长调整方法及其装置、 系统, 通过使用多个频 率相同、 相位不同的扰频信号注入该相位相对应的波长信道, 以实现多波长 的调整。
为了解决上述技术问题, 本发明实施例提出了一种波长调整方法, 所述 方法包括:
通过频率相同、 相位不同的扰频信号对所述相位相对应的波长信道中的 信号进行调制;
对调制后的信号进行分光、 波锁后获得光电探测器 PD信号;
对所述光电探测器 PD信号进行鉴相处理,获得不同相位的扰频信息,所 述扰频信息包括所述波长信道的波长信息;
对所述不同相位的扰频信息进行波长漂移的判定, 获得所述不同相位的 扰频信息中波长信息对应的不同漂移量;
根据所述不同漂移量对不同相位的波长信道进行波长调整。
相应地, 本发明实施例还提供了一种波长调整装置, 所述装置包括: 注入模块, 用于将频率相同、 相位不同的扰频信号分别注入与所述相位 相对应的波长信道;
鉴相处理模块,用于对光电探测器 PD信号进行鉴相处理,获得不同相位 的扰频信息, 所述扰频信息包括所述波长信道的波长信息;
波长漂移鉴别模块, 用于对所述鉴相处理模块获得的不同相位的扰频信 息进行波长漂移的判定, 获得所述不同相位的扰频信息中波长信息对应的不 同漂移量;
波长控制调整模块, 用于根据所述不同漂移量对不同相位的波长信道进
行波长调整。
相应地, 本发明实施例还提供了一种波长调整系统, 所述系统包括: 扰频信号注入装置, 用于产生频率相同、 相位不同的扰频信号并将所述 扰频信号分别注入与所述相位相对应的波长信道;
信号传输装置, 用于对波长信道中的信号进行调制、 合波;
分光波锁装置, 用于对所述信号传输装置调制合波后的信号进行分光、 波锁后获得光电探测器 PD信号;
微扰提取装置,用于对所述光电探测器 PD信号进行鉴相处理,获得不同 相位的扰频信息, 所述扰频信息包括所述波长信道的波长信息; 对所述不同 相位的扰频信息进行波长漂移的判定, 获得所述不同相位的扰频信息中波长 信息对应的不同漂移量;
波长控制调整装置, 用于根据所述不同漂移量对不同相位的波长信道进 行波长调整。
实施本发明实施例, 通过使用多个频率相同、 相位不同的扰频信号注入 该相位相对应的波长信道, 以实现多波长的调整,大幅节约成本和 PCB面积, 减少控制电路的复杂度。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实 施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面 描述中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1是现有技术中波长锁定系统的结构示意图;
图 2是本发明实施例的波长调整方法的流程示意图;
图 3是本发明实施例的分时分相扰频信号注入时序的示意图;
图 4是本发明实施例的波长调整装置的结构示意图;
图 5是本发明的波长调整系统的第一实施例的结构示意图; 图 6是本发明的波长调整系统的第二实施例的结构示意图。 具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而 不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有作 出创造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
图 2是本发明实施例的波长调整方法的流程示意图, 如图 2所示, 该方 法包括:
201,通过频率相同、相位不同的扰频信号对所述相位相对应的波长信道 中的信号进行调制;
其中, 201进一歩包括:
产生频率相同、 相位不同的扰频信号;
将所述频率相同、 相位不同的扰频信号分别注入与所述相位相对应的波 长信道;
根据所述扰频信号对所述波长信道的信号进行调制。
具体实施中, 还对调制后的光信号进行合波。
可选地, 在实际操作中, 可通过分时的方式将所述频率相同、 相位不同 的扰频信号注入与所述相位相对应的波长信道。 此过程采用图 3所示的分时 分相扰频信号注入时序将所述不同相位的扰频信号注入与所述相位相对应的 波长信道, 分时控制时序保证在高电平的时间间隔内进行扰频信号的注入, 不同的波长信道分别使用不同的相位的扰频信号进行注入, 最终调制到高速 电信号中。 若需要进行波长锁定的波数为 N, 那么每个信道波长相位应当顺 序间隔 360 ° /N; 考虑到后续微扰提取过程中的鉴相能力, 当信道增加时, 需要根据最大鉴相能力进行相位差的合理分配, 超过最大鉴相能力的时候,
可以使用分时的方式, gp : 第一个时间片对第一组波长进行调整锁定, 第二 个时间片对第二组波长进行调整锁定, 依此类推。
202, 对调制后的信号进行分光、 波锁后获得 PD信号;
在 202中,对 201合波后的光信号进行分光,可分出一定比例的光信号, 对分光所得的光信号进行波锁处理而获得 PD信号, 该 PD信号包括第一光电 探测器信号 PD1信号和第二光电探测器信号 PD2信号 (文中 PD1信号均表示 第一光电探测器信号, PD2信号均表示第二光电探测器信号), 所述 PD1信号 未经以太龙处理, 所述 PD2信号经过以太龙进行处理获得信号波长响应度, 该信号波长响应度是在通过扰频信号对波长信道中的信号进行调制、 在传输 过程信号产生变化后, 通过以太龙而获得的信号波长响应度。 其中, 以太龙 是一个光栅阵列, 对信号的波长反应敏感, 可得出波长响应度曲线。
可选地, 在 202之后还可以包括:
对含有以太龙的波锁器输出的 PD信号进行滤波处理;
所述 PD信号包括 PD1信号和 PD2信号, 所述 PD1信号未经以太龙处理, 所述 PD2信号经过以太龙进行处理获得信号波长响应度。
其中, 对含有以太龙的波锁器输出的 PD信号进行滤波处理的过程可包 括:
对所述 PD信号进行放大, 获得放大 PD信号;
通过模拟滤波器对所述放大 PD信号进行滤波处理;
将滤波处理后的放大 PD信号转换为数字信号;
通过数字滤波器对所述数字信号再次进行滤波处理。
203, 对所述 PD信号进行鉴相处理, 获得不同相位的扰频信息, 所述扰 频信息包括所述波长信道的波长信息; 该扰频信息为注入的扰频信号对波长 信道中的信号进行调制后, 信号在传输过程中发生变化后所包含。
204,对所述不同相位的扰频信息进行波长漂移的判定,获得所述不同相 位的扰频信息中波长信息对应的不同漂移量;
其中, 204进一歩包括:
比较所述信号波长响应度与预先保存的信号波长响应度获得响应度差 值;
根据所述响应度差值获得所述不同相位的扰频信息中波长信息对应的不 同漂移量。 其中, 预先保存的信号波长响应度可以在 201中扰频信号对波长 信道中的信号进行调制后进行保存, 可选方式为, 将信号波长响应度保存在 一个预定的表里面, 供方法实施例中的波长漂移判定使用。
205, 根据所述不同漂移量对不同相位的波长信道进行波长调整。
在 205中, 通过波长反馈信号携带不同漂移量调整所述相位相对应的波 长信道的波长。
实施本发明方法的第一实施例, 可通过使用多个频率相同、 相位不同的 扰频信号注入该相位相对应的波长信道, 实现多波长的调整, 大幅节约成本 和 PCB面积, 减少控制电路的复杂度。
图 4是本发明实施例的波长调整装置的结构示意图, 如图 4所示, 该装 置包括:
注入模块 1, 用于将频率相同、 相位不同的扰频信号分别注入与所述相 位相对应的波长信道; 在本实施例中, 由注入模块 1产生频率相同、 相位不 同的扰频信号, 并通过注入模块 1将频率相同、 相位不同的扰频信号分别注 入与该扰频信号的相位相对应的波长信道, 实际操作中, 在注入模块 1将扰 频信号注入与该扰频信号的相位相对应的波长信道后, 通过激光器或者调制 器对波长信道中的信号进行调制, 由合波器对调制后的信号进行合波, 经过 分光器时,分光器将一定比例的光信号输入到含有以太龙的波锁器中,其中, 输入到波锁器中的光信号分为两路, 一路光信号不经以太龙, 一路光信号经 以太龙,两路光信号经光电转换后输出 PD信号,其中一路是未经处理而直接 光电转换后输出的电信号, 直接光电转换输出的信号后续的波长漂移的判定 时会被作为参考信号, 另一路是经过以太龙进行处理以及太光电转换而得到
的电信号。
可选地, 可通过分时的方式将所述不同相位的扰频信号注入与所述相位 相对应的波长信道。 此过程采用图 3的分时分相扰频信号注入时序将所述不 同相位的扰频信号注入与所述相位相对应的波长信道, 分时控制时序保证在 高电平的时间间隔内进行扰频信号的注入, 不同的波长信道分别使用不同的 相位的扰频信号进行注入, 最终调制到高速电信号中。 若需要进行波长锁定 的波数为 N, 那么每个信道波长相位应当顺序间隔 360 ° /N; 考虑到后端微 扰提取中鉴相器的鉴相能力, 当信道增加时, 需要根据鉴相器最大鉴相能力 进行相位差的合理分配, 超过其鉴相能力的时候, 可以使用分时的方式, δ卩: 第一个时间片对第一组波长进行调整锁定, 第二个时间片对第二组波长进行 调整锁定, 依此类推。
鉴相处理模块 2, 用于对光电探测器 PD信号进行鉴相处理, 获得不同相 位的扰频信息, 所述扰频信息包括所述波长信道的波长信息; 该扰频信息为 注入的扰频信号对波长信道中的信号进行调制后, 信号在传输过程中发生变 化后所包含,在本实施例中,鉴相处理模块 2对 PD信号中的扰频信息进行提 取; 在实际操作中, 鉴相处理模块 2可为鉴相器。
波长漂移鉴别模块 3, 用于对所述鉴相处理模块 2获得的不同相位的扰 频信息进行波长漂移的判定, 获得所述不同相位的扰频信息中波长信息对应 的不同漂移量;
进一歩地, 该波长漂移鉴别模块 3可包括:
比较单元, 用于比较所述信号波长响应度与预先保存的信号波长响应度 获得响应度差值;
获得单元, 用于根据所述响应度差值获得所述不同相位的扰频信息中波 长信息对应的不同漂移量。 其中, 预先保存的信号波长响应度可以在通过扰 频信号对波长信道中的信号进行调制后进行保存, 可选方式为, 将信号波长 响应度保存在一个预定的表里面, 供方法实施例中的波长漂移判定使用。
波长控制调整模块 4, 用于根据所述不同漂移量对不同相位的波长信道 进行波长调整。 具体实施中, 波长控制调整模块 4通过波长反馈信号携带不 同漂移量调整所述相位相对应的波长信道的波长。
在本发明实施例中, 在多波长传输系统中, 多路激光器排成一个需要波 长锁定的阵列, 每个激光器都共用一个波长控制调整模块 4, 在实际操作中, 注入模块 1与波长控制调整模块 4可以集成为扰频注入与波长控制单元, 可 根据不同的波长加入频率相同、 相位不同的扰频信号。
可选地, 该波长调整装置还可以包括滤波处理模块, 该滤波处理模块分 别与波锁器、 鉴相处理模块 2相连接, 用于对含有以太龙的波锁器输出的 PD 信号进行滤波处理;所述 PD信号包括 PD1信号和 PD2信号,所述 PD1信号未 经以太龙处理, 所述 PD2信号经过以太龙进行处理获得信号波长响应度。 具 体实施中, 滤波器包含小信号放大单元, 将波锁器输出的微弱小信号进行放 大, 然后进行滤波处理, 滤除带外噪声。 本发明实施例采用的滤波器可以是 模拟滤波器、 数字滤波器中的任意一种或者是两者的结合, 同时, 滤波器的 频率与扰频信号的频率相同。 受限于运放的特性, 无法将模拟滤波带宽做到 很窄, 更加有效地提取该扰频信号, 使对波长的调整更加精准, 可在模拟滤 波器后面进行 A/D采样转换成数字信号, 使用数字滤波器进行进一歩的滤波 处理。 数字滤波器的实现可通过可编程器件进行编程实现, 如现场可编程门 阵列 ( Field Programmable Gate Array , FPGA)、专用集成电路 (Appl ication Specific Intergrated Circuits , ASIC)、 中央处理器 (Central Processing Unit , CPU), 和数字信号处理器 ( Digital Signal Processor , DSP) 等。 为 了获得更好的滤波效果, 需要进行仿真, A/D采样可使用专用的高速 ADC , 数 字滤波器可选择有限冲击响应 (Finite Impulse Response , FIR) , 无限冲击 响应 (Infinite Impulse Response , I IR) 滤波器或两者的结合, 其阶数可 通过相关参数进行调整。 当扰动频率发生改变时, 只需改变数字滤波器相应 参数即可; 当需要提升滤波窗口边缘陡峭程度时, 只需增加数字滤波器阶数
即可; 其调测过程借助具体使用的编程器件的 JTAG或者其它接口即可。 实施本发明实施例的波长调整装置, 通过使用多个频率相同、 相位不同 的扰频信号注入该相位相对应的波长信道, 实现多波长的调整, 大幅节约成 本和 PCB面积, 减少控制电路的复杂度, 采用分时分相的方式实现单一频率 扰动注入对波长的调整, 从而达到波长锁定的功能; 在同一时间片内, 可以 同时对多个信道进行波长调整。
图 5是本发明的波长调整系统的第一实施例的结构示意图,如图 5所示, 该系统包括:
扰频信号注入装置 5, 用于产生频率相同、 相位不同的扰频信号并将所 述扰频信号分别注入与所述相位相对应的波长信道;
信号传输装置 6, 用于对波长信道中的信号进行调制、 合波; 具体实施 中, 信号传输装置 6包括激光器 /调制器、 合波器;
分光波锁装置 7, 用于对所述信号传输装置 6调制合波后的信号进行分 光、波锁后获得光电探测器 PD信号; 具体实施中, 该分光波锁装置 7包括分 光器和含有以太龙的波锁器, 其中, 分光器用于合波后的光信号进行分光, 可分出一定比例的光信号; 而波锁器则对分光器分光所得的光信号进行波锁 处理获得 PD信号, 该 PD信号包括 PD1信号和 PD2信号, 所述 PD1信号未经 以太龙处理, 所述 PD2信号经过以太龙进行处理获得信号波长响应度, 该信 号波长响应度是在通过扰频信号对波长信道中的信号进行调制、 在传输过程 信号产生变化后, 通过以太龙而获得的信号波长响应度。 其中, 以太龙是一 个光栅阵列, 对信号的波长反应敏感, 可得出波长响应度曲线。
微扰提取装置 8, 用于对所述 PD信号进行鉴相处理, 获得不同相位的扰 频信息, 所述扰频信息包括所述波长信道的波长信息; 对所述不同相位的扰 频信息进行波长漂移的判定, 获得所述不同相位的扰频信息中波长信息对应 的不同漂移量; 具体实施中, 微扰提取装置 8可用于比较所述信号波长响应 度与预先保存的信号波长响应度获得响应度差值; 根据所述响应度差值获得
所述不同相位的扰频信息中波长信息对应的不同漂移量。 其中, 预先保存的 信号波长响应度可以在通过扰频信号对波长信道中的信号进行调制后进行保 存, 可选方式为, 将信号波长响应度保存在一个预定的表里面, 供方法实施 例中的波长漂移判定使用。
波长控制调整装置 9, 用于根据所述不同漂移量对不同相位的波长信道 进行波长调整。 具体地, 波长控制调整装置 9通过波长反馈信号携带不同漂 移量调整所述相位相对应的波长信道的波长。
可选地, 微扰提取装置 8还可以包括:
滤波器,用于对含有以太龙的波锁器输出的 PD信号进行滤波处理;所述 PD信号包括 PD1信号和 PD2信号, 所述 PD1信号未经以太龙处理, 所述 PD2 信号经过以太龙进行处理获得信号波长响应度;
鉴相器,用于对所述滤波器滤波处理后的 PD信号进行鉴相处理,获得不 同相位的扰频信息;
波长漂移鉴别器,用于对所述不同相位的扰频信息进行波长漂移的判定, 获得所述不同相位的扰频信息中波长信息对应的不同漂移量。
下面结合图 6对本发明的波长调整系统的第二实施例进行详细说明, 图 6是本发明的波长调整系统的第二实施例的结构示意图。如图 6所示,图 6 中 的微扰提取电路相当于图 5的微扰提取装置 8,而激光器 /调制器与合波器结 合相当于图 5的信号传输装置 6, 分光器与波锁器结合相当于图 5中的分光 波锁装置 7。
在本实施例中, 由扰频信号注入装置产生频率相同、 相位不同的扰频信 号, 并由其注入多路波长信道中, 激光器 /调制器通过频率相同、相位不同的 扰频信号对各路对应的波长信道的信号进行调制, 合波器将调制后的多路信 号进行合波, 获得多路波长合波输出的光信号, 经过分光器将一定比例合波 后的光信号输入到波锁器中, 该波锁器含有以太龙, 由波锁器输出两路 PD 信号: 该 PD信号包括 PD1信号和 PD2信号, 所述 PD1信号未经以太龙处理,
所述 PD2信号经过以太龙进行处理获得信号波长响应度, 该信号波长响应度 是在通过扰频信号对波长信道中的信号进行调制、 在传输过程信号产生变化 后, 通过以太龙而获得的信号波长响应度。 其中, 以太龙是一个光栅阵列, 对信号的波长反应敏感, 可得出波长响应度曲线。 PD信号包含注入的扰频信 息, 该扰频信息为注入的扰频信号对波长信道中的信号进行调制后, 信号在 传输过程中发生变化后所包含,需要经过特殊的微扰提取电路才能提取出来, 供波长调整锁定使用。
其中, 微扰提取电路包括滤波器、 鉴相器和波长漂移鉴别器。 滤波器包 含小信号放大单元, 将波锁器输出的微弱小信号进行放大, 然后进行滤波处 理, 滤除带外噪声。 本发明实施例采用的滤波器可以是模拟滤波器、 数字滤 波器中的任意一种或者是两者的结合, 同时, 滤波器的频率与扰频信号的频 率相同。 受限于运放的特性, 无法将模拟滤波带宽做到很窄, 为取得更好的 滤波器效果, 更加有效地提取该扰频信号, 使对波长的调整更加精准, 可在 模拟滤波器后面进行 A/D采样转换成数字信号, 使用数字滤波器进行进一歩 的滤波处理。 数字滤波器的实现可通过可编程器件进行编程实现, 如 FPGA、 ASIC, CPU, 和 DSP等。 为了获得更好的滤波效果, 需要进行仿真, A/D采样 可使用专用的高速 ADC, 数字滤波器可选择有限冲击响应、 无限冲击响应滤 波器或两者的结合, 其阶数可通过相关参数进行调整。 当扰动频率发生改变 时, 只需改变数字滤波器相应参数即可; 当需要提升滤波窗口边缘陡峭程度 时, 只需增加数字滤波器阶数即可; 其调测过程借助具体使用的编程器件的 JTAG或者其它接口即可。
鉴相器主要通过对相位的鉴别, 区分出不同的信道波长, 以便进行对应 的波长调整, 进而锁定波长。
滤波器和鉴相器将滤除带外噪声后的 PD信号输出到波长漂移鉴别器中, 由波长漂移鉴别器对不同相位的扰频信号进行波长漂移的判定, 获得所述不 同相位的扰频信号对应的不同漂移量, 这里, 可通过波长漂移鉴别器比较所
述信号波长响应度与预先保存的信号波长响应度获得响应度差值; 根据所述 响应度差值获得所述不同相位的扰频信息中波长信息对应的不同漂移量。 其 中, 预先保存的信号波长响应度可以在通过扰频信号对波长信道中的信号进 行调制后进行保存, 可选方式为, 将信号波长响应度保存在一个预定的表里 面, 供方法实施例中的波长漂移判定使用。
由波长控制调整装置根据漂移量的不同,下发不同的 DA控制信号到对应 的激光器驱动器和控制电路进行波长的调整, 从而锁定波长。 具体地, 波长 控制调整装置通过波长反馈信号携带不同漂移量调整所述相位相对应的波长 信道的波长。
在本实施例中, 扰频信号注入模块可通过分时的方式将所述不同相位的 扰频信号注入与所述相位相对应的波长信道。 此过程采用图 3的分时分相扰 频信号注入时序将所述不同相位的扰频信号注入与所述相位相对应的波长信 道, 分时控制时序保证在高电平的时间间隔内进行扰频信号的注入, 不同的 波长信道分别使用不同的相位的扰频信号进行注入, 最终调制到高速电信号 中。 若需要进行波长锁定的波数为 N, 那么每个信道波长相位应当顺序间隔 360° /N; 考虑到后端微扰提取中鉴相器的鉴相能力, 当信道增加时, 需要根 据鉴相器最大鉴相能力进行相位差的合理分配, 超过其鉴相能力的时候, 可 以使用分时的方式, BP : 第一个时间片对第一组波长进行调整锁定, 第二个 时间片对第二组波长进行调整锁定, 依此类推。
本发明实施例的方法、 装置可应用于分离光模块、 激光器组成的多波长 系统, 另外, 光电集成器件 PID/PIC也可以采用本发明的实施例进行波长调 整, 达到锁定波长的目的。
实施本发明实施例, 通过使用多个频率相同、 相位不同的扰频信号注入 该相位相对应的波长信道, 以实现多波长的调整,大幅节约成本和 PCB面积, 减少控制电路的复杂度。
通过以上的实施方式的描述, 本领域的技术人员可以清楚地了解到本发
明可借助软件加必需的硬件平台的方式来实现, 当然也可以全部通过硬件来 实施。 基于这样的理解, 本发明的技术方案对背景技术做出贡献的全部或者 部分可以以软件产品的形式体现出来, 该计算机软件产品可以存储在存储介 质中, 如 R0M/RAM、 磁碟、 光盘等, 包括若干指令用以使得一台计算机设备 (可以是个人计算机, 服务器, 或者网络设备等)执行本发明各个实施例或者 实施例的某些部分所述的方法。
以上所揭露的仅为本发明的较佳实施例而已, 当然不能以此来限定本发 明之权利范围, 因此依本发明权利要求所作的等同变化, 仍属本发明所涵盖 的范围。
Claims
1、 一种波长调整方法, 其特征在于, 所述方法包括:
通过频率相同、 相位不同的扰频信号对所述相位相对应的波长信道中的 信号进行调制;
对调制后的信号进行分光、 波锁后获得光电探测器 PD信号;
对所述光电探测器 PD信号进行鉴相处理,获得不同相位的扰频信息,所 述扰频信息包括所述波长信道的波长信息;
对所述不同相位的扰频信息进行波长漂移的判定, 获得所述不同相位的 扰频信息中波长信息对应的不同漂移量;
根据所述不同漂移量对不同相位的波长信道进行波长调整。
2、 如权利要求 1所述的方法, 其特征在于, 所述通过频率相同、 相位不 同的扰频信号对所述相位相对应的波长信道中的信号进行调制包括:
产生频率相同、 相位不同的扰频信号;
将所述频率相同、 相位不同的扰频信号分别注入与所述相位相对应的波 长信道;
根据所述扰频信号对所述波长信道的信号进行调制。
3、 如权利要求 2所述的方法, 其特征在于, 所述将所述频率相同、 相位 不同的扰频信号分别注入与所述相位相对应的波长信道为: 通过分时的方式 将所述频率相同、 相位不同的扰频信号注入与所述相位相对应的波长信道。
4、 如权利要求 1 所述的方法, 其特征在于, 在所述对所述光电探测器 PD信号进行鉴相处理, 获得不同相位的扰频信息之前, 包括:
对含有以太龙的波锁器输出的光电探测器 PD信号进行滤波处理; 所述光电探测器 PD信号包括第一光电探测器信号 PD 1信号和第二光电探 测器信号 PD2信号, 所述第一光电探测器信号 PD1信号未经以太龙处理, 所 述第二光电探测器信号 PD2信号经过以太龙进行处理获得信号波长响应度。
5、如权利要求 4所述的方法, 其特征在于,所述对所述不同相位的扰频
信息进行波长漂移的判定, 获得所述不同相位的扰频信息中波长信息对应的 不同漂移量, 包括:
比较所述信号波长响应度与预先保存的信号波长响应度获得响应度差 值;
根据所述响应度差值获得所述不同相位的扰频信息中波长信息对应的不 同漂移量。
6、如权利要求 3所述的方法, 其特征在于,所述对含有以太龙的波锁器 输出的光电探测器 PD信号进行滤波处理包括:
对所述光电探测器 PD信号进行放大, 获得放大光电探测器 PD信号; 通过模拟滤波器对放大后光电探测器 PD信号进行滤波处理;
将滤波处理后的放大光电探测器 PD信号转换为数字信号;
通过数字滤波器对所述数字信号再次进行滤波处理。
7、 一种波长调整装置, 其特征在于, 所述装置包括:
注入模块, 用于将频率相同、 相位不同的扰频信号分别注入与所述相位 相对应的波长信道;
鉴相处理模块,用于对光电探测器 PD信号进行鉴相处理,获得不同相位 的扰频信息, 所述扰频信息包括所述波长信道的波长信息;
波长漂移鉴别模块, 用于对所述鉴相处理模块获得的不同相位的扰频信 息进行波长漂移的判定, 获得所述不同相位的扰频信息中波长信息对应的不 同漂移量;
波长控制调整模块, 用于根据所述不同漂移量对不同相位的波长信道进 行波长调整。
8、如权利要求 7所述的装置, 其特征在于,所述注入模块还用于产生频 率相同、 相位不同的扰频信号。
9、如权利要求 7或 8所述的装置, 其特征在于,所述注入模块通过分时 的方式将所述频率相同、 相位不同的扰频信号注入与所述相位相对应的波长
信道。
10、 如权利要求 7所述的装置, 其特征在于, 所述装置还包括: 滤波处理模块,用于对含有以太龙的波锁器输出的光电探测器 PD信号进 行滤波处理;所述光电探测器 PD信号包括第一光电探测器信号 PD1信号和第 二光电探测器信号 PD2信号, 所述第一光电探测器信号 PD1信号未经以太龙 处理, 所述第二光电探测器信号 PD2信号经过以太龙进行处理获得信号波长 响应度。
11、如权利要求 10所述的装置, 其特征在于, 所述波长漂移鉴别模块包 括:
比较单元, 用于比较信号波长响应度与预先保存的信号波长响应度获得 响应度差值;
获得单元, 用于根据所述响应度差值获得所述不同相位的扰频信息中波 长信息对应的不同漂移量。
12、 一种波长调整系统, 其特征在于, 所述系统包括:
扰频信号注入装置, 用于产生频率相同、 相位不同的扰频信号并将所述 扰频信号分别注入与所述相位相对应的波长信道;
信号传输装置, 用于对波长信道中的信号进行调制、 合波;
分光波锁装置, 用于对所述信号传输装置调制合波后的信号进行分光、 波锁后获得光电探测器 PD信号;
微扰提取装置,用于对所述光电探测器 PD信号进行鉴相处理,获得不同 相位的扰频信息, 所述扰频信息包括所述波长信道的波长信息; 对所述不同 相位的扰频信息进行波长漂移的判定, 获得所述不同相位的扰频信息中波长 信息对应的不同漂移量;
波长控制调整装置, 用于根据所述不同漂移量对不同相位的波长信道进 行波长调整。
13、 如权利要求 12所述的系统, 其特征在于, 所述微扰提取装置包括:
滤波器,用于对含有以太龙的波锁器输出的光电探测器 PD信号进行滤波 处理;所述光电探测器 PD信号包括第一光电探测器信号 PD1信号和第二光电 探测器信号 PD2信号, 所述第一光电探测器信号 PD1信号未经以太龙处理, 所述第二光电探测器信号 PD2 信号经过以太龙进行处理获得信号波长响应 度;
鉴相器,用于对所述滤波器滤波处理后的 PD信号进行鉴相处理,获得不 同相位的扰频信息;
波长漂移鉴别器, 用于比较信号波长响应度与预先保存的信号波长响应 度获得响应度差值, 并根据所述响应度差值获得所述不同相位的扰频信息中
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA2742204A CA2742204C (en) | 2008-10-31 | 2009-10-28 | Wavelength adjusting method, apparatus, and system |
JP2011533519A JP5441191B2 (ja) | 2008-10-31 | 2009-10-28 | 波長を調整する方法、装置、およびシステム |
ES09823076T ES2408591T3 (es) | 2008-10-31 | 2009-10-28 | Método, aparato y sistema de enclavamiento en longitud de onda |
EP09823076A EP2346195B1 (en) | 2008-10-31 | 2009-10-28 | Wavelength locking method, apparatus and system |
US13/097,817 US8693872B2 (en) | 2008-10-31 | 2011-04-29 | Wavelength adjusting method, apparatus, and system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200810218820.2 | 2008-10-31 | ||
CN2008102188202A CN101729184B (zh) | 2008-10-31 | 2008-10-31 | 一种波长调整方法及其装置、系统 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/097,817 Continuation US8693872B2 (en) | 2008-10-31 | 2011-04-29 | Wavelength adjusting method, apparatus, and system |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010048884A1 true WO2010048884A1 (zh) | 2010-05-06 |
Family
ID=42128265
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2009/074663 WO2010048884A1 (zh) | 2008-10-31 | 2009-10-28 | 一种波长锁定方法及其装置、系统 |
Country Status (7)
Country | Link |
---|---|
US (1) | US8693872B2 (zh) |
EP (1) | EP2346195B1 (zh) |
JP (1) | JP5441191B2 (zh) |
CN (1) | CN101729184B (zh) |
CA (1) | CA2742204C (zh) |
ES (1) | ES2408591T3 (zh) |
WO (1) | WO2010048884A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015514306A (ja) * | 2012-03-14 | 2015-05-18 | アクソンオプティクス・リミテッド・ライアビリティ・カンパニーAxonoptics,Llc | 集積化された光反射率計 |
US9557243B2 (en) | 2012-03-14 | 2017-01-31 | Axonoptics Llc | Integrated optics reflectometer |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3394262B2 (ja) | 1997-02-06 | 2003-04-07 | セラセンス、インク. | 小体積インビトロ被検体センサー |
US6338790B1 (en) | 1998-10-08 | 2002-01-15 | Therasense, Inc. | Small volume in vitro analyte sensor with diffusible or non-leachable redox mediator |
US8781327B2 (en) * | 2010-07-09 | 2014-07-15 | Futurewei Technologies, Inc. | Use of multiple shared wavelength lockers to stabilize transponders in a wavelength division multiplexing (WDM) network |
JP5678199B2 (ja) * | 2010-11-30 | 2015-02-25 | ソリッド インコーポレーテッドSolid,Inc. | 自動波長ロックのための受動型波長分割多重化装置及びそのシステム |
US8913899B2 (en) * | 2010-12-07 | 2014-12-16 | Alcatel Lucent | Distribution of optical power in an optical transport system |
EP2573961B1 (en) * | 2011-09-12 | 2016-04-13 | ADVA Optical Networking SE | An optical frequency locking method and device for optical data transmission |
JP5962455B2 (ja) * | 2012-11-21 | 2016-08-03 | 富士通株式会社 | 光伝送装置、ノード装置、光伝送方法および光伝送システム |
CN104125019B (zh) * | 2013-04-28 | 2016-09-28 | 华为技术有限公司 | 一种差分四相移键控解调器锁定的方法和装置 |
US9608723B2 (en) * | 2014-10-20 | 2017-03-28 | Huawei Technologies Co., Ltd. | Carrier-signal power ratio control in direct detection optical systems |
US9945731B1 (en) | 2015-01-14 | 2018-04-17 | Hrl Laboratories, Llc | Optical detector for measuring respective phases of multiple beams apparatus and method |
US9941661B1 (en) * | 2015-01-14 | 2018-04-10 | Hrl Laboratories, Llc | System for maintaining the locking range of an injection locked laser array within range of the frequency of a master laser |
CN107769857B (zh) * | 2016-08-22 | 2021-05-11 | 中兴通讯股份有限公司 | 一种光信号调制处理方法、装置及系统 |
CN109217097B (zh) * | 2017-07-07 | 2022-05-13 | 中兴通讯股份有限公司 | 激光器波长控制方法及装置 |
CN110022186A (zh) * | 2018-01-10 | 2019-07-16 | 中兴通讯股份有限公司 | 一种波长锁定装置及方法 |
CN109828331A (zh) * | 2019-03-27 | 2019-05-31 | 浙江大学 | 一种波长锁定器及波长可调激光器 |
CN109990822B (zh) * | 2019-04-29 | 2022-04-22 | 中国电子科技集团公司第四十一研究所 | 一种光电探测模块的频率响应标定装置及方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7068949B2 (en) * | 2000-09-07 | 2006-06-27 | Korea Advanced Institute Of Science & Technology | Multi-wavelength locking method and apparatus for wavelength division multiplexing (WDM) optical communication system |
CN101247199A (zh) * | 2007-02-13 | 2008-08-20 | 华为技术有限公司 | 波长漂移检测装置、波长锁定系统及其方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6370169B1 (en) * | 1998-04-22 | 2002-04-09 | Nippon Telegraph & Telephone Corporation | Method and apparatus for controlling optical wavelength based on optical frequency pulling |
JP2001111168A (ja) * | 1999-10-06 | 2001-04-20 | Matsushita Electric Ind Co Ltd | 光周波数安定化装置 |
US6735395B1 (en) * | 2000-09-29 | 2004-05-11 | Futurewei Technologies, Inc. | WDM communication system utilizing WDM optical sources with stabilized wavelengths and light intensity and method for stabilization thereof |
US7155128B2 (en) * | 2001-12-14 | 2006-12-26 | Nortel Networks Limited | Decorrelation of WDM signals |
JP2003273806A (ja) * | 2002-03-13 | 2003-09-26 | Matsushita Electric Ind Co Ltd | 光伝送システム |
-
2008
- 2008-10-31 CN CN2008102188202A patent/CN101729184B/zh active Active
-
2009
- 2009-10-28 CA CA2742204A patent/CA2742204C/en active Active
- 2009-10-28 JP JP2011533519A patent/JP5441191B2/ja active Active
- 2009-10-28 ES ES09823076T patent/ES2408591T3/es active Active
- 2009-10-28 WO PCT/CN2009/074663 patent/WO2010048884A1/zh active Application Filing
- 2009-10-28 EP EP09823076A patent/EP2346195B1/en active Active
-
2011
- 2011-04-29 US US13/097,817 patent/US8693872B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7068949B2 (en) * | 2000-09-07 | 2006-06-27 | Korea Advanced Institute Of Science & Technology | Multi-wavelength locking method and apparatus for wavelength division multiplexing (WDM) optical communication system |
CN101247199A (zh) * | 2007-02-13 | 2008-08-20 | 华为技术有限公司 | 波长漂移检测装置、波长锁定系统及其方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015514306A (ja) * | 2012-03-14 | 2015-05-18 | アクソンオプティクス・リミテッド・ライアビリティ・カンパニーAxonoptics,Llc | 集積化された光反射率計 |
US9557243B2 (en) | 2012-03-14 | 2017-01-31 | Axonoptics Llc | Integrated optics reflectometer |
Also Published As
Publication number | Publication date |
---|---|
EP2346195B1 (en) | 2013-03-13 |
JP2012507221A (ja) | 2012-03-22 |
EP2346195A4 (en) | 2012-07-04 |
CN101729184A (zh) | 2010-06-09 |
CA2742204A1 (en) | 2010-05-06 |
US20110200334A1 (en) | 2011-08-18 |
EP2346195A1 (en) | 2011-07-20 |
CA2742204C (en) | 2013-12-31 |
JP5441191B2 (ja) | 2014-03-12 |
CN101729184B (zh) | 2013-01-02 |
ES2408591T3 (es) | 2013-06-21 |
US8693872B2 (en) | 2014-04-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010048884A1 (zh) | 一种波长锁定方法及其装置、系统 | |
JP5906870B2 (ja) | 光パワーモニタ | |
US9231724B2 (en) | Method for operating an optical transmission system | |
JP2012515468A (ja) | 共有光ハイブリッド(SharedOpticalHybrid)および多波長(Multi−Wavelength)局部発振器を有する多波長コヒーレント受信器(CoherentReceiver) | |
CN113227823A (zh) | Lidar系统中的光学开关 | |
US8861567B2 (en) | Method and apparatus for analyzing the spectrum of radio-frequency signals using a fiber optic recirculation loop | |
US20110158651A1 (en) | Method and apparatus for filtering locking | |
Corcoran et al. | Multipass performance of a chip-enhanced WSS for Nyquist-WDM sub-band switching | |
CN104378165A (zh) | 一种超信道co-ofdm系统中本振光的提取方法 | |
WO2022037154A1 (zh) | 光信号的功率检测电路、系统、方法以及芯片 | |
Brès et al. | Performance of instantaneous microwave analysis by parametric channelized receiver through time domain monitoring | |
TWI504176B (zh) | 分波多工光纖網路系統 | |
CN113612543B (zh) | 微波光子单光频率梳注入锁定的信道化接收装置及方法 | |
JP6468629B2 (ja) | Wdmコヒーレント伝送方式 | |
EP3011690A1 (en) | Optical monitoring in an optical communications network | |
CN115428342A (zh) | 信号处理器装置 | |
Aparna et al. | Performance analysis of optical communication system using wavelength division and sub carrier multiplexing | |
CN103529618B (zh) | 基于相位调制和去包络技术的时域展宽模数转换系统和方法 | |
CN109818740B (zh) | 一种使用波分复用器的上行连续变量量子密钥分发接入网方法 | |
US20240283545A1 (en) | Optical signal receiving apparatus, method and system, optical line terminal, computer-readable storage medium | |
CN111108703B (zh) | 检测波长偏差的方法和汇聚节点 | |
Radic | Comb-based Subnoise RF Signal Detection and Wideband Signal Analysis | |
KR101923831B1 (ko) | 코히어런트 광통신 수신 장치 및 시스템 | |
WO2023152210A1 (en) | Method for an arbitrary waveform measurement and a system to operate said method | |
JP5101455B2 (ja) | 光通信システム、光送信器および光送信方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09823076 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011533519 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2742204 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009823076 Country of ref document: EP |